THE ELEMENTS OF MATERIA MEDICA AND THERAPEUTICS.

BY JONATHAN PEREIRA, M.D. F.R.S. & L.S.

FELLOW OF THE ROYAL COLLEGE OF PHYSICIANS IN LONDON:
ASSOCIATE OF THE COLLEGE OF PHYSICIANS OF PHILADELPHIA:
HONORARY MEMBER OF THE PHARMACEUTICAL SOCIETIES OF GREAT BRITAIN, ST. PETERSBURG, AND PORTUGAL; OF THE PHYSICO-MEDICAL SOCIETY OF ERLangen;
AND OF THE ASSOCIATION OF HESSIAN PHYSICIANS:
CORRESPONDING MEMBER OF THE SOCIETY OF PHARMACY OF PARIS:
EXAMINER IN MATERIA MEDICA AND PHARMACY TO THE UNIVERSITY OF LONDON:
PROFESSOR OF MATERIA MEDICA TO THE PHARMACEUTICAL SOCIETY:
AND PHYSICIAN TO THE LONDON HOSPITAL.

Third Edition, ENLARGED AND IMPROVED,
INCLUDING NOTICES OF MOST OF THE MEDICINAL SUBSTANCES IN USE IN THE CIVILIZED WORLD,
AND FORMING AN Encyclopædia of Materia Medica.

VOL. II. PART II.

LONDON:
PRINTED FOR LONGMAN, BROWN, GREEN, AND LONGMANS, PATERNOSTER ROW.
1853.
LONDON:
Wilson and Ogilvy,
Skinner Street.
PREFACE

TO VOLUME II. PART II.

The Part of the Second Volume of the Materia Medica of the late Dr. Pereira now laid before the profession, brings to a completion the third edition of this valuable work. In executing the difficult task of completing that which had been so ably commenced by the lamented author, the editors have endeavoured to act in accordance with his views, as embodied in a large collection of notes and memoranda which were entrusted to them for this purpose. They have, on their own responsibility, made such alterations and additions as the present state of science appeared, in their judgment, to render necessary; and the changes made in the preparations of the London and Dublin Pharmacopoeias since the publication of the previous edition, have been duly noticed.

At the time of his decease, the learned author had so far advanced with the present volume as to have completed the description of that important article of the materia medica, Cinchona. The remainder of the volume has passed under the revision of the editors; and it may be proper to state, that they have in no case interfered with the views or opinions of the author: but, when circumstances rendered it necessary, they have added, in brackets or in notes, such remarks as appeared to them requisite for the further elucidation of the subject. For some assistance in the performance of this duty, they
feel bound to express their obligations to Mr. Jacob Bell and to Mr. Daniel Hanbury. Mr. Bell freely placed at their disposal the numerous papers contributed by the late Dr. Pereira to the pages of the Pharmaceutical Journal.

It will be perceived that the present edition of this standard scientific work has assumed an entirely new shape. The Mineral substances of the materia medica have been confined to the first, and the Organic substances to the second volume. Considerable additions have been made to both departments: but the Organic Materia Medica has been especially enlarged. The additions comprise four hundred pages of new matter; and the articles of materia medica, of which a complete medical and scientific history is given, amount to three hundred and sixty. Of the value of the matter thus contributed to the medical literature of the day the Editors feel themselves at liberty to speak, since the author is now no more, and they have merely aided in carrying out his views in one small portion of this elaborate treatise. Their opinion is the expression of the opinion of the whole profession, both in this and foreign countries,—namely, that in copiousness of details, in extent, variety, and accuracy of information, and in a lucid explanation of difficult and recondite subjects, it surpasses all other works on Materia Medica hitherto published. The history of a drug, as it is given in these volumes, is not a dry description of its physical characters and its medicinal uses. Philology, Natural History, Botany, Chemistry, Physics, and the Microscope, are all brought forward to elucidate the subject; and the reader thus acquires a full scientific knowledge of each article of materia medica before he is introduced to a description of its effects on plants, animals, and man, or to the various theories of its operation, and the different uses to which it has been applied in ancient and modern times. In illustration of this statement, we refer to Article 232, on Cinchona, the last which passed under the hand of the author. This article, when taken alone, displays an amount of scientific knowledge, a degree of industry in the collection of facts, and a judgment in selecting and describing them, which it is rare to meet with in one individual.
In treating of the properties of the Cinchona alkaloids, it will be observed that even the abstruse subject of epipolization, or the internal dispersion of light, as a test for quina, has not escaped his notice. It was a peculiar feature in the writings of the author,—one which is stamped upon every page of this treatise,—that he was not satisfied until he had thoroughly exhausted the subject. His references to ancient and modern writers are constant and numerous: he goes to all sources which are capable of yielding information, and fairly acknowledges his obligations to those by whose learning, experience, or research, he profits. He has thus succeeded in transforming the substance of an unpretending course of lectures into a complete Encyclopædia of Materia Medica. We entertain no doubt that the present edition will be found to add to that high reputation which, while living, the author had acquired by his researches in this important branch of medical science.

ALFRED SWaine TAYLOR.

GEORGE OWEN REES.

London, September 1853.
CONTENTS OF VOL. II.

PART II.

Preface to Part II. of Vol. II. iii
Table of Contents in Vol. II. Part II. ix
List of Woodcuts in Vol. II. Part II. xxiii

II.—ORGANIC BODIES.

I. Vegetabilia.—Vegetables.—continued.

Order XLVIII.—Pyrolaceae .. 1539
 207. Chimaphila umbellata .. 1539
 Decoction chimaphila .. 1541

Order XLIX.—Ericaceae .. 1541
 208. Arctostaphylos uva ursi .. 1542
 1. Decoction uva ursi .. 1544
 2. Extractum uva ursi .. 1544
 209. Gaultheria procumbens .. 1545

Order L.—Lobeliaceae .. 1545
 210. Lobelia inflata .. 1546
 1. Tinctura lobelia .. 1551
 2. Tinctura lobelia etherea .. 1551
 211. Lobelia syphilitica .. 1551

Order LI.—Composite .. 1552
 Suborder I.—Tubuliflorae .. 1552
 Tribe I.—Vernoniaceae .. 1552
 Tribe II.—Eupatoriaceae .. 1553
 212. Tussilago farfara .. 1553
 Tribe III.—Asteroidae .. 1554
 213. Inula helenium .. 1554
 Vol. II. C
Tribe IV.—Senecionideæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Infusum anthemidis</td>
<td>1555</td>
</tr>
<tr>
<td>2.</td>
<td>Extractum anthemidis</td>
<td>1557</td>
</tr>
<tr>
<td>3.</td>
<td>Oleum anthemidis</td>
<td>1558</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Oleum anthemidis</td>
<td>1559</td>
</tr>
</tbody>
</table>

Tribe V.—Cynareæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.</td>
<td>Taraxacum officinale</td>
<td>1572</td>
</tr>
<tr>
<td>1.</td>
<td>Decoctum taraxaci</td>
<td>1573</td>
</tr>
<tr>
<td>2.</td>
<td>Extractum taraxaci</td>
<td>1574</td>
</tr>
</tbody>
</table>

Tribe VIII.—Cichoraceæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.</td>
<td>Taraxacum officinale</td>
<td>1573</td>
</tr>
<tr>
<td>1.</td>
<td>Decoctum taraxaci</td>
<td>1576</td>
</tr>
<tr>
<td>2.</td>
<td>Extractum taraxaci</td>
<td>1576</td>
</tr>
</tbody>
</table>

Order LIII.—Valerianaceæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>226.</td>
<td>Valeriana officinalis</td>
<td>1579</td>
</tr>
<tr>
<td>1.</td>
<td>Infusum valerianæ</td>
<td>1580</td>
</tr>
<tr>
<td>2.</td>
<td>Tinctura valerianæ</td>
<td>1580</td>
</tr>
<tr>
<td>3.</td>
<td>Tinctura valerianæ composita</td>
<td>1580</td>
</tr>
<tr>
<td>4.</td>
<td>Soda valerianæ</td>
<td>1580</td>
</tr>
<tr>
<td>5.</td>
<td>Zinci valerianæ</td>
<td>1581</td>
</tr>
<tr>
<td>6.</td>
<td>Ferri valerianæ</td>
<td>1581</td>
</tr>
<tr>
<td>7.</td>
<td>Quina valerianæ</td>
<td>1581</td>
</tr>
</tbody>
</table>

Order LIII.—Rubiaceæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.</td>
<td>Rubia tinctorum</td>
<td>1580</td>
</tr>
</tbody>
</table>

Suborder I.—Coffeaceæ

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.</td>
<td>Rubia tinctorum</td>
<td>1580</td>
</tr>
<tr>
<td>CONTENTS.</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>228. Cephalis ipecacuanha</td>
<td>1591</td>
<td></td>
</tr>
<tr>
<td>1. Vinum ipecacuanha</td>
<td>1599</td>
<td></td>
</tr>
<tr>
<td>2. Syrupus ipecacuanha</td>
<td>1599</td>
<td></td>
</tr>
<tr>
<td>3. Pulvis ipecacuanha compositus</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>4. Pilulae ipecacuanha cum scilla</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>5. Pilulae ipecacuanha et opii</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>6. Trochisci morphiae et ipecacuanha</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>229. Psychotria emetica</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>230. Richardsonia scabra</td>
<td>1602</td>
<td></td>
</tr>
<tr>
<td>231. Coffea arabica</td>
<td>1603</td>
<td></td>
</tr>
<tr>
<td>232. Cinchona</td>
<td>1605</td>
<td></td>
</tr>
<tr>
<td>a. C. Calisaya</td>
<td>1621</td>
<td></td>
</tr>
<tr>
<td>b. C. Caribaya</td>
<td>1629</td>
<td></td>
</tr>
<tr>
<td>c. C. de Cusco</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>d. C. de Huanuco</td>
<td>1632</td>
<td></td>
</tr>
<tr>
<td>e. C. Huamalies</td>
<td>1635</td>
<td></td>
</tr>
<tr>
<td>f. C. de Jaen</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>g. C. de Loxa</td>
<td>1637</td>
<td></td>
</tr>
<tr>
<td>h. C. rubra</td>
<td>1641</td>
<td></td>
</tr>
<tr>
<td>i. C. condaminea Pitaya</td>
<td>1643</td>
<td></td>
</tr>
<tr>
<td>j. C. lancifolia</td>
<td>1644</td>
<td></td>
</tr>
<tr>
<td>k. C. de Maracaibo</td>
<td>1648</td>
<td></td>
</tr>
<tr>
<td>1. Infusum cinchone</td>
<td>1675</td>
<td></td>
</tr>
<tr>
<td>2. Infusum cinchone pallide</td>
<td>1675</td>
<td></td>
</tr>
<tr>
<td>3. Infusum cinchone spissatum</td>
<td>1676</td>
<td></td>
</tr>
<tr>
<td>4. Infusum cinchone pallide spissatum</td>
<td>1676</td>
<td></td>
</tr>
<tr>
<td>5. Decoctum cinchone</td>
<td>1676</td>
<td></td>
</tr>
<tr>
<td>6. Decoctum cinchone pallide</td>
<td>1677</td>
<td></td>
</tr>
<tr>
<td>7. Decoctum cinchone rubrae</td>
<td>1677</td>
<td></td>
</tr>
<tr>
<td>8. Tinctura cinchone</td>
<td>1677</td>
<td></td>
</tr>
<tr>
<td>9. Tinctura cinchone pallide</td>
<td>1677</td>
<td></td>
</tr>
<tr>
<td>10. Tinctura cinchone composita</td>
<td>1677</td>
<td></td>
</tr>
<tr>
<td>11. Extractum cinchone</td>
<td>1678</td>
<td></td>
</tr>
<tr>
<td>12. Extractum cinchone pallide</td>
<td>1678</td>
<td></td>
</tr>
<tr>
<td>13. Extractum cinchone rubrae</td>
<td>1678</td>
<td></td>
</tr>
<tr>
<td>14. Quinae disulphas</td>
<td>1682</td>
<td></td>
</tr>
<tr>
<td>15. Tinctura quinae composita</td>
<td>1682</td>
<td></td>
</tr>
<tr>
<td>16. Quinae murias</td>
<td>1682</td>
<td></td>
</tr>
<tr>
<td>17. Quinae valerianas</td>
<td>1586-1682</td>
<td></td>
</tr>
<tr>
<td>233. Uncaria gambir</td>
<td>1682</td>
<td></td>
</tr>
</tbody>
</table>

Order LIV.—Caprifoliaceae

<table>
<thead>
<tr>
<th>234. Sambucus nigra</th>
<th>1686</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aqua sambuci</td>
<td>1687</td>
</tr>
<tr>
<td>2. Unguentum sambuci</td>
<td>1687</td>
</tr>
</tbody>
</table>

Order LV.—Araliaceae

| 235. Panax quinquefolium | 1687 |
ORDER LVI.—UMBELLIFERÆ

236. Carum carui
 1. Oleum carui
 2. Spiritus carui
 3. Aqua carui

237. Pimpinella anisum
 1. Oleum anisi
 2. Spiritus anisi
 3. Aqua anisi

238. Foeniculum vulgare

239. Foeniculum dulce

240. Anethum graveolens

241. Cuminum cyminum

242. Coriandrum sativum

243. Archangelica officinalis

244. Daucus carota

245. Narthex assafetida
 1. Enema assafetidae
 2. Tinctura assafetidae
 3. Pilulae assafetidae
 4. Pilulae aloes et assafetidae
 5. Spiritus ammoniacæ factus
 6. Emplastrum assafetidae

246. Ferula (sagapenum)

247. Dorema ammoniacum
 1. Mistura ammoniaci
 2. Emplastrum ammoniaci
 3. Emplastrum ammoniaci cum hydrargyri
 4. Ammoniacum preparatum

248. Galbanum officinale
 1. Pilulae galbani compositae
 2. Emplastrum galbani
 3. Galbanum preparatum

249. Opoponax chironium

250. Conium maculatum
 1. Pulvis conii
 2. Tinctura conii
 3. Extractum conii
 4. Pilulae conii compositae
 5. Unguentum conii
 6. Cataplasma conii

ORDER LVII.—CUCURBITACEÆ

251. Citrullus Colocynthis
 1. Extractum colocynthidis
CONTENTS.

2. *Pilulae colocynthidis composita* 1740
3. *Pilulae colocynthidis et hyoscyami* 1742
4. *Enema colocynthidis* 1742
252. Ecbalus officinarum .. 1742

Order LVIII.—*Myrtaceae* ... 1751

263. Melaleuca minor .. 1752
254. Caryophyllus aromaticus 1754
 1. *Infusum caryophylli* 1757
 2. *Oleum caryophylli* .. 1757
 3. *Tinctura caryophylli* 1758
255. Eugenia pimenta .. 1759
 1. *Oleum pimentae* .. 1761
 2. *Spiritus pimentae* .. 1761
 3. *Aqua pimentae* .. 1761

Order LIX.—*Lythraceae* .. 1762

256. Lythrum salicaria .. 1763

Order LX.—*Granatæ* .. 1764

257. Punica granatum .. 1764
 1. Decoctum granati radicis 1766
 2. Decoctum granati .. 1767

Order LXI.—*Rosaceæ* .. 1767

 Tribe I.—*Amygdalæ* ... 1767
258. Amygdalus communis .. 1767
 1. *Confectio amygdala* 1772
 2. *Mistura amygdala* .. 1773
 3. *Oleum amygdalæ* .. 1774
 4. *Oleum amygdalæ amarae* 1774
259. Persica vulgaris .. 1778
260. Prunus domestica ... 1780
261. Cerasus lauro-cerasus 1782
 Aqua lauro-cerasi .. 1784
262. Acidum hydrocyanicum dilutum 1785

 Tribe II.—*Driadeæ* .. 1602
263. Geum urbanum .. 1802
264. Potentilla tormentilla 1803
 Decoctum tormentillæ 1804

 Tribe III.—*Roseæ* .. 1805
265. Rosa canina .. 1805
 Confectio rose canina 1805
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
</table>
| 266. | Rosa gallica
1. *Infusum rosae compositum*
2. *Confectio rosae*
3. *Mel rosae*
4. *Syrupus rosae gallicae* |
| 267. | Rosa centifolia
1. *Syrupus rosae*
2. *Aqua rosae*
3. *Oleum rosae* |

Tribe IV.—Pomaceae

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
</table>
| 268. | Cydonia vulgaris
Decoctum cydonii
Kosso or brayera anthelmintica
Cerasus avium
Alchemilla arvensis |

Order LXII.—Leguminosae

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
</table>
| 269. | Myroserpum (the quinquino)
1. *Tinctura tolutana*
2. *Syrupus tolutanus* |
| 270. | Myroserpum toluiferum
1. *Tinctura tolutana*
2. *Syrupus tolutanus* |
| 271. | Cytisus scoparius
Decoctum scoparii compositum |
| 272. | Glycyrrhiza glabra
1. *Extractum glycyrrhizae*
2. *Trochisci glycyrrhizae* |
| 273. | Astragalus
1. *Pulvis tragacanthae compositus*
2. *Mucilago tragacanthae* |
| 274. | Mucuna pruriens |
| 275. | Pterocarpus santalinus |
| 276. | Pterocarpus erinaceus
1. *Tinctura kino*
2. *Pulvis kino compositus* |

Suborder II.—Mimoseae

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
</table>
| 277. | Acacia
1. *Mucilago*
2. *Mistura acacae*
3. *Trochisci acacae* |
| 278. | Acacia catechu
1. *Infusum catechu compositum*
2. *Tinctura catechu composita*
3. *Electuarium catechu*
4. *Pulvis catechu compositus* |
| 279. | Andira inermis |
| 280. | Hæmatoxylon campechianum
1. *Decoctum hæmatoxyli*
2. *Extractum hæmatoxyli* |
281. Tamarindus Indica

 Tamarindus preparatus

282. Cassia officinalis
 1. Infusum senne
 2. Infusum senne compositum
 3. Enema catharticum
 4. Tinctura senne composita
 5. Syrupus senne
 6. Confectio senne

283. Cassia fistula
 1. Cassia preparata
 2. Confectio cassiae

284. Copaifera multijuga
 1. Oleum copaiba
 2. Gelatine capsules of copaiva

285. Pistacia terebinthus

286. Pistacia lentiscus

287. Rhus toxicodendron

288. Boswellia thurifera

289. Balsamodendron myrrha
 Tinctura myrrha

300. Rhamnus catharticus
 Syrupus rhamni

301. Simaruba amara
 Infusum simaruba

302. Picrena excelsa
 1. Infusum quassiae
 2. Tinctura quassiae
 3. Tinctura quassiae composita

303. Ruta graveolens
 1. Confectio rute
 2. Oleum rute
 3. Syrupus rute

Order LXIII.—Terenbinthaceae

Order LXIV.—Rhamnaceae

Order LXV.—Simarubaceae

Order LXVI.—Rutaceae
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>294. Barosma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Infusum buchu</td>
</tr>
<tr>
<td></td>
<td>2. Tinctura buchu</td>
</tr>
<tr>
<td>1910</td>
<td></td>
</tr>
<tr>
<td></td>
<td>295. Galipea officinalis</td>
</tr>
<tr>
<td></td>
<td>1. Infusum cusparie</td>
</tr>
<tr>
<td></td>
<td>2. Tinctura cusparie</td>
</tr>
<tr>
<td>1913</td>
<td>Dictamnus fraxinella</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order LXVII.—Zygoiphyllaceae</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>Order LXVIII.—Oxalidaceae</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1924</td>
<td>Order LXIX.—Vitaceae</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1926</td>
<td></td>
</tr>
<tr>
<td></td>
<td>297. Oxalis acetosella</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1925</td>
<td></td>
</tr>
<tr>
<td></td>
<td>298. Vitis vinifera</td>
</tr>
<tr>
<td></td>
<td>1. Potasses bitartras</td>
</tr>
<tr>
<td></td>
<td>2. Acidum tartaricum</td>
</tr>
<tr>
<td></td>
<td>3. Trochisci acidi tartarici</td>
</tr>
<tr>
<td></td>
<td>4. Vinum</td>
</tr>
<tr>
<td></td>
<td>5. Spiritus vini gallici</td>
</tr>
<tr>
<td></td>
<td>6. Mistura spiritus vini gallici</td>
</tr>
<tr>
<td>518, 1929</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300. Æther sulphuricus</td>
</tr>
<tr>
<td></td>
<td>1. Spiritus ætheris sulphurici</td>
</tr>
<tr>
<td></td>
<td>2. Spiritus ætheris compositus</td>
</tr>
<tr>
<td>1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>301. Oleum æthericum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>302. Spiritus ætheris nitrici</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td>303. Æther hydrochloricus</td>
</tr>
<tr>
<td></td>
<td>1. Spiritus ætheris hydrochlorici</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
</tr>
<tr>
<td></td>
<td>304. Æther aceticus</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
</tr>
<tr>
<td></td>
<td>305. Chloroformyl (chloroform)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
</tr>
<tr>
<td></td>
<td>306. Acidum aceticum</td>
</tr>
<tr>
<td></td>
<td>1. Acetum destillatum</td>
</tr>
<tr>
<td></td>
<td>2. Acetum gallicum</td>
</tr>
<tr>
<td></td>
<td>3. Acidum aceticum aromaticum</td>
</tr>
<tr>
<td></td>
<td>4. Oxymel</td>
</tr>
<tr>
<td></td>
<td>5. Acidum aceticum camphoratum</td>
</tr>
<tr>
<td></td>
<td>6. Artificial lemon juice</td>
</tr>
<tr>
<td></td>
<td>7. Effervescent citrates</td>
</tr>
<tr>
<td></td>
<td>8. Acidum citricum</td>
</tr>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>307. Acidum citricum</td>
</tr>
<tr>
<td></td>
<td>1. Artificial lemon juice</td>
</tr>
<tr>
<td></td>
<td>2. Effervescent citrates</td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003</td>
</tr>
</tbody>
</table>
CONTENTS.

308. Acidum tartaricum 2003
 Effervescent tartrates 2006
309. Acidum oxalicum 2007

310. Creasoton 2011
 1. Mistura creasoti 2016
 2. Unguentum creasoti 2016
311. Petroleum 2017
312. Succinum 2018
 1. Oleum succini 2020
 2. Acidum succinicum 2021
313. Oleum animale empyreumaticum 2021

Order LXX.—Guttiferæ 2022
 Garcinia mangostana 2022
314. Garcinia species incertæ 2023
 Pilulae cambogiae composite 2028
315. Canella alba 2029
 Vinum gentiane 2030

Order LXXI.—Aurantiaceæ 2030
316. Citrus medica 2031
317. Citrus bergamica 2032
318. Citrus limonum 2033
 1. Oleum limonum 2036
 2. Syrupus limonum 2037
319. Citrus aurantium 2037
320. Citrus bigaradia 2039
 1. Infusum aurantii compositum 2040
 2. Confectio aurantii 2040
 3. Syrupus aurantii 2041
 4. Tinctura aurantii 2041
 5. Aqua floris aurantii 2041
 Feronia elephantum 2042

Order LXXII.—Ternstromiaceæ 2042

Order LXXIII.—Dipteraceæ 2043
 1. Dryobalanops aromatica 2043
 2. Sumatra camphor 2044

Order LXXIV.—Byttneriaceæ 2044

Order LXXV. 2045
321. Malva sylvestris 2045
322. Althaea officinalis
 1. Mistura althaeæ
 2. Syrupus althaeæ
323. Gossypium herbaceum

ORDER LXXVI.—Linaceæ
324. Linum usitatissimum
 1. Infusum lini compositum
 2. Decoctum lini compositum
 3. Oleum lini
 4. Farina lini
 5. Cataplasma lini
325. Linum catharticum

ORDER LXXVII.—Caryophyllaceæ
326. Dianthus caryophyllus

ORDER LXXVIII.—Polygaleæ
327. Polygala senega
 1. Decoctum senega
 2. Infusum polygalaæ
 3. Infusum senegaæ
328. Krameria triandra
 1. Infusum krameriae
 2. Extractum krameriae

ORDER LXXIX.—Violaceæ
329. Viola odorata
 Syrupus violæ
 Ionidium ipecacuanha
 Ionidium microphyllum

ORDER LXXX.—Cistaceæ
330. Cardamine pratensis
331. Cochlearia armoracia
 1. Infusum armoracie compositum
 2. Spiritus armoracie compositus
332. Cochlearia officinalis

ORDER LXXXI.—Crucifereæ
Order LXXXII.—Papaveraceæ

<table>
<thead>
<tr>
<th>Plant</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinapis nigra</td>
<td>2065</td>
</tr>
<tr>
<td>Cataplasma sinapis</td>
<td>2068</td>
</tr>
<tr>
<td>Sinapis alba</td>
<td>2069</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papaver rhoeas</td>
<td>2071</td>
</tr>
<tr>
<td>Syrupus rhaedos</td>
<td>2072</td>
</tr>
<tr>
<td>Papaver somniferum</td>
<td>2073</td>
</tr>
<tr>
<td>Opium</td>
<td>2074</td>
</tr>
<tr>
<td>1. Decoctum papaveris</td>
<td>2132</td>
</tr>
<tr>
<td>2. Syrupus papaveris</td>
<td>2132</td>
</tr>
<tr>
<td>3. Extractum papaveris</td>
<td>2133</td>
</tr>
</tbody>
</table>

Preparations of opium.

1. *Pilulæ opii*
2. *Pilulæ saponis composite*
3. *Pilulæ calomelanos et opii*
4. *Pilulæ plumbi opiatæ*
5. *Trochisci opii*
6. *Pulvis crete compositus cum opio*
7. *Confectio opii*
8. *Emplastrum opii*
9. *Extractum opii*
10. *Tinctura opii*
11. *Enema opii*
12. *Linimentum opii*
13. *Vinum opii*
14. *Tinctura opii ammoniata*
15. *Acetum opii*

Morphia and its preparations

1. *Morphia*
2. *Morphiae acetas*
3. *Liquor morphiae acetatis*
4. *Morphiae hydrocholoras*
5. *Liquor morphiae hydrochloratis*
6. *Trochisci morphiae*
7. *Trochisci morphiae et ipecacuanhae*
8. *Morphia sulphas*

Order LXXXIII.—Menispermaceæ

<table>
<thead>
<tr>
<th>Plant</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocculus palmatus</td>
<td>2148</td>
</tr>
<tr>
<td>1. Infusum calumbæ</td>
<td>2148</td>
</tr>
<tr>
<td>2. Tinctura calumbæ</td>
<td>2148</td>
</tr>
<tr>
<td>Anamirta cocculus</td>
<td>2148</td>
</tr>
<tr>
<td>Unguentum coculi</td>
<td>2148</td>
</tr>
<tr>
<td>Cissampelos pareira</td>
<td>2148</td>
</tr>
<tr>
<td>1. Decoctum pareiræ</td>
<td>2148</td>
</tr>
<tr>
<td>2. Infusum pareiræ</td>
<td>2148</td>
</tr>
<tr>
<td>3. Extractum pareiræ</td>
<td>2148</td>
</tr>
</tbody>
</table>
ORDER LXXXIV.—Magnoliaceæ

340. Drimys winteri

PAGE

Order LXXXV.—Ranunculaceæ

341. Ranunculus acris
342. Ranunculus flammula
343. Helleborus niger
 Tinctura hellebori
344. Delphinium staphysagria
 Delphinia
345. Aconitum napellus
 1. Tinctura aconiti
 2. Extractum alcoholicum aconiti
 3. Extractum aconiti
 4. Aconitina

Animal Sub-Kingdom.

DIVISION I.—INVERTEBRATA.

Class I.—Poriphera

346. Spongia officinalis

Class II.—Polypiphera

Class III.—Conchifera

347. Ostrea edulis
 Testæ preparati

Class IV.—Cephalopoda

348. Sepia officinalis

Class V.—Annulosa

349. Sanguisuga

Class VI.—Insecta

Order I.—Coleoptera

350. Cantharis vesicatoria
 1. Acetum cantharidis
 2. Tinctura cantharidis
CONTENTS.

3. Ceratum cantharidis
4. Unguentum infusi cantharidis
5. Emplastrum cantharidis
6. Emplastrum cantharidis compositum
7. Emplastrum caelefaciens
8. Pannus vesicatorius

Order II.—Hemiptera

351. Coccus cacti
 Tinctura cocci cacti

Order III.—Hymenoptera

352. Apis mellifica
 1. Mel depuratvm
 2. Oxymel
 Wax
 1. Emplastrum simplex
 2. Ceratum
 3. Linimentum simplex

Class VII.—Crustacea

DIVISION II.—VERTEBRATA.

Class VIII.—Pisces

353. Ichthyocolla
354. Oleum jecoris morrhuae

Class IX.—Aves

Order I.—Gallinæ

355. Gallus Banckiva

Class X.—Mammalia.

Order I.—Cetacea

356. Physeter macrocephalus
 1. Ceratum cetacei
 2. Unguentum cetacei

Order II.—Ruminantia

357. Moschus moschiferus
358. Cervus elaphus
 Cornu ustum
359. Ovis aries
 Sevum
360. Bos taurus
 Lac
 1. Lactic acid
 2. Ox bile
CONTENTS.

Order III.—Pachydermata

361. Sus scrofa

362. Castor fiber

363. Hyrax capensis.

Order IV.—Rodentia

364. Auri terecyanidum

365. Hydrargyri percyanidum

366. Argenti cyanidum

367. Zinci cyanidum

368. Radix sumbul

APPENDIX.

364. Auri terecyanidum

365. Hydrargyri percyanidum

366. Argenti cyanidum

367. Zinci cyanidum

368. Radix sumbul

CORRIGENDA.—Vol. II. Part I.

Page 950. Seventh line from bottom, for 191, read 190
Page 1141, Line 36, for Tsao quo, read Thao qua.
Line 37, for Thao qua, read Tsao quo.
Page 1308, Line 20, for Zetter, read Zeller.
Page 1311, Line 41, for Gan, read Oan.
Page 1329, passim, for Roder, read Rodie.

Vol. II. Part II.

Page 1654, 17 lines from top, for violent, read violet.
Page 1747, Line 4 from top, for elaterium, read elaterin.
Page 1757, Line 22 from top, for (5ix.) read (5ix. D.)
Page 1913, Line 9 from foot, for Gusparia, read Cusparia.
Pages 1936, 1938, at top of page, for Inorganic, read Organic.
LIST OF WOODCUTS IN VOL. II. PART II.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>320.</td>
<td>Seed of Lobelia inflata magnified .</td>
</tr>
<tr>
<td>321.</td>
<td>Cephaelis Ipecacuanha .</td>
</tr>
<tr>
<td>322.</td>
<td>Brown Ipecacuanha Root .</td>
</tr>
<tr>
<td>323.</td>
<td>Striated Ipecacuanha (Roots of Psychotria emetica)</td>
</tr>
<tr>
<td>324.</td>
<td>Undulated Ipecacuanha Root .</td>
</tr>
<tr>
<td>325.</td>
<td>Cinchona Calisaya .</td>
</tr>
<tr>
<td>326.</td>
<td>The Valley of San Juan del Oro. — Bark-peeling in the forests of Carabaya, in Peru .</td>
</tr>
<tr>
<td>327.</td>
<td>Transverse section of the very young bark of Cinchona ovata .</td>
</tr>
<tr>
<td>328.</td>
<td>Bark of C. Calisaya entirely deprived of periderm</td>
</tr>
<tr>
<td>329.</td>
<td>Bark of C. scrobiculata .</td>
</tr>
<tr>
<td>330.</td>
<td>Bark of C. pubescens coated externally by its periderm .</td>
</tr>
<tr>
<td>331.</td>
<td>Microscopic structure of the longitudinal sections of these barks</td>
</tr>
<tr>
<td>332.</td>
<td>Microscopic structure of the same</td>
</tr>
<tr>
<td>333.</td>
<td>Bark of C. Calisaya entirely deprived of periderm</td>
</tr>
<tr>
<td>334.</td>
<td>Microscopic structure of Cali-saya bark</td>
</tr>
<tr>
<td>335.</td>
<td>Bark of C. scrobiculata .</td>
</tr>
<tr>
<td>336.</td>
<td>Microscopic structure of the bark of C. scrobiculata</td>
</tr>
<tr>
<td>337.</td>
<td>Bark of C. pubescens .</td>
</tr>
<tr>
<td>338.</td>
<td>Microscopic structure of the bark of C. pubescens</td>
</tr>
<tr>
<td>339.</td>
<td>Panax quinquefolium</td>
</tr>
<tr>
<td>340.</td>
<td>Fruit of Pastanica sativa</td>
</tr>
<tr>
<td>341.</td>
<td>Coriandrum sativum</td>
</tr>
<tr>
<td>342.</td>
<td>Carum Carvi</td>
</tr>
<tr>
<td>343.</td>
<td>Extraction of Assafotida</td>
</tr>
<tr>
<td>344.</td>
<td>Momordica Elaterium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>354.</td>
<td>Caryophyllus aromaticus</td>
</tr>
<tr>
<td>355.</td>
<td>Mother Clove</td>
</tr>
<tr>
<td>356.</td>
<td>Punica Granatum</td>
</tr>
<tr>
<td>357.</td>
<td>Section of the fruit of the same</td>
</tr>
<tr>
<td>358.</td>
<td>Section of an Almond</td>
</tr>
<tr>
<td>359.</td>
<td>The Peach</td>
</tr>
<tr>
<td>360.</td>
<td>Brayera anthelmintica</td>
</tr>
<tr>
<td>361.</td>
<td>Bedeguar, or Sweet Briar Sponge</td>
</tr>
<tr>
<td>362.</td>
<td>Papilionaceous flowers</td>
</tr>
<tr>
<td>363.</td>
<td>Legumes of Ceratonia Siliqua</td>
</tr>
<tr>
<td>364.</td>
<td>Common Garden Bean</td>
</tr>
<tr>
<td>365.</td>
<td>Astragalus ceticus</td>
</tr>
<tr>
<td>366.</td>
<td>Acacia arabica</td>
</tr>
<tr>
<td>367.</td>
<td>Alexandrian Senna</td>
</tr>
<tr>
<td>368.</td>
<td>Tinnevelly Senna</td>
</tr>
<tr>
<td>369.</td>
<td>Leaf of Coriaria myrtifolia</td>
</tr>
<tr>
<td>370.</td>
<td>Various species of Copaifera</td>
</tr>
<tr>
<td>371.</td>
<td>Sparrtium junceum</td>
</tr>
<tr>
<td>372.</td>
<td>Butea frondosa</td>
</tr>
<tr>
<td>373.</td>
<td>Indigofera tinctoria</td>
</tr>
<tr>
<td>374.</td>
<td>Pistacia Terebinthus</td>
</tr>
<tr>
<td>375.</td>
<td>P. Lentiseus</td>
</tr>
<tr>
<td>376.</td>
<td>Balsamodendron Myrrha</td>
</tr>
<tr>
<td>377.</td>
<td>B. gileadense</td>
</tr>
<tr>
<td>378.</td>
<td>Vitis vinifera</td>
</tr>
<tr>
<td>379.</td>
<td>Alcohol: Improved apparatus for the distillation of spirit</td>
</tr>
<tr>
<td>380.</td>
<td>Hydrometer, with one of its ballast weights</td>
</tr>
<tr>
<td>381.</td>
<td>Tincture Percolators</td>
</tr>
<tr>
<td>382.</td>
<td></td>
</tr>
<tr>
<td>383.</td>
<td></td>
</tr>
<tr>
<td>384.</td>
<td>Instrument for inhaling Chloroform</td>
</tr>
<tr>
<td>385.</td>
<td>Vinegar Generator</td>
</tr>
<tr>
<td>386.</td>
<td>Section of a Pyrologious Acid Still</td>
</tr>
<tr>
<td>387.</td>
<td>Citric Acid Manufactory</td>
</tr>
<tr>
<td>388.</td>
<td>Crystal of Citric Acid</td>
</tr>
<tr>
<td>389.</td>
<td>Crystals of Tartaric Acid</td>
</tr>
<tr>
<td>390.</td>
<td></td>
</tr>
<tr>
<td>391.</td>
<td>Garcinia Mangostana</td>
</tr>
<tr>
<td>Fig.</td>
<td>Woodcut</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>392</td>
<td>Hebradendron cambogioides</td>
</tr>
<tr>
<td>393</td>
<td>Citrus medica</td>
</tr>
<tr>
<td>394</td>
<td>C. limonum</td>
</tr>
<tr>
<td>395</td>
<td>C. Aurantium</td>
</tr>
<tr>
<td>396</td>
<td>C. Bigaradia</td>
</tr>
<tr>
<td>397</td>
<td>Thea Bohea</td>
</tr>
<tr>
<td>398</td>
<td>Theobroma Cacao</td>
</tr>
<tr>
<td>399</td>
<td>Gossypium herbaceum</td>
</tr>
<tr>
<td>400</td>
<td>Linum usitatissimum</td>
</tr>
<tr>
<td>401</td>
<td>Root of Ionidium Ipecacuanha</td>
</tr>
<tr>
<td>402</td>
<td>Cistus creticus</td>
</tr>
<tr>
<td>403</td>
<td>A Silique</td>
</tr>
<tr>
<td>404</td>
<td>Sinapis alba; S. nigra</td>
</tr>
<tr>
<td>405</td>
<td>Capsule of the Poppy</td>
</tr>
<tr>
<td>414</td>
<td>Cocculus palmatus</td>
</tr>
<tr>
<td>415</td>
<td>Drimys Winteri</td>
</tr>
<tr>
<td>416</td>
<td>Corallium rubrum</td>
</tr>
<tr>
<td>417</td>
<td>Alimentary Canal of the Leech</td>
</tr>
<tr>
<td>418</td>
<td>Ventral surface of do.</td>
</tr>
<tr>
<td>419</td>
<td>Diagram illustrative of the internal anatomy of the Leech</td>
</tr>
<tr>
<td>420</td>
<td>Cantharides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Woodcut</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>Male Genital Organs of Cantharis vesicatoria</td>
<td>2202</td>
</tr>
<tr>
<td>422</td>
<td>Female do. of do.</td>
<td>2202</td>
</tr>
<tr>
<td>423</td>
<td>Cochineal Insects</td>
<td>2215</td>
</tr>
<tr>
<td>424</td>
<td>Opuntia cochinillifera</td>
<td>2215</td>
</tr>
<tr>
<td>425</td>
<td>Cicada limbata</td>
<td>2220</td>
</tr>
<tr>
<td>426</td>
<td>Astacus fluviatilis</td>
<td>2223</td>
</tr>
<tr>
<td>427</td>
<td>False Isinglass from Para</td>
<td>2230</td>
</tr>
<tr>
<td>428</td>
<td>Moschus moschiferus</td>
<td>2251</td>
</tr>
<tr>
<td>429</td>
<td>Belly of do.</td>
<td>2251</td>
</tr>
<tr>
<td>430</td>
<td>Skull and antlers of Cervus Elaphus</td>
<td>2258</td>
</tr>
<tr>
<td>431</td>
<td>Ovis Ammon</td>
<td>2259</td>
</tr>
<tr>
<td>432</td>
<td>O. Musimon</td>
<td>2259</td>
</tr>
<tr>
<td>433</td>
<td>Skeleton of Sus Scrofa</td>
<td>2264</td>
</tr>
<tr>
<td>434</td>
<td>Castor Fiber</td>
<td>2267</td>
</tr>
<tr>
<td>435</td>
<td>Skeleton of do.</td>
<td>2267</td>
</tr>
<tr>
<td>436</td>
<td>General form of Crystals of Bicyanide of Mercury</td>
<td>2280</td>
</tr>
<tr>
<td>437</td>
<td>Crystals with modified Planes of do.</td>
<td>2280</td>
</tr>
</tbody>
</table>
TABULAR VIEW

OF

THE HISTORY AND LITERATURE OF

THE MATERIA MEDICA.

I. WORKS ON THE HISTORY OF MEDICINE GENERALLY.

Dr. D. Le Clerc. Histoire de la Médecine. Gen. 1696. 4to; à la Haye, 1729. (Brought down to the time of Galen. An Engl. transl. by Drs. Drake and Baden. 8vo. Lond. 1699.)

Dr. J. Freind. The History of Physick from the time of Galen to the beginning of the Sixteenth Century. 2 vols. 8vo. Lond. 3rd ed. 1727.

Dr. J. H. Schulze. Historia Medicinae a rerum initio ad annum urbis Romae dxxxv. deducta. Lips. 4to. 1728.

Wm. Hamilton. The History of Medicine, Surgery, and Anatomy, from the Creation of the World to the commencement of the nineteenth Century. 2 vols. small 8vo. Lond. 1831.

Dr. J. Bostock. History of Medicine, in the Cyclopaed. of Pract. Med. Vol. i.

Dr. C. Broussais. Atlas Historique et Bibliographique de la Médecine, ou Histoire de la Médecine. Paris. 1834. fol. (A translation of Choulant's Tables, with additions to some of them.)

II. WORKS CONTAINING A SPECIAL HISTORY OF PHARMACOLOGY.

Dr. Wm. Cullen. Treatise of the Materia Medica. 2 vols. 4to. 1789.

Dr. F. G. Voigtel. Vollständiges System der Arzneimittellehre. 2 vols. 8vo. 1816—17.

Choulant, op. supra cit.

Dr. C. Broussais. Op. supra cit. (Choulant's Table in French, without additions.)
EGYPTIAN MEDICINE.

B.C. Thout or Thaut (also called Hermes or Mercury), regarded as the founder of Medicine.

Medicine practised first by priests, afterwards by physicians who confined themselves to the study of one disease. (Herod. Enterpe LXXXIV.)

The sick exposed in public places (Strabo).

Purges, vomits, and blister, used for three days successively in every month. (Ibid. LXXXVII). Dietetical regulations: the hog regarded as unclean. Baths and unguents.

Worshipped a bulbous plant (Kóphýμνον; Squilla ?), to which they erected a temple (Pauw).

Employed eîdites, slime of the Nile, frictions with crocodiles' fat in rheumatism, and mucilage of semina psyllii. Salt, virpov (carbonate of soda ?), alum, plasters, and unguents; white lead and verdigris occasionally entered into the latter.

Fumigations with Cyphi (Κύφη), a mixture of various drugs. (Dioscorides, i. 24.)

Spices, balm, and myrrh, carried to Egypt. (Gen. xxxvii. 25.)

Embalmimg practised. Palm wine, aromatics, myrrh, cassia, and other odorous substances (not frankincense), as well as virpov (carb. soda ?) and gum used in this process.

** Consult.—M. De Pauw, “Phil. Disert. on the Egyptians and Chinese.” Vol. i. p. 130. 1795.

Prosper Alpinus, “De Medic. Ægypt.”

HEBREW MEDICINE.

The infliction and cure of diseases on various occasions ascribed by the Sacred Historian to the direct interposition of God. (Exod. ix. 16. Numb. xii. 10.)

Remedial agents consisted principally in strict hygienic means. (Circumcision, dietetical rules, separation, ablation, combustion of infected garments. See Gen. xvii. 10. Lev. xi. and xiii. 2 Kings v.)

Medicine practised by the Priests. (Lev. xiv.) Gold, silver, lead, tin, iron, and brass (copper ?) mentioned by Moses.

Odoriferous ointment and confection; the most ancient recipes on record. (Exod. xxx. 23—25, and 34, 35.)

Music employed as a remedy. (Sam. xvi. 16.)

Sesquisulphuret of antimony (?) used as a face paint. (2 Kings ix. 30.)

Fig poultice. (2 Kings xx. 7.)

Physicians (not priests) referred to. (Jerem. viii. 22.) N.B. The so-called Egyptian physicians (Gen. i. 2) were probably ἰνταπασταί, undertakers or embalmers.

The following substances are referred to in the Bible: the olive, saffron, barley, wheat, the fig, the vine, myrrh, bdellium, galbanum, cumin, coriander, flax, garlic, balm of Gilead, olibanum (frankincense), cassia, cinnamon, the almond, the pomegranate, dill (in our translation incorrectly called anise), colocynt ? ricinus?

40 Herod was let down into a bath of oil. (Josephus, Bell. Jud., lib. i. cap. 33, § 4.)

Oil and wine applied to wounds. (Luke x. 34.)

Various superstitious practices. (Adam Clarke, Comm., Note to Mark v. 26.)

ASSYRIANS.

The Babylonians had no professors of medicine. They exposed their sick in public places, in order that passengers might communicate their experience as to the best mode of cure. (Herodotus, Clio cxvii.) Extracted oil from the Sesamum. (Ibid. cxviii.)

CHINESE MEDICINE.

A.D. 229 Of its ancient state but little is known. The Chinese pretend that its study was coeval with the foundation of their empire, and that their medical code was the production of Hoangti, B.C. 2000 (Grosier.) Before the Christian era there was a constant communication between China and India. (Asiat. Journ., July, 1836.)

Medical science commenced with Chang-ka; for all works before that (said to be dated B.C. 1105 and 189) treat of medicine without giving prescriptions. (Trans. of Med. Soc. of Calc. i. 146.) As the Chinese have retained their ancient manners and customs, we must judge of what their medicine was by what it is.

Pun-tsaou (or Herbal), the most considerable Chinese work on Materia Medica, includes minerals, vegetables, and animals. (Davies, ii. 278.)

Ching che chun ching (Approved marked line of Medical Practice), a celebrated work, in 40 vols.; of which eight are devoted to Luy-fang (Pharmacology). The articles of the Materia Medica are very numerous. Ginseng is their panacea. Aromatics and gums in apoplectic cases. Opium as an anodyne and in dysentery. Mercury both raw and oxidized. Musk, rhubarb, tea, camphor of the Dryobalanops, asafoetida, spices, larvae of the silk-worm, bones of tigers and elephants, vegetable wax, horns, fins, &c. Moxa. Croton Tiglium.

HINDOO MEDICINE.

I. Ancient Medical Authorities and their Works.

Brahma the Hindoo Deity; author of the Vedas, the most ancient books of the Hindoos, and next in antiquity to those of Moses. (Sir W. Jones, Disc. ix.)

Ayur Veda, the oldest medical writing of the Hindoos, forms a part of the 4th or Atharva Veda (the least ancient Veda). It is distributed into eight subdivisions. (See H. H. Wilson, Calcutta Orient. Mag., Feb. and March, 1823; and Royle, Essay, p. 57.)

Dachsa, the Prajaapati, to whom Brahma communicated the Ayur Veda, instructed the two Aswins or Sons of Surya (the Surgical attendants of the gods).

According to some the Aswins instructed Indra, the preceptor of Dhanwantari (also styled Kasiraja, prince of Benares); but others make Atreya, Bharadwaja, and Charaka, prior to the latter.
HISTORICAL TABLE OF THE MATERIA MEDICA.

CHARAKA (Sarac, Scarc, Scirak or Xarac) mentioned by Scriapion, Avicenna, and Rhazes. His work is extant, but not translated.

SUSRUTA, son of VISWAMITRA, was pupil of Dhanwantari and contemporary of RAMA. Treats chiefly of Salya and Salekya or Surgery, and divides medicines into locomotive (animals both viviparous and oviparous, and produced in moist places) and non-locomotive (plants and minerals). Gold, silver, arsenic, mercury, diamonds, earths, and pearls, are enumerated; also heat and cold, light and darkness, the increase and decrease of the moon’s age, as remedial means. Lithotomy, the extraction of the fetus, venesection. 127 weapons and instruments. Actual cautery. Alkaline caustics. Heated metallic plates. Leeches. Gourds used as cupping glasses. Arsenical and emollient applications. Leaves, pledges, threads, and bandages. Drastic and mild purgatives, emetics, diaphoretics, baths, and aspersions of water, stimulants, sedatives, narcotics, and acrid poisons all employed. Datura, nux vomica, croton tiglium, myrobalans, &c. were adopted by the Arabs.

The SUSRUTA; or System of Med. taught by Dhanwantari and composed by his disciple Susruta. Vol. i. 8vo. Calc. 1635.

2. Early Translations from Hindoo Works.

a. Tamul, by MAHA RISHI AGHASTER, who is named in the Ramayana, the oldest Hindoo profane work, and which has been revised by the poet Calidas in the reign of Vikramaditya, whose era commences B.C. 67. (For a classification of drugs in a Tamul work called the Kalpas takum, see Royle’s Essay, p. 54.)

β. Cingalesse. (See a list in Ainslie’s Mat. Ind. vol. ii. p. 525; also Heyne’s Tracts on India, p. 125–171.)

γ. Tibetan made in the eighth century. (See Csoma de Körös, in Journ. Asiatic Soc. iv. 1.) 715 substances are mentioned, most of which are indigenous in India.

Cannot be determined by Hindoo chronology or authors; hence must be ascertained from other sources. The great antiquity of Hindoo medicine is proved by the following circumstances:

a. Indian products are mentioned in the Bible. (Royle, p. 138.) In early times commerce was established between India and Persia, Syria, and Babylon; also by the Persian and Arabian Gulfs with Egypt, &c.

β. At a very early period India was peopled and in a high state of civilization. (For proofs, see Royle, p. 150–179.) As many chemical arts (e.g. distillation, bleaching, dyeing, calico-printing, tanning, soap and glass-making, manufacture of sugar and indigo) were practised by the Hindoos, who were acquainted with, and their country contains, all the chemical substances mentioned by Geber, it is not improbable that they and not the Arabs originated chemistry. The Grecian sages travelled in the East; hence the coincidences between the systems and discoveries of the Greeks and those recorded in Sanscrit works.

γ. Indian products are mentioned by the Greeks and Romans (e.g. by Hippocrates, Theophrastus, Dioscorides, Pliny, Oribasius, Aetius, and Paulus). They were doubtless employed in the countries where they were indigenous before they were exported.

δ. Ancient inscriptions show the antiquity of Hindoo medicine. A medical edict by King Piyadasi, directing the establishment of depots of medicines, and the planting of medicinal roots and herbs throughout his dominions and in the countries where Antiochus and his generals command. This, therefore, must have been issued and cut in rocks and metal pillars as early as B.C. 220.

ε. The Persians translated Hindoo works A.D. 531 to 579. (Royle’s Essay, p. 68.)

θ. Hindoo physicians were in high repute at the court of Harum al-Rashid and Al-Mamoon, from A.D. 786 to 850.
HISTORICAL TABLE OF THE MATERIA MEDICA.

η. The Arabian authors (Rhazes, Serapion, Mesue, and Avicenna) mention Charak, and quote from the Susruta.

GREEK MEDICINE.

1. Before the time of Hippocrates.

b.c.

1398 Melampus, a soothsayer and physician. Cured impotence by iron wine (Apollod. Bibl. Fr. transl. lib. i. cap. ix. p. 75); and madness by hellebore (Pliny, xxv. 21).

1270 Chiron the Centaur, a physician and surgeon. Was cured of a wound by the Centaurea Centaurium (Ibid. xxv. 30).

1263 Asclepius, renowned for his medical and surgical skill. His sons Machaon and Podilirius also famous surgeons; the latter practised venesection.

1134 The first temple to Asclepius founded. Asclepiadeae, descendants of Asclepius and priests of his temples. Votive tablets suspended in the temples.

968 Euryphon author of the Προὶ καὶ Κρίσεις or Cnidian Sentences.

907 Homer mentions the Papaver somniferum, νεπινόδες (Cannabis indica? 884 | opium?), Moly (?), &c.

617 Aristæus discovered Silphium.

5800—500 Pythagoras employed magic, dietetics, mustard, anise, and vinegar of squills (Pliny, xix. 30).

2. Hippocrates.

460—360 Hippocrates, the "Father of Medicine." Born at Cos. The 18th by his father from Asclepius. Ascribes diseases to alterations of the humours (blood, pithuita or phlegm, and yellow and black bile). An antipathic. Employed diet, baths, exercise, bloodletting (venesection, cupping, and scarification), the actual cautery, the knife, and a very extensive series of medicines. His Materia Medica includes:—

1st. Minerals,—sulphur, lime, carbonate of soda, slan, common salt, oxide and carbonate of lead, acetate (and sulphate?) of copper, oxide of iron, and yellow and red sulphuret of arsenicum.

2ndly. Vegetables,—acacia, allium, ammoniacum, anethum, anisum, cardamum, cassia, cinamon, colocynth, conium, coriandrum, crocus, cuminum, cyanosis, elaterium (?), euphorbia, fennelum, galbanum, galles, glycyrrhiza, gnidium, helleborus, hyoscyamus, juniper, lactea, laurus, linum, malva, marrubium, mastic, mentha, morus, myrrha, olea, opium, opobalsamum, opoponax, origanum, piper, pitt, pulegium, punica, quercus, rosa, rubia, rumex, ruta, sambucus, sagapenum, scarnonia, scilla, silphium, sinapis, staphisagria, styx, turpentine, and veratum.

3rdly. Animals,—Καυθεῖς (Mylabris Fusseli?), castoreum, sepia, ova, cornua, mel, serum lactis, and cera.

* * * Dr. J. H. Dierbach. "Die Arzneimittel des Hippocrates." Heidelberg. 1824.

