IN THE CLAIMS

Please amend claims 1, 5, 6, 7, 9, 17, 21, 22, 23, and 25 as follows:

1. (CURRENTLY AMENDED) A method for manipulating an image transformation/metamorphosis over time, comprising:
 selecting a source image from a first frame of a video clip by creating a source spline for the source image, wherein the source spline comprises a first smooth curve that runs through a first series of given points;
 determining a first animation axis that defines a first two-dimensional transformation metamorphosis of all the given points in the source image spline in the video clip over time;
 selecting a destination image, that the source image will transform into, from a second frame of the video clip by creating a destination spline for the destination image, wherein the destination spline comprises a second smooth curve that runs through a second series of given points;
 determining a second animation axis that defines a second two-dimensional metamorphosis transformation of all the given points in the destination image spline in the video clip over time; and
 manipulating a metamorphosis transformation of the source image to the destination image by a user manipulating the second axis.

2. (ORIGINAL) The method of claim 1, further comprising:
 displaying a schematic hierarchical representation of the source image, the first axis, the destination image, and the second axis, wherein the first axis is a parent of the source image and the second axis is a parent of the destination image;
 displaying a first connector, in the schematic representation, connecting the source image and the first axis; and
 displaying a second connector, in the schematic representation, connecting the destination image and the second axis;

3. (ORIGINAL) The method of claim 2, wherein the manipulating is performed in the schematic hierarchical representation by:
 selecting the second axis; and
 modifying properties of the second axis.
4. (ORIGINAL) The method of claim 1, wherein the manipulating is performed by manipulating a graphical representation of the second axis that is superimposed over the destination image.

5. (CURRENTLY AMENDED) The method of claim 1, wherein:
 the manipulating comprises rotating the second axis; and
 the rotating causes all of the points in the destination image-spline to warp in accordance with the rotation.

6. (CURRENTLY AMENDED) The method of claim 1, wherein:
 the manipulating comprises scaling the second axis; and
 the rotating causes all of the points in the destination image-spline to warp in accordance with the scaling.

7. (CURRENTLY AMENDED) The method of claim 1, wherein:
 the manipulating comprises translating the second axis; and
 the rotating causes all of the points in the destination image-spline to warp in accordance with the translating.

8. (ORIGINAL) The method of claim 1, wherein the second transformation is defined by multiple two-dimensional transforms represented by multiple axis.

9. (CURRENTLY AMENDED) The method of claim 1, wherein the manipulating comprises modifying a point in the second axis to adjust the transformation to the destination image-spline.

10. (ORIGINAL) The method of claim 1, wherein the manipulating comprises realigning the second axis with the source image.
11. (ORIGINAL) A method for manipulating an image transformation over time, comprising:
 (a) selecting a source image from a first frame of a video clip;
 (b) selecting a destination image, that the source image will transform into, from a second frame of the video clip;
 (c) accepting input from a user for adjusting a coarseness of a lattice structure, wherein:
 (i) the coarseness of the lattice structure controls an accuracy for performing a transformation from the source image to the destination image; and
 (ii) the coarseness of the lattice structure determines how sample points on the source image and the destination image are manipulated with respect to each other during the transformation; and
 (d) performing the transformation of the source image to the destination image in accordance with the coarseness of the lattice structure.

12. (ORIGINAL) The method of claim 11, wherein the input from the user may animate the lattice structure by adjusting the coarseness of a lattice structure to different settings over time.

13. (ORIGINAL) A method for manipulating an image transformation over time, comprising:
 selecting a source image from a first frame of a video clip;
 selecting a destination image, that the source image will transform into, from a second frame of the video clip;
 mapping a first sample point from the source image to a second sample point on the destination image;
 manipulating a transformation of the source image to the destination image by manipulating the mapping.
14. (ORIGINAL) The method of claim 13, wherein the manipulating comprises modifying the mapping from a first sample point on the source image to a third sample point on the destination image.

15. (ORIGINAL) The method of claim 13, wherein the mapping is associated with a first point in time.

16. (ORIGINAL) The method of claim 15, further comprising animating the mapping over time by mapping the first sample point from the source image to a third sample point on the destination point at a second point in time.