3. From Hippocrates to Galen.

380 ANCIENT DOGMATIC (or Hippocratic) SCHOOL (Theory in Medicine):—

390. Founded by Thessalus and Draco (sons of Hippocrates), in con-
B.C.
354 junction with Polybius (their brother-in-law).—354. Diocles Carystius (called the second Hippocrates), wrote on plants and dietetics. Gave a leaden bullet in ileus.—341. Praxagoras of Cos (the last of the Asclepiadea); vegetable medicines.—336. Chrysippus of Cnidus, opposed bleeding and purging, and vegetable medicines.

307—304 Alexanderian School.—304. Erasistratus (pupil of Chrysippus) opposed bleeding; used simple medicines.—307. Herophilus of Chalcedony, a demi-empiric, used compound and specific medicines.—235. Medicine divided into dietetics, pharmacy, and surgery.

364—322 Natural Historians. 384—322 Aristotle; wrote on animals (also on plants and pharmacy).—371—266. Theophrastus, the founder of Botany.

A.D.
100 Methodic Sect.—100. Asclepiades of Bithynia rejected all previous opinions, and termed the Hippocratean system "a meditation on death."—63. Themison of Laodicea, pupil of Asclepiades, founder of the sect. Explained all physiological and pathological doctrines by the strictum and laxum of the organic pores, and regarded all medicines as astringents or relaxants. Employed leeches.

54? Pedacus Dioscorides. The most renowned of all the old writers on Materia Medica. His work is the best (of the ancient ones) on the subject, and for 1600 years was regarded as the first authority. "In him I counted about 90 minerals, 700 plants, and 163 animal substances, that is 958 in all, without reckoning the different simples the same substance often affords." (Alston, Lect. i. 15.) Dr. Sibthorp visited Greece for the purpose of studying on the spot the Greek plants of Dioscorides. (Flora Graeca; and Prod. Fl. Graece, by Sir J. E. Smith.)

131—200 Claudius Galen, a brilliant genius of vast erudition and rare talents. Explained the operation of medicines by reference to their elementary qualities (heat, cold, dryness, and moisture), of each of which he admitted four degrees. This doctrine was held in the schools until the time of Paracelsus.

4. From Galen to the fall of the Greek School.
(Minor Greek Authors.)

360 Oribasius.
550 Aetius. Employed musk medicinally.

590 Paulus Egineta. First notices the purgative properties of rhubarb. Distinguishes between Rha and Rheon. Describes the effects of hermodactyl.

1034 Simeon Seth. Notices camphor.
1100 John Actuarius. Mentions capsicum (καψικον).
1200 Nicholas Myrepsus.

Romans or Italians.

A.D. In the early periods of Roman History medicine was practised by slaves and freedmen.
A.D.
Lays down hygienic rules. Distinguishes foods according to the degree of
their nutritive power and digestibility. His remarks on these subjects, as
well as on the use of medicinal agents generally, display great judgment.
Speaks of the use of nourishing elysiers, gestation, baths, frictions, &c.
Employed in dropisy frictions with oil.
41 Scribonius Largus. An empiric. His work (Compositiones Medicæ) is
the first pharmacopoeia known.
23—79 Gaius Pliny the Elder. A natural historian. In his work (Historia
Naturalis) he has collected all that was known in his time, of the arts,
sciences, natural history, &c. He displays prodigious learning and a vast
fund of erudition. In Botany and Materia Medica he has copied almost
verbatim the remarks of Theophrastus and Dioscorides.
230 Cælius Aurelianus. A methodist. The only one of this sect whose works
have descended to us.

PERSIAN MEDICINE.

B.C.
1491 Must be very ancient, but its history scarcely known. Products of Persia (ex.
galbanum, asafoetida, sagapenum, &c.) mentioned in the Bible or by Hip-
pocrates: it is to be presumed that the Persians knew the medical qualities
of their indigenous drugs, previous to selling them.
400 Ctesias of Cnidian, physician for seventeen years to Artaxerxes Mnemon.
A.D.
272 Dschondisabour (Jondisabur or Nisabur) founded. Greek physicians sent by
the Emperor Aurelian.
Almanzor, the second caliph of the house of Abbas, a great encourager of
the sciences and medicine.

ARABIANS.

A.D.
767 Bagdad built. The sciences munificently patronized by the caliphs. A college
formed. Hospitals and dispensaries established.
Schools of Damascus and Cordova.
The doctrines of Hippocrates and Galen taught. Mild laxatives (as cassia,
tamarind, manna, rhubarb, and senna) substituted for drastics. Chemical
medicines mentioned. Various pharmaceutical preparations (syrups, juleps,
conserves, loochs, robs, and distilled waters and oils) contrived. Dispens-
atories published.
622 Aaron or Ahron (The Pandects).
Died 872 Ebn-Sahel (Sabor) Krabadin, the first dispensary.
Died 880 J. Alkende. Wrote on the proportion and doses of medicines.
Born 792 Geber, "The Patriarch of Chemistry." Mineral acids, alkalies, and many
alkaline and metallic salts, are noticed by him. (See Hindoo Medicina.)
Died 846 John Mesue. De simplicibus et de electuaris.
365
900
742 John Serapion, jun. De simplicibus medicinis.
1066

Abn Guefith or Abhen Gnefith. De simplic. medicae. virtut.
52 to 932 Rhazes. De simplicibus medicinis. One of the most celebrated Arabians.
Employed mercurial ointment.
978 to 1036 Ebninsa or Avicenna, "The Prince of Physicians." (Canon medicine.)
For five centuries his work was regarded as an infallible guide. Mentions
croton tigillum, camphor, nux vomica, mace, nutmegs, &c.
980 Halcy Abbas. (Almalek, or the Royal book.)
1179? Avenzoar at Seville in Andalusia.
Died 1198, or 1199
1206 Averhoes, a native of Cordova.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D. 12th or 13th century

1085 Albecasis or Alsaharavius. Mentions the preparation of rose water.

Died 1248 Abn Bitar or Ibn-Beitar. His works have not been printed, but they are constantly quoted by Persian authors on Materia Medica. (Royle, Essay, p. 26.) He has a most extensive influence in the East.

Oriental (Arabian, Persian, and Hindoo) Works on Pharmacology, which have been translated.

1669 Meer Mohummm Moomin. Toofht al Moomineen.

Early Christian Writers on Medicine.

(Dark Ages.)

Medicine practised by monks. Magic and astrology employed in medicine. The period of superstition and alchemy. The grossest impostures practised.

The Neapolitan schools of Monte-Cassino and Salerno founded by Benedictine monks.

Constantine the African. Wrote on diet, and simple and eye medicines.

1100 John of Milan, Author of Medicina Salernitana.

1110 Nicholas, surnamed Prepositus. Dispensatorium ad aromatarios; the first European pharmacopoeia.

1150 Matthew Platerius. 1169 Aegidius of Corbeil.

1180 Hildegard, Abbess of Bingen. Born 1098. Wrote on medicines. Mentions Christiana (supposed to be Helleborus niger.)

1259 Gilbert, an Englishman. Prepared acetate of ammonia and oil of tartar per deliquium. Extinguished mercury by saliva.

1260 John of St. Amand. Commented on the work of Nicholas.

1214—1284 Roger Bacon. The most philosophical of the alchemists.

1235—1315 Raymond Lully. Prepared the oil of rosemary, acetate of lead, ammonio-chloride of mercury, nitric oxide of mercury, and spirit of wine.

1295 Simon de Cordo. 1317. Matthew Sylvaticus. 1320. (death) Peter

1320 de Apono. 1328. Francis of Piedmont. 1343. Dondis, father and son.

HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D. Born 1394 BASIL VALENTINE. Prepared chemical medicines. Introduced antimonials (currus triumphalis antimonii). Was acquainted with the double chloride of iron and ammonia, and the acetates of lead.

1418 VALESCUS DE TARENTA.

1492 COLUMBUS discovers America. Tobacco and its use for smoking first known.

1497 Mercury employed externally in syphilis.

1508 Guaiacum introduced into Europe by the Spaniards.

1493—1541 PARACELSUS. A vain, ignorant, arrogant, drunken quack, fanatic, and impostor. He burnt publicly the works of Galen and Avicenna, declaring that his shoe-strings possessed more knowledge than those two celebrated physicians, and asserted that he possessed the elixir of life! He was a cabalist, astrologer, and believer in the doctrine of signatures. He conferred several important benefits on medicine: he overturned Galenism, introduced chemical medicines (employing mercury in syphilis), and substituted tinctures, essences, and extracts, for various disgusting preparations.

1530 Sarsaparilla first appeared in Europe.

Early botanists in whose works several medicinal plants are distinctly referred to, in some cases for the first time. 1530. BRUNFELSIUS; Cardamine pratensis; Scrophularia nodosa. 1532. TRAGUS; Foxglove (Companula sylvstris); Belladonna (Solium hortense nigrum), Dulcamara. 1542. FUCHSIUS; Stramonium; Digitalis.

1579 Winter’s bark brought to Europe.

1633 Serpentine root noticed by THOMAS JOHNSON.

1675 Sulphate of magnesia obtained from Epsom waters by Dr. GREW.

1740 Spigelia as an anthelmintic made known.

1742 Senega introduced by Dr. TENNANT.

1758 Kino described by Dr. FOTHERGILL.

1763 Bark of salix alba used by Rev. Mr. STONE.

1788 Angustura bark imported into England.

THE BRITISH ISLES.

1. Ancient British Medicine.

(To the end of the 5th century A.D.)

MEDICINE OF THE ANCIENT BRITONS. Medicine and surgery practised by the Druids, who employed charms and certain medicinal agents (for which they entertained a superstitious veneration), and practised the simpler operations of pharmacy. Their chief medicines were the mistletoe of the oak, selago, vervain, and samillus. To the serpent’s egg (anguinum) they ascribed supernatural powers.

(From the end of the 5th to the end of the 15th century A.D.)

ANGLO-SAXON MEDICINE. Medicine and surgery practised by women, and subsequently by ecclesiastics and leeches (medici, chirurgi). They employed a variety of superstitious practices, and ascribed the virtues of drugs to imaginary (planetary, sol-lunar, &c.) influences. Their principal medicines were herbs. Their chief (MS.) works on medicines which were in use at this period were the following:

1. L. APPELUS, de Herbarum virtutibus Historia. (It pretends to contain the doctrines which Chiron the Centaur taught to Achilles.)

2. De Botonica. (This work has been ascribed by some to L. Appuleius, by others to Antonius Musa.)

3. Medicina animalium. (Ascribed to Sextus Philosophus.)
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

(from the end of the 11th to the end of the 15th century.)

ANGLO-NORMAN AND EARLY ENGLISH MEDICINE. During this period medicine, and especially the Materia Medica, began to be studied as a science. At first the chief teachers and practitioners were ecclesiastical; but gradually the practice of medicine became transferred to laymen, and the distinction between physicians, surgeons, and apothecaries was established. Alchemy was sedulously pursued at this time. Subsequently to the Crusades (A.D. 1096–1248) spices, gums, and other oriental substances were introduced into medicinal use, and thus the grocers who supplied these became apothecaries. The early grocer-apothecaries to the crown were foreigners. In A.D. 1231 there existed a fraternity of pepperers; in A.D. 1345 the grocers were incorporated; and in A.D. 1456 they fined one John Ayshfeld a six shillings and eight pence "for makynge of untrewe powder of gynger, cynamon and saunders."

1210 Gilbertus Anglicus (by some called Gilbertus Legleus), author of Compendium Medicinae. (Prepared a solution of acetate of ammonia and oil of tartar per deliquium.)

1214 Roger Bacon. (The most philosophical of the alchemists. Described the method of making tinctures and elixirs, and laid down rules for diet and medicines.)

1320 John of Gaddesden, author of the Rosa Anglica. (Discovered the method of bleaching wax, of making saccharum pendium, of producing fresh from salt water by repeated percolation through sand, and by distillation, &c. &c. His work abounds in recipes for every complaint; and affords the best history of what medicines were in use in his time: but it is characterized by the ignorance and superstition of the age, and by the grossest quackery.)

(from the end of the 15th century A.D. to the present time.)

ENGLISH MEDICINE. Establishment of the scientific study of medicine. Statutes passed for the regulation of the practice of medicine. Charters granted for the incorporation of the various orders of the profession. Employment of chemical medicines.

Statutes, Charters, &c.

1511 The examination and admission of physicians and surgeons by the bishop of the diocese, aided by members of the faculty, 3 Hen. 8, c. 11.

1518 Incorporation of the Royal College of Physicians of London by charter.

1522 Charter confirmed by statute. Examination and admission to the exercise of physic in England vested in the College, 14 and 15 Hen. 8, c. 5.

1540 Physicians to examine drugs, 32 Hen. 8, c. 40.

Surgeons incorporated with the barbers, 32 Hen. 8, c. 42.

1542-3 Ministration of medicines for external diseases allowed to every one, 34 and 35 Hen. 8, c. 8.

1553 Wardens of the grocers to go with the physicians to examine "poticary wares, drugs, and compositions," 1 Mar. sess. 2, c. 9.

1606 Apothecaries incorporated with the grocers.

1605 The apothecaries separately incorporated by the name of the "Master, Wardens, and Society of the Art and Mystery of Pharmacopolites of the City of London." Charter, 13 Jac. 1.

1745 The union of barbers and surgeons dissolved, and the surgeons separately incorporated, 18 Geo. 2, c. 15.

1800 Charter of incorporation of the Royal College of Surgeons, 40 Geo. 3, 22nd March, 1800.

Charter altering titles of Master, &c. to President, 3 Geo. 4, 13th Feb. 1822.

Charter creating class of Fellows, 7 Vic., 14th Sept. 1843.

1815 Apothecaries' act. No person (except those previously in practice) to practise as an apothecary in England or Wales without examination, 55 Geo. 3, c. 104.

1843 Incorporation of the Pharmaceutical Society of Great Britain.
A.D. HISTORICAL TABLE OF THE MATERIA MEDICA. 11

GENERAL PHARMACY.

(Operations and Instruments.)

1723 John Quincy, M.D. Praelectiones Pharmaceuticae, or a Course of Lectures in Pharmacy, Chymical and Galenical, explaining the whole doctrine of that Art. Edited by Dr. P. Shaw. Lond. 1723. 4to.

1758 [R. Dossie]. The Elaborate laid open, or the Secrets of Modern Chemistry and Pharmacy revealed. Lond. 1758. 8vo. (Published anonymously.)

1826 Samuel Frederick Gray. The Elements of Pharmacy, and of the Chemical History of the Materia Medica. Lond. 1826. 8vo.

1831 Robert Kane, M.D. Elements of Practical Pharmacy. Dubl. 1831. 12mo.

1849 Francis Mohr and Theophilus Redwood. Practical Pharmacy. Lond. 1849. 8vo.

*** A summary of the Theory and Practice of Pharmacy is contained in the Dispensatories of Quincy, James, Lewis, Duncan, and A. T. Thomson; also in the Elements of Materia Medica and Pharmacy of O'Bryan Bellingham, M.D. (see post, p. 12.)

Much useful information on the subject will also be found in Aikins' Dictionary of Chemistry and Mineralogy. 2 vols. Lond. 1807. 4to; and in Gray's Operative Chemist. Lond. 1828. 8vo.

1852 J. Bell. Chemical and Pharmaceutical processes.

Herbals and other works on Medical Botany.

W. C. A booke of the proprietys of herbes called an Herball, drawen out of an auncyent booke of phyteek. Lond. 8vo.

1561 The Greate Herball. 1561.

1579 Wm. Langham. The Garden of Health, conteyning the vertues and properties of all kinds of simples and plants. Lond. 1579. 4to.—Lond. 1633. 4to.

1597 John Gerard. The Herball, or Generall Historie of Plants. Lond. 1597. fol.—Enlarged by Thomas Johnson. Lond. 1633. fol. (wood-cuts.)

1640 John Parkinson. Theatrium botanicum, the Theater of Plants, or an Herball of a large extent. Lond. 1640. fol. (wood-cuts.)

1653 Nicholas Culpeper. The English Physitian enlarged. Lond. 1653. 8vo. —Edited by Parkinson. Lond. 1809 ? 1826?

1673 John Archer. A compendious Herbal. Lond. 1673. 8vo.

1694 John Pechey. The compleat Herbal of physical plants. Lond. 1694. 8vo.

1702 Dr. Richd. Mead. A Mechanical Account of Poisons. 5th ed. 1756. 8vo.

1722 Joseph Miller. Botanicum officinale, or a compendious Herbal. Lond. 1772. 8vo.

1723 G. Knowles. Materia Medica botanica. Lond. 1723. 4to.

1723—1728 Patrick Blair, M.D. Pharmaco-botanologia. Lond. 1723—1728. 4to.

1735 John K'egh. Botanologia universalis Hibernica, or a general Irish Herbal. Corke, 1735. 4to.

1737 Elizabeth Blackwell. A curious Herbal, containing 500 cuts of the most useful plants, which are now used in the practice of physick: to which is added a short description of the plants and their common uses in physick. Lond. 1737. fol. (copper-plates.)

1747 Thomas Short. Medicina Britannica, or a treatise on such physica plants as are generally to be found in the fields or gardens in Great Britain. Lond. 1747. 8vo.

1755 John Hill, M.D. The Useful Family Herbal. Lond. 1755. 8vo.

1755 Timothy Sheldrake. Botanicum Medicinale, an Herbal of Medicinal Plants on the College of Physicians' list. Lond. fol. (coloured copper-plates.)

1775 Dr. Wm. Withering. Account of the Foxglove. 8vo. Birm.

1782 Dr. W. Saunders. Observ. on Red Peruv. Bark.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

1790 William Meyrick. The new Family Herbal, or domestic physician. Birmingham, 1790. 8vo. (copper-plates.)

1790—1794 William Woodville, M.D. Medical Botany. Lond. vol. i. 1790; vol. ii. 1792; vol. iii. 1793; vol. iv. 1794. 4to.—2nd ed. 1810.—3rd ed., in 5 vols., by Hooker and Spratt. Lond. 1832. (copper-plates.)

1793 Dr. J. Alderson. Essay on Rhús Toxicodend. 8vo.

1794 Dr. J. Relph. Ing. into the Med. Effic. of Yellow Bark.

1812 Jonathan Stokes, M.D. A Botanical Materia Medica; consisting of the generic and specific characters of the plants used in medicine and diet, with synonymes and references to medical authors. 4 vols. Lond. 1812. 8vo.

1817—1819 [Thomas Cox.] Medical Botany (Linnean system). 4 vols. Lond. 1817—1819. royal 8vo. (copper-plates.)

1827—1830 Flora Medica. 2 vols. Lond. 1827—1830. 8vo.

1829 Dr. Röth. Christison. Treat. on Poisons. 8vo. 2nd ed. 1835, 3rd. 1845?

1831 John Stephenson, M.D., and James Morss Churchill. Medical Botany. 4 vols. Lond. 1831. royal 8vo.—2nd ed. by Gilbert Burnett. Lond. 1834—1836. (200 coloured engravings.)

1832 Dr. J. Stephenson. Med. Zoology and Mineralogy. 8vo. 1832.

1838 John Lindley, Ph. D. Flora Medica; a botanical account of all the more important plants used in medicine in different parts of the world. Lond. 1838. 8vo.

Dispensatories.

(Containing the natural and medicinal history of the various substances.)

1718 John Quincy, M.D. Pharmacopœia officinalis et extemporanea, or a complete English Dispensatory. Lond. 1718. 8vo.—12th ed. 1742.—14th ed. 1769.

1747 Robert James, M.D. Pharmacopœia Universalis, or a New Universal English Dispensatory. Lond. 1747. 8vo.—2nd ed. 1752.

1753 [William Lewis, M.B.] The New Dispensatory. Lond. 1753. 8vo. (Author's name omitted). 3rd ed. Lond. 1770. (After the author's death several editions were published in London: 5th ed. 1783: 6th ed. 1799.)—In Edinburgh improved editions, forming the Edinburgh New Dispensatory, were published successively by Dr. Webster (1788), Dr. Duncan (1788), Dr. Rotheram (1794; 6th ed. 1801), and Dr. Duncan, jun. (1800; 3rd 1806.)

1824 Thomas Cox, M.D. New London Dispensatory. Lond. 1824. 8vo.

1842 Robert Christison, M.D. A Dispensatory, or a Commentary on the Pharmacopæias of Great Britain. Edinb. 1842. 8vo.—2nd ed. Edinb. 1848.

National Pharmacopœias.

1618—1836 Pharmacopœia Londinensis. (The first edition of this work appeared in 1618. Subsequently numerous reprints and editions have been published; viz. in 1621, 1627, 1632, 1639, 1650, 1651, 1677, 1678, 1692, 1699, 1720, 1721, 1722, 1724, 1731, 1736, 1745, 1746, 1747, 1748, 1757, 1762, 1763, 1771, 1786, 1787, 1788, 1809, 1815, 1824, 1836, and 1851.)

** Numerous translations and criticisms of these various editions have from time to time been published. The following require to be specially noticed:—

1631 Dr. G. Bate. Pharmacopœia Bateana, by Fuller. 12mo.

HISTORICAL TABLE OF THE MATERIA MEDICA.

1562 William Bulleyne. The Booke of Simples. The first part of his Bulwarke of defense against all sickness. Lond. 1562. fol. (wood-cuts.)

1674 Thos. Willis, M.D. Pharmacuenta Rationalis, sive Diatriba de Medicamentorum operationibus in humano corpore. Oxon. 1674.—Ed. 3tia. Oxon. 1679. 8vo.

1663 Walter Harris, M.D. Pharmacologia Anti-Empirica, or a Rational Discourse of Remedies both Chemical and Galenical. Lond. 1663. 8vo.

1667 Sir John Floyer, Kn. Φαρμακο-βασινος, or the Touch-stone of Medicines, discovering the virtues of vegetables, minerals, and animals, by their tastes and smells. Lond. 1667. 8vo. 2 vols.

1690 Jo. Jacob Berlu, Merchant in Drugs. The Treasury of Drugs unlocked, or a full and true description of all sorts of Drugs and Chemical Preparations sold by Druggists. Lond. 1690. 12mo. Lond.—2nd ed. Lond. 1724. 12mo.

1693 Samuel Dale. Pharmacologia, seu manuductio ad Materiam Medicam. Lond. 1693. 12mo.—Ed. 3tia. 1737. 4to.

1724 James Douglas. Index Materia Medica, or a Catalogue of simple Medicines. Lond. 1724. 4to.

1730 R. Bradley. A Course of Lectures upon the Materia Medica, Ancient and Modern. 8vo.

1751 J. Hill, M.D. A History of the Materia Medica. 4to. Lond. 1751.

1761 Wm. Lewis, M.B. An Experimental History of the Materia Medica. Lond. 1761. 4to.—4th ed. in 2 vols. 8vo. by Dr. Akin in 1791.
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Title</th>
<th>Edition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1770</td>
<td>Andrew Duncan, M.D.</td>
<td>Elements of Therapeutics.</td>
<td>Edinb. 1770</td>
<td>8vo.</td>
</tr>
<tr>
<td>1770</td>
<td>Charles Alston, M.D.</td>
<td>Lectures on the Materia Medica. 2 vols.</td>
<td>1770</td>
<td>4to.</td>
</tr>
<tr>
<td>1770</td>
<td>Dr. D. Monro</td>
<td>Treat. on Mineral Waters.</td>
<td>8vo. 2 vols.</td>
<td></td>
</tr>
<tr>
<td>1780</td>
<td>Dr. John Brown</td>
<td>Elements of Medicine. Regarded all medicines as stimulants, and as differing from each other in little more than the degree in which they exert their stimulant power. (Brunonian theory.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1781</td>
<td>F. Home, M.D.</td>
<td>Methodus Materia Medica.</td>
<td>1781</td>
<td>12mo.</td>
</tr>
<tr>
<td>1788</td>
<td>Donald Monro, M.D.</td>
<td>A Treatise on Medical and Pharmaceutical Chemistry and the Materia Medica.</td>
<td>Lond. 1788</td>
<td>3 vols. 8vo.</td>
</tr>
<tr>
<td>1792</td>
<td>J. Moore</td>
<td>Essay on the Mat. Med.</td>
<td>8vo.</td>
<td></td>
</tr>
<tr>
<td>1794—1795</td>
<td>Dr. Thos. Beddoes and Jas. Watt</td>
<td>Consid. on the Use of Factitious Airs.</td>
<td>3 pts.</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>Dr. Wm. Saunders</td>
<td>Treat. on Mineral Waters.</td>
<td>8vo.</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>John Pearson</td>
<td>Obs. on the Effects of var. articles of the Mat. Med. in the cure of Lues Venerea.</td>
<td>8vo.</td>
<td></td>
</tr>
<tr>
<td>1805</td>
<td>Jeremiah Kirby, M.D.</td>
<td>Tables of the Materia Medica, or a Systematic Arrangement of all the Articles admitted by the Colleges of London, Edinburgh, and Dublin, &c.</td>
<td>Edinb. 1805</td>
<td>12mo.</td>
</tr>
<tr>
<td>1805</td>
<td>Dr. J. Hamilton</td>
<td>Obs. on Purgative Med.</td>
<td>8vo.</td>
<td></td>
</tr>
<tr>
<td>1809</td>
<td>A Practical Materia Medica.</td>
<td>Lond. 1809</td>
<td>Small 8vo.</td>
<td></td>
</tr>
<tr>
<td>1813</td>
<td>Dr. W. Ainslie</td>
<td>Mat. Med. of Hindostan. 4to.—Mat. Indica. 2 vols.</td>
<td>8vo. 1826.</td>
<td></td>
</tr>
<tr>
<td>1813</td>
<td>Dr. Thos. Young</td>
<td>Classif. and Lit. of Mat. Med. in the Introd. to Med. Lit.</td>
<td>8vo.</td>
<td></td>
</tr>
<tr>
<td>1832</td>
<td>Anthony Todd Thomson, M.D.</td>
<td>Elements of Materia Medica and Therapeutics.</td>
<td>8vo. Lond. 1832-3</td>
<td>2 vols. 8vo.—2nd ed. in 1 vol. 1835—3rd ed. Lond. 1843.</td>
</tr>
<tr>
<td>1835</td>
<td>J. Johnstone, M.D.</td>
<td>A Therapeutical Arrangement and Syllabus of Materia Medica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1835—1837</td>
<td>Jonathan Pereira, M.D.</td>
<td>Lectures on Materia Medica and Therapeutics. (In the London Medical Gazette.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1836—1838</td>
<td>G. G. Sigmond, M.D.</td>
<td>Lectures on Materia Medica and Therapeutics. (In the Lancet.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1838</td>
<td>Alexander Ure</td>
<td>A Practical Compendium of Materia Medica (with numerous formula) adapted for the Treatment of the Diseases of Infancy and Childhood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1839—1840</td>
<td>Jonathan Pereira, M.D.</td>
<td>The Elements of Materia Medica and Therapeutics. 8vo.</td>
<td>Part i. 1839; Part ii. 1840—2nd ed. 1842—3rd ed. 1819</td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>J. H. Lane</td>
<td>Compendium of Materia Medica and Pharmacy.</td>
<td>Lond. 1840</td>
<td>18mo.</td>
</tr>
<tr>
<td>1840</td>
<td>R. H. Black</td>
<td>Student's Pharmaceutical Guide.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>C. Parry</td>
<td>Elements of Therapeutics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>A. Kilgour</td>
<td>Lectures on Therapeutics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>Dr. Martinet</td>
<td>(Translation.) Manual of Therapeutics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>D. Spillan</td>
<td>Manual of Therapeutics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>T. Marryat</td>
<td>Therapeutics; or, Art of Healing.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Historical Table of the Materia Medica

<table>
<thead>
<tr>
<th>A.D.</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1817</td>
<td>Edward Ballard, M.D., and Alfred Baring Gannow, M.D.</td>
<td>Elements of Materia Medica and Therapeutics. Lond. 1845. 8vo.</td>
</tr>
<tr>
<td>1847</td>
<td>J. Moore Nelligan, M.D.</td>
<td>Medicines, their uses and mode of administration. Dubl. 8vo.—2nd ed. 1847.—3rd ed. 1851.</td>
</tr>
<tr>
<td>1853</td>
<td>J. Sturgin</td>
<td>Lectures on Materia Medica.</td>
</tr>
</tbody>
</table>

America

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>Dr. B. S. Barton</td>
<td>Collections for an Essay towards a Materia Medica of the United States. 3rd ed. 1810.</td>
</tr>
<tr>
<td>1806</td>
<td>Dr. J. R. Cone</td>
<td>The American Dispensatory. 8vo. 1806.</td>
</tr>
<tr>
<td>1810</td>
<td>Dr. J. Thacker</td>
<td>American New Dispensatory. 8vo. 2nd ed. 1813.</td>
</tr>
<tr>
<td>1817-18</td>
<td>Dr. W. P. C. Barton</td>
<td>Vegetable Materia Medica of the United States. 2 vols. 8vo. 2nd ed. 1825.</td>
</tr>
<tr>
<td>1822</td>
<td>Dr. J. Bigelow</td>
<td>A Treatise on the Materia Medica, intended as a sequel to the Pharmacopœia of the United States. Boston.</td>
</tr>
<tr>
<td>1830-34</td>
<td>Journal of the Philadelphia College of Pharmacy. Ed. by B. Ellis. 1830—1834. 6 vols. 8vo. Philad.</td>
<td></td>
</tr>
<tr>
<td>1831</td>
<td>The Pharmacopœia of the United States of America. By authority of the National Medical Convention, held at Washington, A.D. 1830.</td>
<td></td>
</tr>
<tr>
<td>1833</td>
<td>Dr. G. B. Wood and Dr. F. Bache</td>
<td>The Dispensatory of the United States. 3rd ed. 1836. 5th ed. 1851.</td>
</tr>
<tr>
<td>1835</td>
<td>American Journal of Pharmacy. Published under the auspices of the Philadelphia College of Pharmacy. (A continuation of the Journal of the Philadelphia College of Pharmacy.) From 1835 to the present time. 8vo.</td>
<td></td>
</tr>
<tr>
<td>1843</td>
<td>Dr. R. Dunglison</td>
<td>General Therapeutics, or principles of Medical Practice, with Tables of the chief remedial agents, and their preparations, and of poisons and their antidotes. 2 vols. 8vo. 4th ed. 1851. Philad.</td>
</tr>
<tr>
<td>1843</td>
<td>Dr. H. R. Frost</td>
<td>Elements of the Materia Medica and Therapeutics. 8vo. Charleston.</td>
</tr>
<tr>
<td>1847</td>
<td>Dr. R. E. Griffith</td>
<td>Medical Botany, or Description of the more important Plants used in Medicine. 8vo. Philad.</td>
</tr>
<tr>
<td>1847</td>
<td>Dr. Jos. Carson</td>
<td>Illustrations of Medical Botany. 4to. Philad.</td>
</tr>
<tr>
<td>1848</td>
<td>Dr. Martin Paine</td>
<td>Materia Medica and Therapeutics. 12mo. New York.</td>
</tr>
<tr>
<td>1850</td>
<td>Dr. R. E. Griffith</td>
<td>A universal Formulary, containing the Methods of Preparing and Administering officinal and other remedies. 8vo. Philad.</td>
</tr>
<tr>
<td>1850</td>
<td>Dr. T. D. Mitchell</td>
<td>Materia Medica and Therapeutics. 8vo. Philad.</td>
</tr>
<tr>
<td>1851</td>
<td>The Pharmacopœia of the United States of America. By authority of the National Medical Convention, held at Washington, A.D. 1850. 8vo. Philad.</td>
<td></td>
</tr>
</tbody>
</table>

Sweden

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1613</td>
<td>I. Chesnecopherus</td>
<td>Regimen iter Agentium, etc.</td>
</tr>
<tr>
<td>1616</td>
<td>—</td>
<td>Officina Itineraria, etc.</td>
</tr>
<tr>
<td>1628</td>
<td>Arfwidh ManSON</td>
<td>Een Mykilt Nytligt Orta-bok, etc.</td>
</tr>
<tr>
<td>1633</td>
<td>M. Joh. Franck</td>
<td>De Praeclaris Herbae Nicotianae virtutibus. Upsal.</td>
</tr>
<tr>
<td>1646</td>
<td>Arfwidh ManSon</td>
<td>Practice. Linkping, 1642. 8vo. Stockholm, 1645. 8vo.</td>
</tr>
<tr>
<td>1646</td>
<td>M. J. Franck</td>
<td>De Occultis Medicamentorum simplicium qualitatibus in genere. Upsal. 1646. 4to. pp. 20.</td>
</tr>
<tr>
<td>1681</td>
<td>P. Hoffwenius</td>
<td>De Manna. Diss. Upsal. 1631. 8vo. pp. 56.</td>
</tr>
<tr>
<td>1702</td>
<td>Ol. Rudbeck (Fil.),</td>
<td>De Mandragord. Diss. Upsal. 1702. 8vo. pp. 28, c. Tab.</td>
</tr>
<tr>
<td>1711</td>
<td>Laur. Roberg</td>
<td>De Aquosi Calidique Potus Satubriitate. Diss. Upsal. 1711. 4to. pp. 27.</td>
</tr>
<tr>
<td>1715</td>
<td></td>
<td>De Fuciatili Astaco ejuisque Usu medico. Diss. Upsal. 1715. 4to. pp. 32, c. Tab.</td>
</tr>
<tr>
<td>1746</td>
<td>Eberh. Rosén</td>
<td>De Cortice Peruvian. Diss. Londini Gothorun. 1744. 4to. pp. 60.</td>
</tr>
<tr>
<td>1746</td>
<td>Nic. Rosén</td>
<td>Decocta, Infusa et Emulsiones officinales. Diss. Upsal. 1746. 4to. pp. 82.</td>
</tr>
</tbody>
</table>
Historical Table of the Materia Medica

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Title</th>
<th>Place</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reprinted and published together with “D. L. Tessari Materia Medica contracta.” Venetie. 1762.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1751</td>
<td>J. G. Wallerius</td>
<td>De Salibus Alcalinis eorumque Usu medico. Diss. Upsal. 1751. 4to. pp. 16.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1755</td>
<td>C. Linnaeus</td>
<td>Fungus Melitensis. Diss. Upsal. 1755. 4to. pp. 16, c. Tab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1757</td>
<td>G. Harmens</td>
<td>De Sulphure minerali ejusque Usu medico. Diss. Londin. Gothor. 1757. 4to. pp. 27.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1759	C. Linnaeus	*De Hirudine.* Diss. Upsal. 1763. 4to. pp. 15.		
1762	C. Linnaeus	*De Meloë vesicatorio.* Diss. Upsal. 1762. 4to. pp. 15.		
1764	C. Linnaeus	*Opiobalsamum declaratum.* Diss. Upsal. 1764. 4to. pp. 19.		

[Fr. J. v. Aken], Svenska Medicinal och Apothekare Waxterns, &c. Örebro. 1764. 8vo. (Anon.)

1765	C. Linnaeus	*De Hirudine.* Diss. Upsal. 1765. 4to. pp. 15.		
1767	C. Linnaeus	*De Menthe Uso.* Diss. Upsal. 1767. 4to. pp. 11.		
	Transf. German. Lemgo. 1777. 8vo.			
1774	C. Linnaeus	*De Maro.* Diss. Upsal. 1774. 4to. pp. 18.		
	J. P. Westring	*De Ledo putustri.* Diss. Upsal. 1775. 4to. pp. 18.		
	T. Bergman	*De Magnesia alba.* Diss. Upsal. 1775. 4to. pp. 28.		
	C. W. Scheele	*Anmärkningar am Benzoë sattel.* W. Acad. Handl. 1775. 8vo.		
18. HISTORICAL TABLE OF THE MATERIA MEDICA.

1795 ———— De Corticis Angusturas. Diss. Upsala. 1795. 4to. pp. 7.

1797 ———— De Oleo Cajuputi. Diss. Upsala. 1797. 4to. pp. 18.

———— De Viribus et Usu Optii. Diss. Lund. 1806—1812. 4to. pp. 44.

P. J. Bergelin, De Camphora in Medicina Usu. Diss. Lundiae. 1812. 4to. pp. 16.

HISTORICAL TABLE OF THE MATERIA MEDICA.

AD.

AD. AFZELIUS, Remedia Guineensia. Diss. i.—x. Upsal. 1813—1817. 4to pp. 76.

1815 C. P. THUNBERG, De Ricino. Diss. Upsal. 1815. 4to pp. 12.

I. H. ENGELHART, De Viribus et Usu Remediorum Marianitum. Diss. Upsal. 1815. 4to.

1819 E. MUNK, AF ROSENSEHJOLD, De Remediis Adstringentibus. Diss. Upsal. 1819. 4to pp. 12.

C. P. THUNBERG, De Digitati purpurea. Diss. Upsal. 4to pp. 16.

Det. i. afd. 2. Stklm. 1823. 8vo pp. 545.

F. Segerstedt, De Galipea Cusparia. Diss. Upsal. 1825. 8vo pp. 16.

C. G. LODIN, De Acido Hydrocyanico. Diss. Upsal. 1825. 4to pp. 11.

1826 P. F. WAHLBERG, Avisning till de Svenska Pharmaceut. Waxternas Igenkännande. Diss. i. ii. Upsala. 1826, 1827. 8vo pp. 44.

M. G. LINDEHOLM, De Geo Urbano. Diss. Upsal. 1827. 4to pp. 8.

P. J. LIEDEBECK, De Pipere Cubebaæ. Diss. Upsal. 1827. 4to pp. 11.

A. ANDRÉE, De Acido Pyrolignoso. Diss. Lund. 1827. 8vo pp. 36.

1829 LARS LINDEGREN, Kinasalterns Therapeutiska Anwendung. Diss. Upsal. 1829. 4to pp. 9.

J. SETTERBERG, Pharmaceutiska Anstekningar. I. Linköping. 1829. 8vo pp. 124, with table.

J. A. LEBORIUS, De Nuce Vomica et Strychnina. Diss. Lond. Goth. 1829. 4to pp. 32.

1830 C. G. MÖSANDER, Öfversigt af Pharmaciens framsteg under det förflutna året. 1830. L. S. B. 1830. 8vo.

1832 Veterinaire Pharmacoæ. Stklm. 1832. 8vo pp. 51.

J. H. FORSHELL, Om Medicinal Wäxters Odling, &c. Stklm. 1832. 8vo pp. 28.

1834 M. HUSS J. C. WRETJHOLM, Om möjligheten att enligt Vegetabiliernas naturliga analogier a priori bestämma deras egenskaper och verkaner. Diss. i. ii. Upsal. 1834. 8vo pp. 31.

Pharmacopœia in Usum Nosocomii militaris. Holmiae. 1834. 8vo pp. 32.

J. E. FLODBERG and ELIS HEDRéN, De Camphora. Diss. Upsal. 1834. 4to pp. 16.

—Lärobok i Pharmacen.

Organ. Pharm. Lund. 1838. 8vo pp. 229.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

1640 Simon Pauli. Quadripartitum botan. de simpl. facult. Rostochii. 4to.
1813 Pharmacop. milit. Kbhn. 12mo.
1823 Pharmacop. in Præxi publ. a med. Dan. sequenda. Hafn.
1838 Carl Otto. Haandbog i Toxikologien. Kbhn. 8vo.

** Many articles on Pharmacology will be found in the following Danish medical journals:—
3. "Medicinsk-chirurgische Tidskrift."

For further information respecting Danish and Norwegian works on Pharmacology consult M. Winther, "Bibliotheca Danorum Medica. Hafniæ." 1832.
HISTORICAL TABLE OF THE MATERIA MEDICA.

NORWAY.

The Danish and Norwegian literature was common to both countries until their political separation in 1814, when Norway was united with Sweden. The language used in Norway in writing, and by all educated persons, in speaking, is identical with the Danish. Hence then every medical work published in Denmark till 1814 may be considered as also belonging to Norwegian literature. Since that year no work on Pharmacology has been published in Norway. The king has, however, appointed a committee to prepare a new pharmacopoeia for that country. The Pharmacopoeia Danica has hitherto been used there. Several articles on Pharmacology have appeared in the Norwegian periodical: Eyr, et medicinsk Tidsskrift. 11 vols. Commenced in 1826, and continued by Dr. Holst till 1837.

RUSSIAN EMPIRE.

a. To the end of the 10th century, A.D.

Before the 11th cent. A.D. During this epoch there were no professors of the healing art. Medicine was practised on emergencies by the heads of families (Medicina domestica). Quas employed as a national drink. Baths in popular use.

B. From about the end of the 10th century to the end of the 17th century, A.D.

990 John Smer or Smera, a Pole, the first physician mentioned by name.
1354 Herbal (in Russ.) with figures.
1553 Commencement of commercial intercourse with England during the reign of Ivan Vassiliievitch. Subsequently to this period, English medical men visited Russia; some being sent, at the request of the Czsr, by the English sovereign.
1551 Establishment of the Imperial Court Dispensary, in the Kreul district, in Moscow; and appointment of James Frencham, an Englishman, to the office of Apothecary to it.
1588 A manuscript medicin-book translated from the Polish into Russ. (The Polish original bears date 1423, A.D., and states that it was a translation from Roman authorities.)
1620 Establishment of the Aptekarski Prikads or Apothecaries’ Board [Apothekerbehörde]. To this Board was committed the supervision of the court dispensary, the appointment of military surgeons, the establishment of new military dispensaries, the payment of the salaries of the medical officers, and the settlement of disputes. (In 1707 this received the name of Apothecaries’ Chancery [Apothekerkanzlei], and, in 1725, that of Medical Chancery [medicinschen Kanzlei]).
1631 Military dispensaries instituted.
1657 Prohibition of private trade in rhubarb, and establishment of the Crown monopoly. (In 1762 the monopoly ceased.)
1665 Physic gardens established at Moscow.

7. From the commencement of the 18th century to the present time.

During this epoch medicine, as a science, was established and domesticated in Russia.

B. 1672 Peter the Great (who reigned alone from 1696 to 1725) greatly encouraged medicine, as well as the arts and sciences generally. He established public medical institutions (hospitals, schools, libraries, museums, &c.); botanical gardens, &c.—He promoted the translation of foreign medical books into the Russian language; and encouraged the establishment of chemical manufactories.

D. 1725 Appointment of eight private dispensaries in Moscow in addition to the two Royal ones.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

1721 The establishment of private dispensaries, in St. Petersburg and other places, ordained.

1763 Foundation of the Imperial Medical College by Catherine II.

1765 Pharmacopoeia castrensis. 8vo.

1778 Pharmacopoeia Rossica. Petrop. 1778, 8vo.—1782, 8vo.—1798, 8vo.—1799, 8vo.—1800.—Rec. opus plane novum, 1803, 8vo.—Lips. 1821, 8vo.—Ed. nov. Lips. 1830.

1788 Pharmacopoeia castrensis Rossica. Petrop. 1778, 4to.

1784 Dr. H. Bacheracht. Pharmacopoeia Rossica ac Pharmacopoeia castrensis et navalis Rossica. Petrop. 8vo. (A German translation, by K. F. Schröder, published at Copenhagen, 1788.)

1790 Sievers, an apothecary, went to Siberia under the auspices of Catherine II., with the view of promoting and improving the cultivation of Siberian rhubarb.

1806 D. H. Grindel, Grundriss der Pharmacie. Riga.

1808 D. H. Grindel, Taschenbuch für prifende Ärzte und Apotheker. Riga, 8vo.

1808 Pharmacopoeia in usum Nosocomii paup. Petrop. 8vo.

1810 D. H. Grindel. Russian Pharmacographiae Ruthericae. Auctore Jacobi Wylic, Equiti Baron. Jussu Augusti Imperatoris. Petropoli, 1808, 1812, 1818; ed. 4to, 1840, large 8vo. (Contains tables showing the composition of the Russian mineral waters.)

1815 Th. Schaffer, A manual of the art of prescribing (in Russ.) Moscow.

1817 Mironovitch. Practical General Pharmacology (in Russ.) Moscow.

1818 Establishment of the Pharmaceutical Society at St. Petersburg (Pharmaceutische Gesellschaft zu St. Petersburg) under the presidency of the Academician and State-councillor, A. J. Scheerer.

1829 P. Horaninow, Systema Pharmacodynamicum, 8vo. Petrop.

1843 C. F. Ed. Siller. Lehrbuch der Pharmacie.—1er Bd. 2te Ausg. 1848.

1843—1845 C. F. Friedemann Göbel (Professor of Chemistry and Pharmacy at the University of Dorpat). Die Grundlehren der Pharmacie. 3 vols. 8vo. Erlangen.

** There are many Russian translations of German works on pharmacy and pharmacology; as those of Fischer, Herrnstädt, Sprengel, Trommsdorff, Sobernheim, &c.

The works of Sobernheim, Vogt, Sundelin, and Hartmann, are used as manuals in the different universities of Russia.

Pharmaceutical Journals and Transactions.

1803—1808 Russisches Jahrbuch der Pharmacie. Herausg. von D. H. Grindel. Riga, 6 vols. 8vo. 1803—1808.—Continued under the following title:

A.D.

Russian Pharmaceutical History and Bibliography.
1847 R. Krebel, M.D. Russlands naturhistorische und medicinische Literatur. 8vo. Jena (Includes those works only which are not published in the Russian language).
1848 M. Heine, M.D. Fragmenta aus der Geschichte der Medicin in Russland. 8vo. St. Petersburgh.

FINLAND.
1797 B. Björnlund. Materia Medica Selecta. 8vo. Abo.
1819 Pharmacopoeia Fennica. Large 8vo. Abo.

POLAND.
1817 Pharmacopoeia Regni Polonice. 8vo. Varsovie.

Polish Pharmaceutical History and Bibliography.
F. Bentkowskiego. Historya Literaturne Polskiej, 2 vols. 8vo. Warsawie, i Wilnie, 1814. (The second volume contains the list of the works published in Poland on chemistry, pharmacy, natural history, and materia medica.)

PORTUGAL.
(From the establishment of the Monarchy, A.D. 1134.)
1449 Privileges granted by Alfonso V. to the Apothecary Ananias on his arrival in Portugal from Ceuta. (First legislative notice of Pharmacy subsequent to the foundation of the monarchy.)
1450 Inspection of Drugs ordained.
1461 Physicians and Surgeons prohibited from preparing medicines; and Apothecaries prohibited from practising medicine and surgery.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D. 1516, sobre algumas plantas e drogas medicinares de Oriente. (Jorn. de Soc. Pharm. Lisit. t. ii. p. 36, 1883.)

1521 Examinations of Apothecaries ordained.

B. 1511 Amatus Lusitanus, also called Johannes Rodericus de Castello Albo, commented on Dioscorides.

1641 Zacutus Lusitanus, also called Abraham Zacut or Zaeuto. Introitus ad praxia et pharmacopaeam. Amstel. Svo.

1716 Joao Vigie. Pharmacopaeo Ulissiponense. 4to.

1733 Manuel Rodrigues Coelho. Pharmacopaeo Tebalense. Lisboa, 1735; and 1751. 3 tom. fol.

1741 Promptuario Pharmaceutico-Girurgico. Lisboa.

1745 Thesouro Apollinico-galenoico, chymico, chirurgico e pharmaceutico, ou compendio de remedios para rivos e pobres. Lisboa, 4to.

1757—1772 Fr. Joao de Jesus Maria. Pharmacoedia dogmatica medico-chimica, theoretica et practica. Porto, fol. tom. i. 1757; tom. ii. 1772.

1772 Chair of Pharmacy established in the University of Coimbra.

1792 Jose’ Francisco Leal. Elementos de Pharmacia, extrahidos de Beausir, e reduzidos a novo metodo. Lisboa, Svo.

1794 Pharmacopea Geral para o Reino e Dominios de Portugal. Tomo i. Elementos de Pharmacia; Tomo ii. Medicamentos Simples, Preparados, e Compostos. Lisboa, 2 vols. Svo. (The first legal Pharmacopæa.)

1801 Bernardino Antonio Gomes. Memoria sobre a Ipecacuanha fusca do Brasil, ou Cipó das nossas boticas. Lisboa, 1801, c. 1e.

1785—1802 Manoel J. Henriques de Paiva. Collecção dos Simples preparados e compostos mais eficazes e de maior uso. Lisboa, 1785.—1802.

1809 Pharmacologia in usum protectionum Academicarum Coniubriensium. Conimbric, Svo.

1814 Antonio Jose’ de Sousa Pinto. Memoria sobre a administração do mercurio suas consequencias e preparações. 4to. Lisboa, 1814.

1815 Antonio Jose’ de Sousa Pinto. Pharmacopaeo Girurgica, ou Seleccion de Formulas adaptadas ao uso interno e externo, em que se descrevem o uso, virtude, e dose dos remedios nas molestias a que se fazem aplicaveis. Lisboa, Svo. (Continued in the Vade-Mecum do Girurgido.)

1816 Formulario Pharmaceutico adaptado nos Hospitales de França. 4to. Lisboa.

1816 Caetano Jose’ de Carvalho. Conhecimento pratico dos medicamentos de Lewis, traduzione do Francez. 3 vols. 4to. Lisboa.

1817 Antonio Lopes de Carvalho. Arte de formular segundo as regras de chymica pharmaceutica, ou Dicionario manual portatil para uso dos medicos e botica rios. Traduzione de A. L. de Carvalho. 4to. Lisboa.

1835 Foundation of a Pharmaceutical Society at Lisbon.

1835 Agostinio Alano da Silveira Pinto. Codigo Pharmacaceutico Lusitano, on Tratado de Pharmacoconomia. Coimbra, 8vo. (By a decree of the Queen, dated October 6th, 1835, this work was declared to be the legal Pharmacopoeia of Portugal.)—4th ed. Porto, 1846, 8vo.

1836 Chairs of Pharmacy and Materia Medica established in the Medico-Chirurgical Schools of Lisbon and Oporto.

1838 Pharmacoea Lusitana feita por uma Comissão creada por Decreto de 5 de Outubro 1838.

1841 Formulario dos Hospitaeas militares feito por uma Comissão. 8vo.

1842 Joaquim Pedro Abranches Bizarro. Sondeiram traduzação da 2a edição com acrescentamento d'algumas fórmulas para exemplificar a doutrina e um resumo da Historia de Pharmacia. 8vo. Lisboa.

1843 Formulario dos Medicamentos para o Hospital Real de S. José feito por uma Comissão. 4to.

1845 Candido Albo e Silva Pereira e Cunha. Tratado de Venenos ou Toxicologia teorica e practice considerada em uma applicação á Pathologia á Medicina legal. 4to. Lisboa. (Used in the Medico-Chirurgical School of Lisbon.)

1. Pharmaceutical Journals.

2. Pharmaceutical Regulations.

For the earlier Laws, Decrees, Charters, Orders, and Prescripts relating to Portuguese Pharmacy, see Jorn. de Soc. Pharm. tom. i. pp. 529 and 640; tom. ii. pp. 192, 501, 725, 805, 866; tom. iii. p. 173: and for the later ones, consult the Collecção de Leis, &c. appended to the Codigo explicado dos Phar macéuticos of F. B. dos Santos. Porto, 1841, 8vo. See also Estatutos da Universidade de Coimbra do anno de MDCCCLXXII. Livro III que contém os cursos das ciências naturaes e filosóficas. Lisboa, 1773.

3. Sources of Portuguese Pharmacetical Bibliography and History.

Jornal da Sociedade Pharmacaceutica Lusitana.

Bibliotheca Lusitana escolhida. Lisboa, 1788.

In the Pharmaceutical Journal, vol. v. p. 342, Lond. is an Historical Summary of Portuguese Pharmacy.

On the present state of medicine and surgery in Portugal, see A. P. Cardoso, in the Jornal das Ciencias Medicas de Lisboa, 1835.

——

A.D.

1569 Nic. Monardez. Historia medica de las cosas que se traen de nuestras Indias Occidentales que sirven en medicina. Sevil. 4to. Lat. transl. by Clusius. 1574. Antw.—Monardez mentions cebadilla, sarsaparilla (çarçaparilla), sassafras, balsam of Peru, balsam of Tolu, logwood, &c.

——

SPAIN.
1542—1544 James Sylvius.
1566 Antimony proscribed.
1666 Antimony permitted.
1672 Tartarized soda discovered by Seignette.
1686 Ipecacuanha celebrated in Paris.
1696 J. L. Menard. Nouvel Elém. de Thérapèutique. 3 vols. 8vo. 5me ed. 1825.
1705 C. J. A. Schwilgué. Traité de Mat. Méd. 3me ed. 1818. 2 vols. 8vo.
1716 J. J. Chortet. Traité de Pharmacologie.
1718 PicROTOXIN discovered by Boullay.
1721 Iodine discovered by Courtois.
1724 The existence of Morphia confirmed by Robiquet.
1721 J. J. Virey. Traité de Pharm. théorique et pratique. 2 vols. 8vo.
1721 P. Orfila. Traité des Poisons; ou, Toxicothérapie. 3me ed. 1827.
1717—1720 Pelletier and Caventou discover emetine, strychnia, brucia, veratrina, and quina.
1718 J. L. Menard. Essai de Mat. Méd. et de Therapie. 8vo.
1719 C. P. Martin. Essai de Pharm. gén. 8vo.
1721 Labarrague recommends the chlorides of lime and soda.
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.
1821 F. Magnendie. Formulaire pour la préparation et l'emploi de plusieurs Nouv. Médicam. 8me ed. 1835.
1825 L. J. Begin. Traité de Therap. 8vo. 2 vols.
1826 Meconine discovered by Dublanc jeune.
1826 Bromine discovered by Balam.
1828 N. E. Henry et N. B. G. Guiboult. Traité de Pharm. théoriq. et prat. 8vo. 2 vols. 2me ed. 1834.
1831 Chevallier et Int. Manuel du Pharmaceien. 2 vols. 8vo.
1831 F. Foy. Cours de Pharmacoï. 8vo. 2 vols.
1832 Codeia discovered by Robiquet.
1832 Narceina discovered by Pelletier.
1835 P. L. Cottereau. Traité Elém. de Pharm. 8vo.
1836—1839 A. Trouseau et H. Pidoux. Traité de Therap. et de Mat. Méd. t. i. 1836; t. ii. part 1re. 1837; t. ii. part 2e. 1839.
1839 A. Bouchardat. Élém. de Mat. Méd. 8vo.
1839 Galtier. Traité de Mat. Méd. 8vo. 2 vols.

*** Also, Bulletin de Pharmacie, from 1809 to 1815; Journal de Pharmacie, from 1815 to the present time; Journal de Chimie Méd., from 1825 to the present time, and Annaire de Thérapeutique.

GERMANY.

1631 Emetic tartar mentioned by Mynsicht.
1658 Sulphate of soda discovered by Glauer.
1669 Phosphorus discovered by Brandt.
1641 J. Schröder. Pharmacopoeia Medico Chymica. 4to.
1681 Nitric ether noticed by Kunkel.
1686 Cascarilla mentioned by Stisser.
1701 A. Q. Röthinus. Censura Medicam. Officin. 4to.
1712 E. Kämpfer. Amentitates exoticae. 4to.
1714 B. Zorn. Botanologia Medica. 4to.
1740 Dr. C. Neumann, The Chemical Works of. By Dr. Lewis. 4to. 1759.
1740 F. Hoffmann. Opera omnia physico-medica. 6 vols. fol.
1760 Ant. Störck, on hemlock, stramonium,aconite, hyoscyamus, and colchicum.
1762 H. I. P. Crantz. Mat. Med. Syst. 8vo. 3 vols. ed. 2nda. 1779.
1791 Dr. J. Arnemann. Prakt. Arzneimittel. 8vo. 6te Ausf. by Kraus. 1819.
1791 Dr. J. Arnemann. Chirurg. Arzneimittel. 8vo. 6te Ausf. by Kraus. 1818.
<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Title</th>
<th>Pages</th>
<th>Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1797</td>
<td>F. Jahn</td>
<td>Auswahl d. wirksamst. Arzneim. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>D. F. Swedenh.</td>
<td>Materia Medica. 12mo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1804</td>
<td>Morphia and Meconic acid discovered by Sertürner.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1809</td>
<td>Dr. J. C. Ebermaier</td>
<td>Taschenb. d. Pharm., 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1810</td>
<td>Hahnemann</td>
<td>Organon d. rationellen Heilkunde.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1816</td>
<td>Dr. K. Sprengel</td>
<td>Institutiones Pharmacologiae. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1820</td>
<td>Dr. C. Sundelin</td>
<td>Handb. d. spec. Heilmittel. 3te Aufl. 1833.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1821</td>
<td>Dr. H. von BERGEN</td>
<td>Vers. einer Monograph. d. China. 4to. plates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1822</td>
<td>Dr. F. P. Dulk</td>
<td>Die preuss. Pharm. übers. u. erlaut. 2 pts. 2nd ed. 8vo. 1829.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1828</td>
<td>Dr. J. H. Dierbach</td>
<td>Die neuest. Entd. in d. Mat. Med. 2te Aufl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1828–1829</td>
<td>P. C. Hartmann</td>
<td>Pharmakologia dynamica. 2 vols. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830–1831</td>
<td>Dr. J. WENDT</td>
<td>Prakt. Mat. Med. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1831–1830</td>
<td>P. L. Geiger</td>
<td>Handb. d. Pharm. 3 vols. 8vo. 5 Aufl. 1837.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1830–1831</td>
<td>Crescensi discovered by Reichendahl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1831</td>
<td>Dr. P. Phoebeus</td>
<td>Handbuch der Arzneiverordnungslehre. 2nd ed. 2 parts. 1833, 1836, 3rd ed. 1839, 1840. The first edition was entitled “Spezielle Recepturmént.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1832</td>
<td>Dr. J. C. ZENKER and Dr. E. SchENK</td>
<td>Naturgesch. d. vorzüglichst. Handelspf. 2 vols. 4to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1832</td>
<td>Dr. T. W. C. MARTIUS</td>
<td>Grundriss d. Pharmacogn. d. Pflanzenr. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1832–1833</td>
<td>Dr. G. A. Richter</td>
<td>Ausführ. Arzneimittell. 6 vols. 8vo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1833</td>
<td>Drs. E. S. and K. D. Schroff</td>
<td>Arzneimittell. u. Receptirk. 12mo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1834</td>
<td>Dr. F. Goebel and Dr. G. KUNZE</td>
<td>Pharmaceut. Waarenk. 2 vols. 4to.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1836</td>
<td>Dr. J. RADIUS</td>
<td>Ausseres. Heilform.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1837</td>
<td>Dr. C. G. Mitscherlich</td>
<td>Lehrbuch der Arzneimittellehre. 1st part of 1st vol. 1837.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

1838 Dr. T. W. C. Martius. Lehrb. d. pharmaceut. Zoologie. 8vo.

1838 Dr. P. Phoebus. Deutschl. kryptog. Giftgewäche. 4to.

1839 Dr. G. W. Schwartz. Attgem. u. spec. Heilquellenlehre. 2 parts. folio.

* * A considerable number of pharmaceutical journals are published in Germany. The following are perhaps the most important:—

2. Berlinisches Jahrbuch für die Pharmacie und für die damit verbundenen Wissenschaften. 12mo. (From 1795 to the present time.) Now edited by Dr. Lüdte.

4. J. A. Buchner. Repertorium für die Pharmacie. 12mo. (From 1815 to the present time.)

5. Pharmaceutisches Centrat-Blatt. 8vo. (From 1830 to the present time.) Edited by Drs. A. Weinig and E. Winckler.

6. Annalen der Pharmacie. 8vo. (From 1832 to the present time.) A continuation of the Magazin für Pharmacie. (From 1823 to 1831.)

7. Archiv, der Pharmacie. (From 1822 to the present time. 8vo.) Edited by R. Brandes and H. Waackendorfer.

HOLLAND.

1517—1585 R. Dodoneus.

1577—1614 John B. van Helmont.

1793 A. Balthasaar. Verkorte, doch klaare en oefennende Materia Medica. Amst. 8vo.

1797—1802 F. J. Voltelen. Pharmacotog. Univ. 3 parts. Lugd. 8vo.

1799 A. Ypey. Introd. in Mat. Med. Lugd. 8vo.

1817 J. A. van Honte. Handteiding tot de Matieres Medica, of Leer der Geneesmiddelen. Amst. 8vo.

ITALY.

1458 Ricettario Fiorentino. Fol.

1539 Herbario Volgare. 8vo. Venezia.

1555 A. Brasavola. De medicamentis tam simplicibus quam compositis catharticis quae unique humori sunt propria. Lugduni.
A.D.

1561 Della Materia Medicinal dal Valassori. tom. 4. 4to. Venezia.

1572 Il compendio dei Semplici. Firenze.

1579 Delle Piaute di Andrea Cesalpino. Roma.

1585 Trattato di Cristoforo Acosta Africano Medico chirurgo della Natura e Virtù delle Droghie medicinali. 4to. Venezia.

1587 Cose Metalliche di Andrea Cesalpino. Roma.

1642 Antidotario Napoletano di Giuseppe Donzelli. 4to. Napoli.

1643 Trattato dei Veleni. Verona.

1750 Antidotarium Bononianae. 4to. Bononia.

1756 Cartheuser Materia Medica. 4to. Venetii.

1770 Ant. Matani. *De remedis Tractatus.* Pisis.

1792 Capello Tessico Farmaceutico Chimico. 4to. Venezia.

1813 A. Dalla Decima. *De facultatibus remediorum recte investigandis specimina.* Venetii.

1813 B. Carminati. *Igiene, Terapeutica e Materia Medica; tradotte e compendiate da E. Acerbi, con note dell’Autore, e col prospetto della nuova dottrina dei medicamenti secondo la teoria del contrastismo.* Milano.

1813 Carminati Materia Medica. 8vo. Milano.

1815 Postiglione Manuale di Mat. Med. 12mo. Firenze.

1822 Barzellotti Epitome di Materia Medica. 8vo. Pisa.

1825 Trattato delle Droghie semplici. 6 vols. Milano.

HISTORICAL TABLE OF THE MATERIA MEDICA.

A.D.

Parte Seconda. *Applicazioni meccaniche.* 1 vol.

Appendici quattro.

1845 ———— *Opere minori.* Napoli.

Calyx gamosepalus, i. e. sepals more or less united at the base. Torus more or less adnate to the inside of the calyx at the base. Petals and stamens inserted into that part of the torus adnate to the calyx, and therefore commonly said to arise from the calyx. Petals free or united. Ovary free or adnate to the calyx.

Order XLVIII. PYROLACEÆ, Lind.—WINTER-GREENS.

Characters.—Calyx free, 4- to 5-partite, persistent. Petals 5, free or cohering, perigynous with an imbricated aestivation. Stamens twice the number of the petals, to which they are not adherent; anthers bilocular, dehiscing by 2 pores. Ovarium 3- to 5-celled, seated on a hypogynous disk. Style 1. Stigma roundish or lobed, sometimes slightly indusiate. Capsule 3- to 5-celled, 3- to 5-valved, loculicidal-dehiscent. Placenta adherent at the centre. Seeds indefinite, minute, with a pellicle indusiate or winged. Embryo minutic, at the base of fleshy albumen, with moderately distinct cotyledons.—Herba, natives of the northern hemisphere, perennial or scarcely under-shrubs, smooth. Stems round, naked, or leafy. Leaves simple, entire or dentate. Flowers racemose, somewhat umbellated, rarely solitary, white or rose-coloured. (De Cand.)

Properties.—In structure, proximate principles, and medicinal properties, this order is allied to Ericaceæ. Its prevailing principles are bitter, resinous, and astringent substances.

207. CHIMAPHILA UMBELLATA, Nuttall.—PIPSISSEWA; UMBELLATED WINTER-GREEN.

Chimaphila corymbosa, Parsh.—Pyrola umbellata, Linna.

Sex. Syst. Decandria, Monogynia. (Herba, L.—Herb, E. D.)

History.—The Pipsissewa was employed medicinally by the aborigines of America. It was first described and figured by Clusius,¹ who termed it Pyrola 3 vel frutescens; and it was introduced to the notice of the profession, in 1803, by Dr. Mitchell.² Monographs on it have been published by Elias Wolf,³ and by Radius.⁴ Its generic name is derived from χιμα, winter, and φίλος, a friend.

Botany. Gen. Char.—Calyx 5-cleft. Petals 5, spreading, deciduous. Stamens 10, 2 in front of each petal; filaments dilated in the middle. Ovarium rounded-obconical, obtusely angular, umbilicated at the apex. Style very short, concealed in the umbilicus of the ovary. Stigma orbicular, tuberculat, 5-nerenate. Cells of the capsule dehiscent at the apex; the valves not connected by tomcentum (De Cand.)

Sp. Char.—Filaments smooth. Bracts linear-awl-shaped. Leaves euneate-lanceolate, of the same colour (De Cand.)

¹ Historia Pannonica.
² Inaug. Diss. Philad. 1803.
³ Diss. de Pyrola umbell. Goett. 1817.
⁴ Dissert. de Pyrola et Chimoph. Spec. i. 1821; Spec. ii. 1829.
A perennial under-shrub. Rhizome woody, creeping. Stems ascending, somewhat angular, marked with the scars of former leaves. Leaves in irregular whorls, evergreen, coriaceous, on short petioles, serrate, smooth, shining. Flowers nodding in a small corymb. Corolla white, tinged with red, having an agreeable odour.

Hab.—Woods of Europe, Asia, and more frequently North America.

Description.—The officinal parts are the leaves (folia chimaphile seu pyrole), or rather the leaves and the stems (herba chimaphile seu pyrole). The fresh leaves exhale a peculiar odour when bruised: their taste is bitter and astringent. The infusion of the dried herb is rendered green (tannate of iron) by sesquichloride of iron, and very slightly turbid by a solution of isinglass.

Chimaphila maculata, or spotted winter-green, probably possesses similar virtues to the C. umbellata. "The character of the leaves of the two plants will serve to distinguish them. Those of C. maculata are lanceolate, rounded at the base, where they are broader than near the summit, and of a deep olive-green colour, veined with greenish white; those of the officinal species are broadest near the summit, gradually narrowing to the base, and of a uniform shining green. In drying, with exposure to light, the colour fades very much, though it still retains a greenish hue" (Wood).

Composition.—This plant has been analysed by Elias Wolf and by Fr. Martens: their results are as follows:

<table>
<thead>
<tr>
<th>Wolf's Analysis</th>
<th>Marten's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter extractive</td>
<td>Bitter gummy extractive, with a small</td>
</tr>
<tr>
<td>Resin</td>
<td>quantity of tannin and some vegetable</td>
</tr>
<tr>
<td>Tannin</td>
<td>calcareous salts</td>
</tr>
<tr>
<td>Woody fibre, with a small proportion of</td>
<td>Oxidised extractive</td>
</tr>
<tr>
<td>gum and vegetable calcareous salts</td>
<td></td>
</tr>
<tr>
<td>78·22</td>
<td>16·05</td>
</tr>
<tr>
<td>18·00</td>
<td></td>
</tr>
<tr>
<td>2·49</td>
<td>Soft resin and chlorophyll</td>
</tr>
<tr>
<td>1·88</td>
<td>3·00</td>
</tr>
<tr>
<td></td>
<td>Balsamic hard resin</td>
</tr>
<tr>
<td></td>
<td>5·30</td>
</tr>
<tr>
<td></td>
<td>Tannin with gallic acid</td>
</tr>
<tr>
<td></td>
<td>3·30</td>
</tr>
<tr>
<td></td>
<td>Woody fibre</td>
</tr>
<tr>
<td></td>
<td>63·60</td>
</tr>
<tr>
<td></td>
<td>Moisture and loss</td>
</tr>
<tr>
<td></td>
<td>7·50</td>
</tr>
<tr>
<td>100·00</td>
<td></td>
</tr>
</tbody>
</table>

The activity of the plant resides, in part at least, in the bitter extractive, resin, and tannin; but it is probable that there is also some volatile constituent (essential oil?) in the fresh plant to which the medicinal properties of the plant are in part due.

Physiological Effects.—The fresh leaves appear to possess considerable acridity, depending, probably, on some volatile constituent; for Dr. Barton says, that, when bruised, they produce rubefaction, vesication, and desquamation, if applied to the skin.

The infusion of the dried leaves, when swallowed, acts as a tonic, producing an agreeable sensation in the stomach, and assisting the appetite and digestive process. It promotes the action of the secreting organs, more especially the kidneys, over which, indeed, it has appeared to exercise a specific influence; increasing the quantity of urine; diminishing, as some have imagined, the quantity of lithic acid or lithates secreted; and beneficially influencing several forms of chronic nephritic disease. Indeed, this plant

1 United States Dispensatory.
possesses, in its medicinal as well as its natural-historical and chemical relations, qualities analogous to those belonging to Uva-ursi.

Uses.—The following are the principal diseases in which it has been employed:

1. In dropsies, accompanied with great debility and loss of appetite, it is useful as a diuretic, as well as on account of its stomachic and tonic qualities. It was introduced to the notice of practitioners in this country, as a remedy for this class of diseases, by Dr. W. Somerville. Dr. Beatty has also found it useful in this disease.

2. In chronic affections of the urinary organs. — Pyrola has been found serviceable in the various disorders of the urinary organs, in which the Uva-ursi frequently proves beneficial; such as cystirrhcea and calculous complaints. It has occasionally alleviated some cases of haematuria, ischuria, dysuria, and gonorrhcea.

3. In scrofula. — We can readily believe that, as a tonic, this remedy may be useful in various forms of scrofula. But it has been supposed by some to possess almost specific powers; and in America its reputation is so high, that in the provinces it acquired the title of "King’s Cure." Dr. Paris says that "an irregular practitioner, who has persuaded a number of persons in this metropolis that he possesses remedies obtained from the American Indians, by which he is enabled to cure scrofula in its worst forms," relics for success on chinamphila. In some ill-conditioned scrofulous ulcers pyrola is used in the form of a wash.

Administration. — Chinamphila is given in the form of decoction or extract: the latter has been employed in doses of ten or fifteen grains.

Order XLIX.ERICACEÆ, Lindley.—HEATHWORTHS.

Ericæ, Juss.—Ericæ, R. Brown.

Characters. — Calyx 4- or 5-partite, almost equal, entirely unadherent to the ovary, persistent. Corolla perigynous, or somewhat hypogynous, gamopetalous, 4- or 5-partite, or with 4 or 5 distinct petals, regular or more rarely irregular petals imbricated by asation. Stamens definite, equal or double in number to the petals, entirely or almost free from the corolla. Anthers 2-celled; cells hard, dry, separate either at the apex or base, often furnished with some appendage, dehiscing by a terminal pore. Ovary free, surrounded at the base by a disk, which is sometimes nectariferous. Style single, rigid. Stigma undivided, toothed, or 3-lobed. Fruit capsular, many-seeded, many-celled; dehiscence varies. Seeds inserted in a central placenta, small, indefinite; the testa firmly adhering to the nucleus. Embryo round; in the axis of fleshy albumen; the radicle

2 Trans. of the King and Queen’s Coll. of Phys., Ireland, vol. iv. p. 23.
3 Pharmacologia.
opposite to the hilum.—*Shrubs or under-shrubs*, rarely small trees. *Leaves* alternate, rarely somewhat opposite or withering, without stipules, usually rigid, entire, evergreen, articulated on the stem. (*De Cand.*)

Properties.—The medicinal qualities of the official heathworst are due to tannic acid (as in Uva-ursi), and to volatile oil (as in *Gaultheria procumbens*). In the tribe *Rhododendria* are found several species remarkable for their narcotic and poisonous properties; as *Kalmia latifolia*, *Rhododendron chrysanthum*, and *Azalea pontica*. The poisonous properties of Trebizonc honey are due to the latter plant (see *Honey*).

208. ARCTOSTAPHYLOS UVA-URSI, Sprengel.—THE BEAR-BERRY.

Arbutus Uva-ursi, Linn.
Ser. Syst. Decandria, Monogynia.
*(Foliu, *L.*—Leaves, *E. D.)*

History.—Some doubt exists whether this plant was known to the ancient Greeks and Romans. Bauhin¹ and some others think that it is the ἰδαία πίζα of Dioscorides;² but the leaves are very unlike those of *Ruscus aculeatus* (ὀξυφυτη), to which he, as well as Pliny,³ compares them. The ἀκτόν στάφυλος of Galen agrees better with the Uva-ursi, though the short description of it applies also to Ribes rubrum.⁴

Botany.—*Gen. Char.*—*Calyx* 5-partite. *Corolla* ovate-urceolate; the mouth 5-toothed, revolute, short. *Stamens* 10, inclosed; *filaments* somewhat dilated at the base, hairy-ciliate; *anthers* compressed, with 2 pores at the point, laterally 2-awned, awns reflexed. *Ovarium* globose-depressed, surrounded with 3 scales; *style* short; *stigma* obtuse. *Berry* (or berried drupe) globose, 5-, rarely 6-, 7-, or 10-celled; *cells* 1-seeded (*De Cand.*)

Sp. Char.—*Procumbent.* *Leaves* coriaceous, persistent, obovate, quite entire, shining. *Flowers* disposed in terminal small racemes. *Bractlets* beneath the pedicles, obtuse, small (*De Cand.*)

Stems woody, round, and trailing. *Leaves* alternate, stalked, evergreen; convex and wrinkled above; concave and paler beneath. *Bractlets* coloured. *Sepals* pale-reddish, permanent. *Corolla* rose-coloured, smooth. *Berry* globose, scarlet, mealy within, very astringent, and astrigent. *Seeds* seldom more than 4 or 5, though there are the rudiments of 8 or 10.

Hab.—*Indigenous.* Northern parts of Europe, Asia, and America. On dry, stony, and alpine heaths.

Description.—The dried leaves (*folia uve ursi*) are of a dark, shining, green colour, and have a bitter astrigent taste, but no odour. Their under surface is reticulated.

The leaves of *Vaccinium Vitis Iidea* (*Red Whortleberry*) are said to be occasionally substituted for those of Uva-ursi. The fraud (which is unlikely to occur in this country) may be detected by the edges of the leaves being minutely toothed, and the under surface dotted; whereas the edges are entire, and the under surface reticulated, in the genuine leaves. Furthermore, the

¹ *Pinax*, p. 470.
² Lib. iv. cap. 44.
false leaves are deficient in astringency, and their watery infusion is coloured green by sesquichloride of iron, but does not form any precipitate with gelatine; whereas the true ones are highly astringent, and their watery infusion forms a blackish-blue precipitate with the sesquichloride of iron.¹

Composition.—Uva-ursi leaves were analysed, in 1809, by MM. Melandri and Moretti,² and in 1827 by Meissner.³ The constituents in 103 parts are, according to the last-named chemist, gallic acid 1:2, tannic with some gallic acid 36:4, resin 4:4, oxidised extractive, with some citrate (?) of lime, 0:8, gum with supermalates of lime and soda, and traces of tannin and common salt, 3:3, chlorophylle 6:3, gum (pectic acid?) extracted by potash 15:7, extractive obtained by potash 17:6, lignin 9:6, and water 6:0 (excess 1:3).

Physiological Effects. a. On Animals generally.—Most animals refuse to eat this plant; there are, however, some few exceptions to this statement. Birds, it is said, will eat the berries; and Murray⁴ tells us that two kinds of insects feed on the plant, one of which (a species of Coccus) yields a crimson dye. Girardi⁵ found that an infusion of the leaves might be injected into the urinary bladder of animals with impunity; but, when taken internally, it excited vomiting and contraction and inflammation of the stomach.

β. On Man.—The obvious effects of Uva-ursi are those of the vegetable astringents before described (see ante, p. 209). Its activity as an astringent depends on tannic and gallic acids. The former of these acids, in its passage through the system, becomes oxidised and converted into gallic and pyrogallic acids, and humus-like substances, which communicate a dark colour to the urine (see ante, p. 1230).

Uva-ursi slightly augments the quantity, and also somewhat modifies the quality of the urine. Alexander⁶ found that 5 ss. of the powder acted as a mild diuretic (see ante, p. 251); and I have frequently seen lithic deposits in the urine lessen under its use. In large doses the powder readily nauseates.

Uses.—As an astringent, it is applicable to all the purposes for which the vegetable astringents generally are used (see ante, p. 209). It has been employed as an antidote in poisoning by ipecacuanha (see Ipecacuanha). But the principal use of this remedy is in chronic affections of the bladder, attended with increased secretion of mucus, and unaccompanied with any marks of active inflammation. Thus, in the latter stages of catarrhus vesicae, the continued use of Uva-ursi is frequently most beneficial. Combined with hyoscyamus, says Dr. Prout,⁷ and persevered in steadily for a considerable time, it seldom fails to diminish the irritation and quantity of mucus, and thus to mitigate the sufferings of the patients. “It undoubtedly possesses,” he adds, “considerable powers in chronic affections of the bladder, for which only it is adapted, its operation being slow and requiring perseverance.”

¹ See Braconnot, Bull. de Pharm. iii. 348; and Bouillon-Lagrange, Ann. de Chim. iv. 46.
² Bull. de Pharm. i. 59.
³ Gmelin, Handb. d. Chem. ii. 1294.
⁴ Opuscule, p. 98.
⁵ De Uva Ursi [Sandifort, Thesaurus, ii. 453], Patavi, 1764.
⁶ Exp. Essays, p. 151.
⁷ On Affect. of the Uriaary Organs, pp. 185 and 263, 2d edit. 1825.
Sir Benjamin Brodie,\(^1\) on the other hand, observes that "Uva-ursi has the reputation of being useful in some cases of chronic disease of the bladder, and in this [inflammation] among the rest. I must say, however, that I have been disappointed in the use of Uva-ursi, and that I have not seen those advantages produced by it which the general reputation of the medicine had led me to expect. I have seen much more good done by a very old medicine"—the root of the Cissampelos Pareira. Such are the opposite statements of the effects of this remedy, made by two of the most eminent writers on diseases of the urinary organs. My own experience of it amounts to this: that in some cases the relief obtained by the use of it was marked; whereas, in other instances, it was of no avail. It is to be remembered that its astringent operation unites it for acute cases, and that the alteration which it produces in the condition of the urinary organs is effected very slowly; so that, to be beneficial, it requires to be exhibited for a considerable period. In calculous affections it has occasionally given relief. De Haen\(^2\) and Van Swieten\(^3\) speak of the good effects of it in these cases. It alleviated the pain, checked the purulent and mucous secretion, and restored the urine to its natural condition. These effects seem to have arisen from its influence over the kidneys and bladder, for it did not appear to affect the calculus. I have already stated that it has appeared to me to lessen lithic deposits in the urine. In chronic bronchial affections, with profuse mucous or purulent secretion, it may occasionally prove serviceable. Dr. Bourne\(^4\) gave it in powder (in doses of from 8 to 20 grs.) three times daily, in milk, with success.

Administration.—The dose of the powder is from 3j. to 5j. But the "powdered leaves of this plant are so bulky and disagreeable, that few stomachs will bear to persevere long enough in the use of the requisite quantity; and the case is pretty much the same with the infusion and decoction." On this account the extract is frequently preferred.

1. **Decoction Uva Ursi, L. D.; Decoction of Bear-berry.** (Uva-ursi, 5j.; Distilled Water, Oiss. Boil down to a pint and strain, L.—The Dublin College orders of Uva-ursi, 5ss.; Water, Oss. Boil for ten minutes in a covered vessel, and strain.)—Dose, f3j. to f3ij. three times a-day.

2. **Extractum Uva Ursi, L.; Extract of Bear-berry.** (Uva-ursi, bruised, lb. iiss.; Boiling Distilled Water, Cong. ij. Macerate for twenty-four hours; then boil down to a gallon, and strain the liquor while hot; lastly, evaporate to a proper consistence.)—Dose, grs. v. to grs. xv. twice or thrice daily.

1 Loud, Med. Gaz. vol. i. p. 300.
2 Rat. Med. t. ii. p. 63.
3 Commentaries, t. xvi. p. 300.
4 Cases of Pulmonary Consumption, &c. treated with Uva-ursi, 1805.
5 Prout, op. cit. p. 185.
209. Gaultheria procumbens, Linn.—Partridge-Berry.

Sex. Syst. Decandria, Monogynia.

(Leaves.)

Gaultheria repens, Rafinesque,¹ Med. Fl. of the United States. In different parts of the United States it is known by different names; as Grouse-berry, Deer-berry, Spice-berry, Tea-berry, Mountain-tea, Winter-green, Box-berry, &c.

A small shrubby evergreen. Stem prostrate, smooth; with ascending branches. Leaves obovate, with setaceous serratures, acute at either end. Pedicels bearing 1-3 nodding flowers. Calyx 5-lobed, white. Corolla white, unrecolate. Capsule small, 5-celled, inlosed within the fleshy calyx, and presenting the appearance of a bright scarlet berry. Grows in America from Canada to Virginia.

The leaves and other parts of the plant contain a peculiar volatile oil (oil of partridge-berry or oil of winter-green), to which their aromatic qualities are due. The leaves also contain tannin.

The leaves are aromatic, stimulant, and astringent. In infusion they have been employed, under the name of Mountain or Salvador Tea, as a substitute for China tea. Like some other stimulants, they have been thought to promote the catamenia and milk. As astringents, they have been used in chronic diarrhoea. But they are chiefly employed on account of their agreeable flavour, and to yield the essential oil.

The volatile oil of partridge-berry (oleum gaultheriae, Ph. United States) has occasionally been imported, and sold in England under the name of oil of winter-green. It is obtained chiefly in New Jersey, by submitting the leaves of the plant to distillation with water. As usually met with in commerce, it has a brownish-yellow or pinkish-colour; that which I have met with in England was pinkish-yellow. By redistillation it becomes colourless. It is the heaviest of all the volatile oils; its sp. gr. being 1.173 at 50° F.; and this character, therefore, becomes a test of the purity of the oil. Its boiling point is 412°. Its taste is sweetish, pungent, and peculiar; its odour characteristic and agreeable. It solidifies when dropped into a solution of potash or soda. The aqueous solution of the oil assumes, on the addition of a persalt of iron, a violet colour (salicylate of the pyrocate of iron). The commercial oil consists, according to Cahoners,² of two volatile oils,—one light, the other heavy. The light oil of partridge-berry, or gaultherylene (C₃⁰H₆⁶), constitutes about 1/6th part of the commercial oil, and forms the first portion which distils over. It is a colourless, very limpid oil, with an agreeable odour, approximating to that of oil of pepper. It boils at 417° F. It is isomeric with oil of turpentine. The heavy oil of partridge-berry, gaultheryl acid, or salicylate of methylene (C₆H₄O,C₆H₄OP), constitutes 2/3ths of the commercial oil. It is a colourless liquid, having a sp. gr. of 1.18 at 50° F., and a warm and aromatic taste. It dissolves in all proportions in alcohol and ether, and slightly so in water. It combines with bases to form salts (gaultherates).

The commercial oil of partridge-berry is an aromatic stimulant, and is chiefly used to cover the unpleasant flavour of other medicines (see Syrup of Sarsaparilla, p. 1175). Like other essential oils, it is sometimes employed to allay toothache. In the dose of a fluidounce it has caused death: on examination of the body, strong marks of inflammation of the stomach were discovered.⁴ The essence, prepared by dissolving the oil in rectified spirit, is sometimes employed as a cordial and stimulant.

Order I. LOBELIACEÆ, Jussieu.—LOBELIADS.

Characters.—Calyx 5-lobed, more or less adherent to the ovary. Corolla persistent, more or less gamopetalous; lobes or petals 5, usually irregular, sometimes almost regular;

¹ Rafinesque observes that this plant was dedicated to Dr. Gautier, of Canada, by Kalm, wrongly misspelt Gaultheria and Gaulthieria; and that it is creeping, not procumbent: hence he proposed to change the name from Gaultheria procumbens to Gaultheria repens.
² Mr. Procter, Jun., Am. Journ. of Pharm. iii, and iv.
³ Ann. de Chim. et Phys. 3me sér. t. x. p. 327.
⁴ United States Dispensatory (Journ. of Phil. Col. of Pharm. vi. 290).

Tubers entire or cleft longitudinally. Aestivation somewhat valvular. Stamen 5, alternate with the lobes of the corolla, usually free, but sometimes adherent to the tube of the corolla; filaments free, or more or less connate; anthers cohering, bilocular, dehiscing longitudinally; pollen ovoid. Ovary inferior or semi-inferior, 2- or rarely 1-celled, then with parietal placentae; style 1; stigma surrounded with a ring of hairs. Fruit usually dehiscing at the apex by 2 valves, rarely from above by an operculum, or laterally by 3 valves, or indehiscent. Seeds indefinite; albumen fleshy; embryo straight.—Lactescent herbs or under-shrubs, rarely small trees. Leaves alternate, without stipules. Flowers usually axillary, solitary, racemose. (Condensed from De Cand.)

Properties.—Dangerous or suspicious plants; mostly acrids or acro-narcotics.

210. Lobelia Inflata, Linn.—Bladder-Podded Lobelia; Indian Tobacco.

Sex. Syst. Pentandria, Monogynia.

(Herba florens, L.—Herb, E. D.)

History.—This plant was employed by the aborigines in America; and after having been for some time used by quacks, was introduced to the notice of the profession by the Rev. Dr. Cutler, of Massachusetts. It was introduced into England, in 1829, by Dr. Reece.

Botany.—Gen. Char. — Calyx 5-lobed; the tube obconical, ovoid or hemispherical. Corolla cleft longitudinally from above, bilabiate; the tube cylindrical or funnel-shaped, straight; the upper lip usually smaller, and erect; the lower generally spreading, broader, 3-cleft, or more rarely 3-toothed. The 2 inferior, or occasionally all of the anthers, barbed at the point. Ovary inferior or semi-inferior, and (in species very much alike) somewhat free (De Cand.)

Sp. Char.—Stem erect, the lower part simple and shaggy; the upper part ramose and smooth. Leaves irregularly serrate-dentate, hairy; the lower ones oblong, obtuse, shortly petioled; the middle ones ovate-acute, sessile. Flowers small, racemose. Pedicels short, with an acuminate bract. Calyx smooth, the tube ovoid; the lobes linear-acuminate, equal to the corolla. Capsule ovoid, inflated (De Cand.)

Annual; height, a foot or more. Root fibrous. Stem angular. Leaves scattered; segments of the calyx linear, pointed. Corolla delicate blue. Anthers collected into an oblong curved body, purple; filaments white. Style filiform; stigma curved, and inclosed by the anthers. Capsule 2-celled, 10-angled, crowned with the calyx. Seeds (fig. 320) numerous, small (about 1/6 of an inch long, and 1/48 th of an inch broad), brown, oblong, oval or almond-shaped, reticulated with brown fibres, the inter-spaces irregular in shape, and yellow.

Hab.—North America, from Canada to Carolina and the Mississippi. Begins to flower in July. The plant should be collected in August or September.

Description.—Both the flowering herb and seeds are imported from America, and are found in the shops.

1. The flowering herb (herba florens lobelia inflata) is chiefly prepared by the Shaking Quakers of New

1 Thacker's Amer. New Dispensatory, 2d ed. p. 258.
2 Praet. Treat. on the Anti-asthmatic Properties of Bladder-podded Lobelia, 1829.
Lobelia, North America. It has been compressed into oblong cakes, weighing either half a pound or a pound each, and enveloped in blue paper.

The packages imported by Mr. M'Culloch, of Covent Garden Market, have a label on them of which the adjoined is a copy.

The dried herb is pale greenish-yellow; its smell is somewhat nauseous and irritating; its taste burning and acrid, very similar to that of tobacco. Its powder (*pulvis lobelina*) is greenish, and somewhat resembles powdered senna leaves.

2. The seeds (semina lobelina inflata) have been already described. Their powder (pulvis seminum lobelina inflata) is brown, somewhat resembling rappee, but scarcely so uniform in colour, and communicates a greasy stain to paper. When examined by the microscope, this powder is found to consist chiefly of broken seeds, but intermixed with some whole ones.

Description.—This plant was first examined chemically by Dr. Colboun,¹ and afterwards by Mr. Wm. Procter, Jun.² In the second edition of the present work (1842), I published the results of a few experiments made with the view of determining the composition of this plant. A more complete analysis of it was made by Reinsch³ in 1843. Very recently Mr. Bastick⁴ has published some experiments made with the object of isolating the active principle.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A peculiar acrid alkaline principle.</td>
<td>Volatile principle.</td>
<td>Water................................. 11:0</td>
</tr>
<tr>
<td>Resin.</td>
<td>Lobelia.</td>
<td>Volatile oil not determined</td>
</tr>
<tr>
<td>Chlorophylle.</td>
<td>Lobelic acid.</td>
<td>Alcoholic extract—</td>
</tr>
<tr>
<td>Gum.</td>
<td>Resin.</td>
<td>Chlorophylle</td>
</tr>
<tr>
<td>Gallic [lobelic] acid.</td>
<td>Chlorophylle.</td>
<td>Wax</td>
</tr>
<tr>
<td>Fixed oil.</td>
<td>Gum.</td>
<td>Resin</td>
</tr>
<tr>
<td>Salts of lime.</td>
<td>Extractive.</td>
<td>Stearine</td>
</tr>
<tr>
<td>Salts of potash.</td>
<td>Caoutchouc ?</td>
<td>Peculiar substance (Lobelia)</td>
</tr>
<tr>
<td>Oxide of iron.</td>
<td>Woody fibre.</td>
<td>Vegetable glutten</td>
</tr>
<tr>
<td>Lignin.</td>
<td></td>
<td>Vegetable fibre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqueous extract—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potash, lime, magnesia, iron, and manganese</td>
</tr>
<tr>
<td></td>
<td></td>
<td>salts, with organic and inorganic acids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extracted by potash—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegetable fibre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Volatile Oil of Lobelia; Odorous Principle of Lobelia; Lobelianin.—Water distilled from lobelia has the peculiar smell, and in my former experiments appeared to me to possess also the nauseous, acrid taste of the plant; but Mr. Procter, Jun. declares it to be devoid of acrimony, and Reinsch states that the oil which comes over on the water has a bland taste and a moderately strong odour. In one experiment I obtained a thin

¹ Journal of the Philadelphia College of Pharmacy, Jan. 1834; and Journ. de Pharmacie, t. xx. p. 545, 1834.
⁴ Ibid. vol. x. p. 270, 1850.
VEGETABLES.—NAT. ORD. LOBELIACEÆ.

The distilled water of lobelia is unaffected by acids, sesquichloride of iron, and tincture of mutgalls.

2. LOBELIÀ; Lobelii; Peculiar Acid Alkaline Principle.—The existence of this principle was first announced, though not isolated, by Dr. Colhourn. According to Mr. Procter, it is found in the seeds in larger proportion than in the herb. From twelve ounces of the former he obtained eighteen and a half grains of lobelina. He procured it by treating the seeds with alcohol acedulated with acetic acid until deprived of their acrimony. The tincture was evaporated to the consistence of an extract which was triturated with magnesia and water, and after repeated agitation with water, the liquor which held lobelina in solution was filtered and shaken repeatedly with ether until deprived of acrimony; the ethereal solution was then decanted and allowed to evaporate spontaneously. The impure lobelina thus obtained was dissolved in water by the aid of sulphuric acid, the solution decolorised by animal charcoal, and then mixed with magnesia. The liquor was then agitated with ether to dissolve the lobelina which had been set free, and the ethereal solution allowed to evaporate spontaneously.

Mr. Bastiee’s process for obtaining it is similar to that recommended by Liebig for procuring hyoscyamin.

Lobelina is a liquid alkaloid, of a light yellow colour and somewhat aromatic odour. It is lighter than water, on which fluid it floats. It is soluble in water, but more so in alcohol and ether. It is also soluble in oil of turpentine and oil of sweet almonds. It has an alkaline reaction on reddened litmus paper, and unites with sulphuric, nitric, hydrochloric, oxalic, and lobelie acids, to form crystallisable salts, which are more soluble in water than the alkaloid itself. Tannic acid throws it down from its solution in the form of a white bitannate. Mr. Bastiee says lobelina is volatile, but does not evaporate entirely unchanged. Lobelina is the active principle of the plant, but is not so active as nicotine. A quarter of a grain excited vomiting and much prostration in a cat. A grain caused immediate and total prostration, which for half an hour rendered the animal almost motionless, and caused dilatation of the pupils.

3. LOBELIC ACID.—In 1842 I drew attention to the peculiarity of this acid, to which I gave the name it now bears; and Mr. W. Procter, Jun., has subsequently confirmed my statements. It had previously been confounded with galle acid. With the persalts of iron a solution of lobelie acid causes an olive-brown precipitate, with sulphate of copper a pale green, with nitrate of silver a brownish precipitate soluble in nitric acid, with either acetate or diacetate of lead yellow, and with protonitrate of mercury a yellowish-white precipitate. A solution of gelatin had no effect on it. According to Mr. Procter, the acid is crystallisable and soluble in ether.

4. RESIN.—By gently evaporating the tincture of lobelia (prepared with proof spirit), a resinous substance separates and floats on the surface of the liquid. It has an exceedingly acid taste.

Characteristics.—As death is not unfrequently the consequence of the empirical use of lobelia, it is desirable that we should possess some means of detecting the poison. I am, however, unacquainted with any chemical characteristics by which it can be recognised. The following are some of its reactions:—A decoction of lobelia reddens litmus, and, if strong, lets fall a precipitate (gum) when dropped into rectified spirit. Infusion of nutgalls throws down a pale yellowish-white or greyish precipitate (impure tannate of lobelina). In its reactions on solutions of metallic salts it agrees with a solution of lobelic acid before described.

The tobacco-like flavour of the powder and decoction, and the remarkable acid sensation, like that caused by tobacco, which these preparations excite in the fauces, may sometimes aid in recognising them.

Mr. Frederick Curtis has drawn attention to the microscopic characters of the seeds as a means of detecting the herb of lobelia, or its powder; as these

1 The effect produced by persalts of iron on this acid is analogous to that caused by the same agents on aloe (see ante, p. 1082) and cedrilla (see ante, p. 1086).

2 Lond. Medical Gazette, July 25, 1851.
seeds, on account of their minuteness, escape complete destruction by the mill or mortar. I have, however, been unable to detect any seeds or fragments of seeds in the pulvis lobeliee sold at an herb-shop in London; the herb which is sent to the mill not being sufficiently ripe to contain seeds: but the pulvis semenum lobelie may be readily detected by the microscope. When the ordinary lobelia powder contains seeds, or fragments of seeds, no difficulty will be found in recognizing them by the microscope. Mr. Curtis recommends the powder to be sifted in order to separate the coarser from the finer particles; and he says that the uninjured seeds will be left on a sieve whose apertures are \(\frac{3}{4} \) th of an inch (see ante, p. 1546, fig. 320). Mr. Curtis describes the seeds as having "oblong-square" reticulations. Dr. Otto Berg\(^1\) has also depicted these spaces as being rectangular. I have, however, found them irregular in shape, as shewn in fig. 320.

Physiological Effects.—An accurate account of the effects of this plant on man and animals is yet wanting; but, from the observations hitherto made, its operation appears to be very similar to, but milder than, that of tobacco (see ante, p. 1429); and from this circumstance, indeed, it has been called the Indian Tobacco. I have before remarked, that both in its taste and in the sensation of acridity which it excites in the throat, it resembles common tobacco. This analogy between nicotiana and lobelia, originally noticed by the American practitioners, is confirmed by Dr. Elliotson.\(^2\)

a. On Animals generally.—Horses and cattle have been supposed to be killed by eating it accidentally.\(^3\) An extraordinary flow of saliva is said to be produced by it in cattle.\(^4\) Hedgehogs and cats are killed by it.\(^5\)

β. On Man.—aa. In small doses it operates as a diaphoretic and expectorant. Mr. Andrews,\(^6\) who speaks from its effects on himself, says it has "the peculiar soothing quality of exciting expectoration without the pain of coughing."

ββ. In full medicinal doses (as 9 of the powder) it acts as a powerful nauseating emetic. Hence it has been called the emetic weed. It causes severe and speedy vomiting, attended with continued and distressing nausea, sometimes purging, copious sweating, and great general relaxation. These symptoms are usually preceded by giddiness, headache, and general tremors. The Rev. Dr. M. Cutler,\(^7\) in his account of the effects on himself, says that, taken during a severe paroxysm of asthma, it caused sickness and vomiting, and a kind of prickly sensation through the whole system, even to the extremities of the fingers and toes. The urinary passage was perceptibly affected, by producing a smarting sensation in passing urine, which was probably provoked by stimulus on the bladder. It sometimes, as in the Rev. Dr. Cutler's case, gives almost instantaneous relief in an attack of spasmodic asthma. Intermittent pulse was caused by it in a case mentioned by Dr. Elliotson. Administered by the rectum, it produces the same distressing sickness of stomach, profuse perspiration, and universal relaxation, which result from a similar use of tobacco.

\(^{1}\) Charakteristik der für die Arzneikunde und Technik wichtigenen Pflanzen-Genera, 2ter Abdruck, 1851.

\(^{2}\) Lancet, April 15, 1837, p. 144.

\(^{3}\) Thacher, American New Dispensatory, p. 2.

\(^{4}\) Lancet, May 13, 1837, p. 299.

\(^{5}\) See the experiments of Mr. Curtis and Dr. Pearson in the Lond. Med. Gaz. Aug. 16, 1850.

\(^{6}\) Loud, Medical Gazette, vol. iii. p. 260.

\(^{7}\) Thacher, op. cit.
77. In excessive doses, or in full doses too frequently repeated, its effects are those of a powerful acro-narcotic poison. "The melancholy consequences resulting from the use of Lobelia inflata," says Dr. Thacher,\(^1\) "as lately administered by the adventurous hands of a noted empiric,\(^2\) have justly excited considerable interest, and furnished alarming examples of its deleterious properties and fatal effects. The dose in which he is said usually to prescribe it, and frequently with impunity, is a common tea-spoonful of the powdered seeds or leaves, and often repeated. If the medicine does not puke or evacuate powerfully, it frequently destroys the patient, and sometimes in five or six hours." Its effects, according to Dr. Wood,\(^3\) are "extreme prostration, great anxiety and distress, and ultimately death, preceded by convulsions." He also tells us that fatal results (in America) have been experienced from its empirical use. These are the more apt to occur when the poison, as is sometimes the case, is not rejected by vomiting.

Within the last three years several cases\(^4\) of poisoning by lobelia have occurred in England, in consequence of the administration of this agent by ignorant persons acting under the guidance or instruction of a notorious empiric.\(^5\)

Uses.—Lobelia is probably applicable to all the purposes for which tobacco has been used (see ante, p. 1432). From my own observation of its effects, its principal value is as an antispasmodic.

1. In asthma (especially the spasmodic kind) and other disorders of the organs of respiration.—Given in full doses, so as to excite nausea and vomiting, at the commencement of, or shortly before, an attack of spasmodic asthma, it sometimes succeeds in cutting short the paroxysm, or in greatly mitigating its violence; at other times, however, it completely fails. Occasionally it has proved serviceable in a few attacks, and, by repetition, has lost its influence over the disease.

To obtain the beneficial influence in asthma, it is not necessary, however, to give it in doses sufficient to excite vomiting. Dr. Elliotson\(^6\) recommends the use of small doses at the commencement, and says that these should be gradually increased if neither headache nor vomiting occur; but immediately these symptoms come on, the use of the remedy is to be omitted. Given in this way, I can testify to its good effects in spasmodic asthma. It has also been used in croup, hooping-cough, and catarrhal asthma, but with no very encouraging effects.

2. In strangulated hernia Dr. Eberle\(^7\) employed it effectually, instead of tobacco, in the form of enema.

\(^1\) Op. cit.

\(^2\) The empiric alluded to by Dr. Thacher is Samuel Thomson, the author of a work entitled "The Thomsonian Materia Medica, or Botanic Family Physician," 12th ed. 8vo. Albany, 1841.

\(^3\) United States Dispensatory.

\(^5\) The founder of what has been called "Coffinism" (see Pharmaceutical Journ. Sept. 1, 1849, and Feb. 1, 1851)—an individual who styles himself "A. J. Collin, M.D., Professor of Medical Botany,"—declares in his "Botanic Guide to Health and the Natural Pathology of Disease," 17th ed. 1850, that lobelia "is not a poison," and "that it never operates upon those who are in perfect health;" and he says that the powdered leaves or pods may be given in doses of a tea-spoonful every half-hour, in a cup of vervain tea or pennyroyal, and repeated until it operates as an emetic; and he adds, "never mind Hoopee, but give enough"!!

\(^6\) Lancet, April 15, 1837, p. 144.

\(^7\) Treat. of the Mat. Med. vol. i. p. 18, 2d ed.
3. As an emetic, it has been employed by Dr. Eberle\(^1\) in croup; but its operation is too distressing and dangerous for ordinary use.

Administration.—It may be given in powder, infusion, or tincture (alcoholic or ethereal). Dr. Reece employed an oxyurel. The dose of the powder, as an emetic, is from grs. x. to \(\frac{1}{2}\) j.; as an expectorant, from gr. j. to grs. v. It deserves especial notice that the effects of lobelia are very unequal on different persons, and that some are exceedingly susceptible of its influence.\(^2\)

Antidotes.—See antidotes for tobacco, p. 1435. After the poison has been evacuated from the stomach, opium and demulcents may be used to allay the gastro-intestinal irritation.

1. **Tinctura Lobelie, L. E. D.; Tincture of Lobelia.** (Lobelia, dried and powdered [in moderately fine powder, E.; in coarse powder, D.] \(\frac{3}{5}\) v.; Proof Spirit, Oij. This tincture is best prepared by the process of percolation, as directed for the tincture of capsicum; but it may also be made in the usual way by digestion, E.)—Dose, as an emetic and antispasmodic, from \(\frac{1}{3}\) j. to \(\frac{1}{2}\) j., repeated every two or three hours until vomiting occur; as an expectorant, \(\frac{1}{4}\) x. to \(\frac{1}{2}\) j. For children of one or two years old, the dose is \(\frac{1}{4}\) x. to \(\frac{1}{2}\) x.

2. **Tinctura Lobelie Aetherea, L. E.; Ethereal Tincture of Lobelia.** (Lobelia, in powder, \(\frac{3}{5}\) v.; \(\frac{1}{2}\) Ether, \(\frac{1}{3}\) xiv.; Rectified Spirit, \(\frac{3}{3}\) xxvij. Macerate for seven days; then express and strain, L.—Lobelia, dried, and in moderately fine powder, \(\frac{3}{5}\) v.; Spirit of Sulphuric Ether, Oij. This tincture is best prepared by percolation, as directed for tincture of capsicum; but it may also be obtained by digestion in a well-closed vessel for seven days, E.)—This may be used in the same doses as the alcoholic tincture.

With some persons the ether is apt to disagree, and for such the alcoholic tincture is preferred. *Whitlaw's ethereal tincture*, used by Dr. Elliotson, consisted of Lobelia, lbj.; Rectified Spirit, Oiv.; Spirit of Nitric Ether, Oiv.; Spirit of Sulphuric Ether, \(\frac{3}{5}\) iv. Macerate for fourteen days, in a dark place.\(^3\)

211. Lobelia syphilitica, Linn.—Blue Cardinal. (Radix.)

This plant is a native of the United States of America. It possesses emetic, cathartic, and diuretic properties; and derived its specific name from its supposed efficacy in syphilis, as experienced by the North American Indians, who considered it a specific in that disease, and from whom the secret of its use was purchased by Sir W. Johnson.\(^4\) Its anti-syphilitic powers appear to have no foundation in fact.\(^5\) The root was the part used; it was given in the form of decoction, prepared by boiling half an ounce of the root in twelve pints of water down to one-third. The dose is a wine-glassful.

\(^1\) Op. cit.
\(^2\) Elliotson, *Lancet*, June 1832; and April 15, 1837.
\(^3\) *Lancet*, June 3, 1837.
Order II. COMPOSITÆ, De Candolle.—COMPOSITES.
SYNANTHEREÆ, Richard; ASTERACEAE, Lindley.

Characters.—Calyx gamosepalous, the tube adherent to the ovary; the limb generally degenerated into a pappus, or sometimes into a scaly corona, or entirely abortive. Pappus simple, pilose, ramose, or plumose; stipitate by the prolongation of the tube beyond the ovary, or sessile. Corolla inserted into the upper part of the tube of the calyx, gamopetalous; the nerves in the tube being directed towards the sinuses; in appearance 5, but really 10; which then proceed from the sinuses, along the margins of the lobes, to the apex, where they inosculate [neuramphipetalous]. Tube various in length; in the regular corolla, often funnel-shaped. Lobes generally 5, valvate in stivation. Corolla regular or irregular; the regular, of 5 equal lobes (tubular corolla); the irregular 2-lipped (bilabiata corolla) or strap-shaped, 5-dentate (ligulate corolla). Stamens generally 5; in the female florets wanting, or rudimentary. Filaments adnate to the tube of the corolla; distinct or monadelphous; articulated near the apex, the upper portion acting as a connective. Anthers erect; connected in the tube, which is perforated by the style (syngenesious or synantherous). Pollen rough or smooth, globose or elliptical. Ovary adherent to the calyx, 1-seeded. Style generally terete and bifid at the apex; the branches (commonly called stigmas) more or less free; flat above, convex beneath. Stigmatic glands (true stigmas) ranged in a double row along the upper margin of the branches of the style, more or less prominent; the upper portion of the style, in hermaphroditic flowers, provided with hairs, which collect the pollen. Fruit consisting of an achene and calyx closely connected, and enclosing the embryo; the achene 1-celled, articulated on the receptacle, generally sessile; rostrate or not rostrate at the apex. Seed attached to the base of the fruit by a very short funiculus. Inner portion of the spermoderma (endoploera of De Cand., alburnum of Lessing) diaphanous, pierced by the bifid funiculus. Embryo erect, with a short, straight, inferior radicle, and an inconspicuous plumule. Florets collected into dense heads (capitules); either all hermaphroditic (homogamous), or the outer ones female or neuter, the inner being hermaphroditic or male (heterogamous); or the capitules are entirely composed of florets of distinct sexes (monoccions, daucions, heteraecophalous). Capitules with the florets sometimes all tubular (discoid or flosculous); sometimes all ligulate (ligulate or semi-flosculous); sometimes the central florets are tubular, while those of the ray are ligulate (radiate). involucres of one or many rows of more or less united scales, surrounding the receptacle which is formed by the concretion of the extremities of the peduncles; either covered with chaffy scales (paleaeconus) or naked (epaleaeconus); sometimes the receptacle is indented with pentagonal hollows (areolated), or the margins of these are slightly raised (aleorolated) or fringed (fimbriated).—Herbs or shrubs (rarely trees), forming almost a tenth part of the vegetable kingdom. Leaves simple, alternate, or opposite. (Condensed from De Candolle.)