17. (CURRENTLY AMENDED) An apparatus for manipulating an image transformation/metamorphosis over time in a computer system comprising:
(a) a computer having a memory;
(b) a video editing application executing on the computer, wherein the video editing application is configured to:
 (i) select a source image from a first frame of a video clip by creating a source spline for the source image, wherein the source spline comprises a first smooth curve that runs through a first series of given points;
 (ii) determine a first animation axis that defines a first two-dimensional transformation-metamorphosis of all the given points in the source image-spline in the video clip over time;
 (iii) select a destination image, that the source image will transform into, from a second frame of the video clip by creating a destination spline for the destination image, wherein the destination spline comprises a second smooth curve that runs through a second series of given points;
 (iv) determine a second animation axis that defines a second two-dimensional transformation-metamorphosis of all the given points in the destination image-spline in the video clip over time; and
manipulate a transformation-metamorphosis of the source image to the destination image by a user manipulating the second axis.

18. (ORIGINAL) The apparatus of claim 17, wherein the video application is further configured to:
 - display a schematic hierarchical representation of the source image, the first axis, the destination image, and the second axis, wherein the first axis is a parent of the source image and the second axis is a parent of the destination image;
 - display a first connector, in the schematic representation, connecting the source image and the first axis; and
 - display a second connector, in the schematic representation, connecting the destination image and the second axis;

19. (ORIGINAL) The apparatus of claim 18, wherein the video editing application is configured to manipulate through the schematic hierarchical representation by:
 - selecting the second axis; and
 - modifying properties of the second axis.

20. (ORIGINAL) The apparatus of claim 17, wherein the video editing application is configured to manipulate by manipulating a graphical representation of the second axis that is superimposed over the destination image.

21. (CURRENTLY AMENDED) The apparatus of claim 17, wherein:
 - the video editing application is configured to manipulate by rotating the second axis; and
 - the rotating causes all of the points in the destination image to warp in accordance with the rotation.

22. (CURRENTLY AMENDED) The apparatus of claim 17, wherein:
 - the video editing application is configured to manipulate by scaling the second axis; and
the rotating causes all of the points in the destination image-spline to warp in accordance with the scaling.

23. (CURRENTLY AMENDED) The apparatus of claim 17, wherein:
the video editing application is configured to manipulate by translating the second axis; and
the rotating causes all of the points in the destination image-spline to warp in accordance with the translating.

24. (ORIGINAL) The apparatus of claim 17, wherein the second transformation is defined by multiple two-dimensional transforms represented by multiple axis.

25. (CURRENTLY AMENDED) The apparatus of claim 17, wherein the video editing application is configured to manipulate by modifying a point in the second axis to adjust the transformation to the destination image-spline.

26. (ORIGINAL) The apparatus of claim 17, wherein the video editing application is configured to manipulate by realigning the second axis with the source image.

27. (ORIGINAL) An apparatus for manipulating an image transformation over time in a computer system comprising:
(a) a computer having a memory;
(b) a video editing application executing on the computer, wherein the video editing application is configured to:

(i) select a source image from a first frame of a video clip;
(ii) select a destination image, that the source image will transform into, from a second frame of the video clip;
(iii) accept input from a user for adjusting a coarseness of a lattice structure,
(1) the coarseness of the lattice structure controls an accuracy for performing a transformation from the source image to the destination image; and

(2) the coarseness of the lattice structure determines how sample points on the source image and the destination image are manipulated with respect to each other during the transformation; and

(iv) perform the transformation of the source image to the destination image in accordance with the coarseness of the lattice structure.

28. (ORIGINAL) The apparatus of claim 27, wherein the input from the user may animate the lattice structure by adjusting the coarseness of a lattice structure to different settings over time.

29. (ORIGINAL) An apparatus for manipulating an image transformation over time in a computer system comprising:

(a) a computer having a memory;
(b) a video editing application executing on the computer, wherein the video editing application is configured to:

(i) select a source image from a first frame of a video clip;
(ii) select a destination image, that the source image will transform into, from a second frame of the video clip;

(iii) map a first sample point from the source image to a second sample point on the destination image;

(iv) manipulate a transformation of the source image to the destination image by manipulating the mapping.

30. (ORIGINAL) The apparatus of claim 29, wherein the manipulating comprises modifying the mapping from a first sample point on the source image to a third sample point on the destination image.
31. (ORIGINAL) The apparatus of claim 29, wherein the mapping is associated with a first point in time.

32. (ORIGINAL) The apparatus of claim 31, wherein the video editing application is further configured to animate the mapping over time by mapping the first sample point from the source image to a third sample point on the destination point at a second point in time.