Properties.—Variable. A bitter principle pervades most species; this communicates tonic properties. The laxative and anthelmintic qualities possessed by some of the species may, perhaps, depend on the same principle. Volatile oil is frequently present; it communicates aromatic, carminative, diaphoretic, and, in some cases, acid properties. Bitter matter and volatile oil are often associated in the same plant. An acrid resin is present in some species. A few of the Compositæ are narcotic.

Sub-order I. Tubulifloræ, De Cand.
Flowers hermaphroditic, regularly tubular, 5-, rarely 4-toothed.

Tribe I. Vernoniacæ.
Style cylindrical, its arms generally long and subulate, occasionally short and blunt, always covered all over with bristles.
Tribe II. Eupatoriaceæ.

Style cylindrical, its arms long, somewhat clavate, with a papillose surface on the outside near the end.

Eupatorium perfoliatum, Linn., a native of North America, is a bitter tonic. Its warm infusion acts as a diaphoretic and emetic. A plant called Guaco or Huaco is held in high estimation in Peru as a specific against bites of venomous serpents and rabid animals. It is supposed to be the Mikania Guaco, Humb. and Boupl., which grows in Columbia on the banks of the Magdalena. Guaco has also been used in cholera. Several plants have been brought to Europe under the name of guaco. Fouré analysed one of these, and announced the existence in it of a peculiar resin, to which he gave the name of guacine. There can be no doubt that if guaco really possesses any therapeutical value whatever, its virtues have been monstrously exaggerated.

212. Tussilago Farfara, Linn.—Coltsfoot.

Sect. Syst. Syngenesia, Polygania superfiusa.

(Folia et Flores.)

ἴχνων of Hippocrates (de intern. affect. p. 532; et de articulis, p. 829, ed. Fæs.) and Dioscorides (lib. iii. cap. 126). By the Greeks and Romans it was smoked, to relieve obstinate cough (see ous, p. 1419).

Rhizome creeping horizontally. Leaves cordate, angular, toothed, downy beneath. Scrape clothed with inebriated scaly bracts, usually 1-flowered. Heads appearing before the leaves. Flowers yellow. Indigenous. Various parts of Europe and Asia. Flowers in March and April. The herb and flowers (herba et flores farfara seu tussilaginis) have a bitterish mucilaginous taste. The dried leaves are odourless, but the flowers retain a slight odour. The watery infusion becomes green (tannate of iron) on the addition of sesquichloride of iron. No analysis of the plant has yet been made. Mucilage, bitter extractive, tannic acid, colouring matter, salts, and woody fibre, are the principal constituents. The effects are not very obvious: they may be regarded as emollient, demulcent, and very slightly tonic. Employed as a popular remedy in pulmonary complaints (chronic coughs especially). The decoction (prepared by boiling 3 j. or 3 j. of the plant in Oij. of water to Oj.) may be taken in doses of 1 3 j. or 1 3 j., or ad libitum.

1 Ainslie, Mat. Indica, vol. ii. p. 54.—The seeds called Calagirah or Calagari, and erroneously said by Virey (Journ. de Pharm. t. xxi. p. 612) to be the produce of Vernoniaanthelmintica, were the seeds of Nigella indica of Roxburgh (Fl. Ind. vol. ii. p. 646).
3 Bigelow, American Medical Botany, vol. i. p. 33, plate ii. 1817; also Wood, United States’ Dispensatory.
4 Bullet. de Pharm. t. vi. p. 248, 1814.
6 Dierbach, Die neuesten Entdeck. in der Mat. Med. Bd. i. S. 164, 1837; and Bd. ii. S. 220.
7 Journ. de Pharm. t. xxii. p. 291, 1836.
Tribe III. Asteroideae.

Style cylindrical; its arms linear, flattish on the outside, equally and finally downy on the inside.

213. INULA HELENIUM, Linn.—ELECAMPANE.

SEX. Syet. Syngenesia, Polygamia superflua.

(Radix, L.)

History.—This is the Ίνοιον of Hippocrates1 and of Dioscorides.2

Botany. Gen. Char.—Head many-flowered, heterogamous; flörets of the ray females, in one row, sometimes by abortion sterile, usually ligulate, rarely somewhat tubular and trispid; those of the disc hermaphrodite, tubular, 5-toothed. Involute imbricated in several rows. Receptacle flat or somewhat convex, naked. Anthers with 2 setae at the base. Achene without a beak, tapering, or, in I. Helenium, 4-cornered. Pappus uniform, in 1 row, composed of capillary, roughish setæ (De Cand.)

Sp. Char.—Stem erect. Leaves dentate, velvety-tomentose beneath, acute; the radical ones ovate, greatly attenuated into petioles; those of the stem semi-amplexicaul. Peduncles few, 1-headed, corymbose at the apex (De Cand.)

Hab.—Indigenous. Various parts of Europe. Flowers in July and August.

Description.—The dried root (radix helenii seu enula) of the shops consists of longitudinal or transverse slices, which are yellowish-grey, and have an aromatic or camphoraceous smell, and a warm bitter taste. Iodine colours the root brown. Sesquichloride of iron produces in the infusion a green colour (tannate of iron).

Composition.—The root has been analysed by John,3 by Funcke,4 and by Schulz.5 The constituents, according to John, are—volatile oil a trace, elecampane-camphor 0.3 to 0.4, wax 0.6, acrid soft resin 1.7, bitter extractive 36.7, gum 4.5, inulin 36.7, woody fibre 5.5, oxidised extractive with coagulated albumen 13.9; besides salts of potash, lime, and magnesia.

1. Helenin; Elecampane-camphor.—Colourless prismatic crystals, heavier than water, fusible, volatile, very soluble in ether, oil of turpentine, and boiling alcohol, but insoluble in water. Nitric acid converts it into resin (nitroelecin). Its formula, according to Dumas, is C14H10O2; according to Gerhardt,6 C14H10O2. Its composition, therefore, is closely allied to that of creosote.

2. Resin.—Brown, fusible in boiling water, and soluble in alcohol and ether. When warm it has an aromatic odour. Its taste is bitter, nauseous, and acrid.

2 Lib. i. cap. 27.
3 Gmelin, Handb. d. Chem. ii. 1288.
4 Trommsdorff’s Journal, xviii. 1, 74.
6 Pharmaceutisches Central-Blatt für 1840, p. 309.
3. **Inulin** (**Alantia** and **Meyanthin**, Trommsdorff; **Elecampan**, Henry; **Dahlia** and **Datisca**, Payen).—An anylanous substance, organised, according to Rasnail, like common starch. It is very slightly soluble in cold water, but very soluble in boiling water, from which it is deposited as the solution cools. It is slightly soluble in boiling alcohol. Iodine gives it a yellow tint: this distinguishes it from ordinary starch. Its formula is C_{12}H_{20}O_{10}. In combination with lead it produces an atom of water, and becomes C_{12}H_{20}O_{10}.

4. **Bitter Extractive.**—In this resides the tonic property of elecampane.

Physiological Effects.—An aromatic tonic. It acts as a gentle stimulant to the organs of secretion, and is termed diaphoretic, diuretic, and expectorant. Large doses cause nausea and vomiting. It was formerly supposed to possess emmenagogue properties. In its operation it is allied to sweet-flag (see ante, p. 1030) and senega.

Uses.—It is rarely employed now by the medical practitioner. It has been used in pulmonary affections (as catarrh) attended with profuse secretion and accumulation of mucus, but without febrile disorder or heat of skin. In dyspepsia, attended with relaxation and debility, it has been administered with benefit. It has also been employed in the exanthemata to promote the eruption.

Administration.—Dose of the powder, 3 j. to 5 j.; of the decoction (prepared by boiling 3 ss. of the root in Oj. of water), 1/3 j. to 1/5 j.

Tribe IV. **Senecionideæ.**

Style cylindrical; its arms linear, fringed at the point, generally truncate, but sometimes extended beyond the fringe into a line or appendage of some sort.

214. **Anthemis nobilis**, Linn.—**Common Chamomile.**

Sex. Syst. Syngenesia, Polygamia superflua.

(Flowers simplices, L.—Flowers, E.—Flores, D.)

History.—Sibthorpe¹ considers the ἄνθος of Dioscorides² to be *Anthemis Chia*; but Fraas³ is of opinion that it is the *Matricaria Chamomilla*, Linn. Tragus considered the Anthemis nobilis to be the παράκατον of Dioscorides, and first gave it the name of *Chamomilla nobilis*. Camerarius distinguished it as the Roman chamomile.

Botany. **Gen. Char.**—Head many-flowered, heterogamous; *florets* of the ray female, in one row, ligulate (rarely none, or somewhat tubular); of the disc, hermaphrodite, tubular, 5-toothed. *Receptacle* convex, oblong, or conical; covered with membranous pælea between the flowers. *Involucrè* imbricated, in a few rows. Arms of the *style* without appendages at the apex. *Achene* tapering or obtusely 4-cornered, striated or smooth. *Pappus* either wanting, or a very short, entire, or halved membrane; sometimes auriculate at the inside (De Cand.)

Sp. Char.—*Stem* erect, simple, ramose, downy-villose. *Leaves* downy, sessile, pinnatisect; segments split into many linear-setaceous lobes.

Branches flowery, naked, 1-headed at the apex. Scales of the involucre obtuse, hyaline at the margin. Paleae of the receptacle lancedolate, pointless, somewhat shorter than the floret, slightly eroded at the margin (De Cand.)

Roots shiny, with long fibres. Stems in a wild state prostrate, in gardens more upright, a span long, hollow, round. Flowers of the disc yellow; of the ray, white. Receptacle convex.

Anthemis nobilis flore pleno, De Cand.; Double Chamomile.—In this variety, the yellow tubular hermaphrodite florets of the disc are entirely or partially converted into white ligulate female florets.

Sir J. Smith¹ speaks of the discoid variety, destitute of rays, as being more rare. It ought perhaps, he adds, to be preferred for medicinal use.

Hab.—Indigenous; on open gravelly pastures or commons. Perennial. Flowers from June to September. Cultivated at Mitcham and in Derbyshire, for the London market.²

Description.—The floral heads (florcsm chamameli romani seu anthemidis nobilis) have a strong and peculiar odour, and a bitter aromatic taste. When fresh, they exhibit a strong and peculiar fragrancy when rubbed. They should be dried in the shade.

Two kinds of chamomiles are distinguished in the shops,—the one called single, the other double: both sorts are cultivated at Mitcham.

1. Single Chamomile Flowers (florcsm anthemidis simplices).—These are sold at Apothecaries’ Hall, London. Strictly speaking, single chamomiles are those which have one row only of white female ligulate florets: but few flowers are in this condition; in most of the so-called single flowers some of the yellow tubular florets have become converted into white ligulate florets. It is obvious, therefore, that the distinction between the so-called single and double flowers is to a certain extent arbitrary. Single chamomiles are usually preferred, on account of their having the largest yellow discs, in which the oil chiefly resides. They are, therefore, more powerfully odoriferous.

2. Double Chamomile Flowers (florcsm anthemidis pleni; chamamelum flore pleno, Lewis; chamamelum flore multiplici, C. Baulhin).—These constitute the sort usually found in the shops. In these, all or most of the yellow tubular florets have become converted into the white ligulate ones. The flowers are consequently whiter, larger, and more showy, though rather less odoriferous, and contain less volatile oil.

At Mitcham a variety, called the new sort, of chamomile is cultivated, which yields by distillation a blue volatile oil.

The Flores Chamomilla of German pharmacologists are the produce of Matricaria Chamomilla, Linn., or Common Wild Chamomile. They yield by distillation a blue volatile oil.

The Flores Chamomilla foliis are the produce of Marula Cotula, De Cand. (Anthemis Cotula, Linn.)

Composition.—In 1833, chamomile flowers were analysed by J. P. Wys,³ who gives the following as their constituents:—Fat, chlorophylle, traces of tannic acid, and volatile oil 3·625, wax 1·5, bitter matter extracted by ether, with traces of malate of lime 4·000, resin 5·250, extractive matter taken up by alcohol, and malate of lime 3·125, albumen 1·500, sulphate

1 Eng. Fl. vol. iii. p. 457.
3 Buchner’s Repertorium, Bd. xlv. S. 18, 1833.
and tartrate of potash with chloride of potassium and malate of lime 1:875, gum 0:750, extractive matter taken up by water 5:500, extractive matter with phosphate of lime taken up by hydrochloric acid 7:750, water and loss 3:125, fibrous matter and loss 62:000 = 100:000.

1. Volatile Oil (see p. 1558.)
2. Bitter Extractive.—The bitter principle of chamomiles is soluble in both water and alcohol.
3. Tannic Extractive.—The cold watery infusion of the flowers is darkened by sesqui-chloride of iron, and forms a precipitate with gelatine.

Freudenthal\(^1\) analysed the dried flowers of the Common Wild Chamomile (Matricaria Chamomilla), and found them to consist of volatile oil 0:28, resin 7:89, bitter extractive 8:57, gum 7:99, bitartrate of potash 5:31, phosphate of lime 0:97, woody fibre, soluble albumen, water, and loss 69:6. These flowers were also analysed by Herberger and Damur.\(^2\)

Physiological Effects.—Chamomiles produce the effects of the aromatic bitter tonics before alluded to (see ante, p. 210): their aromatic qualities depend on the volatile oil, their stomaehic and tonic qualities on bitter extractive and tannic acid. In large doses they act as an emetic.

Uses.—Chamomiles are an exceedingly useful stomachic and tonic in dyspepsia, with a languid and enfeebled state of stomach, and general debility. As a remedy for intermittents, though they have gained considerable celebrity, they are inferior to many other medicines. The oil is sometimes used to relieve flatulency, griping, and eructation; and the warm infusion is employed as an emetic.

Administration.—The powder is rarely employed, on account of the inconvenient bulk of the requisite quantity, and its tendency to excite nausea. —Dose, grs. x. to 3ss. or more. The infusion is the more elegant preparation: this, as well as the extract and oil, are official. Fomentations of Chamomile flowers consist of the infusion or decoction, and are used quite hot; but they present no advantage over water of the same temperature. Flannel bags filled with chamomiles and soaked in hot water are useful topical agents for the application of moist warmth, on account of their retention of heat.

1. Infusum Anthemidis, L. E. D.; Infusum Chamæmeli; Infusion of Chamomile; Chamomile Tea. (Chamomile, 3v.; Boiling [distilled, L.] Water, Oj. L. E.—Chamomile Flowers, dried, 5ss.; Boiling Water, 3xij. D.—Macerate for ten [twenty, E., fifteen, D.] minutes.)—It is taken warm, to excite gentle vomiting, or to promote the operation of an emetic. The cold infusion is usefully employed as a domestic stomaehic bitter and tonic in dyspepsia.—Dose of the cold infusion, f 3ij. to f 3ij.; of the warm infusion, ad libitum.

2. Extractum Anthemidis, E.; Extractum Chamæmeli; Extract of Chamomile. (Chamomile, lb. j.; boil it with a gallon of water down to four pints; filter the liquid hot; evaporate in the vapour-bath to a due consistence, E.)—One hundredweight of the flowers yields about forty-eight pounds of extract. The volatile oil is dissipated during the preparation. The extract is a bitter stomachic and tonic. It is generally used as a vehicle for the exhibition of other tonics, in the form of pills. Conjoined with the oil of

\(^1\) Gmelin, Handb. d. Chem. ii. 1292.
\(^2\) Bauhner's Repertorium, Bd. xlii. S. 361, 1833.
chamomile, we can obtain from it all the effects of the recent flowers.—Dose, grs. x. to 3j.

3. OLEUM ANTHEMIDIS, L. E. D.; Oleum Chamæmeli Romani; Oleum Chamæmeli; Oil of Chamomile; Oil of the Roman Chamomile. (Obtained by submitting the flowers to distillation with water.)—One hundred-weight of flowers yields from 3iss. to 3ij. of oil. The oil of the shops is frequently brought from abroad, and is probably the produce of another plant (Matricaria Chamomilla) ; hence the London College directs the English oil (oleum anthemidis anglicum) to be kept. The oil of chamomile, which, when first drawn, is pale blue, becomes, by exposure to light and air, yellow or brownish. Lewis¹ says that the yellow oil, with a cast of greenish or brown, has a sp. gr. of 0-9083. When fresh, its odour is strong and peculiar, and its taste pungent and nauseous. It is stimulant and antispasmodic. It is a frequent addition to tonic and cathartic pills; it communicates stimulant qualities to the former, and is believed to check the griping caused by the latter. It is occasionally exhibited in the form of eläosaccharum.—Dose, mj. to 3v.

215. ANACYCLUS PYRETHRUM, De Cand.—PELLITORY OF SPAIN.

Anthemis Pyrethrum, Linn.
(Radix, L.—Root, E.)

History.—Dioscorides² was acquainted with τίπεθρον, and speaks of its use in toothache. The word pyrethrum is mentioned once only by Pliny.³

Botany. Gen. Char.—Head many-flowered, heterogamous. Florets of the ray female, sterile, ligulate or somewhat so, very rarely tubular; of the disc hermaphrodite, with 5 callous teeth. Receptacle conical or convex, paleaceous. Involucre in few rows, somewhat campanulate, shorter than the disc. All the corollas with an obcompressed, 2-winged, exappendiculate tube. Style of the disc, with exappendiculate branches. Achene flat, obcompressed, bordered with broad, entire wings. Pappus short, irregular, tooth-letted, somewhat continuous with the wings on the inner side (De Cand.)

Sp. Char.—Stems several, procumbent, somewhat branched, pubescent. Radical leaves expanded, petiolated, smoothish, pinnatisect; the segments pinnatifid, with linear subulate lobes; the cauline leaves sessile. Branches 1-headed. Involucral scales lanceolate, acuminate, brown at the margin. Receptacle convex, with oblong-ovate, obtuse paleæ (De Cand.)

Root fusiform, fleshy, very pungent, and, when fresh, producing a sensation of extreme cold, followed by heat when handled. Florets of the ray white on the upper side, purplish beneath; of the disc, yellow.

Hab.—Barbary, Arabia, Syria, and perhaps Caudia.

Description.—The root (radix pyrethri; r. pyrethri romani veri) is imported from the Levant packed in bales. It consists of inodorous pieces, about the length and thickness of the little finger, covered with a thick brown

¹ Mat. Med.
² Lib. iii. cap. 86.
bark, studded with black shining points, breaking with a resinous fracture, and presenting internally a radiated structure. When chewed, it excites a pricking sensation in the lips and tongue, and a glowing heat.

German pellitory root (radix pyrethri communis seu germani) is in much thinner, somewhat longer pieces, crowned superiorly by the bases of the stalks and petioles. It is the produce of Anacyclus officinarum of Hayne, which Nee² regards as a variety of A. Pyrethrum of Schrader. De Candolle³ considers it to be identical with A. pulcher of Besser.

Composition.—It was analysed by John,⁴ by Gautier,⁵ by Parisel,⁶ and lastly by Koene.⁷ Parisel obtained acrid matter (pyrethrin) 3, inulin 25, gum 11, tannin 0.55, colouring matter 12, lignin 45, chloride of potash 0.79, silica 0.85, and iron a trace.

Pyrethrin; Acrid Principle; Resin.—In this resides the activity of the root. It exists in greater abundance in the bark than in the wood. It is brown, soft, has a burning acrid taste, is insoluble in water, but soluble in ether and alcohol; still more so in acetic acid and the oils (volatile and fixed). Koene says, pyrethrin consists of three substances:—

1. A brown acrid resin, soluble in alcohol, insoluble in water or caustic potash.
2. An acrid brown fixed oil, soluble in potash.
3. A yellow acrid oil, soluble in potash.

Physiological Effects.—Pellitory is an energetic local irritant. Applied to the skin, it acts as a rubefacient.

Uses.—Scarcely ever employed internally. Its principal use is to yield a tincture for the relief of toothache. As a masticatory and sialogogue, it is chewed in some rheumatic and neuralgic affections of the head and face, and in palsy of the tongue. In relaxation of the uvula it is occasionally employed in the form of gargle. It was formerly employed internally as a gastric stimulant.

Administration.—Dose, as a masticatory, 3 ss. to 5 j. Tinctura pyrethri (composed of Pyrethrum, Water, of each, one part; Rectified Spirit, five parts) is used to relieve toothache.

216. Artemisia Absinthium, Linn.—Common Wormwood.

Sex. Syst. Syngenesia, Polygama superflua.

(Herea florens, L.—Herb, E.)

History.—In all probability this plant is the ἀβρόνθος of Hippocrates⁸ and Dioscorides.⁹ The term wormwood occurs several times in our translation of the Old Testament;¹⁰ but the plant meant would appear to be both bitter and poisonous.

2. Geiger's Pharmacie, 2te Aufl. 1839.
5. Journ. de Pharm. iv. 49.
6. Ibid. xix. 251.
10. Dent. xxix. 18; Prov. v. 4.
Botany. Gen. Char.—Heads discoidal, homogamous or heterogamous. Florets of the ray in one row, usually female and 3-toothed, with a long bifid protruding style; of the disc, 5-toothed, hermaphrodite, or, by the absorption of the ovary, sterile or male. Involucral scales imbricated, dry, scarios at the edge. Receptacle without palee, flattish or convex, naked or fringed with hairs. Achene obovate, bald, with a minute epigynous disc (De Cand.)

Sp. Char.—An erect undershrub. Leaves silky, hoary, tripinnatisect; the segments lanceolate, somewhat dentate, obtuse. The heads small, racemose-paniculate, globose, nodding. Exterior scales of the involucre somewhat silky, linear, lax; interior ones rounded, scarios, somewhat naked (De Cand.)

Herb covered with silky hoariness, intensely bitter, with a strong peculiar odour. Stems numerous, about a foot high. Leaves rather greener on the upper side; lower ones on long footstalks; upper on shorter, broader, somewhat winged ones. Florets pale yellow, or buff.

Hab.—Indigenous; in waste grounds. Perennial. Flowers in August.

Description.—The dried herb with the flowers, or the tops (herba seu summiitates absinthii), have a whitish-grey appearance, a soft feel, a strong aromatic and somewhat unpleasant odour, and an extremely bitter aromatic taste. The cold watery infusion becomes greyish, olive-green, and turbid (tanunate of iron) on the addition of sesquichloride of iron.

Composition.—This plant has been analysed by Kunsemuller,\(^1\) by Braconnet,\(^2\) and by Haynes.\(^3\) The extract was examined by Leonardi.\(^4\) Braconnet found volatile oil 0.15; green resin 0.50, bitter resin 0.233, albumen 1.250, starch 0.133, azotized matter having little taste 1.333, bitter azotized matter 3.0, woody fibre 10.833, absinthiate of potash 0.917, nitrate of potash 0.333, sulphate of potash and chloride of potassium, tracés, water 81.2.

1. Volatile Oil (Oleum Absinthii).—Green, sometimes yellow or brownish oil, having a strong odour of wormwood, and an acid, bitter, peculiar taste. Its sp. gr. is 0.972. Nitric acid colours it green, then blue, afterwards brown.

2. Bitter Principle (Absinthin).—Caventou\(^5\) obtained what he calls the pure bitter principle by precipitating an infusion of wormwood by acetate of lead, and separating the excess of lead by sulphuretted hydrogen. The liquor was then evaporated to dryness, and the extract digested in alcohol mixed with ether; and the solution abandoned to spontaneous evaporation. The product was a very bitter matter, in brown ramifications. By heat no crystalline sublimate could be obtained.

3. Absinthic Acid.—May be precipitated, according to Braconnet, from the watery infusion of wormwood by acetate of lead. It is very acid, uncrystallizable, and deliquescent. It does not precipitate the solutions of the nitrates of lead, mercury, and silver; but causes flocculent precipitates when dropped into barytes or lime-water. Absinthiate of ammonia crystallizes in quadrilateral prisms, insoluble in alcohol.

4. Salt of Wormwood (Sat Absinthii).—This is impure carbonate of potash, obtained by incinerating wormwood.

Physiological Effects.—In moderate doses it produces the ordinary effects of the aromatic bitter tonics (see ante, p. 210). Its bitter principle becomes absorbed; hence the flesh and milk of animals fed with it are ren-

\(^2\) Bull, *de Pharm.* v. 549.
\(^3\) Geiger, *Handb. d. Pharm.* ii. 1509.
\(^4\) *Journ. de Pharm.* xiv. 620.
panied bitter. Borrich1 says that the milk rendered bitter by it proves noxious to the infant.

Large doses irritate the stomach and excite the vascular system. A specific influence over the nervous system, characterised by headache, giddiness, &c., has been ascribed to it.2 This has usually been supposed to depend on the volatile oil; but a similar power has been assigned to the bitter principle.

Uses.—Wormwood is but little employed in medicine. It is adapted for dyspepsia occurring in debilitated and torpid constitutions. It was at one time celebrated for the cure of intermittents; but it has been superseded by other and more powerful febrifuges. It is said to be efficacious as an anthelmintic, but is very rarely employed as such.

Administration.—Dose of the powder, 3j. to 5j.; of the infusion (prepared by macerating 3j. of the dried herb in 0j. of boiling water), 3fj. to 5fj.

\textit{Artemisia vulgaris}, or Mugwort, has been employed in epilepsy, infantile convulsions, chorea, hysteria, and amenorrhoea. But I suspect its powers are feebluer than the preceding species.

\section*{217. Artemisia Moxa, De Cand.—Moxa-Weed.}

\textit{Sec. Syst.} Syngenesia, Polygami, superflua.

\textit{Folia; Moxa.}

The \textit{moxa} is a small mass (usually cylindrical or pyramidal) of combustible vegetable matter, employed for effecting cauterization \textit{(moxylisation} of Percy5). It has long been known that the Chinese and Japanese prepared it from a species of \textit{Artemisia},4 which Dr. Lindley6 says is the \textit{A. Moxa}, De Cand.; and Dr. Roxburgh5 observes, that the \textit{A. indica} has none of the soft white down on the under side of its leaves, of which \textit{moxa} is made in Japan and China.

The Chinese and Japanese \textit{moxa} is said by some to be prepared from the cottony or woolly covering of the leaves of the Artemisia. Thunberg7 however, states that in Japan the dried tops and leaves are beat till they become like tow: this substance is then rubbed betwixt the hands till the harder fibres and membranes are separated, and there remains nothing but a fine cotton.

European \textit{moxas} are usually made either with cotton-wool (which has been soaked in a solution of nitrate or chlorate of potash) or the pith of the sun-flower \textit{(Helianthus annuus)}, which contains naturally nitrate of potash. Their shape is either cylindrical or conical; their size is variable. Percy's \textit{moxas}, prepared by Robinet, are usually found in the London shops. They consist of pith rolled in cotton and enveloped in muslin.

The physiological effects of the \textit{moxa} are two-fold, primary and secondary. It first excites an agreeable sensation of heat. This is speedily followed by pain, which progressively increases until it becomes most severe and the vitality of the part is destroyed. The parts immediately around the eschar are intensely red. The eschar may be deep or superficial, according to the time the \textit{moxa} is kept in contact with the skin. The action of the \textit{moxa} differs from that of the metallic actual cautery in this important particular, that the heat acts slowly, increases gradually, and penetrates to a greater depth. The secondary effects consist in the production of inflammation, by which the eschar is separated, and establishment of suppuration more or less profound, according to circumstances.

\begin{enumerate}
\item \textit{Act. Hafn.} vol. ii. p. 165.
\item See Lindestolpe, in Murray, \textit{App. Med.}; and Kraus, \textit{Heilmittel.} p. 422.
\item \textit{Pl. Med.} 463.
\item \textit{Pl. Ind.} iii. 420.
\item \textit{Op. cit.}
\end{enumerate}
Moxa is employed in the treatment of diseases, on the principle of counter-irritation, before explained (see ante, p. 123). This, indeed, has been denied by those who consider the production of a discharge as the only mode of effecting counter-irritation. It is adapted for chronic diseases and maladies characterised by lesions of sensation or motion; and it is, on the other hand, injurious in all acute inflammatory diseases. The following is a list of the principal diseases against which it has been employed; and for further information respecting them, I must refer the reader to the writings of Larrey,^2^ Boyle,^3^ Wallace,^4^ and Dunglison,^5^ as the limits and objects of this work do not admit of further details.—1. Paralysis of the sensitive or motor nerves. Great benefit has been obtained by the use of moxa in this class of diseases. Amusorosis, deafness, loss of voice and speech, hemiplegia, and especially paraplegia, have been relieved by it. 2. Painful affections of nerves, muscles, or the fibrous tissues; as neuralgia, sciatica, lumbago, and chronic rheumatism. 3. Spasmatic diseases, either of particular parts or of the general system; as spasmodic asthma, epilepsy, &c. 4. Diseased joints and spinal maladies; as chronic articular inflammation, white swelling, stiff joints, hip-joint disease, curvature of the spine, &c. 5. Visceral diseases; as organic diseases of the brain, phthisis pulmonalis, chronic hepatitis and splenitis, &c.

In the employment of moxa, two points deserve especial attention: first, the parts proper or otherwise for its use; and secondly, the mode of applying it. It has been applied to nearly every part of the body. Larrey, however, considers the following parts improper for its application:—1. All that part of the skull covered by skin and periosteum only. 2. The eyelids, nose, ears, larynx, trachea, sternum, glandular parts of the breasts, linea alba, and parts of generation. 3. Over the course of superficial tendons, articular prominences where there is danger of injuring the articular capsules, and projecting points of bone.

The mode of applying moxa is as follows:—Set it on fire at the summit, and apply its base (by a porte-moxa, pair of forceps, wire, or other convenient instrument) to the skin. To prevent the surrounding parts being burnt by sparks, Larrey recommends them to be previously covered with a wet rag, perforated in the centre, to admit the base of the moxa. If the combustion flag, it may be kept up by the breath, blow-pipe, or bellows. After the combustion is over, Larrey recommends the immediate application of liquor ammonia, to repress excessive inflammation and suppuration.

218. Artemisia. One or more Species yielding Wormseed.

The substance sold in the shops under the name of Wormseed consists of broken peduncles, mixed with the calyx and flower-buds of some species of Artemisia. It has been known by various names; as semen-contra (an abridgment of the Latin phrase "semen contra vermes"), semen santonicum, semen cine, semen semenitum, &c.

The sort usually found in English shops is that brought from the Levant (semen cine levanticum, halepense, vel alexandrinum), and which is considered to be the best. By some writers it is said to be the produce of Bucharia, and to come into Europe through Russia; hence it has been called semen cine muscoriticum. Guibourt^6^ declares it to be the produce of Artemisia Contra, Linn. (J. Sieberi, Besser). But three other species, viz. A. Vahliana, A. pauciflora, and A. I rechena, are also said to supply part of it.7 Barbary wormseed (semen cine barbaricum seu africicum) is considered by Guibourt to be the produce of Artemisia glomerata of Sieber. It consists of small globular flower-buds attached to the extremity of the branches. A third sort, called Indian or East Indian wormseed (semen cine ostiandicu) has been described. It agrees with the Barbary sort, except in colour, which is more greenish-yellow.

^1^ See Boyle, Treat. on Moxa, p. 88, 1825.
^5^ New Beuaries.
^7^ Nees, Geiger's Pharmacie, 2te Aufl. 1839.
Wormseed has been analysed by Trommsdorff\(^1\) and by Wackenroder.\(^2\) The latter found in the Levant wormseed the following ingredients:—volatile oil 0·0039, bitter matter 20·25, resinous bitter substance 4·45, green resin 6·05, acrin 0·35, gummy extractive 15·50, amin 8·60, mulate of lime with a little silica 2·00, woody fibre 35·45, intermixed earthy matter 6·70. More recently, a crystalline substance called santonine or cinin \((C\text{H}_{10}\text{HCO}_2)\) has been obtained from wormseed. It is odourless, bitter, and scarcely soluble in cold water.

Wormseed is employed as a vermifuge in doses of from 3\(\frac{1}{2}\)j. to 5\(\frac{1}{2}\)j. repeated night and morning, and succeeded by a brisk purge.\(^3\)

219. Tanacetum vulgare, Linn.—Common Tansy.

Sex. Syst. Syngenesia, Polygania superflua.

(Folia.)

Tansy was ordered to be cultivated in gardens by Charlemagne.\(^4\)

It is an indigenous plant, which is cultivated in gardens as a medicinal or pot-herb, or for ornament. The herb and flowers \((herba ct. flores tanaceti)\) have a disagreeable aromatic odour, and a nauseous, strong, aromatic, bitter taste. The infusion is rendered dark green and turbid \((tannate of iron)\) by sesquichloride of iron. Both leaves and flowers have been analysed by Fromherz and by Pescher.\(^5\) The constituents of the leaves, according to Pescher, are—volatile oil, fatty oil, wax or stearine, chlorophylle, bitter resin, yellow colouring matter, tannin with gellie acid, bitter extractive, gum, woody fibre, tanacetic acid. The volatile oil \((oleum tanaceti)\) is yellow, but sometimes green. It has the peculiar odour of the plant, a warm bitter taste, and a sp. gr. of 0·952. The bitter matter is the substance usually denominated extractive; but, according to Pescher, it is in part resin. Tanacetic acid is crystallizable, and precipitates lime, baryta, and oxide of lead, and causes a precipitate with a solution of acetate of copper.

Tansy produces the usual effects of the aromatic bitter tonics (see ante, p. 210). "A fatal case of poisoning with half an ounce of oil of tansy is recorded in the Medical Magazine, Nov. 1834. Frequent and violent colic spasms were experienced, with much disturbance of respiration; and the action of the heart gradually became weaker till death took place from its entire suspension. No inflammation of the stomach or bowels was discovered upon dissection."\(^6\) The young leaves are occasionally employed by the cook to give colour and flavour to puddings, and in omelets and other cakes. In medicine, the plant is rarely employed by the regular practitioner; but it has been recommended in dyspepsia, interminents, and gout.\(^7\) Its principal use, however, is as a vermifuge. Tansy tea \(\text{(prepared by infusing }\frac{3}{2}\text{j. of the herb in }\frac{1}{2}\text{j. of boiling water) may be taken in doses of from }\frac{1}{2}\text{j. to }\frac{3}{2}\text{j.} \) A drop or two of the oil may be added to vermifuge powders and pills. The seeds have been used instead of semina santonici.

220. ARNICA MONTANA, Linn.—MOUNTAIN ARNICA.

Sex. Syst. Syngenesia, Polygania superflua.

(Fl ores, Folia, et Radix.)

History.—This plant does not appear to have been known to the ancients; at least no undoubted mention of it occurs in their writings.

1. Trommsdorff's *Nena Journal*, Bd. iii.
3. For further details respecting the medicinal qualities of this drug, see Woodville's *Med. Botany*, vol. ii. p. 357.—Woodville's *Artemisia santonica* is the *A. maritima*, var. *B. nauseolenta*, of De Candolle.
Botany. Gen. Char.—Head many-flowered, heterogamous. Florets of the ray in one row, female, ligulate; of the disc, hermaphrodite, tubular, 5-toothed. Involucre campanulate, in 2 rows, with linear-lanceolate equal scales. Receptacle fringed, hairy. Tube of the corolla shaggy. Rudiments of sterile stamens sometimes remaining in the ligule. Style of the disc with long arms, covered by down running a long way down, and truncated or terminated by a short cone. Achene somewhat cylindrical, tapering to each end, somewhat ribbed and hairy. Pappus in 1 row, composed of close, rigid, rough hairs (De Cand.)

Sp Char.—Radial leaves obovate, entire, 5-nerved; the cauline ones in 1 or 2 pairs. Stem 1- to 3-headed. Involucres rough, with glands (De Cand.)

Perennial. Stem hairy, about 1 foot high. Florets yellow, tinged with brown.

Hab.—Meadows of the cooler parts of Europe, from the sea-shore to the limits of eternal snow.

Description.—The root (radix arnicae) consists of a cylindrical caudex, from 2 to 3 inches long, and 2 or 3 lines thick, from which many fibres arise. It is brown externally, has a disagreeable yet aromatic odour, and an acrid nauseous taste. The dried flowers (flores arnicae) are yellowish, and have a similar taste and smell to the root. The leaves (folia arnicae) have a like smell.

Composition.—Pfaff found in the root volatile oil 1·5, acrid resin 5·0, extractive 32·0, gum 9·0, and woody fibre 5·5. The root has also been examined by Weissenburger. Chevallier and Lassaigne analysed the flowers, and found in them resin, bitter acrid matter (cytisin), yellow colouring matter, gum, albumen, and gallic acid. In the ashes were salts of potash, and lime, and silica. Mr. Bastick has announced the existence of an alkaloid, which he calls arnicina, in the flowers.

1. Volatile Oil.—The oil obtained from the root (oleum radicum arnicae, Cod. Hamburg) is yellowish, lighter than water (sp. gr. 0·94), and has a burning aromatic taste. Sixteen pounds of the dried root yield about an ounce of oil. The volatile oil of the flowers is blue.

2. Resin (Arnica).—The acridity of the root and flowers resides, according to Pfaff, in the resin, which is soluble in alcohol.

3. Extractive Matter.—According to Chevallier and Lassaigne, this is nauseous, acrid, bitter, and soluble in both water and spirit. They consider it to be analogous to cytisin.

4. Arnicina.—Not volatile, bitter but not acrid, slightly soluble in water but more so in alcohol and ether. Its hydrochlorate is crystallizable (Bastick).

Physiological Effects. a. On Animals.—The effects of the flowers of Arnica on horses have been examined by Viborg. An infusion of six draehms of the flowers quickened the pulse, and acted as a diuretic. An infusion, thrown into the veins, caused insensibility.

B. On Man.—Jörg and his pupils have submitted themselves to the influence of this plant. From their observations, as well as from the testimony of others, Arnica appears to possess acrid properties. When

3 Journ. de Pharm. t. v. p. 218.
5 Wirk. d. Arznei. u. Gift. i. 231.
6 Ibid. S. 226.
swallowed, it causes burning in the throat, nausea, vomiting, gastric pains, and loss of appetite. The active principle becomes absorbed, quickens the pulse and respiration, and promotes diaphoresis and diuresis. Furthermore, it appears to exert a specific influence over the nervous system, causing headache, giddiness, and disturbed sleep. Sundelin\(^1\) considers it to be closely allied in operation to senega, from which, he says, it differs in its stimulating influence over the nervous system, and in its causing constipation.

Use.—Arnica is indicated in diseases characterised by debility, torpor, and inactivity. It is administered as a stimulant to the general system in various debilitated conditions, and in typhoid fevers; to the nervous system in deficient sensibility, as amaurosis; to the muscular system in paralysis; to the vascular system and secreting organs when the action of these is languid, and requires to have its energy increased, as in some forms of dropsy, chlorosis, amenorrhœa, asthenic inflammation, &c. Furthermore, it has been employed empirically in some maladies, as diarrhoea, dysentery, &c. It is rarely employed in this country.

Administration.—1. Of the flowers. Dose of the powder, grs. v. to grs. x. mixed with syrup or honey to form an electuary. The infusion and tincture are more convenient preparations. \textit{Infusum arnica (florum)}, Ph. Castr. Ruth., is made with 3 ss. of the flowers to lbj. of water: dose, f\textsubscript{3}j. to f\textsubscript{5}j. \textit{Tinctura arnicae (florum)}, Ph. Boruss., is prepared with 3 ss. of the flowers to lbj. of rectified spirit: dose, f\textsubscript{5}ss. to f\textsubscript{3}iss.—2. Of the root. This may be given in the form of infusion. \textit{Infusum arnicae (radicis)}, Ph. Castr. Ruth., is made with 9 ij. of the root to lbj. of water: dose, f\textsubscript{5}j.

221. LACTUCA SATIVA, De Cand.—THE GARDEN OR COS LETTUCE.

\textit{Lactuca sativa, var. a, Linn.}

\textit{Sex. Syst. Syngenesia, Polygama equalis.}

(Herba florens, L.—Insipissated juice, E.—Insipissated juice and leaves, D.)

\textbf{History.}—The \varepsilon\iota\kappa\alpha\zeta, or \textit{Lettuce}, was well known to the ancient Greeks and Romans. It is mentioned by Hippocrates\(^2\) both as an aliment and medicine; and by Dioscorides.\(^3\) It is probable that the \varepsilon\iota\kappa\alpha\zeta \yup\uomicron\rho\omicron\omicron\omicron\omicron\omicron\omicron\omicron\omicron\omicron of the latter writer is our \textit{Lactuca sativa}.\(^4\) “The sedative powers of \textit{Lactuca sativa}, or \textit{Lettuce}, were known,” observes Dr. Paris,\(^5\) “in the earliest times; among the fables of antiquity we read that, after the death of Adonis, Venus threw herself on a bed of lettuces to lull her grief and repress her desires.”

\textbf{Botany. Gen. Char.}—Heads many- or few-flowered. \textit{Involucrum} cylindric, calyculate-imbriicate, in 2 or 4 rows; outer rows short. \textit{Receptacle} naked. \textit{Achenes} plane, obcompressed, wingless, abruptly terminating in a filiform beak (De Cand.)

\textbf{Sp. Char.}—Leaves not eoncave, erect, oblong, narrowed at the base, smooth at the keel. \textit{Stem} elongated, leafy (De Cand.)

1. Handl. \textit{d. sp. Helv.}, ii. 170, 3rd Aufl.
2. \textit{De Dieta}, ii. p. 359; and \textit{De Morb. Mal.}, i. 629 and 635.
3. Lib. ii. cap. 165.
4. This also is the opinion of Fraas (\textit{Symp. Plant. Fl. Classicæ}, p. 199, 1845).
5. \textit{Pharmacol}. vol. i. p. 13, 6th ed.
Annual. Stem erect, simple below, branched above, 1 or 2 feet high, smooth. Leaves rounded or ovate, semi-amplexicaul, frequently wrinkled, usually pale green; varying much in the different varieties. Flowers yellow.

Hab.—Native country unknown: perhaps the East Indies. Extensively cultivated in Europe under the name of the Cos Lettuce (Lactuca romaine, Lactuca romana).

Lactuca capitata, De Cand., or Cabbage Lettuce, and L. crispa, De Cand., or Curled Lettuce, were considered by Linneus to be varieties of L. sativa.

Description.—1. Lettuce leaves (folia lactucae) are exclusively used as a salad. They are gathered early, before the flower-stem shoots up, and then contain a cooling, bland, pellucid, watery juice. 2. The flowering plant (herba florens, L.) contains an intensely bitter, milky, slightly narcotic juice, having an odour allied to that of opium. This juice resides in the root, cortical portion of the stem and branches, and in the involucere. 3. Lactucarium, or Lettuce Opium, is the inspissated milky juice (see p. 1568).

Composition.—In the young state in which the plant is usually brought to table, its juice consists chiefly of water, mucilage, albumen, and saccharine matter. But in the flowering state the juice also contains resin, a peculiar waxy substance (lactucerin), and a crystalline bitter substance (lactucin). Pagenstecher obtained from the distilled water of lettuce an odorous sulphurated volatile oil. (See also the composition of Lactucarium from Lactuca sativa, p. 1569).

The decoction of the flowering herb is rendered dark green and turbid by the salts of the sesquioxide of iron.

Physiological Effects.—The early leaves of the lettuce, eaten as a salad, are easily digested, but they yield only a small portion of nutritive matter. They probably possess, in a very mild degree, soporific properties. The ancients considered them anti-aphrodisiac. The flowering plant is more powerful, and produces, in a feeble degree, the effects of lactucarium (see p. 1570).

Uses.—Lettuce leaves are employed at the table as a salad. As they appear to possess slight hypnotic properties, they may be taken with advantage at supper, to promote sleep. Galen, who in his old age was troubled with watchfulness, was relieved by the use of lettuce at night. On the other hand, prudence points out the propriety of abstaining from the use of this plant if there be any tendency to apoplexy.

Extractum Lactucæ, French Codex; Thridace vel Thridacium.—This is sometimes called French Lactucarium (Lactucarium gallicum). It is an extract obtained by evaporating the juice expressed from the stalks of the lettuce at the flowering season. This extract has not been analysed. Its composition must resemble that of the juice above noticed. Meissner detected a trace of copper in one specimen. In its effects and uses it resembles, but is much inferior to, Lactucarium. Ganzel found that 10 grains of the extract of lettuce introduced into the cellular tissue of the thigh of a small dog killed the animal in three days.

1 Buchner's Repertorium, 2te Reihe, Bd. xxiii. S. 17, 1840.
2 De aliment. facult. lib. ii. cap. 40.
3 Quoted by Buchner, Repert. Bd. xiii. 2te Reihe, 1817.
222. LACTUCA VIROSA, Linn.—STRONG-SCENTED LETTUCE.

Sex. Syst. Syngenesia, Polygamia equalis.

(The inspissated juice, E.—Leaves; Insipissated juice, D.)

History.—According to Sprengel and Fraas, this is the ἱπποτικαξία of Dioscorides, but Dr. Sibthorp suggests that Lactuca Scariola was the plant referred to by Dioscorides.

Sp. Char.—Stem erect, round; the base smooth or prickly-setose; the apex panicked. Leaves horizontal, prickly-setose at the keel, acutely denticate, obtuse, at the base arrow-shaped; the lower ones sinuate. Achenes striated, usually shorter than the beak (De Cand.)

Herb abounding in fetid milky juice. Root tap-shaped. Stem 2 to 4 feet high. Leaves distant. Florets yellow.

Hab.—Indigenous; about hedges, old walls, and borders of fields; not uncommon. Biennial. Flowers in August and September.

LACTUCA VIROSA, var. β MACULATA, De Cand.—This variety is distinguished by the purplish-red stems, and the blood-red or purplish-red spots on the obovate radical leaves.

Description.—1. The leaves of the strong-scented lettuce (folia latucae virosae), and other parts of the plant, contain, during the flowering season, a milky juice which has a strong opiate-like odour and bitter taste. The leaves of this species, as well as of L. Scariola, are distinguished from those of L. sativa by the prickles on the keel of the leaves. 2. Lactucarium is obtained from L. virosa as well as from L. sativa (see p. 1568).

Composition.—The fresh milky juice, reddens litmus paper, and is coagulated both by acids and alcohol. It contains lactucin, odorous matter (volatile oil?), extractive matter, lactucerin, albumen, resin, and some salts (viz. a vegetable salt of potash, nitrate and sulphate of potash, chloride of potassium, sal ammoniac, and some calcareous and magnesian salts). By exposure to the air it becomes first yellow and afterwards brown, and gradually solidifies. In this state it constitutes lactucarium, the composition of which will be stated hereafter.

Physiological Effects.—The experiments of Orfila on dogs show that this plant possesses narcotic qualities; but its powers are not very great, and have been probably much over-rated. A solution of the extract, thrown into the veins, caused heaviness of head, slight drowsiness, feebleness of the hind extremities, difficult and frequent respiration, slight convulsive movements, and death. Glaser considers it to possess acidic properties. On Wibrner, two grains of the extract caused sleepiness and headache. Its activity depends chiefly on the lactucin.

1 Hist. Rei Herb. i. 185.
2 Synops. Plant. Fl. Class. 1845.
3 Lib. ii. 166.
5 For a good summary of the known properties of the milky juice, see Buchner, Repertorium, Bd. xlvii. 2te Reihe, 1847.
6 Toxicol. Gén.
USES.—It is employed only to furnish lactucarium.

ANTIDOTES.—In cases of poisoning by Lactuca virosa, the treatment should be the same as that for poisoning by opium.

LACTUCARIUM, E.D.—LETTUCE OPIUM.

HISTORY.—This is the inspissated milky juice (obtained by incision of the stem) of Lactuca sativa and (chiefly) L. virosa.\(^1\) It was first collected and employed by Dr. J. R. Coxe,\(^2\) of Philadelphia.

But the term “lactucarium” has also been applied to other preparations of the lettuce. Thus Dr. Duncan, Sen.\(^3\) who first employed the term, used it to indicate the extract obtained by evaporating the tincture made with weak spirit of wine; and in France the term is frequently applied to the extract obtained by evaporating the expressed juice (see ante, p. 1566).

COLLECTION.—In the young state, the plant abounds in a cooling, bland, slightly bitterish, pellucid, watery juice. At this period, while it consists chiefly of a bunch of succulent leaves, L. sativa is employed at table as a very agreeable salad. As the flowering period approaches, the stem shoots up above the early leaves, and the juice of the plant becomes milky and bitter, and acquires a smell allied to that of opium. When incisions are made into the stem, this milky juice exudes, and, by exposure to the air, dries and becomes the brown solid called lactucarium or lettuce-opium. The incisions are effected either by cutting off the top of the stem and removing a fresh slice as often as the surface ceases to yield juice, or by cutting the sides of the stem. The exuded juice is removed by the finger, or by scraping with a knife, placed in a glass or earthenware vessel, and allowed to dry spontaneously.

By drying in the air, the milky juice of L. virosa loses about half its weight of water, and yields from 50 to 55 per cent. of lactucarium.\(^4\) According to Mr. Duncan,\(^5\) after the middle period of inflorescence, although the juice becomes thicker, it contains a less proportion of bitter extract, and, therefore, is less fit for yielding lactucarium. The quantities of lactucarium obtained by Schütz\(^6\) from one plant of the following species were—from L. sativa 17 grains, L. scariola 23 grains, and L. virosa 56 grains.

PROPERTIES.—Lactucarium or lettuce opium, as usually found in the shops of this country, is in small lumps, which are seldom larger than a pea or small bean: they are rough and irregular on the surface, sometimes covered with an ash-grey efflorescence, of a brown or reddish brown colour, friable, with an opiate smell and bitter taste. This sort agrees with that said by Dr. Christison to be the lactucarium obtained from L. virosa in the neighbourhood of Edinburgh.

1 Aubergier (Comptes rendus, xx. 923) states that he obtained the largest quantity of lactucarium from L. altissima of Bieberstein,—a Caucasian plant.\(^1\)

2 Observations on the Preparation of Soporific Medicines from common Garden Lettuce, read in the Caledonian Horticultural Society, March 6, 1810 (Mem. of the Caledon. Hort. Soc. vol. i. p. 160.)—Also, Observ. on the Distinguishing Symptoms of Three different Species of Pulmonary Consumption, p. 159, 1813.

Lactucarium from *L. sativa* is said by Dr. Christison to occur in roundish, rather compact, masses weighing several ounces.

Lactucarium prepared by Aubergier, pharmacien at Clermont, for commercial purposes, is in round flat cakes, of from 10 to 30 grammes (= 154.3 grs. to 463 grs. troy) each, and is often covered with a whitish efflorescence of mannite.

Composition.—Lactucarium has been the subject of repeated analysis. That obtained from *L. sativa* has been analysed by Klink, Schrader, Peschier, and Peretti. Pagenstecher has also contributed to our knowledge of it. Lactucarium from *L. virosa* has been analysed by Klink, Buchner, Schlesinger, Walz, and Ludwig. Lastly, that from *L. altissima* has been examined by Aubergier.

<table>
<thead>
<tr>
<th>LACTUCA SATIVA</th>
<th>LACTUCA VIROSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klink’s Analysis.</td>
<td>Buchner’s Analysis.</td>
</tr>
<tr>
<td>Bitter extractive</td>
<td>Odorous matter</td>
</tr>
<tr>
<td>Wax</td>
<td>Lactuecin, with colouring matter</td>
</tr>
<tr>
<td>Resin</td>
<td>Gummy extractive</td>
</tr>
<tr>
<td>Caoutchouc</td>
<td>Soft resin, with waxy matter</td>
</tr>
<tr>
<td>Water</td>
<td>Waxy matter (myriciu)</td>
</tr>
<tr>
<td></td>
<td>Gluten or albumen</td>
</tr>
<tr>
<td>Lactucarium</td>
<td>Air-dried Lactucarium</td>
</tr>
<tr>
<td>105'0</td>
<td></td>
</tr>
</tbody>
</table>

Aubergier’s Analysis.

A crystallizable bitter substance.

Two resins.

Wax.

Mannite.

Pectin.

Asparamide.

Albumen.

A crystallizable substance, convertible into humus under the influence of alkalies.

Salts.

Ludwig’s Analysis.

1. Matters insoluble in water:

 Lactuecin | 42'64 |
 Very fusible wax | 3'99 |
 Vegetable fibre | 2'00 |

2. Matters soluble in water:

 Albumen | 6'98 |
 Bitter extractive | 27'68 |
 Watery extractive insoluble in alcohol | 14'96 |
 Lactuecin rendered soluble by other substances | 1'73 |

4 Wittstein’s *Elyza.-chem. Handwörterbuch,* Bd. i. S. 873.
5 *Pharm. Central-Blatt für* 1831, S. 467.
6 Buchner’s *Repertorium,* 2te Reihe, Bd. xxiii. S. 17, 1840.
7 *Diss. supra cit.*
8 *Repertorium,* Bd. xlii. S. 1, 1832.
9 *Tüb.* 2te Reihe, Bd. xvii. S. 179, 1839.
11 *Pharm. Central-Blatt für* 1847, S. 438.
12 *Comptes rendus,* t. xv. p. 78, 1843.
Buchner more recently has given the following estimate, founded on Ludwig's analysis, of the per centage composition of lactucarium:—Lactucin, in combination with other substances soluble in water and spirit of wine, 28; (the weight of the odorous matter, the asparamic, and two imperfectly examined vegetable acids, was not determined;) salts, as constituents of the ashes, and including 1 per cent. of oxalic acid, 7; mannite, 2; albumen, 7; insoluble vegetable substances, 2; lactucerin (lactucon), 44; waxy matter and soft resin, 4; gummy matter; proteine, which Aubegger found in the lactucarium of L. sativa, and which is probably also present in that of L. virosa, and water, 6.

The active principles appear to be the lactucin and odorous matter, to which Buchner adds the salts. The substances which are insoluble in cold spirit of wine and hot water possess no medicinal power.

1. Odorous Matter; Volatile Oil.—This substance resembles in smell the odorous matter of opium. When lactucarium is submitted to distillation with water, the odorous principle distils over. Its nature has not been accurately determined. Both Pagenstecher and Walz have obtained a volatile oil, which the former chemist states contained sulphur. From the experiments of Buchner and Walz, it appears to be a basic substance; but Ludwig declares it to be of an acid nature.

2. Lactucin; Bitter Principle of Lactucarium.—This is a colourless, odourless, crystallizable, fusible, neutral substance. It requires 60 to 80 parts of water to dissolve it; and is readily soluble in alcohol, but less so in ether. Its watery solution is unaffected by acetate of lead, chloride of iron, and nitrate of silver; but, mixed with soda and nitrate of silver, it reduces the precipitated oxide of silver to the metallic state; and mixed with sulphate of copper and soda, and heated to boiling, it reduces the oxide of copper to the state of protoxide. It was obtained by Ludwig thus: 80 parts of lactucarium were rubbed with 80 parts of cold dilute sulphuric acid for half an hour, and then mixed with 400 parts of rectified spirit. The liquid being filtered, slacked lime was added to it to precipitate the sulphuric acid, and the solution was then evaporated. The brown viscid extract was digested in water, the solution treated by animal charcoal, and filtered and evaporated so as to yield crystals of lactucin.

3. Lactucerin; Lactucon; Waxy Matter of Lactucarium.—A neutral crystalline substance insoluble in water, but soluble in alcohol, ether, and the fixed and volatile oils. Its formula is $\text{C}_{65}\text{H}_{25}\text{O}_7$.

The lactucic acid of Pfaff is declared by Walz to be oxalic acid.

A strong though unfounded suspicion appears to have been entertained, that morphia was contained in lactucarium. But in none of the before-quoted analyses was it to be found; neither was Cavendon able to detect an atom of either morphia or narcotin in lactucarium.

Characteristics.—The cold aqueous decoction of lactucarium becomes, on the addition of sesquichloride of iron, olive-brown (tannate of iron). Tincture of nutgalls renders the decoction slightly turbid. Heated with lactucarium, colourless nitric acid acquires an orange-yellow tint, and evolves binoxide of nitrogen. The alcoholic tincture of lactucarium becomes slightly turbid on the addition of water.

Physiological Effects.—Lactucarium possesses anodyne and sedative qualities: but its powers have, I suspect, been over-rated. Ganzel states, that ten grains introduced into the cellular tissue of a dog's leg caused deep sopor, with occasional convulsions, but no dilatation of the pupil. Francois,

1 Journ. de Chim. Mlé, i. 300.
2 Sundelin, Handb. d. sp. Heilm. Bd. i. S. 459, 3te Aufl.
3 Arch. Gén. de Mlé, Juin 1825, p. 234.
who made a considerable number of trials of it, observes that it contains neither a narcotic nor an intoxicating principle; but that it allays pain, diminishes the rapidity of the circulation, and, in consequence, reduces the animal heat, and places the patient in a condition more favourable to sleep. Its modus operandi is different from that of opium; for the latter substance accelerates the pulse, and produces either delirium or stupor. It is more allied to hyoscyamus, from which, according to Fisher,\(^1\) it is distinguished by its power of directly diminishing sensibility, being preceded by irritation of the nervous system. Buchner compares the action of lactucin to that of digitalin, and says it diminishes the force and frequency of the pulse and the animal heat, dilates the pupil, and causes sleep and stupor. A more extended experience of the use of lactucarium, however, is requisite to enable us to form accurate conclusions as to the precise nature and degree of its powers.

Uses.—It is employed as an anodyne, hypnotic, antispasmodic, and sedative, where opium is considered objectionable, either from peculiarities on the part of the patient or from the nature of the disease. Thus it may be used where there is morbid excitement of the vascular system, in which condition opium is usually contra-indicated. But though it is free from several of the inconveniences which attend the use of opium, yet it is much less certain in its operation. It may be given with advantage to allay cough in phthisis and other pulmonary affections;\(^2\) to relieve nervous irritation and watchfulness where morbid excitement of the febrile system is present; in which opium is not admissible. Dr. Rothamel\(^3\) has employed it with success in different kinds of fevers, inflammations, cachexies, and painful and peculiar nervous disorders. Vering\(^4\) found it especially useful inasmuch as the uterus; and Angelot gave it to repress seminal discharges.

Administration.—The usual dose is from grs. iii. to grs. v.; but it has been given in larger quantities, as from grs. x. to grs. xx.

1. **TINCTURA LACTUCARIi, E.; Tincture of Lactucarium.** (Lactucarium, in fine powder, 5iv.; Proof Spirit, 0ij. This tincture is best prepared by percolation, as directed for tincture of myrrh; but may also be prepared by digestion with coarse powder of lactucarium.)—As lactucin (the bitter principle of lactucarium) is soluble in proof spirit, this liquid is a fit menstruum for preparing the tincture.

2. **TROCHISCI LACTUCARIi, E.; Lozenges of Lactucarium.** (To be prepared with lactucarium in the same proportion and in the same manner as the Opium Lozenge).—Each lozenge weighs ten grains, and contains nearly one-sixth of a grain of lactucarium.

1. [Loud, Med. Gaz. xxv. 863.](#)
2. [Duncan, Observ. on Pulm. Consump. 1813.](#)
3. [Dierbach, Neuest. Baut. in d. Mat. Med. S. 118, 1887.](#)
4. [Ibid. S. 119.](#)
Tribe V. Cynarae.

Style thickened upwards, and often fringed at the tumour.

223. Carthamus tinctorius, Linn.—Safflower or Bastard Saffron.

Sex. Syl. Syngenesia, Polygania equalis.
(Flosculi.)

Knēkos, Theophrastus, Hist. Pl. lib. vi. cap. 3 and 4; Knēkos, Dioscorid. lib. iv. cap. 190.—A native of the East Indies, where, as well as in many other parts of the world (e. g. Egypt, South of Europe, South America, &c.), it is cultivated for commercial purposes.

The official parts are the florets, without the involucre. When dried, they constitute the safflower or bastard saffron (flores carthami) of the shops. They consist of the red tubular corolla divided superiorly into five segments, and inclosing the sexual organs. They have a faint odour, allied to that of saffron, and a feeble bitterish taste. According to Dufour, 1 safflower consists of red colouring matter 0·5, yellow colouring matter 2·4, acid yellow colouring matter with sulphates of lime and potash 24·1, extractive with yellow colouring matter, chloride of potassium, and acetate of potash 4·2, resin 0·30, wax 0·9, woody fibre 49·6, albumen 5·5, vegetable remains and sand 4·6, alumina and magnesia 0·5, oxide of iron 0·2, moisture 6·2, loss 0·7.

The yellow colouring matter is of the nature of extractive. Its formula, according to Schlierer, 2 is C_{16}H_{10}O_{10}. It is soluble in water, and is useless for dyeing. The red colouring matter (carthamin or carthamie acid) is of a resinous nature. Its formula, according to Schlierer, is C_{14}H_{10}O_{7}. It is soluble in alcohol and alkaline liquids, and is precipitable from its alkaline solution by acids. It is sparingly soluble in water, and is perfectly insoluble in ether. It is extracted from safflower (which has been deprived of its yellow colouring matter by washing with water) by means of carbamate of soda. From the alkaline solution it is precipitated by acetic (or citric) acid. In the moist state it is imported and sold under the name of extract of safflower. Spread on saucers and dried, it constitutes the pink saucers sold in the shops for dyeing silk. The colour which it yields is beautiful but fugitive. Dried and mixed with French chalk (tale), carthamin constitutes rouge (rouge végétal), which is used as a cosmetic. The Chinese card-rouge is a small folded card covered with a thin film of the colouring matter of the safflower, which in this dried state has a golden green metallic brilliancy, but which, when moistened, communicates a beautiful tint. Thin films of dried carthamin have a golden green metallic brilliancy, like the eyltra of cantharides.

Safflower is sometimes used to adulterate hay saffron. The mode of detecting the fraud has already been pointed out (see ante, p. 1102). What is called cake saffron (cocus in placeente) is made with safflower and mucilage (see ante, p. 1102).

The achenia of safflower are called seeds (semina carthami). They yield an oil by expression, and were formerly used in medicine.

Sub-order II. Labiatiflore, De Cand.

Flowers hermaphrodite, usually 2-lipped.

This sub-order includes two tribes; viz.:—

1 Ann. de Chim. t. xlivii. p. 283, 1804.
TRIBE VI. MUTISIACEÆ.

TRIBE VII. NASSAUWIACEÆ.

Neither of these tribes contain any officinal plants.

Sub-order III. LIGULIFLORÆ, De Cand.

All the flowers ligulate and hermaphrodite.

TRIBE VIII. CICORACEÆ.

Style cylindrical at the upper part; its arms somewhat obtuse, and equally pubescent.

224. TARAXACUM OFFICINALE, Wiggers.—COMMON DANDELION.

Sex. Syst. Syngenesia, Polygama equalis.
(Radix recens, L.—Root, E.)

History.—As this plant is a native of Greece,¹ it must have been known to the ancients. Sprengel² and Fraas think that it is the ἀφάντη of Theophrastus.³

Botany. Gen. Char.—Head many-flowered. Involute double; external scales small, closely pressed, spreading, or reflexed; internal ones in 1 row, erect; all frequently callous-horned at the apex. Receptacle naked. Achenes oblong, striated, muricate near the small ribs, or spinulose at the apex, terminating in a long beak. Pappus hairy, in many rows, very white (De Cand.).

Sp. Char.—Leaves runcinate, toothed. Achenes linear-ovate, blunt and squamosely muricated at the summit, longitudinally striated, with a long beak (Babington).

Root perennial. Leaves all radical, very variable, glabrous or slightly hispid. Scapes single-headed, radical. Florets yellow.

Locality and other circumstances modify the characters of this species. Botanists are by no means agreed as to the number of its varieties. The following, considered by De Candolle and some others as distinct species, are regarded by Mr. Babington as mere varieties, since they are quite connected by intermediate forms:

I. Outer involucral scales reflexed or patent.

a. genuinum: outer scales linear, deflexed.—This variety is the Leontodon Taraxacum of Smith and most botanists, the Taraxacum Dens Leonis of De Candolle. Glabrous or woolly at the crown of the root. Leaves runcinate, broad. Flowers golden yellow. The head expanded in the morning and in fine weather. Achenes yellow, their upper half muricated. This is the variety which should be employed in medicine.

¹ See Prodr. Pl. Græce, ii. 129; and Fraas, Synops. Pl. Flores Class. p. 201, 1845.
² Hist. Rei Herb. i. 100.
³ Hist. Plant. vii. 81.

γ. ERYTHROSPERMA: outer scales lanceolate, adpressed or patent.—T. erythrosperma, De Cand. Leaves runcinate-pinnatifid, with unequal teeth and intermediate smaller ones. Achenes bright red, muricate at the summit; beak with a thickened and coloured base.

—The lowermost leaves are sometimes obovate and dentate, not runcinate, when it becomes T. obovatum, De Cand.

II. Outer scales adpressed.

δ. PALUSTRE: outer scales ovate-acuminated.—LEONTODON PALUSTRE, Smith. Leaves oblong and entire, sinuate-dentate, or runcinate. Florets often reddish externally. Achenes pale yellow or brown, muricate at the summit.—Taraxacum leptocephalum, Reichenbach, is a sub-variety, with the outer involucral scales ovate-lanceolate or lanceolate.

Hab.—Indigenous; very common—var. α in meadows and pastures every where, γ in dry places, δ in bogs.

Description.—The fresh root (radix taraxaci) is tap-shaped, branched, fleshy, and abounding in milky juice, which resides in the laticiferous tissue called by Grew1 "milk vessels." Externally it is dull yellow or brownish, internally white. It is without odour: its taste is bitter (especially in the summer). The cold watery infusion of the dried root deposits a dirty-grey flocculent precipitate on the addition of sesquichloride of iron.

Mr. Giles2 states that the roots of Rough Hawkbit (Apargia hispida, Willd.) are sometimes substituted for those of Dandelion. They may be distinguished thus:—the roots of Dandelion are smooth-skinned, tawny-coloured, crisp or easily frangible, and contain usually a milky juice; those of Hawkbit have a wrinkled cuticle, are pale-coloured, tough, break with difficulty, and rarely exhibit a milky juice. The leaves, when attached, also serve to distinguish the plants: those of Hawkbit are hairy, whereas the leaves of the genuine variety of Dandelion are smooth.

Composition.—C. Sprengel3 analysed the leaves and stems, and found them to consist of 85 parts of water, 9·140 of matters extractible by water (viz. albumen, mucilage, gum, and sugar), 3·091 of matters extractible by dilute caustic potash ley, 0·100 of wax, resin, and chlorophyll, and 2·669 of fibre.

The milky juice of the root has been analysed by John,4 who found in it caoutchouc, bitter matter, traces of resin, sugar, and gum, frrc acid, phosphates, sulphates, and hydrochlorates of potash and lime, and water. Mr. Squire5 says the expressed juice contains gum, albumen, gluten, an odorous principle, extractive, and a peculiar crystallizable bitter principle soluble in alcohol and water.

In 1840 Frickhinger6 made a comparative analysis of dandelion root gathered in November 1839 and of that collected in April 1840. His results were as follows:—

1 Anatomy of Plants, p. 104, tab. xiii. 1682.
6 Bauchner's Repert. 2te Reihe, Bd. xxiii. S. 45, 1840.
Extract prepared with cold water:—

| Part insoluble in alcohol (albumen, mannite, extractive, mucilage with potash, soda, and lime, combined with muriatic, sulphuric, and phosphoric acids) | 6·41 | 3·66 |
| Part soluble in alcohol (extractive, sugar, mannite, and chloride of potassium) | 23·10 | 13·20 |

Extract prepared by boiling the root in water:—

| Part insoluble in alcohol (inulin, potash, lime, phosphoric acid, and traces of sulphuric and muriatic acid) | 3·04 |
| Part soluble in alcohol (extractive, chloride of potassium, traces of tannin, lime, and sulphuric acid) | 11·20 |

Allumine contaminated with some extractive	1·78
Wax	0·33
Residue exhausted by cold and boiling water	0·13
Loss ascribable to the fermentation of the inulin	3·96
Loss	2·94
Water	72·23

| Ashes (carbonates of potash, soda, and lime; chloride of potassium; sulphates of potash and lime; phosphate of lime; and silica) | 5·5 |

<p>| Gathered in Autumn | Gathered in Spring |</p>
<table>
<thead>
<tr>
<th>Fresh Root</th>
<th>Root dried at 99°·5 F.</th>
<th>Fresh Root</th>
<th>Root dried at 99°·5 F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100·00</td>
<td>100·00</td>
<td>100·00</td>
<td>100·00</td>
</tr>
</tbody>
</table>

From these analyses it appears that the root gathered in the autumn is richer in those ingredients which are extractible by water than the root collected in the spring; whereas the latter contains more albumen, wax, and mineral constituents (ashes).

Dandelion root washed, crushed, and pressed, yields about half its weight of juice. Except in the months of April and May, when it is very aqueous, this juice spontaneously coagulates, and becomes of a fawn colour. The quantity of extract obtained from the juice varies at different seasons. 1

Juice.

In January and February	4 to 5 lbs.	yield 1 lb. of extract.
In March	6 to 7 lbs.	ditto.
In April and May	8 to 9 lbs.	ditto.
In June, July, and August	6 to 7 lbs.	ditto.
In September and October	4 to 5 lbs.	ditto.
In November and December	4 lbs.	ditto.

It is obvious, then, that the expressed juice is richest in solid constituents in the months of November and December. It is remarkable, however, that the juice possesses the greatest bitterness in the summer months; while in the spring, and late in the autumn, it has a remarkably sweet taste. 2 Squire considers this change to be effected by the frost.

1 *Taraxacum; Dandelion-bitter.*—This, which is probably the active principle of the root, is obtained by receiving the milky juice in distilled water, heating the liquid to boiling, by which the resin and albumen are separated, filtering the liquid when cold, and slowly evaporating, so that crystals may be formed. These may be purified by washing,

1 Squire, *op. cit.*
and by solution in either distilled water or alcohol. Pure taraxacin occurs in stellated and dendritic masses, has a bitter and somewhat acid taste, and is readily soluble in ether, alcohol, and boiling water, but difficultly so in cold water. It is easily fusible and inflammable, burns without developing ammonia, dissolves in concentrated acids without producing any colour, and is neutral to test papers.

2. RESIN.—The resin obtained from the milky juice is white, crystallizable, soluble in alcohol and ether, but insoluble in caustic alcalies. Its spirituous solution has an acid taste, and yields no precipitate on the addition of acetate of lead.

3. INULIN.—According to Overbeck,¹ the root collected in the spring yields very little inulin; but lb. of the dried root collected in the autumn yielded him 2½ ounces of inulin.

4. SUGAR.—This has been obtained from dandelion root by Widmann,² by Frickhinger,³ and by the Messrs. Smith.⁴ It readily undergoes decomposition in the watery infusion of the root, and probably becomes converted into mannite and lactic acid.

\[
\text{C}_6\text{H}_{12}\text{O}_{12} = \text{C}_6\text{H}_{12}\text{O}_6 + \text{C}_3\text{H}_6\text{O}_3
\]

Grape-sugar. Mannite Lactic acid.

Messrs. T. and H. Smith have confirmed the accuracy of Frickhinger’s opinion,—that mannite does not pre-exist in taraxacin, but is a product of the decomposition of the sugar. I am indebted to them for a beautiful specimen of mannite procured from the infusion of dandelion.

Physiological Effects.—Its obvious effects are those of a stomachic and tonic. In large doses it acts as a mild aperient. Its diuretic operation is less obvious and constant. In various chronic diseases its continued use is attended with alterative and resolvent effects. But where the digestive organs are weak, and readily disordered, taraxacin is very apt to occasion dyspepsia, flatulency, pain, and diarrhea.

Uses.—It is employed as a resolvent, aperient, and tonic, in chronic diseases of the digestive organs, especially hepatic affections; as jaundice, chronic inflammation or enlargement of the liver, dropsy dependent on hepatic obstruction, and dyspepsia attended with deficient biliary secretion. In some very susceptible conditions of the stomach it proves injurious. It has been employed in affections of the spleen, chronic cutaneous diseases, uterine obstructions, &c.

Administration.—It is employed in the form of either decoction or extract.

A mixture of coffee and either powder or extract of dandelion has been used at table under the name of taraxacum or dandelion coffee; and a mixture of four parts of dandelion powder with one part of chocolate constitutes the so-called dandelion chocolate.

1. DECOCTUM TARAXACI, L. E.; Decoction of Dandelion. (Fresh Taraxacum root, 3iv.; Distilled Water, Oiss. Boil to a pint and strain, L. —Taraxacum, herb and root, fresh, 3iv.; Water, Oij. Boil to a pint and strain, E.)—Aperient and tonic. Dose, 1/3j. to ½j. To increase its aperient property, a saline purgative may be conjoined.

2. EXTRACTUM TARAXACI, L. E.; Extract of Dandelion. (Fresh root of Taraxacum, bruised, lb. iiss. [lb. j. E.]; Boiling Distilled Water, Cong. ij.

⁴ Op. supra cit.
[Cong. j. E.] Macerate for twenty-four hours, then boil down to a gallon, and strain the liquor while hot; lastly, evaporate to a proper consistence, *L.* "Proceed as for the preparation of extract of poppyheads," *E.*)—Mr. Jacob Bell¹ states that the following are the quantities of extract of taraxacum obtained by him from the root at different periods of the year:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs.</td>
<td>8½</td>
<td>6¾</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>8½</td>
<td>9</td>
</tr>
</tbody>
</table>

These are the average deductions from his laboratory-book during several years.

Extract of *taraxacum* should be brownish, not blackish. Its taste is bitter and aromatic: that of the shops is usually more or less sweet. It should be completely soluble in water.—Dose, grs. x. to 78s.

225. Cichorium Intybus, Linn.—Wild Succory or Chicory.

Sex. Syst. Syngenesia, Polygania æqualis.

(Radix.)

Κυάριον, Theophrast. Hist. Plant. lib. vii. cap. 11; σέρις σεβάφυλλος καὶ ἐπικρος [narrow-leaved and bitterish Series], Dioscorides, lib. ii. cap. 160; *Intybum erraticum,* called by some *ambula* [or ambagia], and in Egypt *Cichorium,* Pliny, Hist. Nat. lib. xx. cap. 29, ed. Valp.

Stem 2-3 feet high, briskly, alternately branched. Lower leaves runcinate, hispid in the keel; upper ones oblong or lanceolate, clasping, entire. Flower heads axillary, in pairs, nearly sessile, bright blue, sometimes white, about the size of those of dandelion. involucre roughish. Corolla, anthers, and stigmas, blue. Fruit angular.—A perennial herb; indigenous, growing on banks on a gravelly and chalky soil. Flowers in July and August. Cultivated in various parts of England; also in Belgium, Holland, Germany, and France.

The root (radix cichorii sylvestris vel agrestis) is spindle-shaped, with a single or double head; externally it is whitish or greyish-yellow, internally it is whitish, fleshy, and milky. Its taste is bitter. English roots are usually smaller and more fibrous than the foreign roots.

Both in the raw and roasted roots, the structures which are observed by microscopic examination are cellular tissue, pitted tissue (dotted ducts), vascular tissue (spiral vessels), and lactiferous tissue (milky vessels). The dotted ducts are unbranched: the milk vessels, on the contrary, are anastomosing vessels.³

No recent analysis of the root has been made. John² obtained from 100 parts, 25 parts of watery bitter extractive, 3 parts of resin, besides sugar, sal ammoniac, and woody fibre. Waltz⁴ procured *inulin* from it. In one experiment, half a pound (civil weight) of the root yielded him one ounce of good dry inulin; but, in another much sweeter root, he found not a trace of inulin. Hence he inferred that the sugar had been formed at the expense of the inulin. An infusion of the root, mixed with syrup, becomes thick; forming the *gomme sacco-cichorine* of Lacarterie.⁵

The fresh root is seldom or never used at the present day as a medicine. Its medicinal properties appear to resemble those of dandelion. It is reputed to possess tonic, alterative, resolvent, diuretic, and, in large doses, aperient qualities: and it was formerly employed in chronic diseases of the abdominal viscera, jaundice, hypochondriasis, &c.

² Figures of some of these tissues are given in the Lancet for March 15, 1851.
⁴ Buchner's Repertorium, Bd. xxvii. S. 263, 1827.
⁵ Fée, Cours d'Hist. Nat. t. ii. p. 301, 1828.
protracted use is said to injure digestion. It is administered in the form of decoction, prepared by boiling 3 ss. of the dried root, in O. of water, to 3½ viii.1

Radix Chicorii Tarreffacta; Roasted Chicory Root.—On the large scale, chicory root is roasted in heated iron cylinders, which are kept revolving, as in the process of coffee-roasting. The loss during the process is from 25 to 30 per cent.

During the roasting process, about 2 lbs. of lard for every cwt. of chicory are added. This substance is intended to give the chicory a face or lustre like that of coffee.2 While roasting, chicory evolves a not disagreeable odour, which somewhat resembles that of burnt gingerbread.

Roasted chicory, when ground to powder, constitutes the chicory sold for the adulteration of coffee, and sometimes called chicory-coffee. The adulteration of coffee with chicory can be detected by the microscope, as well as by chemical means (see Coffea arabica).

Roasted chicory powder, when thrown on water, rapidly imbibes this fluid—to which it communicates a reddish brown colour—and falls to the bottom of the vessel. A decoction of roasted chicory is merely rendered brown by iodine, and neither strikes a blue colour with iodine nor becomes black on the addition of the sesquichloride of iron.

When submitted to microscopic examination, roasted chicory presents the same tissues which are observed in the raw root; the operation of roasting not having destroyed them.

Roasted chicory is extensively adulterated. To colour it, Venetian red (see ante, p. 763), and perhaps reddle, are used. The former is sometimes mixed with the lard before this is introduced into the roasting machine, at other times it is added to the chicory during the process of grinding. Roasted pulse (peas, beans, and lupines3), corn (rye and damaged wheat), roots (parsnips, carrots, and mangel-wurzel), bark (oak-bark tan), wood-dust (logwood and mahogany dust), seeds (acorns and horse-chestnuts), the marc of coffee, coffee-husks (called coffee-flights), burnt sugar, baked bread, dog-biscuit, and the baked livers of horses and bullocks (!), are substances which are said to have been used for adulterating chicory. A mixture of roasted pulse (peas usually) and Venetian red has been used, under the name of Hambro' powder, for the same purpose.4

The following are the chief modes of examining chicory with the view to the detection of these adulterations:—

1. Careful examination of the odour, flavour, and appearance to the naked eye, of the suspected powder. In this way foreign substances may sometimes be detected.

2. A portion of the dried powder is to be thrown on water: the chicory rapidly imbibes the water, and falls to the bottom, whereas some intermixed powders (as the marc of coffee) float.

3. The suspected powder is to be submitted to careful microscopical examination. Pulse and corn may be detected by the size, shape, and structure of the starch grains. The tissues of barks, woods, and other roots, may also be frequently distinguished from those of chicory.

4. A decoction of the suspected chicory is then to be prepared, and, when cold, to be tested with solution of iodine and persulphate of iron.

Iodine colours a decoction of pure chicory brownish; whereas it produces a purplish, bluish, or blackish colour with decoctions of roasted pulse, roasted corn, baked bread, roasted acorns, and other substances containing starch.

Persulphate or perchloride of iron does not produce much effect on a decoction of pure chicory; but it communicates a bluish or blackish tint to a decoction of oak-bark, of roasted acorns, and other substances containing tannin or gallic acids.

5. By incineration, pure dried chicory yields from 4 to 5 per cent. of a grey or fawn-coloured ash. If Venetian red or any earthy or other mineral substances be present, a larger amount of ash is obtained. Moreover, when Venetian red has been employed, the colour of the ash is more or less red.

1 Wylie, Pharm. Castrens. Rutenica, 1840.
2 In France, butter is used instead of lard. This addition is by some said to "fix" the red powders used for the adulteration of chicory (Chevallier, Journ. de Chim. Méd. t. v. 3me Sér. p. 280, 1849).
3 Lupine seeds are said to be imported from Egypt, and, when roasted and ground, are sold under the name of "Coffina" (Lancet, March 13, 1851).
4 For further details respecting the adulteration of chicory, see a paper by the author in the Pharmaceutical Journal, vol. iv. p. 119; also Chevallier, Journ. de Chim. Méd. t. v. p. 276, 3me Série, 1849; and The Lancet for January 4, March 15, May 10, and Nov. 1, 1851.
Roasted chicory has been in use as a substitute for coffee for more than eighty years, and, at the present time, is extensively employed for adulterating coffee. It is, however, devoid of that fine aromatic flavour for which coffee is so much admired. By some persons it is said to be both wholesome and nutritive, by others it is declared to be neither the one nor the other. The fact is, that no obvious ill effects are usually observed by the use of chicorised coffee; but there can be no doubt that roasted chicory must, when taken largely, have a tendency to excite diarrhoea. It scarcely deserves to be called nutritive, since, with the exception of sugar, it is almost entirely devoid of nutritive principles.

ORDER LII. VALERIANACEÆ, Lindl.—VALERIANWORTS.

Valerianææ, De Candolle.

Characters.—Tube of the calyx adnate to the ovary; the limb various, either dentate or partite, or changed into a pappus, which is at first involute, afterwards expanded. Corolla tubular, funnel-shaped; usually 5-lobed, rarely 3- or 4-lobed; lobes obtuse; tube equal or gibbous, or calcarate at the base. Stamens adnate by their filaments to the tube of the corolla; free at the apex; alternate with the lobes of the corolla; 5 (the type), 4, 3, 2, or solitary; anthers ovate, bilocular. Style filiform; stigmas 2 or 3, free or cohering. Fruit membranous or somewhat meumeataceous, indeliseent, crowned, at least when young, with the limb of the calyx, either 3-celled (2 cells being empty) or 1-celled. Seeds, in the fertile cell or fruit, solitary, pendulous, exalbuminous; embryo erect, with a superior radicle and 2 flat cotyledons (De Cand.)—Annual or perennial herbs, rarely at the base somewhat shrubby. Roots of the perennial species odorous. Leaves opposite, without stipules. Flowers cymose-corymbose.

Properties.—The rhizomatæ and their rootlets contain a peculiar, odorous volatile oil, on which their nerve and antispasmodic qualities essentially depend.

226. VALERIANA OFFICINALIS, Linn.—COMMON VALERIAN.

Sect. Syst. Triandria, Monogynia.

(Herbae sylvestris radix, L.—Root, E. D.)

History.—The earliest writer who notices this plant is Fuchsius. The φώ of Dioscorides (lib. i. cap. x.) is not Valeriana sylvestris, as Hoffman supposed, but V. Dioscoridis.2

Botany. Gen. Char.—Limb of the calyx involute during flowering, then unrolled into a deciduous pappus, consisting of many plumose setae. Tube of the corolla obconical or cylindrical, equal at the base or gibbous, without a spur; limb obtusely 5-cleft, rarely 3-cleft. Stamens 3. Fruit indeliseent; when ripe 1-celled, 1-seeded (De Cand.)

Sp. Char.—Leaves all pinnate; leaflets in 7—10 pairs, lanceolate, dentate-serrate or quite entire; stem furrowed; root 1-stalked, stoloniferous. Flowers flesh coloured. Fruit smooth or pubescent (Koch, Syn. Fl. Germ. ed. 2).

Herbaceous, perennial, from 2 to 6 feet high. Root fibrous. Flowers in June.

Hab.—Most countries of Europe.

This species is subject to variation.

a. major, Koeh; latifolia, Hayne; V. palustris major, C. Bauhin; Larger, Broad-

leaved, or Taller Common Valerian.—Stem taller; leaflets broader, all toothed.—Grows in moist localities, as ditches, marshes, and the banks of pools and rivers.

β. minor, Koch; angustifolia, Hayne; V. angustifolia Tausch, De Cand.; V. officinalis var. β, Smith, Engl. Bot. vol. i. p. 43, 1824; V. officinalis var. a foliis angustioribus, Woodward, Med. Bot. t. 96; V. sylvestris major montana, C. Bannin; Smaller, Narrow-leaved, or Mountain Common Valerian.—Stem shorter, leaflets narrower (linear-lanceolate), entire, or the lower ones few toothed.—Grows on dry heaths and elevated pastures. —Roots more odorous, and, therefore, to be preferred for medicinal use.

Collection.—The valerian root of the shops is collected about August and September from both wild and cultivated plants. I am informed that the roots of the wild sort are now gathered chiefly in Hampshire; but Hill states that, in his time, the heaths of Kent and Essex furnished a great deal of it.

The cultivation of valerian is carried on at Ashover, near Chesterfield, in Derbyshire. The plants are either procured from the offsets of former plantations, or from wild plants found in wet places in the neighbouring woods. Soon after the plant comes up in the Spring the tops are cut off, to prevent its running to seed, which spoils it. At Michaelmas, the leaves are pulled and given to cattle, and the roots dug up carefully, and clean washed, and the remaining top is then cut close off, and the thickest part slit down to facilitate their drying, which is effected on a kiln, after which they must be packed tight, and kept very dry, or they spoil. The usual produce is about 18 cwt. per acre. 2

Description.—The root (radix valeriana) consists of a short tuberculated, underground stem or rhizome, from which issue one or more creeping shoots or stolens, and numerous round tapering root-fibres, which are from 2 to 6 inches long, whitish internally, and, when fresh, greyish or yellowish white externally, but when dried yellowish brown. They give origin to fibrillae or rootlets.

The taste of the root is warm, camphoraceous, slightly bitter, somewhat acid, and nauseous. The odour of the fresh roots is not very considerable, but of the dry, especially when they have been kept for some time, much stronger: it is fetid, very characteristic, and highly attractive to cats, and, it is said, to rats also.

Two varieties of valerian root are found in English commerce: viz. the cultivated, which, being finer looking, is usually kept by druggists; and the uncultivated or wild sort (herbae sylvestris radix, L.; radix valeriana sylvestris), which is more fragrant, and, therefore, to be preferred for medicinal use.

Composition.—In 1809, a quantitative analysis of this root was made by Trommsdorf; 3 and in 1834 this chemist made a second analysis of it, 4 but he did not determine the relative proportion of the constituents. He found a peculiar volatile oil, combined with valerianic acid, starch, albumen, peculiar extractive matter (valerianin), yellow extractive matter, soft or balsamic resin, mucilage, valerianate of potash, malates of potash and lime, sulphate and phosphate of lime, silica, and woody fibre. The ligneous matter constitutes, on an average, about five-eighths of the whole. Of the soluble constituents the valerianin is the most abundant, and next to

1 History of the Materia Medica, p. 581, 1751.
2 Encyclop. of Agriculture, pp. 945 and 1152.
3 Trommsdorf’s Journal d. Pharm. xviii. 1809; Bulletin d. Pharmacie, t. i. p. 209, 1809.
4 Ann. der Pharm. Bd. x.; also Pharm. Central-Blatt für 1834, S. 742.
this the meulage. The balsamic resin amounts to about half the weight of the valerianin.

1. Volatile Oil of Valerian (Oleum Valerianae).—According to Hurault, this oil does not exist ready-formed in valerian root, but is produced only by the action of water; for pure ether does not extract any volatile oil from the root. When the root is submitted to distillation with water, the distillate consists of water, on which the oil floats. Martius obtained three ounces of oil from twelve pounds of the dried root, and Bartels eleven ounces from fifty pounds of root.

Crude oil of valerian is a mixture of at least five substances, whose relative proportions vary with the age and mode of preservation of the oil. Of these five substances, two are volatile oils, and may be regarded as the essential components of the oil. The more volatile of these is borneen, C\(^2\)H\(^{16}\), a colourless liquid identical with a carbo-hydrogen obtained from Borneo camphor. In odour it resembles oil of turpentine, with which it is isomeric. The less volatile ingredient is valerol, C\(^1\)H\(^3\)O\(^2\), which is lighter than water, has an odour of hay, and by exposure to the air absorbs oxygen and yields valerianic acid. The three non-essential constituents of the oil are valerianic acid, a resin, and a kind of camphor or solid volatile oil.

Fresh prepared and rectified oil of valerian is neutral, clear, with an odour which is not disagreeable. By exposure to the air it resinsifies, becomes coloured, thick, acid (owing to the formation of valerianic acid), and acquires a more disagreeable odour.

Oil of valerian has been used in medicine, as a powerful stimulant and antispasmodie, in doses of one or two or more drops.

2. Valerianic or Valeric Acid (Acidum Valerianicum). C\(^1\)H\(^3\)O\(^2\).—It is considered by some to be identical with phoeenic acid obtained by Chevreul from whale oil. It can be procured from valerian root and the fruit of Viburnum Opulus, in both of which, according to some persons, it pre-exists. But in valerian root it is probably formed by the oxidation of valerol. When this root is submitted to distillation with water, the distillate usually contains valerianic acid. Rabourdin, by previously acidulating the water with sulphuric acid, obtained 231 grains of valerianic acid from 4\(\frac{1}{2}\) lbs. of the root; whereas, when simple water was employed, the product was only 77 grains of acid. By Rabourdin’s process, Aschoff procured 18\(\frac{1}{2}\) drachms of acid from 15 lbs. of root. Lefort advises that, prior to distillation, the coarsely powdered root should be macerated in water mixed with sulphuric acid and bichromate of potash, in order to promote the oxidation of the valerol, and thereby to increase the product of valerianic acid. He obtained by this method from 262 to 285 grains of valerianate of zinc from 2\(\frac{1}{2}\) lbs. avoidijupoise of the root. By boiling the root in a solution of carbonate of soda, and decomposing the saline solution by sulphuric acid, the Messrs. Smith procured four scrupules of acid from a pound of root. Thirault is of opinion that caustic alkali is preferable to the carbonate.

But valerianic acid is a product of the decomposition of various animal and vegetable substances, and is most economically obtained, for commercial purposes, from oil of grain (fusel oil). See Solae valerianae, Ph. Dubl, p. 1533.

Valerianic acid is a colourless limpid liquid. Its odour is strong, and somewhat allied to, though distinct from, that of valerian root: its taste is acid. Its density, at 60° F., is 0:937. It boils at 347° F. It is very slightly soluble in water, with which it forms a hydrate, C\(^6\)H\(^6\)O\(^2\)3HO; but is soluble in all proportions in alcohol and in ether. With the exception of the valerianates of silver and the protoxide of mercury, all the valerianates are soluble in water.

3. Valerianin; Peculiar Extractive Matter.—A yellowish-brown substance, which tastes at first sweetish, afterwards slightly bitter. It is soluble in water, but is insoluble in both absolute alcohol and pure ether. Neither sesquichloride of iron nor acetate of lead produce any change in the aqueous solution.

1 Journ. de Pharm. et de Chim. t. xii. p. 69, 1847.
3 Journ. de Pharm. et de Chimie, 3me sér. t. vi. p. 310, 1844.
4 Pharmacistisches Central-Blatt für 1847, p. 281.
5 Journ. de Pharm. et de Chimie, 3me Sér. t. x. p. 194, 1846.
7 Journ. de Pharm. et de Chimie, 3me sér. t. xii. p. 161, 1847.
8 For the mode of separating valerianic from butyric and acetic acids, see Liebig, Chemical Gazette, vol. viii. p. 24, 1850.
4. **Yellow Extractive Matter.**—Bitterish, soluble in water. The sesquichloride of iron causes a green precipitate, and acetate of lead a dirty yellow precipitate, in the aqueous solution.

5. **Resin.**—Insoluble in water, but soluble in alcohol, ether, and oil of turpentine. The alcoholic solution does not redden litmus, nor yield any precipitate on the addition of an alcoholic solution of either acetate of lead or acetate of copper.

Physiological Effects.—Valerian excites the cerebro-spinal system. Large doses cause headache, mental excitement, visual illusions (scintillation, flashes of light, &c.), giddiness, restlessness, agitation, and even spasmodic movements. Barbier[1] says that a patient in the Hôtel-Dieu d'Amiens, who took six drachms of the root daily, in the form of decoction, awoke up suddenly out of his sleep, and fancied he saw one side of the room on fire. Its operation on the nervous system is also evinced by its occasional therapeutic influence over certain morbid states of this system; whence it has been denominated *nervine* (*nervino-alterative*) and *antispasmodic* (see ante, pp. 218 and 222). Furthermore, it intoxicates cats (who are very fond of it). Under its influence these animals roll themselves on the ground in "outrageous playfulness," and are violently agitated. However, the before-mentioned effects of valerian on the nervous system of man are by no means constant; whence practitioners have lost confidence in it as a remedial agent. "Yet I have met with some," observes Dr. Heberden, [2] "whom it threw into such agitations and hurries of spirits, as plainly showed that it is by no means inert." More inconstant still are its effects on the functions of organic life. For while in some cases it has accelerated the pulse, augmented the heat of the body, and promoted the secretions, [3] in others it has failed to produce these effects. [4] Large doses often create nausea.

Uses.—Valerian may be employed as a nervous excitant, and, where stimulants are admissible, as an antispasmodic. It was formerly in great repute. It has been principally celebrated in *epilepsy*. It came into use in modern times through the recommendation of Fabius Columna, who reported himself cured by it, though it appears he suffered a relapse. [5] Its employment has found numerous advocates and opponents; [6] but at the present time most practitioners regard it as a medicine of very little power. In the few cases in which I have employed it, it has failed to give the least relief. In some of the milder and more recent forms of the disease, neither dependent on any lesion within the cranium nor accompanied with plethora, as in hysterical epilepsy, it may occasionally prove serviceable. In *chorea*, and other spasmodic affections, it has been used with variable success. I have found temporary benefit from its use in females affected with *hypo-chondriasis* and *hysteria*. Of its use as a nervous stimulant in the low forms of fever, we have but little experience in this country. In Germany, where it is more esteemed, its employment in these cases is spoken highly of. [7]

Administration.—The dose of the *powder* is from 3d. to 5d., or even 5½. Though objected to by some, on account of the quantity of inert woody fibre

2. *Comment.* ch. 69.
4. *Trousseau* and *Pidonx*, *Traité de Thérap.* i. 1 and 2.
which it contains, it is, when well and recently prepared, an efficacious form for administration.

1. INFUSUM VALERIANAE, L. D.; Infusion of Valerian. (Valerian Root, bruised, 5ss. [3ij. D.]; Boiling [distilled, L.] Water, Oj. [3ix. D.] Macerate for half an hour [an hour, D.] in a covered vessel, and strain.)—This infusion contains a small quantity of volatile oil, some valerianate of potash (Trommsdorff), and extractive matter, but no resin.—Dose, f5j. to f3ij. This preparation is somewhat less apt to disturb the stomach than the powder.

2. TINCTURA VALERIANAE; Tincture of Valerian, L. E. D. (Valerian, bruised, 3v.; Proof Spirit, Oij. Macerate for seven [fourteen, D.] days, then express and strain, L. D. “Proced by percolation or digestion, as for tincture of cinchona,” E.)—Dose, f5j to f3iv. —This preparation contains a portion of volatile oil, some valerianate of potash, valerianin, and resin. Though it possesses the virtues of valerian, it is scarcely sufficiently strong to produce the full effects of the root, without giving it in doses so large as to be objectionable, on account of the spirit contained therein.

3. TINCTURA VALERIANAE COMPOSITA, L.; Tinctura Valeriana ammomniata, E.; Ammoniated Tincture of Valerian. Valerian, bruised, 3v.; Aromatic Spirit of Ammonia [Spirit of Ammonia, E.], Oij. Macerate for seven days, then express and strain, L. “Proced by percolation or by digestion in a well-closed vessel, as directed for tincture of cinchona,” E.)—Dose, f5ss. to f5j. The stimulant influence of the valerian is greatly increased, and its therapeutic efficacy oftentimes augmented, by the ammonia in this preparation.

4. SODÆ VALERIANAS, D.; Valerianate of Soda. (Take of Bichromate of Potash, reduced to powder, 3ix.; Fusel Oil, f5iv.; Oil of Vitriol of commerce, f3viss.; Water, Cong. ss.; Solution of Caustic Soda, Oj., or as much as is sufficient. Dilute the oil of vitriol with ten ounces, and dissolve with the aid of heat the bichromate of potash, in the remainder of the water. When both solutions have cooled down to nearly the temperature of the atmosphere, place them in a matrass, and, having added the fusel oil, mix well by repeated shaking, until the temperature of the mixture, which first rises to about 150°, has fallen to 80° or 90°. The matrass having been now connected with a condenser, heat is to be applied so as to distil over about half a gallon of liquid. Let this, when exactly saturated with the solution of caustic soda, be separated from a little oil that floats on its surface, and evaporated down until, the escape of aqueous vapour having entirely ceased, the residual salt is partially liquefied. The heat should now be withdrawn; and when the valerianate of soda has concreted, it is, while still warm, to be divided into fragments, and preserved in a well-stopped bottle, D.)—Fusel oil, also called oil of grain or amylic alcohol (alcohol amylicum, Ph. Dub.), is transformed, under oxidizing influences, into valerianic acid and water.

\[
\text{C}_9\text{H}_8\text{O}_2 + \text{O}^2 = \text{C}_9\text{H}_8\text{O}_3\text{HO} + \text{2HO} \\
\text{Fusel oil.} \quad \text{Oxygen.} \quad \text{Valerianic acid.} \quad \text{Water.}
\]

In the process of the Pharmacopoeia the oxygen is derived from the chromic acid of the bichromate of potash. When this salt is subjected to
the action of sulphuric acid, the products are—oxygen (which is eliminated), water, and potassio-sulphate of chromium.

\[
\text{KO}_2\text{CrO}_3 + 4(\text{HIO}_4\text{SO}_3) = (\text{KO}_2\text{SO}_4 + \text{CrO}_3\text{H}_3\text{SO}_4) + 4\text{HO} + 3\text{O}
\]

The valerianic acid, being volatile, distils over, and is neutralized by caustic soda. The solution of valerianate of soda is then to be evaporated to dryness, and the residual salt partially liquefied to obtain it in the anhydrous state.

Valerianate of soda (NaO,Va) crystallizes with difficulty, but may be obtained in a cauliflower-like mass. It begins to fuse at 268°, and on cooling forms a white solid mass, which has a greasy or soapy feel. Its odour resembles that of the acid: its taste is sweet, but nauseous. It is deliquescent, and soluble in both water and alcohol. Heated in a platinum capsule, if it first fuses, then decomposes, evolves a vapour which burns with a yellow flame, and leaves a residue of carbonate of soda. If to an aqueous solution of the valerianate of soda, hydrochloric acid be added, the valerianic acid is set free, and floats on the solution.

Valerianate of soda is used for the preparation of other valerianates; as those of iron, quinine, and zinc.

5. **ZINCI VALERIANAS, D.; Valerianate of Zinc.** (Take of Valerianate of Soda, 3iiss.; Sulphate of Zinc, 3ij., and 3viij.; Distilled Water, Oij. Dissolve the valerianate of soda in one-half, and the sulphate of zinc in the remaining half of the water, and, having raised both solutions to 200°, mix them, and skim off the crystals which are produced. Let the solution be now evaporated at a temperature not exceeding 200°, until it is reduced to the bulk of four ounces, removing, as before, the crystals from the surface, in proportion as they form, and placing them with those already obtained. The salt thus procured is to be steeped for an hour in as much cold water as is just sufficient to cover it, and then transferred to a paper filter, on which it is to be first drained, and then dried at a heat not exceeding 100°.)—By the mutual action of valerianate of soda and sulphate of zinc, we obtain sulphate of soda and valerianate of zinc: the former salt remains in solution, while the latter separates and floats on the solution. Prepared in this way, valerianate of zinc is anhydrous, and its composition is represented by the formula ZnO,Va. But if valerianate of zinc be prepared by stirring carbonate of zinc with so little water as to form a paste, and adding the calculated quantity of valerianic acid, we obtain a hydrated salt whose composition is ZnO,Va,12HO.1

The anhydrous salt crystallizes in snow-white, pearly plates, like boracic acid. It has a faint odour of valerianic acid, and a metallic astringent taste combined with that of the acid. It dissolves in 160 parts of cold water, and in 60 parts of alcohol. The solutions have an acid reaction, become turbid on the application of heat, but become again clear on cooling. Cold ether takes up only \(\frac{1}{50} \) th, boiling ether \(\frac{1}{40} \) th, of the salt.2 The hydrated salt is more soluble, and requires only 44 parts of water to dissolve it.

Valerianate of zinc is subject to adulteration. According to Laroque and

1 Wittstein, *Buchner's Repertorium*, 3ttc Reihe, Bd. i. S. 189, 1848.
Iluraut, butyrate of zinc is sometimes substituted for it. To detect this, add sulphuric acid, and subject the mixture to distillation to separate the volatile acid. If this be butyric acid, it immediately causes a bluish white precipitate when added to a concentrated solution of acetate of copper: whereas, valerianic acid causes no precipitate; but, on shaking it with the solution, it gives rise to some oily drops of anhydrous valerianate of copper. Another fraud consists in substituting acetate of zinc flavoured with oil of valerian. This may be distinguished by its odour, and by its yielding acetic ether (recognised by its odour), when mixed with a little proof spirit and one-fourth the volume of oil of vitriol.

This salt was first introduced into medicinal use by Prince Louis Lucien Bonaparte. Its physiological effects are not very obvious: they have been assumed, however, to combine those of valerian and zinc. But, before this is admitted, it must be shown that valerianic acid is the essential active ingredient of valerian, which I do not believe to be the case. Dr. Devoy states that, in doses of 2½ grains, it produces a little headache, slight vertigo, and some confusion of hearing.

Valerianate of zinc has been employed in medicine as an antispasmodic, chiefly in neuralgia, but also in some other neuroses—as epilepsy. It is reported by several practitioners to have produced beneficial results; but, although I have repeatedly employed it, I am unable to report favourably of its effects.

The dose of it is from one to six or more grains. It may be administered either in the form of pill, or dissolved in water. As a topical astringent and sedative, it has been employed in chronic conjunctivitis, in the form of collyrium, prepared by dissolving from 2 to 4 grains of the salt in two ounces of distilled water.

6. FERRI VALERIANAS, D.; Valerianate of the Sesquioxide of Iron; Valerianate of Iron. (Take of Valerianate of Soda, 3 v. and 3 ii.; Sulphate of Iron, 5iv.; Distilled Water, Oj. Let the sulphate of iron be converted into a persulphate, as directed in the formula for Ferri Peroxydum Hydratum, and, by the addition of distilled water, let the solution of the persulphate be augmented to the bulk of eight ounces. Dissolve the valerianate of soda in ten ounces of the water, then mix the two solutions cold, and, having placed the precipitate which forms, upon a filter, and washed it with the remainder of the water, let it be dried by placing it for some days rolled up in bibulous paper on a porous brick. This preparation should be kept in a well-stopped bottle.)—When valerianate of soda and sulphate of the sesquioxide of iron are mixed, double decomposition ensues, sulphate of soda is formed in solution, and valerianate of the sesquioxide of iron (Ferri Valerianas, D.) is precipitated.

According to Wittstein, the formula for valerianate of iron is

4 Journ. de Pharm. 3me sér. p. 141, 1844; and Chemical Gazette, vol. ii. p. 469, 1844.
5 For further details and references, see Dierbach, Die neuest. Entdeck. in d. Mat. Med. Bd. iii. S. 486, 1845; Aschenbrenner, Die neueren Arzneim. 1848; and Dunglison’s New Remedies, 6th ed. p. 699, 1851.
6 Chemical Gazette, vol. iii. p. 327, 1845. See also Wittstein’s second analysis, Pharm. Central-Blatt für 1848, S. 732.

3Fe₂O₃,7Va₂2HO or 7(Fe₂O₃,3Va) + 2(Fe₂O₃,3HO). The valerianate of iron precipitated in the cold is, therefore, a basic salt, the two equivalents of acid required to produce a neutral salt being replaced by two equivalents of water. If the valerianate be prepared with warm solutions, its composition, according to Rieckher,¹ is 4Fe₂O₃,9Va, without regarding the water, which he considers as hygroscopic.

Valerianate of iron, prepared according to the Dublin College, is a tile-red loose amorphous powder with a faint odour and taste of valerianic acid. When heated it first fuses, then evolves its acid, and is converted into sesquioxide of iron. At a temperature of 212° it gives out part of its acid. It is nearly insoluble in water; it does not intermix well with cold water, but repels it like lycopodium; and boiling water gradually extracts the acid from it. It dissolves in acids and in alcohol.

Various adulterations are said to be practised with it. Citrate and tartrate of iron, flavoured with a few drops of oil of valerian, have been extensively sold; but these substitutes are soluble in water and insoluble in spirit. Another substitute is in the form of a brown powder soluble in water and in spirit. It smells of valerianic acid, but on being decomposed with hydrochloric acid or sulphuric acid, yields no appreciable quantity of the oily product.²

The valerianate of iron which I have found in the most respectable shops in London is only partially soluble in alcohol. It does not dissolve in water, but when gently heated with hydrochloric acid it dissolves and evolves a considerable quantity of valerianic acid which floats on the solution.

It is but little employed in medicine; nor is it probable that it will come into use, on account of its insolvency in water, its disagreeable odour, and its liability to adulteration. It possesses the medicinal qualities of the sesquioxide of iron and valerianic acid combined. It may be used in chlorosis or anaemia complicated with hysteria. The dose of it is from two to four grains in the form of pill.

7. Quine Valerianas, D.; Valerianate of Quinine.—(Take of Muriate of Quina, 3vij.; Valerianate of Soda, gr. clxxiv.; Distilled Water, 3ɔv.) Dissolve the valerianate of soda in two ounces, and the muriate of quina in the remainder of the water, and, the temperature of each solution being raised to 120°, but not higher, let them be mixed, and let the mixture be set by for four-and-twenty hours, when the valerianate of quina will have become a mass of silky acicular crystals. Let these be pressed between folds of blotting paper, and dried without the application of artificial heat. Instead of weighing out seven drachms of muriate of quina, and dissolving it in water, as is above prescribed, we may employ the solution of the muriate prepared from an ounce of the sulphate as directed in the formula for Quina Muriatas, such solution having been first evaporated to fourteen ounces. It may be observed here, that should it become necessary to evaporate a liquid containing valerianate of quina, care must be taken that its temperature does not rise higher than 120°.)—By the mutual action of the hydrochlorate or mu-

Valerianate of Quinine.—Nat. Ord. Rubiaceae. 1387

Valerianate of quinine and of the valerianate of soda we obtain, by double decomposition, chloride of sodium and valerianate of quinine: the last mentioned salt separates as a crystalline form. \(\text{Q}_2\text{HCl} + \text{NaO}_3\text{Va} = \text{NaCl} + \text{Q}_2\text{Va} + \text{HO} \).

Valerianate of quinine crystallizes in colourless rhomboidal tablets with a slight mother-of-pearl lustre, or in white opaque radiately grouped needles. \(\text{Q}_2\text{Va} \ 2\text{HO} \). It has a faint odour of valerianic acid and a bitter taste. It dissolves in 110 parts of cold, and in 40 parts of boiling water; in 6 parts of cold, and in equal parts of boiling alcohol, of sp. gr. 0.863; and likewise in ether. All the solutions are neutral.

There is also an amorphous resinous-looking valerianate of quinine obtained by concentrating the solution at a temperature above 130\(^\circ\); and which is scarcely soluble in water. Its composition, according to Wittstein,\(^1\) is \(\text{Q}_2\text{Va} \ 4\text{HO} \).

A spurious valerianate of quinine has been met with in commerce. It consists of the disulphate of quinuic to which a few drops of oil of valerian have been added to disguise it.\(^2\) When added to water this yields a thin film of oil. It dissolves in about 30 parts of boiling water; and as the solution cools it deposits the well-known crystals of disulphate of quinine.

Valeriana e of quinine was first prepared by Prince Louis Lucien Bonaparte,\(^3\) who tried it on some of the inhabitants of the marshy region, la Maremma, of Rome, and found that it produced less disorder of the nervous system than sulphate of quinine. It has also been employed by Devay,\(^4\) Castighoni,\(^5\) and others, as an antiperiodic and an antispasmodic in intermittent and remittent diseases, especially intermittent neuralgia.

It may be administered in doses of from one to three or four grains, either in the form of pill, or in that of a mucilaginous mixture. If given in the latter form it must be remembered that it is readily decomposed by acids. Dissolved in sixty parts of oil it has been used as a liniment rubbed over the region of the spleen.

Order LIII. Rubiaceae, Jussieu.
Cinchonaceae and Galiaceae, Lindley.

Characters.—Tube of the calyx adherent to the ovary; limb various, truncated or many-lobed, frequently regular; the lobes as many as those of the corolla, rarely intermixed with accessory teeth. Corolla gamopetalous, inserted into the top of the tube of the calyx; lobes usually 4 to 5, rarely 3 to 5; contorted or valvate in estivation. Stamens as many as, and alternate with, the lobes of the corolla; more or less adnate to the tube of the corolla; anthers oval, bilocular, turned inwards. Ovaria within the calyx to which it coheres, usually 2- or many-celled, rarely by abortion 1-celled, crowned with a fleshy urceolus, from which a single style arises. Stigmas usually 2, distinct, or more or less coherent, rarely many, distinct, or coherent. Fruit baccate, capsular, or drupaceous,

1 Chemical Gazette, vol. iii. p. 326, 1845.
5 Quoted by Bouchardat, Ann. de Thérapeutique pour 1845.

VOL. II.
Vegetables.—Nat. Ord. Rubiaceae.

1 or many celled; the cells 1, 2, or many-seeded. Seeds in the 1-seeded cells attached to the apex, or usually at the base; in the many-seeded ones, connected with a central placenta, usually horizontal: albumen horny or fleshy, large: embryo straight, or somewhat curved, in the midst of albumen; the radicle terete, turned to the hilum; the cotyledons folicaceous (De Cand.)—Trees, shrubs, or more rarely herbs. Leaves simple, quite entire, opposite, or rarely verticillate, with stipules. Flowers arranged variously, rarely unisexual by abortion.

Properties.—The roots often abound in colouring matter, and hence are used in dyeing; as some of those belonging to the genera Rubia, Gardenia, Hedyotis, Genipa, Galium, Asperula, Palicourea, Oldenlandia, &c. Many roots possess emetic properties, as those of Cephaelis, Psychotria, Richardsonia, Spermacoce, Manettia, Chiococca, &c.

The barks are often bitter, astringent, and somewhat aromatic; and are eminently distinguished for their tonic, febrifuge, and antiperiodic qualities, as those of Cinchona, Exondema, Coutarea, Cosmiluena, Remija, Hymenodictyon, Pinkneya, &c.

The important use of the torrefied albumen of Coffea arabica is well known. It is probable that the albumen of other species possesses analogous properties: that of Psychotria herbacea has been used for similar purposes.

Sub-order I. Coffeaceæ, Endl.

Characters.—Ovules solitary, or very rarely 2 in each cell. Fruit with 1, very rarely 2, seeds in each cell.

227. Rubia tinctorum, Linn.—Dyer’s Madder.

Sex. Syst. Tetrandria, Monogynia.

(Radix.)

*Ερυθρόδαναυον Hippocrates, de Morb. Mul. lib. 1, &c.; το σπαρτόν ἐρυθρόδανον Dioscorides, lib. iii. cap. 169; *Rubia*, Pliny, lib. xix. cap. 17; and lib. xxiv. cap. 56. According to Beckmann (Hist. of Invent. and Discoveries, vol. iii. p. 275), it was called *Varantia* in the middle ages.—An herbaceous plant.—Root perennial, horizontal, long, crouching, reddish brown. Stems several, herbaceous, tetragonal, with hooked prickles. Leaves somewhat membranous. Flowers small, yellow. Berries dark purple. A native of the Levant and south of Europe; cultivated in France, Holland, &c. for the sake of the roots.—The variety *b* Iberica is said to yield the best roots for tintorial purposes.

Madder roots (*radix rubia tinctorum*) are long, cylindrical, about the thickness of a writing quill, branched, externally deep reddish brown. They consist of a dark easily separable cortex, whose epidermis is thin, and of a ligneous medullitum, which in the fresh state is yellow, but by drying becomes reddish. The odour of the root is feeble; the taste is bitter and astringent. The microscope discovers abundance of needle-shaped crystals (*raphides*) in the cells of the cortex of the root.

In commerce madder occurs in two forms,—in the entire root, and in the ground or pulv erized state.

1. The name of *lizari* or alizari1 is applied to the entire roots. The sort which is usually found in English commerce is the *Levant*, Turkey, or *Smyrna* Madder. It is cultivated in Greece and Turkey. Petter states that the best sort is that obtained from *Rubia peregrina* (which is by some regarded as a mere variety of *R. tinctorum*). In France, the *lizari* of *Avignon* is the kind usually found in the markets. *East India* madder or *munjeet* is the produce of *Rubia Munjeeta*, Roxb.

2. Ground or prepared madder, called in France *garance*, is imported from Holland and France. Dutch or *Zealand* madder is of four kinds, viz. *crops* (the best), *ombro*, *gamene*, and *null* (the worst). *Austrian* madder has replaced the Dutch sort in French manufactories. It is manufactured at Strasburgh, Hagenau, and Geisselbrunn. *Avignon* madder is the kind most generally used in France.2

1 The Turkish word alizari is derived from *μισθός*, the modern Greek name for madder.

Small quantities of Spanish Madder are imported. The powdered madders are subject to adulteration. The substances employed for this purpose are mineral or vegetable. The mineral substances are brick-dust, ochre, sand, and argillaceous earths. The vegetable substances are saw-dust, bran, almond shells, &c. To determine the tinctorial value of commercial madders, Labillardière used a colorimeter. Others have determined it by dyeing; and some by the quantity of the colouring principle. (For details the reader is referred to Girardin's paper before quoted.)

Madder root has been analyzed by Bucholz,¹ by John,² and by Kuhlmann.³

<table>
<thead>
<tr>
<th>Bucholz</th>
<th>Kuhlmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resinous red colouring matter</td>
<td>Red colouring matter</td>
</tr>
<tr>
<td>Extractive ditto</td>
<td>Yellow ditto (Xanthin).</td>
</tr>
<tr>
<td>Reddish brown substance, soluble in potash and hot alcohol</td>
<td>Mucliage.</td>
</tr>
<tr>
<td>A pungent extractive</td>
<td>Nitrogenous matter.</td>
</tr>
<tr>
<td>Gummy matter</td>
<td>Bitter substance.</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>Gum.</td>
</tr>
<tr>
<td>Matter soluble in potash</td>
<td>Sugar.</td>
</tr>
<tr>
<td>Vegetable salts of lime, with colouring matter</td>
<td>Woody fibre.</td>
</tr>
<tr>
<td>Water</td>
<td>Vegetable acid.</td>
</tr>
<tr>
<td>Loss</td>
<td>Porous resin.</td>
</tr>
<tr>
<td>Madder root</td>
<td>Salts in the ashes.</td>
</tr>
</tbody>
</table>

Madder root.................100:0

The colouring matter of madder has been the subject of repeated investigation. Decaisne⁴ has shown that in the living state madder root contains only yellow colouring matter. This is held in solution, and resides not in any peculiar vessels or secretory apparatus, but in the cellular tissue and latex vessels. Nor is it confined to the root, for in the stem of full grown plants, larger or smaller spots are here and there found, where the cells and spiral vessels are filled with it. As the root becomes older the yellow liquid becomes deeper coloured. By exposure to atmospheric oxygen this yellow liquid becomes red, cloudy, and granular; the granules appearing to be of a gummy-resinous nature, and partly soluble in alcohol.

Several chemists have investigated the nature of the colouring matter of madder: those which deserve to be especially mentioned are Robiquet and Colin,⁵ Gaultier de Claubry and Persoz,⁶ Runge,⁷ Schunck,⁸ Debus,⁹ Streeker,¹⁰ and Rochleder.¹¹ The result of their investigation has been the production of several colouring matters, which, if Decaisne’s observations be correct, must be derived from a single principle.

Runge states that madder contains two colourless acids (termed respectively madderie and rubiace acids) and five colouring matters, which he calls respectively madder purple, madder red, madder orange, madder yellow (the xanthin of Kuhlmann) and madder brown. Of these, however, the two red colouring matters (madder purple and madder red) alone require separate notice.

1. Alizarine, Robiquet and Colin; Red colouring matter, Claubry and Persoz; Madder red, Runge; Lizaric acid, Debus. This occurs in two forms, the anhydrous and hydrated. Anhydrous alizarine (C₃0H₃0 according to Streeker; C₃0H₃0O₉ according to Rochleder) has a red colour passing more or less into yellow. It fuses and sublimes in

¹ Gmelin, Handb. d. Chem. ii. 1280.
² Ibid.
⁴ Recherches Acanth. et Physiol. sur la Garance, Bruxelles, 1837. Also, Meyen’s Report on the Progress of Vegetable Physiology during the year 1837, translated by W. Francis, p. 49, Lond. 1839; and Journ. de Pharmacie, t. xxiv. p. 424, 1838.
⁶ Ibid. xlvi. 69.
⁷ Records of Science, ii. 452; and iii. 44 and 135.
¹¹ Chemical Gazette, Jan. 15, 1852.
orange-coloured needles. It dissolves in boiling water, in alcohol, and in ether. The solutions are yellow. The slightest trace of alkali colours the aqueous solution red. It dissolves in alkaline solutions. The liquid obtained is, if dilute, violet coloured, but if concentrated, blue by reflected, and purple by transmitted light. It is insoluble in a cold solution of alum. It forms a red solution in hydrated sulphuric acid. *Hydrated alizarine* (C₁₀H₄₈O₂₆ or C₁₀H₄₈O₆+4aq) occurs in small scales having the appearance of mosaic gold.

2. *Purpurine*, Robiquet and Colin; *Madder-purple*, Runge; *Oxylizarie acid*, Debus. This differs from alizarine chiefly in its solubility in solution of alum: the resulting liquid has a fine bright red colour, — by reflected light an orange colour. *Anhydrous purpurine* (C₁₀H₄₂O₆) is in the form of red acicular crystals. It dissolves more readily in warm water than alizarine: it is also soluble in alcohol, ether, concentrated sulphuric acid, and potash. Its aqueous, alcoholic, and potash solutions are red: by the colour of its potash solution it may be distinguished from alizarine. *Hydrated purpurine* (C₁₀H₄₂O₆ or C₁₀H₄₂O₆+4aq) is in the form of orange-coloured crystals.

The influence of madder over the system is exceedingly slight. Its topical effect is scarcely obvious. Home¹ ascribed to it emmenagogue qualities. Others have declared it to be diuretic. Neither of these effects, however, were observed by Dr. Cullen.² It may, perhaps, possess mild astringent and tonic properties.

But the most remarkable physiological effect of madder is that of colouring the bones of animals fed with it, red. This fact was noticed by Belcher,³ though Beckmann⁴ has adduced evidence to prove that some hints of it are to be found in the works of the ancients. This effect on the bones is produced more effectually, and in a much shorter time, in young than in old animals. In birds, the beak and claws became coloured. As the nerves, cartilages, aponeuroses, tendons, and periosteum are not tinged, the effect is ascribed to the chemical affinity of the phosphate of lime for this colouring matter. Mr. Gibson⁵ accounts for it as follows: — The blood charged with the red particles imparts its superabundance of them to the phosphate as it circulates through the bones. But as soon as the blood is freed from the madder by excretion, the serum then attains the colouring matter, and in a little time entirely abstracts it.

This hypothesis has, however, been combated by Mr. Paget,⁶ who asserts that the madder colours only those particles of phosphate of lime which are deposited during its use, and that it has no influence on the phosphate already existing in the bones before its administration, nor has the serum any chemical power to remove the colour from the phosphate once tinged. The coloured phosphate does indeed regain its whiteness after a time, when the madder is no longer exhibited; but this he ascribes to the "gradual decomposition of the madder, as reddened skeletons gradually lose their colour when exposed to air and light." As, however, living bones are not subjected to the same influence of air and light (powerful decolorizers), which the skeletons referred to are, the analogy does not hold good; and this part of Mr. Paget's hypothesis is, therefore, unsatisfactory.

Tiedemann and Gmelin⁷ could not detect the colouring matter of madder in the chyle; and the red tint of the serum prevented them ascertaining its existence in the blood, though of this scarcely a doubt can exist, inasmuch as it has been found in the excretions (for example, urine, milk, and sweat).

It was formerly a favourite remedy in jaundice, in which disease Sydenham used it.⁸ On account of its capability of tinging the bones red, it has been recommended in rickets and mallities ossium, on the supposition of its promoting the deposition of bone earth,⁹ but this notion appears to be groundless. Home¹⁰ employed it as an emmenagogue in uterine complaints. — The dose of it is 3s. to 3f. three or four times a day.

¹ Clinical Experiments, p. 482, 2d edit.
² Med. Trans.
³ Phil. Trans. vol. xxxix.
⁴ Hist. of Invented and Discoveries, iii. 279.
⁵ Manchester Memoirs, i. 146, 2d ser.
⁸ Sydenham's Works, by Dr. Pechey, 4th edit. p. 150, 1705.
⁹ Journ. de Méd. t. xxxvii. 1772.
¹⁰ Clin. Exper.
228. CEPHAÉLIS IPECACUANHA, Richard.—THE TRUE IPECACUANHA.

Sex. Syst. Pentandria, Monogynia.
(Radix, L.—Root, E. D.)

History.—Ipecacuanha is first mentioned by Michael Tristram,1 who calls it Iypecau or Pitaya. In 1684 it was described and figured by Piso.2 In 1686 it was celebrated in Paris as a remedy for dysentery. It appears that Jean-Adrian Helvetius (then a young man) attended with Afforty, a member of the faculty, a merchant, named Grenier, or Garnier, who, when he recovered from his illness, gave to his physician, as a testimony of his gratitude, some of this root, as a valuable remedy for dysentery. Afforty attached very little importance to it, but gave it to his pupil, Helvetius, who tried it, and thought he had found in it a specific against dysentery. Numerous placards were placed about the streets of Paris, announcing to the public the virtues of the new medicine, which Helvetius sold without discovering its nature. Luckily for him, some of the gentlemen of the court, and even the Dauphin, the son of the king (Louis XIV.), were at this time afflicted with dysentery. Being informed by his minister Colbert of the secret possessed by Helvetius, the king deputed his physician Aquin and his confessor Le P. de Chaise to arrange with Helvetius for the publication of the remedy. 1000 louis-d'or was the price which was paid, after some trials had been made with it at the Hôtel-Dieu, and which were crowned with the most brilliant success. Garnier now put in his claim for a part of the reward, saying that he, properly speaking, was the discoverer of the medicine; but the claim was not allowed. Subsequently Helvetius obtained the first medical honours of France. He wrote a treatise, describing the use of ipecacuanha in diarrheea and dysentery.3

Great confusion existed for a long time respecting the plant yielding Ipecacuanha. In 1800, Dr. Gomes returned from the Brazils, and brought with him the plant, on which he published a dissertation. In 1802 Brotero4 described it under the name of Callicocca Ipecacuanha, which Richard5 afterwards changed to Cephaéliis Ipecacuanha.

Botany. Gen. Char.—Tube of the calyx obviolate; limb very short, 5-toothed. Corolla somewhat funnel-shaped; its lobes 5, small, rather obtuse. Anthers inclosed. Stigma bifid, usually exserted. Berry obovate-oblung, crowned with the remains of the calyx, 2-celled, 2-seeded (De Cand.)

Sp. Char.—Stem ascending, at length erect, somewhat pubescent at the apex. Leaves oblong-ovate, rough above, finely pubescent beneath. Stipules cleft into setaceous segments. Heads terminal, erect, at length pendulous. Bracts 4, somewhat cordate (De Cand.)

Root perennial, annulated, simple, or divid-

1 Purchas, Pilgrimes, fol. vol. iv. 1311.
3 K. Sprengel, Hist. de la Méd. t. v. p. 408.
5 Bull. de la Soc. de la Fac. de Méd. 1818.
ing into a few diverging branches, flexuous, from 4 to 6 inches long; when fresh, pale brown externally. Stcm somewhat shrubby, 2 or 3 feet long, emitting runners. Leaves rarely more than 4 or 6, placed at the end of the stem and branches; petioles pubescent, which are connected to each by the erect stipules. Stipules membranous at their base. Peduncles solitary, erect when in flower, reflexed when in fruit. Head semiglobose, 8- to 10-flowered. Involucrum 1-leaved, spreading, deeply 4- to 6-parted; segments obovate. Bracts acute, pubescent; a single one to each flower. Calyx minute. Corolla white. Stamens 5. Ovary obovate; style filiform, white; stigmas linear, spreading. Berry soft, fleshy, violet-black. Seeds (nucules) pale, plane-convex: albumen horny.¹

Hab.—Brazil; in moist shady situations from 8° to 20° south latitude. Abundant in the valleys of the granitic mountains, which run (more or less distant from the sea) through the provinces of Rio Janeiro, Espirito Santo, and Bahia; also met with in Pernambuco. Humboldt and Bonpland found it on the St. Lucar mountains of New Granada.

Collection of the Roots.—The roots are gathered at all seasons of the year, though more frequently from January to March inclusive; and as no care is taken in the cultivation of the plant, it has become scarce around the principal towns. Those Brazilian farmers who reside in the neighbourhood of the plant carry on considerable commerce with it. The native Indians also are very assiduous in the collection of it. Those called by the Portuguese Coroados, who live near the river Xipotó, in the province of Minaes, as well as their neighbours, the Puri, are the greatest collectors of it. They sometimes leave their villages for two months at a time, fixing their habitations in those places in which this plant abounds. They cut the roots from the stems, dry them in the sun, and pack them in bundles of various sizes and forms.²

Ipecacuanha is imported into this country from Rio Janeiro, in bales, barrels, bags, and serons.

Description.—The root of this plant is the ipecacuanha (radix ipecacuanha) of the shops. No other root is known in English commerce by this name. By continental writers it is denominated annulated ipecacuanha (radix ipecacuanha annulata), to distinguish it from the roots of Psychotria emetica and Richardsonia scabra; the first of which is termed striated ipecacuanha—the second, undulated ipecacuanha: both of which will be described hereafter.

The root of Cephaēlis Ipecacuanha occurs in pieces of three or four inches long, and about the size of a small writing-quill; variously bent and contorted; simple or branched. It has a knotty appearance, in consequence of a number of deep circular fissures about a line in depth, and which extend inwardly to a central ligneous cord, so as to give the idea of a number of rings strung upon a thread (hence the name, annulated). These rings are unequal in size, both with respect to each other and to different parts of the same ring. This root has a resinous fracture. Its substance consists of two parts: one called the cortical portion, which is brittle and resinous, of a horny appearance, with a grayish or brownish-gray colour—sometimes whitish; and a second, called meditullum, and which consists of a thin, yellowish-

² Martius, op. cit. p. 6.
white, woody, vascular cord, running through the centre of each piece. In 100 parts of good ipecacuanha, there are about 80 of cortex and 20 of meditullium. Ipecacuanha root has an acid, aromatic, somewhat bitter taste, and a slightly nauseous, but peculiar odour. The colour of the root varies somewhat, being brownish, reddish-brown, grayish-brown, or gray.

Fig. 322.

Brown Ipecacuanha Root.

a, Ringed portion. b, Portion of a root without rings.

Richard, Merat, and Guibourt admit three varieties of annulated ipecacuanha, whose principal distinction is the colour of the epidermis. The age of the root, the nature of the soil, and the mode of drying, are among the different circumstances producing these varieties. Sometimes they are met with in the same bale.

Var. a. Brown Annulated Ipecacuanha, Richard; *Brown Ipecacuanha,* Lemery. *(Radix Ipecacuanha annulata fusce;)*—This is the best kind. The greater part of the ipecacuanha of commerce consists of this variety. Its epidermis is more or less deeply brown, sometimes even blackish; its fracture is gray or brownish, its powder is gray. The cortical portion has a horn appearance. The root which I have received from Professor Guibourt, as blackish gray *ipecacuanha,* is somewhat less brown. It is the gray or annulated *ipecacuanha* of Merat.

I have occasionally found in commerce a brown non-annulated variety of ipecacuanha (fig. 322 b) imported in distinct bales. It consists of slender, cylindrical, often-branched pieces, frequently several inches long, smooth, or slightly warty, but not annulated or moniliform, with a very thin cortex, and a woody meditullium of the usual size, or thicker. These pieces appear to be the subterraneous bases of the stems or runners, and the ends of the roots. Occasionally pieces of the brown annulated ipecacuanha are found attached.

Var. b. Red Annulated Ipecacuanha, Richard.—This differs from the preceding by the lighter and reddish colour of its epidermis, by its less powerful odour, and by its want of aromatic taste. Sometimes it has, when broken, the same horny and semi-transparent quality of the brown ipecacuanha, but more frequently it is opaque, dull, and farinaceous; in which case it is generally less active. These differences probably depend on the nature of the soil on which the plant grew. The root which I have received from Professor Guibourt under the name of reddish gray annulated *ipecacuanha,* is scarcely so red as the pieces which I have met with in English commerce. It is the red gray *ipecacuanha* of Lemery and Mérat.

Var. γ Gray Annulated Ipecacuanha, Richard; *White Gray Ipecacuanha,* Mérat; *Greater Annulated Ipecacuanha,* Guibourt.—The colour of this variety is grayish-white. Professor Guibourt has met with it of a reddish-gray colour. Gray ipecacuanha occurs in pieces of larger diameter than either of the foregoing kinds, with fewer, more irregular, and less prominent rings. Guibourt says that of late years considerable quantities of it have arrived unmixed with the ordinary sort, and he therefore thinks that it is a distinct kind coming from a different part of Brazil, and derived from another species of Cephaelis.

3. *Hist. des Drog. tom. iii. p. 79, 4me éd. 1850.*
I have found, in English commerce, a gray ipecacuanha, whose roots were not longer than the brown variety, but whose rings were imperfectly developed.

Composition.—The most important analyses of ipecacuanha are those of Pelletier,1 Richard and Barruel,2 Bucholz,3 and more recently by Willigk.4

Pelletier’s Analyses.

<table>
<thead>
<tr>
<th>Brown Annulated Ipecacuanha</th>
<th>Red ditto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex.</td>
<td>Meditullium.</td>
</tr>
<tr>
<td>Emetina</td>
<td>16</td>
</tr>
<tr>
<td>Odorous fatty matter</td>
<td>2</td>
</tr>
<tr>
<td>Wax</td>
<td>6</td>
</tr>
<tr>
<td>Gum</td>
<td>10</td>
</tr>
<tr>
<td>Starch</td>
<td>42</td>
</tr>
<tr>
<td>Ligneous matter</td>
<td>20</td>
</tr>
<tr>
<td>Non-emetic extractive</td>
<td>0</td>
</tr>
<tr>
<td>Loss</td>
<td>4</td>
</tr>
<tr>
<td>Ipecacuanha</td>
<td>100</td>
</tr>
</tbody>
</table>

Bucholz’s Analysis.

- Emetine extractive [emetina] | 4:13 |
- Soft resin | 2:43 |
- Wax | 0:75 |
- Gum | 25:17 |
- Starch | 9:00 |
- Woody fibre | 10:80 |
- Bitter extractive | 10:12 |
- Sugar | 2:00 |
- Extractive, gum, and starch, extracted by potash | 34:80 |
- Loss | 0:80 |
| Ipecacuanha | 100:00 |

Willigk’s Analysis.

- Fat (small quantity).
- Unpleasant smelling volatile oil.
- Gum.
- Starch.
- Pectin.
- Emetina.
- Ipecacuanha acid.
- Woody fibre.

1. Odorous fatty matter.—It is extracted from ipecacuanha by ether. It is of a brownish-yellow colour, soluble in alcohol and ether, to both of which it communicates a yellow colour. Its odour is very strong, and similar to that of the essential oil of the horse-radish: it becomes insupportable when heat is applied, but is weak, and analogous to that of the ipecacuanha root, when diluted. The taste is acrid; the specific gravity is greater than that of alcohol. This fatty matter consists of two substances; 1st, a very fugacious volatile substance, which is the odorous principle of ipecacuanha root; 2dly, a fixed fatty matter (which some chemists have mistaken, when mixed with emetina, for resin), having little or no odour. Notwithstanding its strong taste and odour, the fatty matter of this root does not seem to have any effect on the stomach. Given in large doses to animals it had no sensible operation. Caventou took six grains at one time, but experienced no marked effects therefrom. Pelletier and Magendie swallowed some grains of it, and experienced a disagreeable impression on the throat, but it was temporary only.

2. Emetina.—When first discovered by Pelletier and Magendie, in 1817, it was termed la matière vomitice, or emetine (from ἐπίνω, I vomit.)

Pure emetina is white (when not absolutely pure it has a grayish-yellow tinge), pulvulential, odorless, with a slight bitter taste; fusible at 122° F.; very slightly soluble in cold, but much more so in hot water; very soluble in alcohol, but scarcely soluble in ether and oils. It dissolves in acids, the acidity of which it does not entirely destroy.

1 Journ. de Pharm. iii. 148.
2 Ibid. vi. 264.
3 Gmelin, Handb. de Chem. ii. 1281.
The salts of emetina are slightly acid, and very crystallizable. They form gummy masses in some only of which are traces of crystallization occasionally found. Emetina restores the blue colour of litmus which has been reddened by an acid. I find that the yellowish-white emetina, sold in the shops under the name of pure emetina, is coloured red by nitric acid, the red colour being much deepened on the addition of ammonia. An alcoholic solution of iodine, added to an alcoholic solution of emetina, produces a reddish precipitate (hydriodate of emetina?). Tincture of galls copiously precipitates solutions of emetina (tannate of emetina). The effect of these reagents on emetina is similar to their effect on morphia; but from this last substance emetina is distinguished by the salts of iron, which produce no change of colour in it.

The following is the composition of emetina:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>33</td>
<td>210</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9</td>
<td>72</td>
</tr>
</tbody>
</table>

| Total | 100.00 |

The following are stated by Magendie¹ as the effects of impure emetina:—From half a grain to two grains, given to cats and dogs, caused at first vomiting, then sleep. In doses of from six to ten grains, vomiting, sleep, and death took place. Dissection showed inflammation of the pulmonary tissues and of the mucous membrane of the alimentary canal, from the cardia to the anus. The same effects (namely vomiting, sleep, and death) were observed when impure emetina was dissolved in water, and injected into the jugular vein, into the pleura, into the anus, or into the muscular tissue. On man, a quarter of a grain excited nausea and vomiting; a grain and a half, or two grains, taken fasting, caused continued vomiting and decided disposition to sleep.

The effects of pure emetina are similar, but more energetic. In one case ¼ th of a grain caused vomiting in a man eighty-five years of age: two grains are sufficient to kill a dog.

Emetina has been proposed as a remedial agent, as a substitute for ipecacuanha, all the advantages of which it is said to possess in a much smaller dose, and without the unpleasant taste and odour which the root is known to have. I confess, however, I think very little advantage is likely to be gained by the substitution. When we wish to give emetina in a liquid form, it may be readily dissolved in water by the aid of acetic or dilute sulphuric acid.

3. STARCH.—The cortical portion of the root abounds in starch, the grains of which are compound, and consist of particles which present more or less flattened faces, some being nodular-shaped, others dihedral or trihedral at one end.

4. IPECACUANHA ACID, C₄H₄O₆.—This acid was mistaken by Pelletier for gallic acid. It is reddish-brown, bitter, soluble in ether, alcohol, and water. It colours the perals of iron green, and acts as a reducing agent on the salts of silver and mercury. It absorbs oxygen from the air and becomes darker coloured.

CHEMICAL CHARACTERISTICS.—A decoction of the root, filtered and allowed to cool, becomes, on the addition of a solution of free iodine, blue (iodide of starch). Tincture of nutgalls forms in the decoction, as well as in the tincture diluted with water, a grayish-white precipitate (tannate of emetina). Sesquichloride of iron communicates a greenish tint (ipecacuanhate of iron) to the decoction as well as to the diluted tincture. A solution of isinglass forms in the infusion, after twelve hours, a precipitate. Alcohol renders the decoction turbid (gum). Diacetate of lead forms with the tincture, and especially with the decoction, a precipitate (colouring matter, gum, and oxide of lead).

PHYSIOLOGICAL EFFECTS.—If the powder or dust of ipecacuanha be applied to the eyes or face, it acts as an irritant, and causes redness and

¹ Formulaire, 95.
swelling of these parts. Inhaled, it irritates the respiratory passages, and, in some persons, brings on difficulty of breathing, similar to an attack of spasmodic asthma. Mr. Roberts, surgeon at Dudley, is affected in this way; and I have received from him the following account of his case:—"If I remain in a room where the preparation of ipecacuanha is going on—for instance, making the pulv. ipecac. comp.—I am sure to have a regular attack of asthma. In a few seconds dyspnœa comes on in a violent degree, attended with wheezing and great weight and anxiety about the praecordia. The attack generally remains about an hour, but I obtain no relief until a copious expectoration takes place, which is invariably the case. After the attack is over I suffer no further inconvenience. I have always considered that the attack proceeds from the minute particles of the ipecacuanha floating in the atmosphere acting as an irritant on the mucous membrane of the trachea and bronchial tubes." In some cases the mere odour of the root seems sufficient to excite difficulty of breathing, with a feeling of suffocation.

There is one case recorded of poisoning by the incautious inhalation of the dust of ipecacuanha, in the process of powdering it, by a druggist's assistant. It is mentioned by Dr. Prieger. The patient, who was suffering with catarrh and cough, inhaled, during three hours, the dust from the root; in consequence of which, vomiting came on, followed by a tightness of the chest. An hour after this he complained of a sense of suffocation, and constriction of the trachea and throat: his appearance was pale and deathly. The physician who was called in bled him, and gave assafoetida and belladonna, with temporary relief; but in five hours a fresh attack came on, with the most imminent danger of suffocation. A strong decoction of uva-ursi, with the extract of rhatany, was administered, with almost immediate relief, and in an hour his breathing was much freer. He was able to leave the house in two days, but suffered several days with difficulty of breathing.

When taken in small and repeated doses, ipecacuanha principally directs its influence to the secreting organs, especially those of the chest, whose activity it promotes. It specifically affects the bronchial membrane, in some morbid conditions of which it promotes expectoration, while in others, attended with a profuse secretion of phlegm, it exerts a beneficial influence, and often contributes to the restoration of the part to its normal condition. In somewhat larger doses it creates nausea, with its concomitant phenomena, depression, increased secretion of saliva and buccal mucus, &c. If a diaphoretic regimen be adopted, it exerts a powerfully relaxing influence over the skin. In full medicinal doses it occasions vomiting, followed by a tendency to sleep. Its operation as an emetic is exceedingly safe, since inflammation is not produced by it, even when an overdose has been swallowed.

The vomiting produced by ipecacuanha is not so violent as that induced by emetic tartar, neither is it so long continued, nor attended with such nausea and depression. Furthermore, ipecacuanha is less disposed to act on the bowels. The tonic and astringent qualities of the zincic compounds, as well as their want of diaphoretic power, distinguish these emetic substances from ipecacuanha. Squill (with which ipecacuanha agrees in its expectorant and emetic qualities) is distinguished by its greater acridity, and by its influence not being concentrated on the pulmonary organs, as is the case with ipecacuanha.

1 Scott, Phil. Trans. for 1776, p. 168.
The most remarkable of the effects of ipecacuanha seem to be produced by
the agency of the eighth pair of nerves. "How singular it is," says Dr. M.
Hall,1 "that ipecacuanha taken into the bronchia should excite asthma, and
taken into the stomach should induce another affection of the respiratory
system, vomiting." Sundelin2 ascribes the red condition of the bronchial
membrane, and the congestion of the lungs of animals killed by emetine,
not to the specific stimulus exerted by this substance over the pulmonary
mucous membrane, but to an exhausting stimulus over the eighth pair of
nerves, by which a condition similar to suffocative catarrh (Steckflus) is
brought on; for he has observed the same appearances in the bodies of per-
sons who have died of this disease, where there was certainly no inflammatory
condition of the bronchial membrane, but a paralytic condition of its small
blood-vessels.

Uses.—Ipecacuanha is employed in full doses as an emetic, or in smaller
doses as an expectorant and nauseant.

1. In full doses, as an emetic.—The mildness of its operation adapts
ipecacuanha for the use of delicate and debilitated persons, where our object
is merely to evacuate the contents of the stomach. Thus it is well fitted for
the disorders of children requiring the use of emetics (as when the stomach
is overloaded with food in hooping-cough, croup, &c.), on account of the
mildness and certainty of its action. It is also exceedingly useful for adults
(in especially delicate females); thus, in gastric disorders, to evacuate undigested
acid from the stomach,—to promote the passage of biliary calculi,—as a counter-irritant at the commencement of fevers,—in many inflammatory
diseases (as acute mucous catarrh, cyananche, hernia humoralis, and ophthalmia),
—in asthma,—and as an evacuant in cases of narcotic poisoning. When the
indication is to excite gentle vomiting in very weak and debilitated frames,
Dr. Pye3 has shown that it may be effected frequently with the utmost ease and
safety by ipecacuanha in doses of from two to four grains. Dr. Cullen4 has
expressed some doubt with respect to the correctness of this statement;
but it is well known that ten grains of Dover's powder (containing one grain
of ipecacuanha) not infrequently cause vomiting.

The mildness of its operation is not the only ground for preferring ipeca-
cuanha to other emetic substances. Its specific power over the pulmonary
organs and the stomach leads us to prefer it in maladies of these parts, in
which vomiting is likely to be beneficial; especially in those affections in which
the nerves appear to be more than ordinarily involved, as spasmodic asthma
and hooping-cough. In the first of these complaints Dr. Akenside5 has shown
that it proves equally serviceable even when it fails to occasion vomiting, and
merely produces nausea. He gave a scruple, in the paroxysm, to create
vomiting, and, in the interval, five grains every morning, or ten grains every
morning. Dr. Wright6 recommends gentle emetics of ipecacuanha at the
commencement of the treatment of dysentery.

1 Lectures in the Lancet, for April 21, 1838.
2 Handb. d. sp. Helminthol. ii. 5.
3 Med. Obser. and Jour. vol. i. 240.
4 Mat. Med. ii. 474.
5 Med. Trans. i. 93.
6 Memoirs of, pp. 379 and 397.
2. In small doses, as a nauseant, antispasmodic, diaphoretic, and expectorant.—When given in doses insufficient to occasion vomiting, ipecacuanha is serviceable in several classes of complaints, especially those of the chest and alimentary canal.

a. In affections of the respiratory organs.—Nauseating doses of ipecacuanha are used with considerable advantage in acute cases of *mucous catarrh*. They favour expectoration and relaxation* of the cutaneous vessels. In milder and more chronic forms, smaller doses, which do not occasion nausea, will be sufficient. In children, who bear vomiting much better than adults, full nauseating or even emetic doses are to be preferred.

"When a child becomes hoarse, and begins to cough," says Dr. Cheyne,¹ "let every kind of stimulating food be withdrawn; let him be confined to an apartment of agreeable warmth; have a tepid bath; and take a draught of the following mixture every hour, or every two hours if it produces sickness:—R. Vini Ipecacuanhae, 3ij.; Syrups Tolut. 5v.; Mucil. Acaciae, 3j. Mix.; and all danger will probably be averted: whereas, if no change be made in the quality of the food, and if he be sent into the open air, he will probably undergo an attack of bronchitis or croup."

In *hooping-cough*, in which disease considerable benefit is obtained by the use of emetic substances, ipecacuanha is frequently administered with advantage. After giving it to create vomiting, it should be administered in nauseating doses. In *asthma*, benefit is obtained by it, not only when given so as to occasion nausea and vomiting, as above noticed, but also in small and repeated doses. In both this and the preceding disease, the benefit procured by the use of ipecacuanha arises not from the mere expectorating and nauseating operation alone of this remedy, but from its influence otherwise over the eighth pair of nerves. In *bronchial hemorrhage* (haemoptysis) the efficacy of ipecacuanha has been greatly commended. A. N. Asheim,² a Danish physician, gave it in doses of one-fourth of a grain every three hours during the day, and every four hours during the night. In this way it excites nausea, and sometimes even vomiting. It checks the hemorrhage, alleviates the cough, and relaxes the skin.

b. In affections of the alimentary canal.—In *indigestion*, Daubenton³ gave it in doses just sufficient to excite a slight sensation of vermicular motion of the stomach, without carrying it to the point of nausea. Eberle⁴ tried it, in his own case, with evident advantage. An anti-emetic quality has been assigned to it by Schönheider.⁵ In *dysentery*, ipecacuanha has gained no trifling celebrity, whence its name of *radix antidyserterica*. In severe forms of the disease no one, I suspect, now would think of relying on it as his principal remedy; but, as an auxiliary, its efficacy is not to be denied. The advocates for its use, however, are not agreed as to the best mode of using it. Sir George Baker⁶ and Dr. Cullen⁷ consider it to be of most benefit where it acts as a purgative; but this can scarcely be its *methodus*

4. *Treat. of the Mat. Med. i. 44, 2d edit.*
medendi. From my own observations of its use in the milder forms of dysentery met with in this country, I am disposed to ascribe its efficacy in part to its diaphoretic powers, since I have always seen it promoted by conjoining a diaphoretic regimen. But its tendency to produce an antiperistaltic movement of the intestines doubtless contributes to its antidysenteric property. It is best given, I think, in conjunction with opium. Its determination to the skin should be promoted by warm clothing, and the free use of mild, tepid aliments. Mr. Twining\(^1\) gave ipecacuanha in large doses (grs. vj.), with extract of gentian, without causing vomiting. Mr. Playfair\(^2\) recommends from half a drachm to a drachm of ipecacuanha, with from thirty to sixty drops of laudanum, to be given at the commencement of the disease.

\(\gamma\). \textit{In various other maladies.}—As a sudorific, ipecacuanha is given in combination with opium (see \textit{Pulvis Ipecacuanhe compositus}) in various diseases. On the continent it is esteemed as an antispasmodic. In uterine hemorrhage, also, it has been employed. In chronic visceral enlargements it has been administered as a resolvent.

\textbf{Administration.}—The usual dose of ipecacuanha, in \textit{powder}, as an \textit{emetic}, is grs. xv. But a much smaller quantity (for example, six, or four, or even two grains) will frequently suffice, as I have before mentioned. But a scruple, or half a drachm, may be taken with perfect safety. A commonly-used emetic consists of one grain of emetic tartar, and ten or fifteen grains of ipecacuanha. For infants, half a grain or a grain of this root is usually sufficient to occasion vomiting. In all cases the operation of the remedy should be assisted by diluents. As a \textit{nauseant}, the dose is from one to three grains. As an \textit{expectorant} and \textit{sudorific}, the dose should not exceed one grain: for infants, one-quarter or one-eighth of a grain. \textit{Ipecacuanha lozenges} contain usually from a quarter to half a grain of the powder, and may be used in catarrhal affections to promote expectoration. \textit{Infusion of ipecacuanha} (prepared by digesting $\frac{3}{8}$j. of the coarsely-powdered root in $\frac{3}{8}$vj. of boiling water) may be used as an emetic, in cases of narcotic poisoning, in doses of $\frac{3}{8}$j. to $\frac{3}{8}$ij.

\textbf{4. \textit{Vinum Ipecacuanha}}, L. E. D.; \textit{Wine of Ipecacuanha}. (Ipecacuanha, bruised, $\frac{3}{4}$jss.; Sherry Wine, Oij. Macerate for seven [fourteen, D.] days, and strain.)—According to Dr. A. T. Thomson, a pint (i.e. $\frac{3}{4}$vxj.) of wine takes up 100 grains of the soluble matter of ipecacuanha. This preparation is diaphoretic, expectorant, and emetic.—Dose for an adult, as a diaphoretic and expectorant, ηx. to ηx1.; as an emetic, $\frac{3}{8}$ij. to $\frac{3}{8}$iv. On account of the mildness of its operation, it is given, as an emetic, to children: the dose is from ηx to $\frac{3}{3}$j., according to the age of the child. It is also exceedingly useful as an expectorant in the diseases of infants: dose from ηy. to ηx.

\textbf{2. \textit{Syrupus Ipecacuanha}}, E.; \textit{Syrup of Ipecacuanha}. (Ipecacuanha, in coarse powder, $\frac{3}{8}$iv.; Rectified Spirit, Oj.; Proof Spirit and Water, of each, $\frac{3}{8}$xiv.; Syrup, Ovij. Digest the ipecacuanha in four fluidounces of the rectified spirit, at a gentle heat, for twenty-four hours; strain and squeeze the liquor, and filter. Repeat this process with the residuum and proof spirit,

\hspace{1cm}^1 \textit{Trans. of the Med. and Phys. Soc. of Calcutta}, vol. iv. p. 170.

and again with the water. Unite the fluids, and distil off the spirit till the residuum amount to twelve ounces; add to the residuum five fluidounces of rectified spirit, and then the syrup.)—A syrup of ipecacuanha is a very useful preparation for children; but some difficulties attend its preparation. An aqueous decoction of this root contains so much starch that it can scarcely be filtered. Even the infusion filters slowly, is always turbid, and yields a syrup which does not keep well. Hence M.M. Guibourt and Henry \(^1\) introduced a process, of which that of the Edinburgh Pharmacopeia is a modification (improvement?). They prepared an alcoholic extract, which is dissolved in water and mixed with concentrated syrup. About two fluid-scruples of the Edinburgh preparation contain the strength of one grain of ipecacuanha: hence the dose of it, as an emetic, for infants, will be half a teaspoonful; for adults, \(\frac{1}{3}\) j. or \(\frac{1}{3}\)iss. As an expectorant, the dose is \(\frac{2}{3}\) j. to \(\frac{2}{3}\) j.

3. **PULVIS IPECACUANILÆ COMPOSITUS, L. E. D.; Compound Powder of Ipecacuanha; Dover’s Powder; Pulvis Doveri, offic.** (Ipecacuanha, powdered, Hard Opium, powdered, of each, \(\frac{4}{3}\) j.; Sulphate of Potash, powdered, \(\frac{3}{4}\) j. Mix them. The proportions used by all the British Colleges are the same.)—This preparation is an imitation (though not a very exact one) of a formula given by Dover;\(^2\) whence it is commonly known in the shops as Dover’s Powder. The following is Dr. Dover’s recipe:

> “Take opium, \(\frac{2}{3}\) j.; saltpetre, tartar vitriolated, of each, \(\frac{4}{3}\) iv.; ipecacuanha, \(\frac{3}{4}\) j.; liquorice, \(\frac{3}{4}\) j. Put the saltpetre and tartar into a red hot mortar, stirring them with a spoon until they have done flaming. Then powder them very fine. After that, slice in your opium; grind these to a powder, and then mix the other powders with them. Dose, from 40 to 60 or 70 grains in a glass of white wine posset, going to bed. Covering up warm, and drinking a quart or three pints of the posset drink while sweating.”

The compound powder of ipecacuanha is one of our most certain, powerful, and valuable sudorifics. The sulphate of potash is intended to serve the double purpose of promoting the sudorific operation of the other ingredients, and of minutely dividing, by the hardness of its particles, the opium and ipecacuanha. The nitrate of potash also employed by Dr. Dover probably contributed still further to the sudorific effect of the powder. The opium and ipecacuanha, combined, enjoy great sudorific properties not possessed by either of these substances individually. I am inclined, however, to ascribe the greater part of the activity of the compound to the opium, which, it is well known, strongly determines to the cutaneous surface (see Opium), and often produces pricking or itching of the skin; and, when assisted by the copious use of warm aqueous diluents, operates as a sudorific. This effect, however, is greatly promoted by the ipecacuanha, which has a relaxing influence over the cutaneous vessels. The use of the posset, enjoined by Dr. Dover, is an important part of the sudorific plan. The contra-indications for the use of compound powder of ipecacuanha are an irritable condition of the stomach (when this preparation is apt to occasion sickness), and cerebral disorder. Thus, in fever, a dry furred tongue, and a dry skin, with much disorder of the cerebro-spinal functions, it, like other opiates, is calculated to prove

\(^1\) Pharm. Raison. i. 502, 2de édit.

\(^2\) The Ancient Physician’s Legacy to his Country, p. 14, 1783.
injurious. In such cases, the antimonial sudorifics may be resorted to. But when the tongue is moist,—the skin, if not damp, at least soft,—and the functions of the brain not much involved, it will probably operate beneficially. In slight colds, catarrhs, and rheumatic pains, it often proves most effectual. In various inflammatory affections, when the febrile excitement does not run too high, and when the brain is undisturbed, it may be used with good effect. In acute rheumatism it is occasionally highly serviceable; in diarrhoea and dysentery also. In hemorrhages from internal organs, as the uterus, it is useful on the principle of revulsion or counter-irritation, by its power of determining to the skin. The dose of this preparation is usually from grs. v. to grs. x., given in currant jelly or gruel, or made into a pill (see Pilula Ipecacuanhae et Opii), or administered in a common saline draught. Where the stomach is irritable, I have frequently seen five grains cause sickness. On the other hand, in some cases where a powerful sudorific is required, and the head quite free, grs. xv. or even 3j. of this powder are not unfrequently given.

4. PILULE IPECACUANHAE CUM SCILLA, L.; Pilula Ipecacuanhae compositae, Ph. Lond. 1836; Pills of Ipecacuanha and Squills. (Compound Powder of Ipecacuanha, 3ij.; Squill, fresh-dried, in powder, Ammoniacum, of each, 5j.; Treacle, as much as may be sufficient. Beat them together until incorporated.)—Narcotic and sudorific. Employed in chronic catarrh. —Dose, gr. v. to gr. x.

5. PILULÆ IPECACUANILÆ ET OPII, E.; Pills of Ipecacuanha and Opium. (Powder of Ipecacuanha and Opium, three parts; Conserve of Red Roses, one part. Beat them into a proper mass, which is to be divided into four-grain pills.)—The properties of this are the same as those of Pulvis Ipecacuanhae compositus.—Dose, one to three pills.

6. TROCHISCI MORPHILÆ ET IPECACUANILÆ. (See Morphia.)

229. Psychotria emetica, Mutis.—Striated Ipecacuanha.

Sex. Syst. Pentandria, Monogynia.

(Radix.)

Rouabea emetica, Richard.—A small perennial plant, which grows in Peru and New Granada, and on the banks of the Magdalena. Its roots constitute the striated ipecacuanha (radix ipecacuanha striata) of Richard, Guibourt, and Mérat; the black or Peruvian ipecacuanha (radix ipecacuanha nigra vel peruviana) of some other authors.

Fig. 323.

Striated Ipecacuanha (Roots of Psychotria emetica).

They are neither annulated nor undulated, but longitudinally striated. They have deep circular intersections at various distances, giving them the appearance of being articulated; and, when slight force is used, they fracture at these parts. As met with in commerce, they have externally a blackish-gray colour, with a brownish tinge; but when fresh, they are said to be dirty reddish-gray. Their fracture is resinous: the meditullium, or central ligneous cord, is yellowish, and perforated by numerous holes, which are very visible by a magnifier; the cortical portion is softish, easily separable, and of a grayish-black colour, becoming much deeper when moistened. Its powder is deep gray. According to the analysis of Pelletier, this root consists of — emetina 9, fatty matter 12, gallic acid a trace, gum, starch, and ligneous matter 79. In its medicinal qualities it resembles the annulated or true ipecacuanha, than which it is somewhat weaker; but it is not met with in English commerce.

230. Richardsonia scabra, De Cand.—Undulated Ipecacuanha.

Sex. Syst. Hexandria, Monogynia.

(Radix.)

Richardsonia pilosa, Ruiz et Pavon; Richardia brasiliensis, B. A. Gomes.—A perennial plant; a native of the Brazils, New Granada, Peru, Vera Cruz, &c. Its root is the undulated ipecacuanha (radix ipecacuanhae undulata) of Guibourt; the amylaceous or white ipecacuanha (radix ipecacuanhae farinose seu amylaceae) of Mérat. It has a jointed appearance, from constrictions which are remote from each other. It is about the same size as that of the annulated species; is tortuous, attenuated at the extremities; externally of a grayish-white colour, becoming brownish by age. It presents no rings properly so called, but is marked by semicircular grooves. It consists, like the annulated species, of a thin yellowish meditullium, and a cortical portion.

Fig. 324.

Undulated Ipecacuanha Root.

The fracture of the root is not at all resinous, but farinaceous, and of a dull-white colour; the fractured surface presenting, when examined by a magnifier, numerous shining pearly, probably amylaceous, spots. The odour is musty. The composition of it, according to Pelletier, is emetina 6, fatty matter 2, starch and ligneous matter (very little of the latter) 92. In its medicinal qualities it agrees with the annulated ipecacuanha, than which it is somewhat weaker. This, like the preceding sort of ipecacuanha, is not in use in England.

1 Journ. de Pharm. t. vi. p. 265, 1820.
2 Dict. des Drogues. t. iii. p. 265, 1828.
231. Coffea Arabica, Linn.—The Coffee Tree.

Sex. Syst. Pentandria, Monogynia.

(Semia.)

According to manuscripts contained in the Bibliothèque Royale, at Paris, coffee was in use in Persia in the year A.D. 575. It was first introduced into England in 1652. The coffee plant is a native of Arabia Felix and Ethiopia, but is extensively cultivated in Asia and America. It is an ever-green shrub, from 15 to 20 feet high, with oblong-ovate, acuminate, smooth leaves, a 5-toothed calyx, a white tubular corolla, with a 5-parted spreading limb, 5 stamens, 1 pistil with a bifid style, and an oval, succulent, blackish-red or purplish 2-seeded berry. The seeds are enclosed in a membranous endocarp (the parchment-like putamen of some botanists), and are convex on one side, and flat with a longitudinal groove on the other. They consist of a horny, yellow, bluish or greenish convoluted albumen, at the one end of which is the embryo, with its cordiform cotyledons; the position of the radicle being indicated by the micropyle.—The dried fruits or berries are rarely imported. In 1839 there was an importation of them into London from Demerara. Occasionally the seeds contained in their endocarp (coffee in the husk) are met with in commerce. The raw coffee of the shops consists of the seeds (in commerce frequently, but erroneously, called "berries") deprived of their endocarp and in part of their testa. Portions of the testa are, however, found on the convex surface, and lining the groove on the flat surface. The varieties of raw coffee are distinguished in commerce according to their places of growth; but considered with reference to their physical properties, they are characterised by colour (yellow, bluish, or greenish) and size (the smallest seeds are about three lines long and two broad, the largest five lines long and two lines and a half broad). Arabian or Mocha Coffee is small, and dark yellow. Java and East India (Malabar) kinds are larger, and paler yellow. The Ceylon is more analogous to the West India kinds (Jamaica, Berbice, Demerara, Dominica, Barbadoes, &c.), which, as well as the Brazilian, have a bluish or greenish-grey tint. The structure of the raw coffee seed has been fully described and depicted by Dr. Hassall. The tests or investing membrane of the seed is made up of very elongated cells more or less tapering at one or both extremities, with oblique markings on their surface. In the act of roasting it separates from the seed, and is commonly termed by the roasters "flights" or "the fibre." The great mass of the seed (vulgarly and improperly called "berry") is made up of the perisperm or albumen, which is composed of angular cells, containing each one or more drops of aromatic volatile oil. The cells of the embryo are smaller than those of the albumen.

Coffee has been chemically examined by Herrmann, Cadet, Schrader, Robiquet and Boutron, Rochleder, Payen, and others. Schrader made a comparative examination of raw and roasted Martinique coffee, and obtained the following results:

<table>
<thead>
<tr>
<th>Description</th>
<th>Raw Coffee</th>
<th>Roasted Coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peculiar coffee principle</td>
<td>17·58</td>
<td></td>
</tr>
<tr>
<td>Gummy and mucilaginous extract</td>
<td>3·64</td>
<td></td>
</tr>
<tr>
<td>Extractive</td>
<td>4·02</td>
<td>6·46</td>
</tr>
<tr>
<td>Resin</td>
<td>0·41</td>
<td>0·04</td>
</tr>
<tr>
<td>Fatty oil</td>
<td>0·52</td>
<td>0·75</td>
</tr>
<tr>
<td>Solid residue</td>
<td>66·66</td>
<td>68·75</td>
</tr>
<tr>
<td>Loss (water?)</td>
<td>10·37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100·00</td>
<td>100·00</td>
</tr>
</tbody>
</table>

The latest quantitative analysis of coffee is that of Payen, who gives the following as the approximative composition of it:

2 Phil. Trans. vol. xxi. p. 311, 1699.
3 Lancet, Jan. 4, 1851.
4 Chemical Gazette, vol. v. p. 34, 1847.
A decoction of raw coffee is coloured green by the persalts of iron. Raw coffee macerated in water undergoes fermentation, and evolves carbonic acid and sulphuretted hydrogen gases. This fermentation is probably due to the decomposition of an albuminous and sulphurous substance contained in coffee. Alcohol extracts from raw coffee a double salt, the caffeate (called by Payen the chlorogenate) of potash and caffeine. Berzelius states that caffeic acid (C₇H₅O₇ according to Payen) bears the same relation to the tannin (caffeotannic acid) of unroasted coffee, that gallic acid bears to the tannin of nutgalls. The aromatic volatile oils of raw coffee are tenaciously retained by the fatty oil; they undergo alteration of properties by the operation of roasting. Caffeine (C₈H₅N₄O₉) is a weak alkaloid, white, crystallisable in long silky needles, fusible, volatile, and soluble in water, alcohol, and ether. Its aqueous solution is precipitated by tannic acid. It is identical with theine extracted from China tea, and from Paraguay tea (Ilex paraguayensis), and with guaranin obtained from guarana (Paullinia sorbilis).

The chemical changes effected in coffee by roasting require further investigation. The cells of the seeds are charred and rendered friable, but they retain their characteristic shape. The volatile oil, however, is no longer visible in them in the form of deposits, but appears to have been partially dissipated and partially diffused through the charred cells. The two most interesting products of the torrefaction are a brown bitter principle, and a brown aromatic oil called caffeone.1 Both of these are products of the decomposition of that part of raw coffee which is soluble in water; for if raw coffee be first exhausted by water, and afterwards roasted, it is then found to yield to boiling water neither the bitter substance nor the aromatic principle. Caffeone is slightly soluble in boiling water, and may be extracted from the distilled water of roasted coffee by means of ether. If coffee be over-roasted, either by employing too high a temperature, or by carrying on the process too long, its flavour is greatly impaired.2

The ground coffee sold by grocers is in general largely adulterated.3 The usual agent employed by the grocers for this purpose is roasted chicory; but as the chicory-roasters frequently adulterate this article, as I have already stated (see ante, p. 1578), it follows that besides chicory, properly so called, various other foreign matters may frequently be detected in ground coffee. The following are the readiest modes of proceeding in order to detect the fraud:—

1. Place a portion of the suspected coffee gently upon the surface of water in a glass. If it be genuine it becomes very slowly moistened by the water, even when we stir them up together, and in consequence floats on the surface, and communicates scarcely any colour to the liquid. This arises from the coffee being impregnated with volatile oil, which exerts a repulsive influence on the water.

Chicory, on the other hand, readily absorbs and mixes with the water, to which it speedily communicates a deep reddish-brown tint, and sinks to the bottom of the liquid. Roasted corn and roasted pulse (peas, beans, and lupines) behave, in relation to water, like roasted chicory.

2. An infusion or decoction of pure roasted coffee, when cold, becomes, on the addition of a solution of iodine, of a deeper reddish-brown tint.

1 Boutron and Fremy, quoted by Pelouze and Fremy, Cours de Chimie Générale, t. iii. p. 250, 1850.
2 For further details, see Payen’s paper before quoted.
3 See a paper by the author, in the Pharmaceutical Journal, vol. iv. p. 85, 1844; also Dr. Hassall’s reports, in the Lancet for Jan. 4th, April 26th, May 3d, and Nov. 1st, 1851.
A similar effect is produced on the addition of a solution of iodine to an infusion or decoction of pure roasted chicory.

But if roasted corn, roasted pulse (peas or beans), or potatoes be present, the iodine communicates a deep blue, blackish-blue, or purplish-red colour. If the starch of these adulterating ingredients be but little altered by roasting, the resulting colour, on the addition of iodine, will be blue; but if the starch be converted into dextrine, the colour caused by iodine will be purplish-red. The presence of much chicory, however, obscures the effect of this test.

3. If a decoction of genuine roasted coffee be submitted to Trommer’s test (see ante, p. 1020), it gives no indication of the presence of glucose (grape sugar). By this test burnt sugar or partially charred saccharine matter (sold under the name of “refining powder” for adulterating coffee), as well as glucose derived from other sources (as the conversion of amylaceous matters), may be detected.

4. The most important aid in detecting the presence, and in determining the nature, of adulterations of coffee, is the microscope. The presence of chicory may be detected by the size, form, and ready separation of the cells of the cellular tissue, and by the presence and abundance of the pitted tissue (dotted duets) and vascular tissue or spiral vessels (see ante, p. 1577). Roasted corn, pulse, potatoes, and other amylaceous substances, may be detected and identified by the characters (size, shape, and markings) of the starch grains. (For further details, see Dr. Hassall’s observations contained in the Lancet.)

Raw coffee must be slightly nutritious, on account of the gum and other nutritive principles which it contains. Rasori employed it, like powdered bark, in intermittent fever; and Grindel used it, in other cases, also as a substitute for cinchona. By roasting, its nutritive principles are (for the most part) destroyed, while the empyreumatic matters developed communicate a stimulant influence with respect to the nervous system.

Roasted coffee possesses powerfully anti-soporific properties: hence its use as a drink by those who desire nocturnal study, and as an antidote to counteract the effects of opium and other narcotics, and to relieve intoxication. In those unaccustomed to its use, it is apt to occasion thirst and constipation. On some persons it acts as a slight purgative. It is occasionally useful in relieving headache, especially the form called nervous. It has also been employed as a febrifuge, in intermittents; as a stomachic, in some forms of dyspepsia; and as a stimulant to the cerebro-spinal system, in some nervous disorders. Floyer, Dr. Percival, and others, have used it in spasmodic asthma; and Laennec says, “I have myself seen several cases in which coffee was really useful.” The immediate use of coffee is said to produce nervous symptoms,—such as anxiety, tremor, disordered vision, palpitation, and feverishness.

The action of caffein requires further investigation. Mulder gave a grain of it to a rabbit: the animal ate but little the next day, and aborted the day after. Liebigs has suggested that it probably contributes to the formation of taurine, the nitrogenised constituent of bile. According to Lehmann, caffeine, in doses of from 2 to 10 grains, causes violent excitement of the vascular and nervous systems,—palpitations of the heart, extraordinary frequency, irregularity, and often intermission of pulse, oppression of the chest, pains in the head, confusion of the senses, singing in the ears, scintillations before the eyes, sleeplessness, erections, and delirium. In all cases an augmentation was found in the amount of urea secreted.

232. CINCHONA, Weddell.

C. Calisaya, Condaminea, et species incerta, L.—C. Condaminea, mierantha, and other undetermined species, E. D.

Sex. Syst. Pentandria, Monogynia.

(Cortex, _L.—The Bark, E. D._)

History.—The precise period and manner of the discovery of the therapeutic power of cinchona are enveloped in mystery. Some writers (_e. g._

Treatise on Diseases of the Chest, by Forbes, 2d edit. p. 418.

Geoffroy,1 Ruiz,2 and Joseph de Jussieu3) believe that the Indians were acquainted with it long before the arrival of the Spaniards; whereas others (e. g. Ulloa4 and Humboldt5) are of opinion that the natives were ignorant of the medicinal qualities of the bark until the Spaniards discovered them.

The traditions of the mode of discovery of the remedial power are of a very fabulous character. One, told by Geoffroy, is that an Indian was cured of an ague by drinking at a pool into which some cinchona trees had fallen.6 Another, related by Condamine, is that the Indians observed that the American lions, when ill with ague, eat the cinchona bark! A third, mentioned by Humboldt, and considered to be less improbable, is that the Jesuits accidentally discovered the bitterness of the bark, and tried an infusion of it in tertian ague.

The period when bark was first introduced into Europe is usually stated to be 1640; but Sebastian Badus7 gives an extract from a letter of a Spanish physician, D. Joseph Villeroebel, from which it appears that it was imported into Spain in 1632, though no trial was made of it until 1639.

The statement of Condamine,8 that the Countess of Clinchon, wife of the Viceroy of Peru, brought some bark to Europe on her return from South America, in 1639, is not improbable: and from this circumstance it acquired the names of the Cinchona Bark and the Countess’s Powder (Pulvis Comitissae). About ten years afterwards it was carried by the Jesuits to Rome, and by them distributed among the members of the order, by whom it was taken to their respective stations, and used with great success in agues. Among those most active in promoting its employment was Cardinal de Lugo. In this way it acquired the names Jesuit’s Bark, Pulvis Patrum, Jesuit’s Powder (Pulvis Jesuiticus), Pulvis Cardinalis de Lugo, &c.9 It fell, however, into disuse, but was again brought into vogue, in France, by Sir Robert Talbor, who acquired great reputation for the cure of intermittents by a secret remedy. Louis XIV. purchased his secret (which proved to be Cinchona), and made it public.10 Hence it became known in France as Talbor’s powder, or the English Remedy.

BOTANY.—Linnæus11 established the genus Cinchona in 1742. Endlicher12 first divided it into two sections or sub-genera, one of which he called Quinquina,13 in which the dehiscence of the fruit is from below upwards; —the other, Cascarilla, in which the dehiscence is from above downwards. Weddell14 has formed these two sections into genera, which he calls respec-

1 \textit{Tractatus de Materia Medica}, t. ii. p. 179, 1741.
2 \textit{Quinologia}, Madrid, 1792 (German translation, 1794).
3 Weddell, \textit{Hist. Naturelle des Quinquinas}, p. 15, 1849.
4 \textit{A Voyage to South America}, English translation, 3d edit. vol. i. p. 323, 1772.
5 Lambert’s \textit{Illustration of the Genus Cinchona}, p. 22, 1821.
6 Weddell (op. cit. p. 40) observes, that be doubts whether at Loxa, more than elsewhere, cinchona trees are to be found on the borders of lakes or ponds, unless they have been carried there.
7 Quoted by Bergen, \textit{Monographie}, p. 84.
8 \textit{Mém. Acad. Sc. de Paris}, p. 226, 1738.
9 Geoffroy, op. supra citato.
10 Talbor, \textit{English Remedy}, 1852.
11 \textit{Genera Plantarum}, ed. 2d, p. 527, 1742.
12 \textit{Genera Plantarum}, p. 556, 1836-40.
13 According to Condamine, \textit{Quina} signifies, in the Quichoa language, “a bark;” and the duplication of the word (\textit{Quina Quina}) would be equivalent to saying “the bark of barks.”
14 \textit{Hist. Nat. des Quinquinas}, 1849.
tively Cinchona and Cascarilla. The distinction rests not merely on the
deliscence of the fruit—an apparently trivial distinction—but on the
important fact that the proper cinchona alkaloids have hitherto been dis-
covered in the species of the first section or genus only, which, therefore,
exclusively yields true or genuine cinchona barks. For these reasons,
therefore, I shall follow Weddell.

Gen. Char.—Calyx with a turbinated tube, connate with the ovary,
pubescent; limb superior, 5-toothed, persistent; the teeth valvate in preflor-
ration. Corolla salver-shaped, with a terete or subpentagonal tube, limb
5-cleft; the segments lanceolate, valvate in aestivation. Stamens 5; the
filaments inserted in and adnate to the lower tube; anthers linear, inclosed
or somewhat exserted at the apex. Ovary crowned with a fleshy disk.
Ovules numerous, peltate, in linear placentae, which are affixed on both sides
of the dissepiment. Style simple; stigma bifid, concealed within the tube
of the corolla, or somewhat exserted. Capsule ovate, oblong, or linear-
lanceolate, grooved on both sides, crowned by the limb of the calyx, 2-celled,
many-seeded, septicidal, dehiscing from the base to the apex, the valves dis-
joined, the pedicel split lengthwise. Seeds numerous, affixed in angular-
winged ultimately free placentae. Embryo straight in the axis of fleshy
albumen.—Evergreen trees or shrubs growing in the intertropical valleys of
the Andes between 10° North and 19° South latitude, at from 1200 to 3270
metres (3937 to 10728 English feet) above the level of the sea. Trunk and
branches terete, with a bitter bark rich in quinine and cinchonine. Leaves
opposite, entire, peltiolated. Stipules usually free, and soon deciduous.
Flowers cymose-paniculate, white or usually roseate or purplish, very fragrant.
(Condensed from Weddell.)

Species.—Weddell admits 21 species of this genus; but of these not more
than 13 are known to yield their bark for commercial purposes.

1. C. Calisaya, Weddell.—Leaves oblong or lanceolate-obovate, obtuse,
atenuated at the base, rarely acute at both ends, smooth, shining or pubes-
cent beneath, pitted in the axils of the veins. Filaments usually shorter than
one-half the length of the anthers. Capsule ovate, scarcely equal in length
to the flowers. Seeds frequently fimbriate-denticulate at the margin
(Weddell).—Bolivia and Southern Peru.

Weddell has described two varieties of this species: they are as follows:—

a. Calisaya vera.—A tree, with obtuse oblong-obovate or oblong-lanceolate leaves.
—A tall tree. Trunk straight or bent, naked, not unfrequently twice the thickness of a
man's body. The leafy head for the most part elevated above all the other forest trees.
It grows in deccilies and steep and rugged places of the mountains, at an altitude of
from 1500 to 1800 metres [4921 to 5905 English feet], in the hottest forests of the valleys
of Bolivia and Southern Peru; between 13° and 16°30' South latitude, and from 68° to 72°
West longitude; in the Bolivian provinces of Enquisivi, Yungas, Larecaja, and Caupo-
lican; and in the Peruvian province of Carabaya. It flowers in April and May.

The bark is commonly called indiscriminately by the Spaniards and Indians, Cascarilla
Colisaya, Calisaya, or Culisaya. It is the genuine Calisaya or yellow bark of English
commerce.

1 This name (cascarilla) for the new genus is highly objectionable (especially in a pharmaceutical
point of view), on account of its being already in use to designate a well-known euphorbiaceous bark
(cascarilla or eleutheria bark; see ante, p. 1280).—The word cascarilla is the diminutive of cascara
bark, and, therefore, literally signifies “small bark.”
Cinchona Calisaya.

A, Fruit-bearing branch (from a specimen collected in the province of Carabaya, in Peru).
B, Flowers (natural size).
C, Corolla laid open (magnified).
D, Capsule (magnified).
E, Seed (magnified).
F, Leaf of var. Josephiana (from a specimen gathered in the province of Yungas, in Bolivia).
Cinchona:—Description of its Species.

β. Josephiana.—The Ichu-Cascarilla or Cascarilla del Pajonal⁴ [Meadow Cinchona] of the natives. A shrub with somewhat acute, oblong-lanceolate or ovate-lanceolate leaves.—From 6½ to about 10 feet high, with a slender branched trunk of from 1 to 2 inches thick. Branches erect. Bark adhering firmly to the wood: that of the trunk and branches schistaceo-blackish, smoothish, or furnished with different lichens, and marked in an annular manner by some narrow, distant eraks; that of the branchlets reddish-brown. It grows in mountainous meadows in the same regions as the preceding variety. Both the bark of the trunk and branches, and of the stumps of the larger roots, is collected and occasionally imported with Calisaya or yellow bark.

2. C. Condaminea, Weddell.—Leaves lanceolate, ovate or subrotund, usually acute, very smooth and shining above, beneath sometimes pitted in the axils of the veins. Teeth of the calyx triangular-acuminate or lanceolate. Filaments nearly equal to, or larger than, half the length of the anthers. Capsule oblong or lanceolate, much longer than the flowers. Seeds elliptical, tooth-letted at the margin. (Weddell.)

Of this species Weddell makes four varieties, as follows:—

α. Condaminea vera; Quinquina,² Condum. Mém. de l’Acad. Roy. 1738; Cinchona officinalis, Sp. Pl.; C. Condaminea, Humb. and Bonpl. Pl. Àq. i. 33, t. x.—Leaves ovate-lanceolate, acute, pitted in the axils of the veins. Limb of the calyx subcampanulate, with triangular teeth. Capsule oblong-ovate, scarcely twice as long as it is broad (Weddell).—On the declivities of the mountains of Quito, in the province of Loxa, between 3° 42′ and 4° 40′ South latitude, at an elevation of from 1600 to 2400 metres (=5249 to 7874 English feet). Its bark is called by the Spaniards Cascarilla fina de Uritusina, and forms part of the Loxa or crown bark of commerce. Caldas¹ states that it yields a yellow bark (probably the Quinquina jaune or yellow Cinchona of Condamine, and hence is called Cascarilla fina amarilla [fine yellow bark] by the natives. A subvariety yields a probably the Quinquina rouge or red bark of Condamine), and is in consequence termed colorada fina [fine red]. Its leaves are thicker and blunter.

β. Candollei; C. macrocalyx, Pav. MSS. ined.; De Cand. Prodr. iv. 353.—Leaves obovate or subrotund, wedge-shaped, rotund, or suborbate at the base, acutish at the apex. Limb of the calyx campanulate, smoothish, with lanceolate teeth. Stigmata subexserted (Weddell).—Cuenca. Its bark probably forms a portion of the Loxa bark of commerce. It occurs in Pavon’s collection in the British Museum under the names of Cascarilla de Quiébro de Cuenca de Loxa, and Quina negra⁵ [black cinchona].

γ. Lucumefolia; C. lucumaefolia, Pavon, in Herb. Lamb.: Lindl.: Fl. Med. p. 416.—Leaves elliptical-lanceolate, very obtuse, attenuated at the base. Limb of the calyx subcampanulate, with triangular, subacuminate teeth (Weddell).—Loxa.—The bark of this variety is called by the Spaniards Cascarilla con hojas de Lucuma [the lucuma-leaved cinchona bark]. Specimens of it are contained in Pavon's collection in the British Museum. It occurs in large quills with a white silvery, hustrous, or corky coat, and is found occasionally in Loxa bark. A chest of it was put up for sale in London, in 1848, under the name of crown bark: but it is very different to the bark usually known by this name.

δ. Lancifolia; C. lancifolia, Mutis, Papel periodico de Santa Fé, Num. iii. Oct. 11, 1793, p. 465; Humboldt, in Lambert’s Illust. p. 51; C. angustifolia, Ruiz and Pav

1 Weddell says that ichu in the Quichua language and poja in the Spanish signify herb or grass.—Poja, however, strictly signifies “straw.”

2 Condamine’s plant is usually regarded as identical with Humboldt’s C. Condaminea; but Guion卉t (Hist. des Droog. 4me édit. t. iii. p. 99), who has pointed out some differences between them, proposes to distinguish Condamine’s plant by the name of “Cinchona academica.”

3 I am indebted to Mr. Berthold Seemann for a specimen of bark gathered by himself in the neighbourhood of Loxa from a tree called there “Quina fina.” This bark corresponds to what I have termed fine silvery crown bark. Mr. Seemann was also kind enough to lend me, for examination, dried specimens of the flowers and leaves taken from the same branch which he had decorticated. The plant is undoubtedly Humboldt’s Cinchona Condaminea.

5 J. E. Howard, Pharm. Journ. vol. xi. 1852.

6 J. E. Howard, op. supra cit.
Suppl. à la Quinol. p. 21.—Leaves lanceolate or ovate-lanceolate, acute at both ends, without pits. Teeth of the calyx short, triangular. Anthers usually shorter than the filaments. Capsules for the most part lanceolate (Weddell).—Peru, Equador, and New Granada. In Santa Fé the bark is known by the name of quina naranjada, or orange-coloured bark. It is extensively imported into England from Carthagena and other ports of the Caribbean Sea; and is best known to our dealers by the name of Cauquetá or Coquetta or Bogota bark. It is the bark which I formerly designated as new spurious yellow bark, and which M. Guibourt described as spongy Carthagena bark (quina de Carthagène spongieux). He now calls it Mutis's orange-coloured bark (q. orange de Mutis).

3. C. scrobiculata, Weddell.—Leaves oblong or lanceolate, acute at both ends, somewhat coriaceous, above shining, beneath smoothish and minutely pitted in the axils of the veins. Teeth of the calyx triangular, acute. Capsule ovate-lanceolate, scarcely twice as long as it is broad. Wing of the seeds narrowed at the base, setose-toothletted at the margin (Weddell).

—Peru; between 4° and 13° of South latitude, at about the same altitude as C. Condaminea. It chiefly occurs in Jaen, Cuzco, and Carabaya. Its bark is largely collected, and is sold as a substitute for the Calisaya sort, to which it is greatly inferior. It is to this bark that Guibourt has especially applied the name of light (or flimsy) Calisaya of commerce (Calisaya léger du commerce).

Of this species Weddell makes two varieties:

a. genuina; C. scrobiculata, Humb. and Bonpl. Pl. Åquin. i. p. 165; C. purpurea, Lambert, Ill. p. 6; C. miranthera, Lind. Pl. Med. p. 412.—Leaves oblong.—Peru.—Its bark is termed the Peruvians Cascarilla colorada del Cuzco [red Cuzco bark], or sometimes Cascarilla de Santa-Ana [St. Ann's bark].

Humboldt says that this species forms immense forests in the province of Jaen de Bracamorros, where it is called Quina fiina. He adds that the inhabitants of the town of Jaen annually gather large quantities of its barks, which they send to Piura, where they are shipped, on the Pacific, for Lima. These facts would lead us to presume that some portion of the Loxa barks of commerce is derived from this species.

b. delondriana.—All the leaves sublanceolate, smaller than in the typical plant. The pits not very conspicuous.—Middle Peru.—The bark of this variety is known in the London market by the name of Peruvian Calisaya.

4. C. amygdalifolia, Weddell.—Leaves lanceolate, sub acuminate, acute, attenuated at the base, above shining and veiny, beneath smoothish. Stipules subpersistent. Teeth of the calyx triangular, acute. Anthers equalling the filaments. Capsule lanceolate, slightly pubescent, 3 or 4 times longer than it is broad. Seeds acutely toothletted at the margin (Weddell).—Bolivia and Peru, between 13° and 17° South latitude.—Its bark is called in Peru cascavilla-echenique, and by the Bolivians cascavilla-Quepo or Quepo-cascavilla, but it has no reputation with them. It occasionally occurs in English commerce, but is not distinguished by any name.

5. C. nitida, Ruiz and Pavon; Lindl.—Leaves lanceolate-ovate, acute, attenuated at the base, smooth on both sides, shining or slightly hairy beneath, not pitted. Filaments equalling the anthers. Capsule lanceolate,
twice as long as it is broad. Seeds lanceolate, toothletted at the margin (Weddell).—In Peru, especially Huanaco, Panatahuas, Casapi, Cuchero, &c., about 10° North latitude.—The bark of this species forms a portion of the Huanuco or grey bark of English commerce.

6. **C. australis**, Weddell.—Leaves broadly elliptical or obovate, obtuse, acute at the base, very smooth on both sides, shining, minutely pitted beneath in the axils of the veins or veinlets. Capsule ovate-lanceolate, remarkably attenuated superiorly. Wing of the seeds setose-toothletted at the margin (Weddell).—South Bolivia, at about 19° South latitude, at an altitude of about 1200 metres [3937 Engl. feet]. Its bark, called by the Bolivians Cascarilla de la Cordillera de Piray, or Cascarilla de Santa Cruz de la Sierra [Cordillera, Piru, or Santa Cruz de la Sierra bark] is, perhaps, to be occasionally met with in English commerce, but I have not been able to identify it.

7. **C. Boliviana**, Weddell.—Leaves elliptical- or oblong-obovate, obtuse, cuneate or attenuated at the base, smooth above, smoothish or pubescent and purplish below. Teeth of the calyx triangular. Filaments equaling the anthers.—Bolivia and Peru. In Bolivia it grows in the same localities as the C. Calisaya; also in some of the valleys of the Peruvian province of Carabayla, at 13° South latitude.—Its bark is called in Bolivia Calisaya morada [mulberry-coloured Calisaya], and in Peru Cascarilla verde [green] morada.1 It is usually intermixed with the bark of the C. Calisaya, and constitutes, therefore, part of the Calisaya bark of commerce. Guibourt classes it among the light or flimsy Calisaya barks (Calisayas légers).

8. **C. micrantha**, Weddell.—Leaves broadly ovate, obovate, or roundish, rather obtuse, more or less attenuated at the base, membranous, smooth above, very slightly pubescent beneath, pubescent or hairy on the veins and in the axils. Teeth of the calyx short and acuminate. Fruit-bearing panicle thyrse-like, somewhat compressed. Capsule lanceolate. Wing of the seeds toothletted at the margin (Weddell).—This species grows in the Bolivian provinces Larecaya and Carabaya; in Carabayla, and also near Chicoplaya and Playa Grande, in Peru. Its bark is called by the inhabitants of Huanuco, Cascarilla provinciana; in Carabayla it is termed Motosolo; and by the Bolivians, Queco Cascarilla or Cascarilla verde. It is collected in large quantities in Carabayla, and is confounded with the bark of Cinchona ovata, under the name of Cascarilla morada ordinaria. The quilled bark constitutes part of the Huanuco or grey barks of English commerce; the flat pieces are used to adulterate Calisaya bark.

Weddell makes two varieties of this species.

a. **Rotundifolia**; C. micrantha, Ruiz and Pavon.—Leaves ovate-rotund.—Peru and Bolivia.

b. **Oblongifolia**, C. affinis; Weddell.—Leaves oblong-ovate.—Peru.

1 These names have reference to the colour of the leaves, not of the barks.
VEGETABLES.—Nat. Ord. Rubiaceae

—Peru and Bolivia.—It occurs frequently between 4° and 16° South latitude.

Weddell admits two varieties of this species.

a. Pelleteriana; C. pubescens, Vahl.—Leaves on both sides green.—The bark of this variety is known in its native country as carna-carna or carna-cayna\(^2\) (indicative of its inferior quality). In Carabaya it is also called cascarilla or quina amarilla \(\text{[yellow bark].}\) It is known in Europe as Arico or Casco bark.

b. Purrurea; C. purpurae, Ruiz and Pav.; Cascarilla morada, Ruiz.—Adult leaves purplish beneath.—In the valleys about Huamano, the bark of this variety is called cascarilla boba\(^2\) de hojas moradas \(\text{[the mulberry-leaved booby bark].}\)

10. C. cordifolia, Weddell.—Leaves ovate-suborbicular, obtuse at both ends, or cordate or slightly attenuated at the base, submembranous, above at length smoothish, beneath pubescent, usually with long petioles. Teeth of the calyx short, mucronate. Anthers much longer than the filaments. Panicle subcorymbose. Capsule lanceolate. Wing of the seeds toothletted at the margin, and with small holes (Weddell). This species grows at an altitude of from 1700 to 2700 metres \(\approx 5577 \text{ to } 8858\text{ English feet}.\)

Weddell makes two varieties of this species.

a. Vera; C. cordifolia, Mutis, MSS. apud Humboldt, in Lamb. Illust. p. 54; Lindl. Fl. Med.—Leaves subcordate, pubescent beneath.—New Granada and Peru.—Its bark is the quina amarilla or yellow bark of Santa Fé, better known in the English market as hard Carthagena bark. By the common people in New Granada it is called velvet bark.

b. Rotundifolia; C. rotundifolia, Pavon, in Lamb. Ill. p. 5; Lindl. Fl. Med.—Leaves rotund, obtuse at both ends, demuded or with veins beneath, and with pubescence above.—Loxa.—It is probably the source of the ashy crown bark of commerce.

11. C. purpureascens, Weddell.—Leaves large, suborbicular, acute, attenuated at the base, membranous, smoothish above, downy beneath, the younger ones subsessile. Stipules ovate-lanceolate.—Bolivia.—Guibourt thinks that its bark is what he has termed white Loxa cinchona, but which Weddell thinks is furnished by C. cordifolia and pubescens.

12. C. ovata, Weddell.—Leaves broadly ovate, subacute, attenuated at the base, subcoriaceous, above at length smoothish, beneath pubescent-tomentose. Teeth of the calyx short, acute. Anthers much larger than the filament. Fruit-bearing panicle diffuse. Capsule lanceolate or oblong-lanceolate. Wing of the seeds fimbriate-toothletted at the margin (Weddell).

Weddell admits three varieties of this:

a. Vulgaris; C. ovata, Fl. Peruv.; C. pubescens, Lambert; C. pubescens var. β, De Cand.—Leaves on both sides green. The bark, when dry, yellow; the cellular coat persistent, or at length separating more or less from the liber (Weddell).—Peru and Bolivia; from 9° to 17° South latitude, at an altitude of from 1800 to 2300 metres \(\approx 5905 \text{ to } 7546\text{ English feet}.\) This variety yields the bark called in South and Middle Peru, Cascarilla pata de Gallareta, or Cascarilla pata de Gallinazo.\(^4\) This bark is frequently met with in English commerce, and is known by the names of Ash, Juen, or Ten bark.

1 Carna or Caryna signifies the Llama,—an animal considered to be of an inferior kind. The duplication of the word gives force to the expression, and may be taken to signify (figuratively) "very bad" or "very inferior."

2 The word boba is equal to that of fool or booby. The inhabitants have given it this name because, having the same good qualities as the other cinchonas, it has not their colour (Lambert).

3 Boussingault and Goulot state that it occurs most abundantly at an elevation of 1963 English feet (Boussingault’s Rural Economy, Engl. transl. 2d edit. p. 205, 1845).

4 Pata de Gallareta, foot of the wild duck; pata de gallinazo, foot of the black vulture (Vultur Aura). Poeppig says that the latter name arises from the blackish and radiated appearance caused by some species of Graphis, which generally grows upon the bark.
To this variety must also, for the present, be referred the bark now largely imported into England under the name of *Cascaraya bark*, which Dr. Weddell has recently assured Mr. J. E. Howard is the produce of *C. ovata*, var. a *vulgatis*.

β. *kupinervis*.—Leaves beneath sanguineo-venous. The dry bark yellowish, the cellular tunic at length separating from the liber.—*Cascaraya* in Southern Peru, and Bolivia. In Peru the bark is called *Cascarilla-Cascaraya*, and sometimes *Cascarilla zamba-moreda*.

γ. *erythroderna*.—Leaves submembranous, beneath pubescent, green on both sides. Dry bark of a deep reddish-brown colour, the cellular coat persistent.—Peru. The bark of this variety is of a red colour.

13. C. *glandulifera*, Ruiz and Pavon. —Leaves ovate-lanceolate, acute at both ends, above smoothish, beneath glandular-hairy, and fitted in the axils of the veins. Teeth of the calyx short, triangular, subacuminate (Weddell).—Peru, in 10° South latitude, especially about Panatahuas, Chicoplaya, Monzon, and Cuchero. Its bark, called *Cascarilla negrilla* [blackish bark], forms, according to Poeppig, one of the best Huanuco barks.

14. C. *hirsuta*, Ruiz and Pavon. —Leaves elliptical-ovate, obtuse, usually subacute at the base, coriaceous, above veiny, ultimately smooth, beneath with setose-pilose veins. Teeth of the calyx lanceolate-acuminate. Tube of the corolla pubescent within at the base of the filaments. Wing of the seeds broad, toothletted (Weddell).—Peru; about Pillao, Acomayo, and Panatahuas, at 10° South latitude. Its bark is called *Cascarilla delgada* or *delgadilla* [slender bark] by the Peruvians. It may, perhaps, be the bark known in English commerce as *wiry crown bark*.

The remaining seven species of Cinchona are not known to yield any of the Cinchona barks of commerce.

15. C. *chomeliana*, Weddell.—Bolivia.—Its bark approximates in character to that of *C. ovata*.

16. C. *asperifolia*, Weddell.—Bolivia.—A small tree.

17. C. *humboldtiana*, Lamb., Ill. 7; C. *villosa*, Lindl. Fl. Med.—Peru.

18. C. *carabayensis*, Weddell.—Peru.—Its bark is very thin, and has not been collected for commercial purposes.

Weddell notices two varieties of this:—

a. *microphylla*; C. *microphylla*, Mutis; C. *quercefolia*, Pavon, in Lamb. Ill. p. 9.—This variety is commonly called *Cascarilla con hojas de roblo* [oak-leaved cinchona]; and under this name there is a bark in Pavon’s collection in the British Museum. It is in quills, with a whitish epidermis, and approximates in appearance to either C. *lancifolia* or *hucumafolia* bark.

20. C. *discolor*, Klotzsch.—Peru.—*Cascarilla hoja de Oliue* [olive-leaved cinchona].

21. C. *pelalba*, Pavon.—Peru?

Bark-peeling.—The method of peeling and preparing the cinchona barks for the market has been noticed by Gray,¹ by Stevenson,² by Ruiz, by Poppig, and more recently by Weddell.

The name of *cascarilleros* [bark-peelers], Mr. Weddell states, is given not only to the men who cut the cinchonas in the woods, but also to those who are specially engaged in this commerce. They gather the bark at all seasons, except the rainy season, which in duration corresponds with our winter; and even during this period the collection of the bark is only suspended on account of the physical obstacles to its continuance.

¹ From the papers of Mr. Arrot; *Phil. Trans.* 1737-8, vol. xi. pp. 81-6.

² Narrative of Twenty Years’ Residence in South America, vol. ii. p. 66, 1825.
The cutters are not generally engaged on their own account, but are mostly in the service of some merchant or small company; and are accompanied into the forests by a confidential person called the mayor domo or major domo, whose duty it is to receive and examine the barks brought to him by the different parties in the forest, and to superintend the distribution of provisions.

The first thing done by those who engage in this kind of speculation in a region previously unexplored, is to have it examined by experienced cascarrilleros, who are called diestros or practicos [skilled or experienced persons]. The duty of these is to penetrate the forests in different directions, and to ascertain to what points they may be profitably explored. If their report be favourable, a road is immediately commenced up to the point which is to form the centre of the operations; and from this time all those parts of the forests adjacent to the road become provisionally the property of those who haveformed it, and no other cascarrilleros can work there.

On the arrival of the major domo with his cutters in the neighbourhood of the part to be explored, he chooses a favourable site for his encampment, as near as possible to a spring or river. He constructs a hut to shelter the provisions and the produce of the cuttings; and if he anticipates having to remain for some time in the same locality, he commences the cultivation of maize and a few vegetables. Experience, indeed, has shown that an abundant supply of provisions is one of the most important conditions of success. The cascarrilleros, during this time, are distributed through the forest, one by one, or in small parties, each carrying, under his poncho or cloak, and suspended at his back, provisions for several days, and the coverings which constitute his bed.

The cinchonas rarely constitute an entire forest, but form more or less compact groups, called manchas, distributed in different parts of it. In some cases, and most frequently, they grow separately. However this may be, it is in discovering them that the skill of the cascarrilero is principally exerted. If the position be favourable, the tops of the trees first attract his notice; a slight movement peculiar to the leaves of certain species, a particular colour of the foliage, the aspect produced by a great mass of inflorescence, enable him to distinguish the cinchonas from a great distance. Under other circumstances he confines his inspection to the trunks, of which the external layer of the bark, or enyes as it is called, presents remarkable characters. Very frequently the dry leaves which he finds on the ground are sufficient to indicate to him the vicinity of the object of his search; and if these indications have been brought there by the wind, he knows in what direction to look. An Indian, under these circumstances, is an interesting object for observation. Passing in and out through the narrow pathways of the forest, glancing through the foliage, and appearing to sniff the earth, he seems to walk like an animal pursuing its prey, and darts forth when he thinks he has discovered the object of his search, nor stops until he has arrived at the foot of the trunk which he had descried from the distance. It is not always, however, that the exertions of the cascarrilero are productive of such favourable results. Too often he returns to the camp empty-handed, and without provisions; and not unfrequently, when he has discovered on the side of a mountain, indications of the tree, he finds himself separated from it by a torrent or ravine. Entire days may then pass before he can attain the object which, during this period, he allows not to escape from his sight.

In order to strip the tree of its bark it is felled with a hatchet, being cut a little above the root, and the bark previously removed from this part, so that nothing may be lost; and as at the base the bark is thickest, and, therefore, most profitable, it is customary to remove the earth from around the trunk, that the barking may be more complete. The tree seldom falls immediately when cut through, being sustained either by climbing plants or by the adjacent trees: these are fresh obstacles to be overcome by the cascarrilero. I remember, says Mr. Weddell, having once cut the trunk of a large cinchona in the hope of bringing its flowers within reach, and, after having felled three adjacent trees, had the mortification to find it yet standing, being held up by the interlacing creepers.

When at length the tree is down, and the useless branches have been cut off, the periderm is removed by striking it with either a little wooden mallet, or the back of the hatchet; and the inner bark, being thus exposed, is often further cleaned by means of a brush. The bark is then divided by uniform incisions circumseribing the pieces which are to be removed, and these are separated from the trunk with a common knife or some other instrument, the point of which is carried as close as possible to the surface of the wood on introducing it into the incisions previously made; and if the position of the trunk prevents the operator from removing the whole of the bark by the first operation,
it is subsequently divided so as to admit of its being turned. The dimensions and regularity of the pieces necessarily depend more or less on circumstances; in general, however, for the convenience of transport and facility of preparation, they endeavour to make them from fifteen to eighteen inches long, and four or five inches wide. The bark of the branches is separated in the same way as that of the trunk, excepting that it is not deprived of its exterior coating or periderm.

The details in the process of drying also vary slightly in the two cases; the thinnest pieces of bark from the branches or small trunks, intended to make the quilled bark or canuto, are simply exposed to the sun's rays, and they take of themselves the desired form, which is that of a hollow cylinder; but the bark taken from large trunks, which is to constitute the flat cinchona, or, as it is called, tabita or plancha, must necessarily undergo a certain degree of pressure during the process of desiccation, without which it would become mis-shapen, or take a cylindrical form, as in the preceding case. To effect this, after first exposing the pieces of bark to the sun, they are placed one on the other in crossed squares, in a similar manner to that practised in timber-yards in the arrangement of the planks of wood; and on the top of this pile a heavy weight is placed. This process is repeated for several days until the bark is completely dried.

In many places the bark is not pressed at all, or but imperfectly so, and it is then generally out of form or slightly curled. The periderm is often but partially removed, or simply scraped. Finally, whether it be accidental, or whether it be done with the view of augmenting the weight, there frequently remains a certain quantity of moisture in the bark which greatly deteriorates it. The labour of the cascarillero is by no means ended,

Fig. 326.

The Valley of San Juan del Oro.

Bark-peeling in the Forests of Carabaya in Peru.

(One of the cascarilleros or barkers is represented as engaged in barking a felled stem; two others are occupied in piling the bark in square heaps to flatten and dry it; while a fourth is seen in the distance carrying a load of the dried bark on his back to the camp.)
even when he has finished the preparation of the bark; he has yet to carry his spoil to the camp, and, with a heavy load on his shoulders, to retrace his steps along those parts which, while unburdened, he traversed with difficulty. The labour involved in this part of the operations can hardly be conceived. Mr. Weddell has seen more than one district where the bark had to be carried for fifteen or twenty days' journey to get it out of the wood from which it was obtained.

The packing of the bark is effected by the major domo. As the cutters bring him the bark, he submits it to a slight examination, and rejects that which is bad. It is then, if necessary, exposed to a fresh process of desiccation, and formed into bundles of nearly equal weight, which are sewn up in coarse canvas kept for that purpose. In this condition the bundles are conveyed on the backs of men, donkeys, or mules, to the depots in the towns, where they generally receive an exterior envelope, consisting of a fresh hide, which as it dries makes a hard and compact package. In this form the packages are known by the name of serons, and it is thus that they arrive in Europe. The usual weight of a seron is from 70 to 80 kilogrammes (=156 to 176 lbs. avoirdupois); but it is sometimes much less than this.

DESCRIPTION. a. General Description. — Before describing the various kinds of cinchona barks met with in commerce, it will be necessary to offer a few remarks on their general characters. These may be noticed under the following heads:—cryptogamia, structure, fracture, markings, quilling, colour, taste, and odour.

1. Cryptogamia found on Cinchona Barks.—These, especially the Lichens, have been elaborately examined by Fée¹ and by Zenker.²

a. Musci, or Mosses.—We frequently find mosses on Cinchona barks; but as they are never met with in fructification, it is almost impossible to determine the genus to which they belong. They are probably species of Hypnum.

b. Lichenes.—These are found in great abundance, especially on Loxa or Crown bark. Formerly their presence was considered to be a mark of goodness of barks, which were valued in proportion to the number of lichens growing on them.

We may conveniently arrange them, according to Zenker, in four sections:—Sect. 1. Coniotichenes, or the powdery lichens (Lichenes pulveracei).—In this section we have Lepra flavus. Sect. 2. Cryptolichenes, or the crustaceous lichens (Lichenes crustacei).—These frequently put on very beautiful forms, and so colour the surface of the epidermis that they appear to constitute a part of this coat. In that kind of pale bark usually called gray, or silver, the surface of the epidermis has a white cretaceous appearance, from the presence of various species of Arthonia and Pyremula. Sect. 3. Phyllolichenes, or the foliaraceous lichens (Lichenes foliacei).—These are found most abundantly on the Crown or Loxa bark. The most common species belong to the genera Parmelia, Sticta, and Collema. The P. coronata is a beautiful species, and one frequently met with. So also the Sticta aurata, remarkable for its yellow colour. Sect. 4. Dendrolichenes, or the filamentous lichens (Lichenes fruticosi).—The Usuces are good examples of this section: they are found in abundance on the Crown bark. Two species are met with—U. floridana and U. barbata: a variety of the latter is curiously articulated.

g. Hepaticae.—Jungermannias are found on Cinchona barks, but in too broken a condition to determine their species. Fée, however, examined Humboldt's Herbarium, and found four.

f. Fungi.—As Fungi usually grow on weakly or dead trees, their presence on Cinchona bark is a bad characteristic. Very few, however, are met with. That most commonly met with (especially on quilled Calisaya bark) is Hypocorpus rubricrinus, a red fungus.

2. Structure.—The bark of young Cinchona stems consists of four parts:—1st, the epidermis or outer coat, composed of a row of oblong, brownish cells, flattened in the direction from without inwards, and often partially destroyed or blended with the thallus of lichens. 2dly, the epiphloea, also called phloea, peri-derm, or suberous coat, composed of layers of oblong tabular cells, which in some barks (as those of C. pubescens

¹ Essai sur les Cryptog., 1824.
and amygdafolia) constitutes a layer of true cork, but in others consists of a modified cork, which is distinguished by the name of the resinous circle. 3dly, the xylem or endodermis, placed immediately within the suberous coat, and sometimes termed the cellular or herbeaceous envelope or green layer. It is composed of regular cells, which are flattened in the direction from without inwards, and contain resinous matters which readily dissolve in alcohol. This coat is separated from the liber by one or two rows of lacunae analogous to laticiferous vessels, from which, in the fresh bark, a gummy-resinous, astringent rather than bitter, fluid escapes. 4thly, the internal tunic called the endodermis or liber, and composed of pentagonal cells filled with resinous matters, and of woody tissue (pleurenchyma), forming the cortical fibres.

During the growth and augmented diameter of the ligneous axis of the stem, the inner portion of the bark continues to live and grow also, but the outer portion dies, and remains attached to the inner living portion forming what is called coated bark, — cinchona

cuw cortice exterio re of Bergen), or exfoliates and falls off. This dead part is termed by Weddell the periderm,—while the living part he calls the derm. Thus he applies the term periderm to what the druggist commonly calls the coat of the bark; and the word derm to what is usually termed uncoated bark, or bark deprived of its coats (cinchona nuda of Bergen).

3. Fracture.—The character of the transverse fracture furnishes an important criterion of the quality of bark, and has long been in use among dealers. It depends mainly on the anatomical elements of the bark, but partly also on the contents of the cells. Thus cellular tissue breaks with a short and smooth fracture, and, when the cells abound in resin, the fracture becomes glistening and resinous. Woody tissue, on the other hand, breaks with a fibrous fracture. In a general way, therefore, it may be stated that there are but two kinds of fracture—1st, the short and smooth; and 2dly, the fibrous. But of the fibrous fracture there are three varieties, viz. the short-fibrous, the stringy, and the ligneous or woody. These are respectively shown in the bark of C. Calisaya, serobinchylicata, and pubescens. (See figs. 328 to 330 inclusive.)

The cause of these peculiarities is to be found in the anatomical structure of the bark as displayed by the microscope. In the Calisaya bark the ligneous fibres are short, fusiform, equal, loosely attached to each other by their oblique ends, and surrounded, for the most part individually, by a cellular tissue filled with resin. In the serobinchylicata bark the ligneous fibres are nearly twice as long, more numerous, and adherent by their more tapering extremities. Lastly, in the pubescens bark, we find that the ligneous fibres are three or four times as large as those of the preceding barks, and are united together in bundles: moreover, the internal face of the bark is formed in great part of cellular tissue (see figs. 331 to 336 inclusive).

1 Weddell's terms are convenient, and I shall, therefore, adopt them. But they are by no means devoid of objection: for while the word periderm is used by Mohl, in a precise anatomical sense, to indicate the epidermis or second coat of the bark, Weddell uses it more loosely to signify merely the dead part of the bark, and does not confine it to one tissue. Thus, in its simplest form, Weddell's periderm is the epidermis or suberous coat; but in a more complex state it consists of the exfoliated mesophloem chiefly, with the lacerated suberous coat; and, lastly, in some cases it contains also a portion of the liber.
Fig. 328.
Bark of C. Calisaya entirely deprived of periderm.
Short-fibrous fracture of liber.

Fig. 329.
Bark of C. scrobiculata.
Stringy fracture of liber.

Fig. 330.
Bark of C. pubescens coated externally by its periderm.
Smooth or suberous fracture of the external or purely cellular portion of the bark.
Ligneous fracture of the internal portion or liber.

Fig. 331.
Longitudinal section of C. Calisaya.

Fig. 332.
Longitudinal section of C. scrobiculata.

Fig. 333.
Longitudinal section of C. pubescens.

Microscopic structure of the liber of C. Calisaya, scrobiculata, and pubescens.

ff, Ligneous fibres. cc, Cellular tissue of the liber. rm', Medullary rays.
Cinchona: Seat of the Active Principles.

Microscopic structure of transverse sections of the barks of C. Calisaya, scrobiculata, and pubescens.

- cc, Cellular tissue of the liber.
- ce, Cellular envelope.
- f, Fibres of the liber (i.e., cortical fibres).
- l, The liber.
- pd, A portion of the periderm attached to the liber.
- s, Suberous coat.

As Calisaya bark yields a larger proportion of quinine than any other bark, and breaks with a short-fibrous fracture, Weddell lays down a general rule, that the more the transverse fracture of a cinchona bark approaches to the short-fibrous form, the greater the amount of quinine which we may presume it to contain. On the other hand, the more the fracture approximates to the short or suberous form, the greater the amount of cinchonine. But these rules probably only apply to Bolivian barks.

4. Seat of the Active Principles.—I have repeatedly submitted sections of cinchona barks to microscopic examination, with the view of determining the seat and appearance of the alkaloids in their native tissues.

The liber of many barks presents, even to the naked eye, a speckled appearance, owing to the presence of minute white spots. When we examine these spots by a low magnifying power, they are seen to be cells filled with a white solid substance. If we use the compound microscope, with an object glass of two inches focal length, the inner surface of the liber presents an amygdaloid appearance, owing to the presence of ovoid cells filled with a white substance, and imbedded in the yellowish brown tissue of the bark. Sometimes these cells are rectangular. Longitudinal and transverse sections of the bark show that these white masses are confined to the liber, and chiefly to its inner portion. In one specimen I discovered a thin layer of the white matter between the liber and the mesophleum. These white masses I have met with more abundantly in the cinchonine barks. When the white substance is submitted to high magnifying power, it appears like a crumbling mass, without presenting any distinct crystalline form. It is readily soluble in diluted hydrochloric acid, and the solution is not precipitated by oxalate of ammonia.
It dissolves also in diluted sulphuric acid; and the solution by evaporation crystallizes. In alcohol, ether, and solution of caustic potash, it is only slightly soluble. It is probable, I think, that this white matter consists chiefly of some compound of the alkaloids of the bark.

5. Markings.—Furrows (sulci) are the result of the organisations of the stem, and are often nothing but scars (cicatrices) left by the fall of leaves and stipules,—as the circular impressions, or annular furrows (sulci annulati) or rings, observed on crown or Callisaya barks. Rents or cracks (scissura vel rima) are produced either by the distension of the bark during the growth of the stem, or by the drying of the bark after its removal from the stem: transverse rents or fissures from the latter cause are best seen in a false cinchona bark (quinquina nova of the French writers). Wrinkles (rugae) are usually the result of desiccation: they give the bark a shrivelled appearance. Warts, or tuberules, (vexure vel tuberuli) are observed on some barks, especially on red bark.

6. Taste.—A bitter taste is essential to all good cinchona barks, and is usually assumed to indicate the presence of an alkaloid. Experienced dealers, however, have remarked that those barks whose alkaloid is cinchonine (as C. pubescens) more rapidly communicate a bitter taste, when chewed, than those whose base is quinine. Moreover, the cinchonine barks have a more disagreeable taste, and one allied to that of sulphate of magnesia. An astringent or styptic taste indicates the presence of tannic acid; an aromatic taste, volatile oil or resin.

7 and 8. Colour and Odour.—Little need be said of these characters. The same kind of bark often varies in its colour, while several kinds may have the same tint. Moisture usually deepens the colour.

β. Special Description.—In describing the various kinds of cinchona barks, some classification or arrangement of them is desirable.

In commerce, the distinction usually followed is a geographical one; a bark being termed Bolivian, Peruvian, or New Granadian, according to the country of its growth. This arrangement involves, for the most part, a botanical one; because the barks of the several countries here referred to differ from each other essentially, on account of being the produce of different species of cinchona. But such an arrangement is objectionable, on the ground that barks do not carry with them any characters by which their geographical or botanical origin can be determined.

An arrangement founded on the physical (including microscopical) or chemical characters of barks would, if practicable, be more useful. But, at present, the difficulties which stand in the way of such arrangements are insuperable. In the last edition of this work I arranged the barks according to their colour,—a proceeding which I have subsequently ascertained to be objectionable. The same species of bark (e.g., the bark of C. lanceolata) which, in the young state, has a brown epidermis, is found, at a more advanced stage of its growth, to be whitish externally, owing to the exfoliation of its periderm, and the exposure of its white, micaceous, suberous coat. Moreover, the yellow or red colour of the liber, on which is founded, the distinction of yellow and red barks, cannot be relied on for characterising any particular sort of bark; since the same species of bark may, under some circumstances, be red,—under others, yellow. Of this we have a good example in lanceolata bark.

In a commercial point of view, the value of a cinchona bark depends on the quantity of quinine which it is capable of yielding; and an arrangement of barks founded on the nature of the alkaloid which they respectively contained would be the most useful both for commercial and medicinal purposes. But though, in a general way, a bark is termed a quinina-bark, a quinina-bark, a cinchonine-bark, or an aricine-bark, yet cinchona barks cannot be correctly thus classified, because most cinchona barks contain two or three of these alkaloids, and differ from each other essentially in the relative proportion of these bases which they are capable of yielding. Their chemical distinction, therefore, is rather one of degree than of absolute difference.

In the absence of any scientific arrangement, I shall notice the barks in geographical order; commencing with the more valuable barks of the southern cinchona district (Bolivia), and, proceeding northerly, finishing with the less valuable barks of the most northern cinchona district (New Granada).
Bolivia 1 Calisaya (yellow) bark.
 2 Carabayla
 3 Cusco
Peru 4 Huancaco (grey)
 5 Huamalies (rusty)
 6 Jaen (ash)

Ecuador 7 Loxa (crown and pate) bark.
 8 Guayaquil (red and pate) "
 9 Piaya (Condaminea) "
New Granada 10 Bogota or Caqueta (tawny- "
 11 Carthagena [leaved.] "
 12 Maracaibo "

I. CINCHONA CALISAYA! SEU REGIA.—ROYAL OR GENUINE YELLOW BARK.

Cinchona flavia (regia), L.—Cinchona flavia, E. D.

SYNONYMES.—Quinquina Calisaya ou Jaune royal, Guibourt. China regia; Königs-
China, Bergen. China regia; Cortex Chinas regius, s. flavus, s. luteus; China Calisaya,
Goebel.

HISTORY.—Dr. Relph2 says, that in a letter from a Spanish merchant at Cadiz, dated
September 1789, it is observed that the yellow bark had only been lately known there.
"The first parcel which arrived here was tried at Madrid, and was immediately bought
by the King's order for his own use." In 1790, Murray3 first saw it at Frankfort on the
Maine. He afterwards received it under the name of cortex chinas flavus; and to prevent
confusion he proposed to term it royal yellow bark (cortex chinas regius flavus). Dr. Relph
says it was unknown in England till 1793; but this must be an error, for Murray, who
died in 1791, had received it from London.

BOTANY.—This bark is the produce of Cinchona Calisaya, Weddell (see fig. 325,
p. 1608).—In the Pharmacopoeia Londinensis of 1836, and in some other works, it was
ascribed to C. cordifolia. The error arose from the circumstance of the bark of the
latter, as well as of the former, species bearing the name of "yellow bark." I drew
attention to the error in the former editions of the Elements of Materia Medico; but, as
it has been rectified in the Pharmacopoeia Londinensis for 1851, it need not be further
dilated on.

COMMERCE.—In Bolivia there has been established a monopoly4 in the trade of this
bark, in virtue of which it can be exported only by a National Company at La Paz; and
hence the bark sold by this Company is usually known in trade as Monopoly bark. From
time to time it has been found necessary to issue decrees5 prohibiting, for a limited period,
the cutting of the bark, in order to protect the bark-forests (whose existence has been
damaged by excessive cutting), and also to keep up the price of the bark. The effect
of this monopoly has been to force the manufacturers of quinine to use as substitutes the
inferior, but cheaper, quinine-yielding barks of Carabayla, Bolivia, and New Granada.

Calisaya bark is usually exported from Arica, the nearest Peruvian port to the Bolivian
district of La Paz.

VARIETIES AND DESCRIPTION.—Three sorts of genuine Calisaya bark are distin-
guished in Bolivia: these are the orange-coloured, the dark, and the pale.

1. Orange-coloured Calisaya bark.—This is called in Bolivia Colisaya amarilla, C.
dorada, or C. anaranjada (yellow, golden, or orange-coloured Colisaya). It is the sort
most frequently met with in commerce.

In commerce, two kinds are distinguished: the quilled and the flat.

1 Weddell says that the etymology of the word "Calisaya" is very obscure. "M. Humboldt" [see
Lambert's Illust., p. 53] he adds, "believes that it is derived from the name of the province which
produces it; but well-informed people of the country have assured me that it never existed in
the province of this name. In the department of La Paz, moreover, where it is found most abundantly,
it more frequently bears the name of Colisaya or of Calisaya; and I am inclined to think that
these names have been given to it on account of the red colour which the external face of its
derived bark often assumes on drying, or which its leaves sometimes have. For Coli signifies
"red" in the Quichua language; and says, taken figuratively, means "sort" or "form." I prefer
Humboldt's derivation, and do not see any force in Weddell's objection to it,—for other drugs
(e. g. Balsam of Peru, which is not the produce of Peru, but of Sonsonate) have been named after
places which were supposed, though erroneously, to yield them. Poeppig says that "Cola" signi-
ifies remedy, and "Salla" rocky ground.

2 Ing. into the Med. Effic. of Yellow Bark, 1794.

3 Apparatus Medicaminum, vi. 178.

5 See the 2d ed. of these Elements (p. 1876) for a copy of the decree issued in 1837; and the
Pharm. Journ. (vol. xi. p. 218) for a copy of the decree issued in 1850.
a. Quilled yellow bark (cinchona flavo regia tubulata seu convoluta).—The quills vary in length from three to twenty-four inches; in diameter, from two lines to one and a half or even two inches; in thickness, from half to six or seven lines. Very small quills, however, are rare; those usually met with having a diameter of from one to one and a half inches, and a thickness of from three to six lines. Sometimes they are doubly, though in general they are singly, quilled.

Quilled yellow bark is usually coated; but occasionally we meet with quills which are more or less uncoated. Some of these uncoated quills somewhat resemble coarse cassia lignea. (Cinnamon-like Colisaya quills). Are they the produce of C. Colisaya, var. B. Josephiana? They agree in appearance with the latter; and Mr. J. E. Howard tells me that he suspected this origin of them on account of their stypticity (see p. 1626).

The periderm or coat varies in its thickness. It is more or less rugous, and is marked with transverse impressions or furrows or cracks, which often form complete circles or rings around the quills, and whose edges are thick, raised, and everted. When the periderm is very thick, its substance acquires a corky or elastic consistence, and the annular furrows assume the appearance of deep incisions. Between these rings there are longitudinal wrinkles and cracks. These furrows and cracks, in the coarser quills especially, give the bark a very rough or rugous character, by which it may generally be readily distinguished from the large quills of Huamaco or grey bark. The periderm is almost insipid. Its colour is naturally brown, but it is often rendered more or less silvery or grey by the crustaceous lichens with which it is covered.

The derm or uncoated portion consists chiefly of liber, whose taste is very bitter and but slightly astringent. Its transverse fracture is resinous externally, and fibrous internally. Externally it is brown, and is marked with impressions corresponding to the furrows or cracks of the periderm. Internally it is finely fibrous, and has a deep cinnamon-brown colour.

Fine large coated quills are sometimes selected for filling druggists' show bottles.

β. Flat yellow bark (cinchona regia plana).—The pieces of this sort are from eight to fifteen or eighteen inches long; from one to three inches broad, and from one to five lines thick. They are but little curved or arched; occasionally the inner surface is slightly convex, and the outer one concave from drying. In general the pieces are uncoated (cinchona regia nudula), and then consist almost solely of liber, which sometimes has a thickness of one-third or even half of an inch. This derm or liber has considerable density, usually a perfectly uniform texture, and on the external surface is marked by longitudinal digital furrows, which are more or less confluent and separated from one another by projecting ridges. The colour of its external surface is slightly brownish tawny yellow, frequently with blackish-red patches. The internal surface is fibrous, often with an undulating grain, of a yellowish tawny colour, sometimes with an orange tint, especially when the bark is fresh. The transverse fracture is pure and uniformly fibrous, the fibres being short and readily detached, and irritating the skin like the hairs of Dolichos pruriens. The longitudinal fracture is without splinters, and presents a surface covered with brilliant points, owing to the reflection of light from the denuded fibres, and of an uniform colour. Its taste is very bitter,—the bitterness being gradually developed on mastication,—with scarcely any astringency.

2. Dark Colisaya bark.—This is called Colisaya zomba, C. negra, or C. macha (sambo, black, or male Colisaya). It is remarkable for the dark tint of its external surface, which

1 It is not uncommon to find pieces whose periderm is 1/4ths of an inch thick.
2 Wedell calls them sillos digitatus, because they are somewhat like the impressions produced by the tips of the fingers on soft paste or clay. The Spaniards term them conchas, on account of their fancied resemblance to the hollows of certain shells.
is often of a vinous black. Weddeil met with it especially at Apolobamba, and in the province of Carabaya in Peru.

3. Pale Calisaya bark.—This is termed Calisaya blanca (white Calisaya). It is less unequal on the surface, sometimes semi-cellular, and of a paler colour.

Diagnosis. a. Physical.—The periderm or coat is brown internally,1 deeply furrowed or cracked transversely or circumferentially so as to form rings, wrinkled longitudinally, and, in the older branches, brittle and readily detached. The derm or liber is of a uniform orange or cinnamon brown; yields slowly, when masticated, an intensely bitter, very slightly astringent taste; and breaks with a fibrous fracture which is equal internally and externally. The external surface of uncoated flat pieces is marked by digital furrows.

Barks whose periderm is white or micaceous, or red, or which is devoid of the transverse or annular furrows or cracks, are not genuine Calisaya barks. Those barks whose derm or liber has an ochry or very red tint, or which presents two distinct colours (a whitish one internally and a reddish one externally), or whose fracture is more fibrous internally than externally, are suspicious.2

"The best characters," says Dr. Weddeil, "by which the true Calisaya may be distinguished from every other species, are—the shortness of the fibres which cover the whole surface of its transverse fracture, and the facility with which they may be detached instead of being flexible and remaining adherent, as is the case with the barks of rufinervis and sorobicinata. Lastly, its uniform dull yellow (tawny) colour, and its substance not being marbled with white, readily distinguishes it from C. Boliviana.

"Add to these characters its great density (which is such that when a nail is drawn across it, a bright mark is left): the depth of the digital furrows and the prominence of their separating ridges are generally sufficient to distinguish the flat Calisaya from all the other barks with which it may be mixed.

"The quilled Calisaya is more difficult to distinguish, because its periderm, in its physical characters, greatly resembles several other species, especially sorobicinata and rufinervis; and also because the fracture does not present the same clear characters which it does in the older barks." To these characters we must add the degree of bitterness, which, in doubtful cases, is the most sure method of deciding the question.

β. Microscopic.—"If we resort to the microscope to aid us," says Dr. Weddeil, "the characters by which the bark is to be distinguished are very slight; namely, a slight excess in the thickness of the periderm, and the broader resinous circle." If we examine by the microscope a transverse section of this bark (see figs. 338 and 339), we observe that the texture is homogeneous, and consists of ligneous fibres uniformly distributed in cellular tissue filled with resinous matter. This tissue is interposed between the fibres so as almost to isolate them. If we examine a longitudinal section of the liber (see fig. 340), it will be seen that the ligneous fibres are short and fusiform, and their obliquely truncated extremities are only loosely adherent to, or are even completely independent of, those next to them.

γ. Chemical.—It is doubtful whether there are any chemical means of distinguishing this from other allied cinchona barks. Anthony3 gives the following:—Digest one part of finely-cut bark in four parts of boiling distilled water for twelve hours; then filter. This infusion yields with reagents the following results:—Dilute liquor ammonii (sp. gr. 0.990) renders it turbid, and occasions a precipitate: neither a solution of iodide of potassium (one part iodide and six parts water) nor a saturated solution of nitrate of baryta occasions any change in it: lastly, solution of fresh-made sulphate of protoxide of iron (one part sulphate and six parts water) colours the infusion green, but does not, within four hours, occasion any precipitate. According to Anthony, these results taken together characterise Calisaya bark, and distinguish it from all other cinchona barks.

Guibourt4 uses sulphate of soda to distinguish Calisaya from Loxa and Lima barks:—Coarsely pulverise the suspected bark, and rub the powder in a mortar, so as to form a thin paste, which is to be placed on a filter. Add some crystals of pure sulphate of soda to the filtered liquor: if the bark be the Calisaya sort, a white precipitate is obtained; but if it be a grey bark this effect does not take place.

The following are the characteristics of Calisaya given in the Pharmacopoeia Londinensis for 1851:

1 Externally it may be variously coloured by lichens.
2 See, on this subject, Guibourt, Journ. de Pharm. t. xxii. p. 614, 1836.
3 Buchner's Repertorium, Bd. iv. S. 54, 1835; and Bd. vi. S. 58, 1836.
4 Journ. de Pharm. t. xxii. p. 614, 1836.
"Thick, chiefly composed of very slender acute fibres, either flat or quilled: the latter ash-coloured or brownish, wrinkled longitudinally, deeply fissured transversely or circumferentially: the former denuded for the most part, and of a cinnamon-brown colour. Very bitter. From a pound of this bark should be obtained, by means of sulphuric acid, about three drachms of disulphate of quina."

Cryptogamia. The following is a classified list of the cryptogamic plants found on this bark, according to Fea:

1. **Fungi.** *Hypochmus rubrocinetis; Trielium Cinchonarum.* The first of these fungi is frequently met with on quilled yellow bark. Its receptacle is irregular in shape, scarlet, with a whitish surface.

2. **Lichenes.** The crustaceous or adherent lichens are—*Opegrapha peruviana; O. Sca.
phella; O. ovata; O. rhizocota; Graphis cinerea; G. einnadarina; Arthonia obrita; Fissurina Domastii; Chioedelon spherea; Trypethelium verrecosum; T. chioedelonoides; Pyrenula annularis; Purina americana; Ascidium Cinchonarum; Lepra flaca; Varioaria amara; Lecidea aurigera; L. tubercula; L. soredifera; and L. punicea.*

The foliaceous lichens are—*Parmelia perlata; Sticta macrophylла; Collema azureum; and Solorina vitellina.*

The filamentous or hairy lichens are—*Usnea florida and U. barbata.*

3. **Hepaticæ.** *Jungermannia atrata.*

4. **Musci.** *Hyphnum Langsdorffii.*

Composition. Deschamps discovered in this bark the salt which he termed the quinquinate of lime, but which is now called kinate of lime. In 1820, Pelletier and

Caventou has analysed this bark, and found in it *quinine*, *cinchona*, soluble red colouring matter (tannin), fatty matter, yellow colouring matter, *tigaine*, and starch. At first they thought this bark contained no other vegetable alkaloid than *quinine*, but they afterwards discovered cinchonia in it. In 1829, Sertürner announced the existence of a third alkaline base in it, to which he gave the name of *quinoidine*. In 1846, Liebig declared this to be *amorphous quinaine*; and still more recently, Van Heijningen has resolved it into four or five different substances, of which one is a peculiar base called *quinoidine* or *quinain*, and another *γ-quinine*.

Schwartz has recently detected both *quinon* and *cinchona-laric* as well as *quinine* in this bark.

In 1827, Pelletier consumed 2,000 quintals of this bark in the manufacture of 90,000 ounces (French) of *quinina*; this is about three drachms of *quinine* per lb. of bark. Soubeiran states that one lb. (French) of uncoated yellow bark yields three drachms and from 30 to 50 grains (French) of *quinina*; while the same quantity of coated yellow bark yields three drachms (French) of the *quinina*.

It may be stated generally, that 100 parts of yellow or Calisaya bark yield from 3 to 3.5 per cent. of crystallised *quinina*; or, 2 lbs. of bark yield nearly 1 oz. of *quinina* of the crystallised sulphate. Assuming that this sulphate contains 74-3 per cent. of pure *quinine*, it follows that 100 parts of Calisaya bark contain from 2.1 to 2.3 parts of pure *quinine*. I have heard that as much as 4 per cent. of *quinina* has been obtained from one sample of Calisaya bark.

Püttharcken states that this bark yielded him only 0.58 per cent. of ashes, being a smaller amount than he obtained from any other either genuine or false cinchona bark. The ashes were of a green colour (owing to manganate of potash). The per-centages of carbonate of lime and of caustic lime in the bark were respectively (on the average) 0.15 and 0.25,—proportions which were smaller than in any other cinchona barks examined, and seem to favour the notion that with the increase of the alkaloids in the barks the proportion of lime diminishes.

Medicinal Properties.—Yellow or Calisaya bark, on account of the large quantity of *quinina* which it yields, possesses more powerfully tonic and febrifuge qualities than any other cinchona bark,—red bark, perhaps, excepted. In the London Pharmacopoeia of 1851, it has, therefore, been directed to be used as "Cinchona" when the particular sort is omitted to be specified in the preparation of *Deacetum Cinchone*, *Extractum Cinchone*, *Infusum Cinchone*, *Infusum Cinchone epissatum*, and *Tinctura Cinchone*.

Considered as an astringent, yellow bark is inferior to some other sorts of Cinchona, on account of its containing a smaller proportion of tannic acid (Pelletier and Caventou).

Pseudo-Calisaya Barks.

Under this name I include various barks, both quilled and flat, which are more or less allied to or simulate the genuine Calisaya sort, and are known to the dealers as *false* or *spurious Calisaya barks*. They are imported from Bolivia and Peru, and, except in one instance (that of *C. serobiculata var. β Deンドアリス*), are not known to the London dealers by any special names to distinguish them from one another. In France, the term Calisaya *léger* (light or flimsy Calisaya) has been applied to some of them. From Germany I have received one of them (*C. micrantha*) under the name of *cortex china pseudo-regina*. From Sweden I received, as a genuine Calisaya bark, the bark of *C. amygdalifolia*. I have very little doubt, therefore, that on the Continent, as well as in this country, they frequently pass as the genuine Calisaya sort.

They are imported either alone or intermixed with genuine Calisaya bark. The inter-

1 *Journ. de Pharm.* t. vii. p. 89, 1821.
3 Baschners *Reptoritorium*, Bd. xxxii. S. 95, 1829.
9 *Traité de Pharm.* t. i. p. 533.
mixture, says Dr. Weddell, is especially made in Bolivia with the barks of _C. Boliviana_ and _C. ovata var. B rufinervis_; and only on the coast with _C. scrobiculata_.

Under the general head of Pseudo-Calisaya barks I include—

1. The barks of _C. Calisaya var. B Josephiana_ and of _C. Boliviana_: the former perhaps strictly entitled to the name of a genuine Calisaya bark,—and the latter bearing the name of Calisaya bark in Bolivia.

M. Guibourt mentions several other barks (for example, _C. pubescens var. A Pelletieriana_, and _C. cordifolia_) as being used for adulterating the Calisaya sort. But inasmuch as they differ considerably in appearance from the latter, and are distinguished in trade, by _Cusco bark: Carthagenea bark_ special names, as distinct sorts, I have not included them under the general head of Pseudo-Calisaya barks, but shall describe them separately hereafter.

1. _C. Calisaya var. B Josephiana._

Bark of C. Josephiana.—The shrub called by the Peruvians _Ichu-Cascarilla_, which yields this bark, being considered by Weddell to be a variety of _C. Calisaya_, its bark must rank as a sort of Calisaya, though in appearance it differs considerably from the genuine Calisaya bark. The bark both of the stems and of the wood is found in commerce.

1. _Stem-bark._—Weddell observes of it, that though it rarely occurs in commerce, yet by the natives it is used as often as any other bark, in consequence of the facility with which it is procured. Its periderm (or coat), he adds, is brown or blackish-grey, or slate-coloured (a colour common to all cinchona barks developed under the influence of wind and sun), and is covered by pale elegant lichens. As the bark adheres strongly to the wood, it is separated with difficulty from the latter; and to this circumstance is to be attributed the fact that the internal surface of this bark is often torn. The cinnamon-like _Calisaya quills_ before alluded to (p. 1632) are exactly like some recently sent to Dr. Weddell as _Ichu-Cascarilla._

2. _Root-bark._—Weddell was shown in Peru the bark obtained from the larger roots, or rather stumps, of _C. Josephiana_. He describes it as being in short, flattened, undulated, or more or less contorted pieces, deprived of the periderm, fibrous or almost smooth on the inner surface, very slightly cellular, externally of an uniform ochre-yellow colour, and decidedly bitter, but less intensely so than Calisaya, whose internal structure it possesses the characters of.

Weddell suggests that this root will become valuable, notwithstanding the difficulty of collecting it, as it is superior to some of the barks at present in use, and has not hitherto been much employed. A root-bark, apparently the one in question, has been imported into England by way of the Pacific, and found to yield quinine, but in very small quantity.

New Granada Cinchona root-bark.—There is a root-bark of a species of cinchona, imported from New Granada by way of Santa Martha and Maracaibo, which must not be confounded with the root-bark of _C. Josephiana_. In its curly or twisted or contorted character, it much resembles the latter; but it yields eichonine,—whereas the root-bark of _C. Josephiana_ yields quinine.

2. _C. Boliviana._

Cortex Cinchonae Bolivianae, Weddell; _Calisaya morada, Boliv._; _Cascarilla verde morada, Peru_; _Bark of the Mulberry-coloured Calisaya._—This constitutes part of the Calisaya bark of commerce. It occurs both quilled and flat, and greatly resembles the genuine Calisaya, from which it is with difficulty distinguished; but its fibre is somewhat coarser, and more easily reduced to powder. Its taste is bitter, with a somewhat smoky flavour. The fractured surface presents, when quite fresh, paler or whitish patches, which, however, become at first red and afterwards brownish-yellow in the air. The periderm or coat is less thick, and its fissures less marked than in the genuine Calisaya. Quilled _Boliviana bark_ is quite similar to quilled Calisaya. _Flat Boliviana bark_ is composed solely of liber. It is in general equally dense but thinner than flat Calisaya. The digital furrows are shallower, a little more confluent, and the separating ridges more rounded. Its colour is brownish fawn yellow, with somewhat greenish tints in some places.
3. C. ovata var. \textit{B} rufinervis.

Cortex Cinchona \textit{rufinervis} ; Cascarilla Carabaya ; Cascarilla \textit{zamba} morada, Peruv. ; Dark Mulberry-coloured Calisaya.—Dr. Weddell states that in the province of Carabaya, where this bark is collected, it is habitually used to sophisticate Calisaya bark, from which it is frequently very difficult to distinguish it. In the quilled variety, called by Dr. Weddell \textit{pseudo-Calisaya}, the periderm exfoliates very readily. The flat pieces consist either of liber only, or of liber with a portion of the cellular coat. The fibre is finer and darker than the Calisaya sort; and the external surface presents darkish spots due to the remains of the cellular crust filled with a brown juice. "I have seen," says M. Guibourt, "a manufacturer of quinine complain much at having been deceived by the appearance of this bark."

4. C. micrantha.

Cortex Cinchona \textit{micrantha}.—By the inhabitants of Huanuco it is called Cascarilla \textit{provinciana} : in the province of Carabaya, it is termed Cascarilla \textit{motosolo}, and, by the Bolivians, Quepo-Cascarilla or Cascarilla \textit{verde}. In Carabaya, where it is extensively collected, it is confounded with the ordinary forms of \textit{C. ovata}, under the name of Cascarilla \textit{morada} ordinaria.

It is obvious to me that either this bark puts on several very dissimilar forms, or that the barks of several distinct species are confounded together under the same name. M. Guibourt appears also to have arrived at a somewhat similar conclusion; for, after describing two sorts of micrantha bark, he observes that it appears to him that they are not the produce of Poeppig's \textit{micrantha}, which, therefore, cannot be identical with that of Weddell.

The quilled micrantha bark, according to the statements of Poeppig and Reichel, constitutes part of the Huanuco or grey bark of commerce. Its characters, as given by Weddell, are as follows: periderm very thin, adherent, slightly wrinkled longitudinally as if shrivelled, or very slightly warty, bright brownish grey, marbled with some deeper tints. Derm almost smooth externally, finely fibrous, and of a bright orange-fallow internally. Transverse fracture short externally, fibrous internally. Bitterness very marked and rapidly developed. (See also p. 1631.)

The flat micrantha simulates genuine Calisaya, but is less dense. It consists either of liber only, or of the liber and cellular tissue: the latter is usually semi-fungous and imperfectly exfoliated. The external surface frequently presents concavities or superficial digital furrows like those of Calisaya bark, and separated by irregular suberosa elevations; much more rarely smooth by the persistence of the whole of the cellular coat; of a greyish and bright orange-yellow colour. Internal surface is remarkably fibrous, and of a brighter tint than the external one. Transverse fracture stringy throughout the whole thickness of the bark,—or somewhat suberosa externally. Longitudinal fracture a little splintery, with a dullish surface. Taste very bitter, speedily developed, a little piquant, scarcely styptic.

In rather aged barks, Weddell observes that the periderm is not very thick, and appears to be entirely formed of the suberosa coat; but between this external layer and the derm there is frequently found a reddish pulverulent matter, of which it is in part made up, and which results from the decomposition (not desquamation or exfoliation, as in other species) of this part.

Poeppig says that three kinds of micrantha bark are known in trade; but he does not specify them.

M. Guibourt includes Weddell's flat micrantha bark under his \textit{orange-yellow bark} (quinquina jaune orangé), and observes that its exterior surface is, as it were, greenish, is marked with transverse impressions and oval cavities filled with some fungous matter, and presents asperities and inequalities not met with in any other sort.

5. \textit{C. scrobiculata}.

Cortex Cinchona \textit{scrobiculata}.—The barks of the two varieties of \textit{C. scrobiculata} are not distinguished by Weddell; but the specimens which I have in my possession are very distinct.

1 The fibrous grain of some of the flat pieces is remarkably wavy or undulating.
If we examine a piece of flat scrobiculata bark, we shall find, says Dr. Weddell, that instead of the digital furrows with a fibrous bottom, which characterise Calisaya bark, it presents a surface almost even, and consisting of cellular tissue, traversed here and there by a slight linear impression; the inner surface being, as in Calisaya bark, of a fibrous texture. The transverse fracture is more or less suberous or fungous externally, according to the thickness of the cellular coat; and very fibrous or stringy internally; the fibres being long and pliant.

When a transverse section of the bark is submitted to microscopic examination, we observe that the fibres are more numerous than in Calisaya bark, and are nearer the inner surface; but they lessen in number rapidly towards the outer or epidermoid surface, and the outermost layer is almost devoid of them. To this circumstance is due the fact that the transverse fracture is more fibrous internally than externally (fig. 341). The cortical fibres, instead of being free or isolated, in the midst of cellular tissue, touch each other, and adhere by one of their surfaces with neighbouring fibres to form parallel series (figs. 342 and 343); and if we examine a longitudinal section (fig. 344) of the liber by the microscope, we observe that these fibres are nearly twice as long as those of C. Calisaya (fig. 340), and their extremities are always attached to those of neighbouring fibres, so that the oblique truncations are more elongated (fig. 344). To this peculiarity of the fibres is due the more fibrous or stringy transverse fracture of this bark.

Fig. 341. Bark of C. scrobiculata. Stringy fracture of liber.

Fig. 342. Transverse section of the bark completely deprived of its periderm.

Fig. 343. Transverse section of the liber (more highly magnified).

Fig. 344. Longitudinal section of C. scrobiculata, parallel to the direction of the medullary rays.

Microscopic structure of the bark of C. scrobiculata.

Fig. 342 shows the analogy which exists between the external layer (cc) of this bark, and the internal layer of the periderm of the Calisaya bark (fig. 338).

1. The best method of rendering these fibres evident is to effect the fracture by torsion (Weddell).
1. Cortex C. scrobiculata var. a genuina.—This bark is called in Peru Cascarilla colorada del Cuzco (i. e. Red Cuscoe Bark), or Cascarilla de Santa-Ana (i. e. St. Ann's Bark). This is one of the barsks which Guibourt terms Calisaya léger (i. e. Light or Flimsy Calisaya). I have met with it in English commerce under the name of Cusco bark. It occurs in flat pieces composed of the liber covered externally by a thin layer of the cellulose-resinous tissue. My specimens are readily distinguishable from Calisaya bark by their fresher or brighter colour; but Weddell states that the colour of this bark is very variable. The external or cellulose-resinous surface is brick-red or purplish-red, or within reddish-orange; marked by superficial transverse impressions or furrows. The internal surface (of the liber) is of a fine reddish-orange colour. Fracture more or less short or suberous externally, according to the thickness of the cellular coat; fibrous or stringy internally: the colour of the fratured surface is not uniform. Taste both astrangent and bitter. The reddish colour of this bark explains why it is called red bark (Cascarilla colorada) in Cusco, and why De Candolle thought C. scrobiculata was the source of the red bark of commerce. Guibourt states that if this bark be isolated in a bottle it evolves an agreeable raspberry-like colour.—This bark is imported both unmixed and mixed with Calisaya.

2. Cortex C. scrobiculata var. β Delondrianae.—This bark is imported from Lima, and is known in English commerce by the name of Peruvian Calisaya. It occurs in flat pieces which in colour closely resemble the genuine Calisaya bark, for which it is often passed off. They are thicker and denser than the Cascarilla de Santa-Ana, from which they also differ in colour. Externally this bark is smoother than the Calisaya bark, and the ridges between the furrows are smoother and rounded,—not sharp, as in the bark just mentioned. The fracture is fibrous: the taste, in the larger pieces, less bitter than that of Calisaya bark.

The younger quilled and coated scrobiculata bark probably constitutes part of the crown bark of commerce, with which it agrees in chemical constitution.

Weddell states that 1000 parts of the scrobiculata bark yield only from 7 to 8 parts of sulphate of einehomin, and from 3 to 4 parts of disulphate of quinine; and he adds that the large quantity of red colouring matter which it contains is a great impediment to its use for manufacturing purposes.

6. C. amygdalifolia.

Cortex Cinchona amygdalifolia; Cascarilla-Echenique, Peruv.; Cascarilla-Quepo, or Quepo-Cascarilla, Boliv.—It is imported, either alone or mixed with other Bolivan barks, both quilled and flat. It is distinguished from genuine Calisaya bark by its lightness, its more orange colour, the presence of the persistent cellular coat in the so-called uncoated pieces, the more stringy transverse fracture and the splinterly longitudinal fracture of the liber, the want of very marked annular cracks on the periderm, and the styptic usually not very bitter taste. The flat pieces consist of liber and cellular coat, oftentimes more or less covered by the periderm: externally it is smooth, or superficially wrinkled longitudinally by drying. A portion of the quilled sort, which had been identified by Dr. Weddell, yielded Mr. J. E. Howard 7 parts of quinidine and a trace of einehomin in 1000 parts of bark. The flat pieces yielded him 2-3 parts of quinidine, and the like quantity of einehomin, in 1000 parts of bark.

II. CORTEX CINCHONÆ DE CARABAYA.—CARABAYA BARK.

Carabaya or Caracaya bark was first imported into London in 1846. Its name would lead to the suspicion that it was obtained from Weddell's Cinchona carabagensis: but such is not the case. According to information furnished by Dr. Weddell to Mr. J. E. Howard, it is the produce of Cinchona ovala var. a vulgaris. "Dr. Weddell assured me," says Mr. Howard (in a letter to me), "when here this spring [1852], that it was var. a vulgaris, and his specimens given me include it. The rufinervis bark, which he has also given me, is a distinct variety." It is obvious, however, that Carabaya bark is very different in appearance, and even in chemical composition, from the bark usually known as the produce of the ordinary variety of C. ovala. Moreover, in Peru, the name of Cascarilla Carabaya is given to C. ovala var. β rufinervis; so that the designation of "Carabaya bark" is not a very precise one. I apply it, however, exclusively to the bark.
known by this name in the London market, and which is tolerably uniform in its properties.

Carabaya bark is imported from Islay, the nearest port to the province of Carabaya, in which the bark is collected. Large importations of it are now made into London.

It is essentially a thin flimsy bark, of a more or less rusty colour; some of the pieces resembling in appearance Huamalies bark, from which, however, it appears to be essentially different. The quills are about the thickness of the finger, and of variable length. I have some which are two feet long; some are coated, others are uncoated quills. The coated quills (coated Carabaya quill) have a dull, rusty or greyish rusty, warty coat, marked by longitudinal furrows, but rarely by transverse furrows or cracks. Some of the uncoated quills have a dark or more or less tea-green tint (tea-green Carabaya quill). The flat pieces (flat Carabaya) consist either of liber only, or of liber with a portion of the cellular coat. The external surface of the liber, in some of the uncoated pieces, is blackish, with rusty round flattish warts. In some cases the dark external surface looks as if it had been dusted over with a yellowish powder (e. g. powder of gamboge or turmeric), by which a kind of bloom has been given to it. The colour of the liber is usually more or less orange; but some pieces resemble in colour red bark (red Carabaya bark). Carabaya bark is used by the manufacturers of sulphate of quinine as a cheap substitute for the more valuable Calisaya bark. The total amount of alkaloids (cinchonine, quinidine, and quinine) which it yields, is from three to four per cent.

III. CORTEX CINCHONÆ DE CUSCO.—CUSCO BARK.

Under the name of Cusco or Cuzco bark, I have met with, in English commerce, several very distinct barks, viz. 1st. The bark of Cortex Cinchonæ scrobiculata var. a genuina, known in Peru as Red Cusco bark, and which has been already noticed (see ante, p. 1629). 2ndly. The bark of Cortex pubescent var. a Pelletieriana. As the last mentioned bark is the one which was first known in Europe as Cusco bark, and which is usually indicated by this designation in pharmaceutical works, I shall continue to call it by this name. 3rdly. I have also received under the name of "Cusco bark," specimens of a quilled bark, and also of a flat bark, which I believe to be the produce of C. ovata (see Cortex Cinchonæ de Juen).

Cusco bark, or the bark of C. pubescent var. a Pelletieriana, was first introduced into Europe in 1829 as yellow or Calisaya bark. It appears to have been imported at about the same time into England, Hamburg, and Bordeaux.1 Bergen2 called it rusty bark (Chiria rubiginosa), on account of its rusty yellow colour. The bark described in 1829 by Pelletier and Coriol,3 under the name of Arica Bark (écorce d'Arica; quinquina d'Arico), is a variety of it.

Weddell has ascertained that this bark is the produce of Cinchona pubescens. The var. a Pelletieriana yields Pelletier's Arica bark, which, by the Bolivians and Peruvians, is called Carua-Carua or Cargua-Cargua, and in Carabaya it is sometimes termed Cascorilla amarilla or Quina amarilla (yellow bark), the name which Mutis gave to the bark of C. cordifolia. The bark of var. β purpurea is called, in the valleys about Huamanco, cascorilla boba de hojas moradas, or "spurious bark with mulberry leaves."

The bark of C. pubescens is never entirely devoid of its external cellular coat; and hence, when fractured transversely, this coat breaks smooth or corky, while the liber presents a short fibrous orligneous fracture. In this bark the periderm consists only of some rows of the cubical cells of the suberous coat. If we submit sections of the bark to microscopic examination, we observe that the portion of the suberous coat which remains adherent to the bark is membraniform, and consists of cubical or rectangular cells (fig. 346 s). The limits of the cellular envelope and the liber are less clearly defined in this bark than in the others before figured. The cells of the cellular envelope, however, are more flattened in the direction from without inwards than those of the liber. The greater part of the transverse section (fig. 346) of the bark is seen to consist of cellular tissue, in which the fibres form but a small number of irregular

Cinchona: Cusco Bark.

and concentric series in the inner half of the bark. A very remarkable circumstance is the size of the fibres, which are frequently three or four times as large as those of Calisaya or scrobiculata bark before figured (see ante, figs. 338 to 344). Bundles of these fibres, united together laterally, are arranged in zones in the midst of the cellular tissue of the bark (figs. 347 and 348).

Bergen observes, that Cusco bark somewhat resembles what is called fibrous Carthagena bark. It varies in appearance according to its age: but in general its orange-red or rusty colour, the remains of the white or greyish suberous coat, and the absence of transverse cracks, serve to distinguish it. The young quills are coated, thin, externally smooth, and of an almost uniform yellowish-grey colour: on the inner surface they are yellowish, and have a fibrous texture. The middling-sized quills are covered by a whitish, smooth, uncracked, suberous coat, beneath which is an orange-red cellular envelope. The inner surface of the liber is dull yellowish cinnamon brown. The cortical fibres are coarse and pale, but become red by exposure to the air. The larger and flat pieces consist of the liber covered externally by the cellular envelope, with the remains of some portion of the suberous coat. By inexperienced persons they may be mistaken for yellow (Calisaya) bark. "They may be readily distinguished," says M. Guibourt, "by their more regularly cylindrical form, by their smoother external surface, by the remains of the white and fungous layer, by their two tints of colour, orange or brownish externally, almost white or very pale internally, and, lastly, by their not occasioning any precipitate with sulphate of soda."

Bark of C. pubescens coated externally by periderm.

Smooth or suberous fracture of the external or purely cellular portion of the bark.

Ligneous fracture of the internal portion or liber.

Transverse section of the bark of C. pubescens.

Transverse section of the liber of C. pubescens (more highly magnified than in fig. 346).

Longitudinal section of the liber of C. pubescens.

Microscopic structure of the bark of C. pubescens.

s. Suberous coat.
ec. Cellular envelope.
l. Liber.
cc. Cellular tissue of the liber.
f. Ligneous or cortical fibres of the liber.
rm. Medullary rays.
This bark was analysed by Frank, who obtained, in one experiment, 48 ounces of cinchonine, and a trace of quinine, from 100 lbs. of bark. In another trial he procured 50 ounces of cinchonine from the same quantity of bark. Winckler reports, that he got 256 grains from 16 ounces of the best heavy sort of rubiginosa bark, and only 77 grains from the same weight of an inferior sample of the bark. M. Guibourt examined a kilogramme (about 2 lbs. 3 oz. avoid.) of Cusco bark, and estimates the quantity of cinchonine contained in it at one drachm for every pound of bark. He observes, that the bark is very rich in red cinchonic. Some of the pieces, according to Bergen, are very rich in resin.

Arica Bark; Ecorce d'Arica, Pelletier; Quinquina d'Arica.—The bark which, in 1829, Pelletier and Corriol analysed under this name, appears to be essentially Cusco bark. It differs, however, says M. Guibourt, a little from the ordinary Cusco bark, though it constitutes a part of it. According to Pelletier, Arica bark becomes deep green when touched by nitric acid, and yields, on analysis, an alkaloid (aricina), which acquires an intensely green colour when dissolved in concentrated nitric acid, and which forms, with sulphuric acid, a sulphate, not crystallisable from its aqueous solution, but forming a white, trembling, gelatiniform mass. In 1830, I procured from M. Pelletier a specimen of his Arica bark (which is now in the Museum of the Pharmaceutical Society), but it is not rendered green on the application of nitric acid. "The bark analysed by Pelletier," says M. Guibourt, "does not become coloured by nitric acid; and I am now at liberty to state, that Pelletier, having requested me to return him the greater part of the Arica bark which he had previously given me, in order that he might verify the characters which he no longer found in that which remained with him, obtained only negative results, which left him in great doubt as to the peculiar nature of aricina."

Cortex Cinchona purpurea; Cascarilla boba de hoja morada (Spurious bark with purple leaves).—This is the bark of Cinchona pubescens, var. C. purpurea, Weddell. Reichel has declared that the bark of this tree, which Poeppig brought to Europe, is identical with the Huamalies bark of commerce. But I am satisfied that this is a mistake. For in the first place, Martiny, who also received a specimen of the bark from Poeppig, has declared that it has not the most remote resemblance to Huamalies bark; and in the next place, the barks of C. purpurea, in Pavon's collection in the British Museum, as well as those brought by Weddell, are entirely different from the Huamalies bark, but agree with the description given of them by Ruiz in the Quinologia.

The genuine bark of Cinchona purpurea has some resemblance to that of C. cordifolia. The quills have a rigid fibre, are somewhat warty, and have a smooth, light grey epidermis, somewhat like that of Cusparia bark. They are almost entirely devoid of transverse cracks. The colour of the inner surface of the bark (liber) is cinnamon-brown. The coarser bark of the trunk is dark brown, with patches of the greyish epidermis adherent to it. In 1849, a considerable quantity of this bark, mixed with others, was imported.

The thick coarse bark yielded Mr. J. E. Howard in 100 parts only 0'85 of impure quinine, and 0'60 of cinchonine.

Considered in a medicinal point of view, all the above three sorts of bark are of inferior quality. Poeppig says that the bark of C. purpurea may probably be found useful for making cheap decoctions, as it can be sold at a very low price.

IV. CORTEX CINCHONÆ DE HUANUCO.—GREY OR SILVER CINCHONA.

Synonymes.—Quinquina de Lima, Guibourt; China Huanuco, Grane China, Bergen; China Huanuco, Huanuco, Guanaco, Huamaco, Goebel; Cascarilla provinciana, Pöppig; Cinchona cinerea, Ph. Ed.

1 Buchner's Repertor. Bd. xxxiii. S. 353, 1830.
2 Ibid. 2te Reihe, Bd. xxv. S. 324, 1842.
4 Hist. des Drogués, 4me édit. t. iii. pp. 160—161.
5 Hooker's Companion to the Botanical Magazine, vol. i. page 252. 1835.
The appellations of grey or silver applied to this bark refer to the colour given to the bark by the thallus of various erustaceous liemens (Graphiaceae).

History.—This bark was first known in Spain in 1799. One hundred and eighty chests of it were brought to Santander, in that year, by the frigate La Veloz; and Ruiz was appointed to examine the cargo. He found in the chests a thick bark, till then unknown to the botanists of Peru, mingled with the barks of C. nitida and C. lanceolata, and with those of the species which Tafalla has designated by the phrase "similar to Calisaya." 1 Poppig 2 says the trade in the barks of Huanuco commenced in 1785; but that in 1815 it almost entirely ceased. The scarcity of yellow bark will be likely again, I should think, to give a fresh impulse to it, as the quality of good Huanuco bark is excellent.

Botany.—It is unnecessary to detail the speculations of botanists as to the origin of this bark previous to Poppig’s discovery. This celebrated traveller brought to Europe a bark called Casuarilla provinicialis, and which was the produce of Cinchona micrantha. Reichel, an apothecary at Holenstein in Saxony, examined and carefully compared it with his own collection of eihenake barks, as well as with that of Von Bergen at Hamburg, and declared it to be identical with the Huanuco Bark of commerce.

But under the name of Huanuco or grey bark two distinct barks are found in English commerce,—one of which is the produce of C. micrantha, the other probably of C. nitida.

Commerce.—Grey bark is collected in Cuchero and Huanuco, and is conveyed to Lima, from whence it is exported to Europe. It comes over in chests, and also in scorns.

Description.—Grey bark always occurs in the form of quills, which are usually coated. Two sorts are distinguished in English commerce,—one as fine grey bark; the other as coarse or inferior grey bark. These sorts usually come over mixed, but sometimes separately. At a sale of grey bark, in April 1852, Mr. J. E. Howard found the proportions to be as follows,—30 chests of unmixed fine grey, 30 to 40 chests of almost all inferior grey, and 100 chests of fine grey mixed with inferior grey.

1. Fine Grey Bark; China Huanuco, Geobel, Pharm. Waaren. Taf. vii. figs. 1 to 4; Quinquina rouge de Lima, Guibourt; La [Casuarilla] Peruviana or Quina caña legitima, Lambert, Bull. Pharm. t. ii.—Mr. J. E. Howard regards this bark as the produce of C. nitida, R. and P., for it agrees with the bark of this species in Pavon’s collection, and its description answers to that given in the Quinologia, and by Lambert, of the bark of C. nitida. The length of the quills is from three to fifteen inches; their diameter from two lines to one and a quarter, or even two inches; their thickness one-third of a line to five lines. At the edge of most of the perfect quills we distinctly observe a sharp oblique cut, made probably to loosen the bark. These oblique cuts are rarely found on other barks.

The quills are frequently somewhat spirally rolled. We observe on the epidermis numerous, short, irregular, transverse cracks; but they do not form rings, as in the Loxa or crown bark, and their edges are flat, scarcely separated or everted. The colour of the outer surface is clear or silvery grey, or whitish; in the smaller quills it is a uniform whitish grey, while in the large quills we observe a kind of erustaceous covering, owing to the thallus of some erustaceous liemens. The structure of the inner surface of this kind of bark is, in the small quills, smooth; in the larger ones fibrous; the colour is rather reddish, or rusty brown, than cinnamon brown. The fracture is smooth and resinous; the odour clayish or sweet, and which Bergen says is peculiar to this kind. The taste is astringent, aromatic, and bitter, but not disagreeable; the powder of a deep cinnamon brown. Mr. J. E. Howard, in drawing a parallel between the fine grey (or nitida) bark and the inferior grey (or micrantha) bark, describes the former bark as having been when fresh “very fleshy,” thicker, and not wrinkled longitudinally. The external colour of its derm varies from maroon to rusty, and of its periderm (where not covered with liemens) of a more or less deep brown. The substance of the bark is red. In microscopic structure this sort approximates to Calisaya bark. The decoction of fine grey bark becomes turbid on cooling, and deposits an abundant sediment. The resinous eirele, which is very distinctly seen in this bark, “is connected,” observes Mr. Howard, “with the constitution of the bark, as indicated by various chemical reagents, which, so far as I have made experiments, concur in showing that it is rich in all the usual constituents of the sap of the Cinchona, whilst the predominant feature is the abundance of the tannin.”

1 Laubert’s Memoir, in Lambert’s Illust. of the Genus Cinchona, p. 78.
2 Hooker’s Comp. to the Bot. Mag. vol. i. p. 214, 1833.
VEGETABLES.—Nat. Ord. Rubiace.Æ.

On analysis, this bark yielded him 2:113 per cent. of alkaloids; namely, quinine 0:571, quinidine crystallized 0:142, and cinchonine 1:4.

2. Inferior or Coarse Grey Bark; Quinquina de Lima gris brun, Guibourt; Cascavilla provinciana, Poeppig.—This is the bark of C. micrantha (see ante, p. 1627). It has been well described by M. Guibourt as follows:—“Bark in the form of long tubes, well quilled, of the size of a writing quill to that of the little finger, very frequently wrinkled longitudinally by drying. The external surface is, moreover, moderately rugose, often almost devoid of transverse fissures, having a general deep-grey tint, but with black or white spots, and bearing here and there the same lichens as those found on Loxa barks. The liber is of a deep-brownish yellow, and as if formed of agglutinated fibres. The taste is bitter, astringent, acidulous, and aromatic: the odour, that of good grey barks.”

Mr. J. E. Howard, in comparing this bark with the fine grey sort (C. nitida), describes it as being woody or finely fibrous, thinner than the nitida bark, wrinkled longitudinally, glaucous externally (both as regards the derm and epiderm), rusty yellow internally, and approximating to the scrobiculata bark in its microscopic structure (see ante, p. 1628). Its decoction he finds to be pale, and to give a small flocculent deposit on cooling. In reducing this bark to powder, its woody character is very marked. Mr. Howard analysed a specimen of this bark, and found that it yielded 1:773 per cent. of alkaloids,—namely, quinine, 0:243; quinidine, 0:28; and cinchonine, 1:25.

Cryptogamia.—Mosses and Jungermannias are never found on this bark. Foliaceous lichens are much more scarce than on Loxa bark. The following is Fée's list of the Cryptogamia:—

Lichenes.—Opegrapha Ruiziana; O. Condaminia; O. rugulosa; O. tumidula; Graphis Acharii; G. serpentina; Arthonia confluentes; A. divergens; A. obtita; Trypethelium variolosum; Pyrenula marciada; P. myriotoca; P. mollis; Verrecaria nitens; V. theiopla; Ascidium Cinchonarum; Lecidea tuberculosa.

Composition.—I am unacquainted with any complete analysis of grey barks, though their alkaloid strength has been determined several times. But until the analyses, above quoted, of Mr. J. E. Howard, no one had determined the comparative quantity of alkaloids in the two kinds of grey bark above described. Soubeiran states, that one pound of Grey Lima Cinchona yields a drachm and a half of sulphate of cinchonia, but he omits all mention of quinine.

The following are the quantities of pure cinchona and quinine in this bark, according to the undermentioned authorities:—

<table>
<thead>
<tr>
<th>In one pound of Bark.</th>
<th>Cinchona.</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Santen............</td>
<td>from 74 to 210 grains</td>
<td>0 grains.</td>
</tr>
<tr>
<td>Michaelis............</td>
<td>56 "</td>
<td>32 "</td>
</tr>
<tr>
<td>Goebel and Kirst.......</td>
<td>74 "</td>
<td>28 "</td>
</tr>
<tr>
<td>.......................</td>
<td>168 "</td>
<td>0 "</td>
</tr>
</tbody>
</table>

Winckler obtained 190 grs. of cinchonia from 16 ounces of strong, middling sized quills.

According to Puttfarcken, Huanuco bark yielded, on an average, only 1.6 per cent. of ashes, the colour of which he describes as being, in different samples, dark green, greenish, green, and grey.

MEDICINAL PROPERTIES.—It must be obvious, from the results of Mr. J. E. Howard's analyses, that the fine grey bark must possess more medicinal activity than the inferior or coarse grey sort, because the total amount of alkaloids (especially of quinine) which it contains is larger.

Good grey bark is, medically speaking, a valuable sort of cinchona. Ruiz and Pavon state, that the nitida bark (which I believe to be the fine grey sort) is less nauseous and disagreeable to sick persons than other kinds of bark. The micrantha, or inferior grey bark, is more nauseous, on account of the greater preponderance of cinchonine which it contains.

1. Traité de Pharm. i. 583.
2. Buehner's Repert. 2te Reihe, Bd. xxv. s. 324.
V. CINCHONA HUAMALIES.—HUAMALIES BARK.

SYNONYMES.—Quinquinas de Huamalies, Guibourt; Quinquina Havane of French commerce; China Huamalies; Brune China, Bergen; China Huamalies, Guamalies, seu Abomali-aes, Goebel; Brune China; China Huamalies; China fusca, Geiger.

HISTORY.—It is not known precisely when this kind of bark first came into Europe. Von Bergen thinks that it probably was introduced simultaneously with silver bark at the end of the last or commencement of the present century. In 1803 it was frequently carried direct from Lima to Hamburg. This bark is not used as a distinct kind in this country, and hence most druggists are unacquainted with it; but it is bought by some of our merchants for the foreign markets, especially for Germany.

BOTANY.—According to Reichel, who examined Poeppig’s samples, the Huamalies bark of commerce is identical with the Cascarilla boba; and, therefore, is the product of Cinchona pulsoescens var. ß purpurea, Weddell. But several reasons lead me to believe that this inference is not correct. 1stly. Huamalies bark is not identical with the bark of this species contained in Pavon’s collection in the British Museum, nor with that brought over by Weddell. 2ndly. Dr. Julius Martiny, who obtained specimens of Poeppig’s bark, declares that Cascarilla boba, given to him by Poeppig, does not resemble Huamalies bark; and I can confirm his statement, as he kindly sent me a small sample of the Cascarilla boba, which is now in the Museum of the Pharmaceutical Society. 3rdly. The bark of Cinchona purpurea is very poor in alkaloids, while Huamalies bark is comparatively rich. 4thly. The microscopic structure of the two barks is very different.

Mr. J. E. Howard, who has devoted much attention to the subject, is of opinion that Huamalies bark is very near to, if it be not identical with, Cinchona Chahuarguera, Pavon (C. Condaminia var. ß Chahuarguera, De Cand.), which Weddell regards as identical with his C. Condaminia var. a vera.

DESCRIPTION AND VARIETIES.—This kind of bark presents very different appearances at different ages, so as almost to defy arrangement. Some of the fine quills might readily be mistaken by inexperienced persons for Loxa bark. The large flat pieces, on the other hand, I have known mistaken by an experienced dealer for what he termed “flimsy” red bark.

Some of the finer quills (Huamalies simulating Loxa Bark) resemble those of Loxa Bark, but are dull grey externally, have fewer transverse cracks, are smoother, or finely striated or wrinkled longitudinally, and, when broken, appear nearly white in the interior. This is the dull grey Huamalies (quinquina huamalies gris terne) of M. Guibourt. Another kind frequently occurs in the Loxa Bark of commerce, and I have heard it termed rusty crown bark. It is in larger quills with a whitish or greyish epidermis, which is striated or furrowed longitudinally, but is devoid of transverse cracks, and may be removed by the nail. This is the thin and reddish Huamalies (quinquina huamalies mince et rougeatre) of M. Guibourt. On some of the pieces we observe rusty-coloured warts, which, when numerous, are disposed in irregular longitudinal lines. A flat or arched variety (cerrusus white Huamalies bark) has a whitish epidermis, with large red warts, from which the epidermis has been removed. Another kind (cerrusus rusty Huamalies) is in quills or flat pieces, distinguished by the ochre-red or rusty colour of its outer surface, the presence of warts, arranged for the most part longitudinally, and the almost total absence of transverse cracks.

CRYPTOGAMIA.—The following cryptogamic plants are mentioned by Von Bergen as existing on this bark:

Lichenes.—Opegrapha enterolensa; Graphis duplicata; Verrucaria pheoa; Porina papillata; Pyrenula discolor; P. nostoidea; and P. verrucarioides; Locanura purica; Pormelia melanoleuca; and Usnea florida ß Cinchone.

COMPOSITION.—The proportion of cinchona alkaloids in this bark has been investigated by Von Santen, Michaelis, Goebel and Kirst, and Winckler. The following are their results:

1 Hooker’s Companion to the Botanical Magazine, vol. i. p. 252, 1835.
3 Mr. J. E. Howard, Pharm. Journal, vol. xii. p. 61, 1852.
4 Bergem, Monograph. Plott. v.
5 Pharm. Waarenkunde, i. 74.
6 Buchner’s Repert. 2te Reihe, Bd. xxi. S. 291 and 326, 1842.
It is tolerably obvious from the above analyses, that either different barks have been examined under the name of Huamalies, or that this bark is most unequal in the proportion of alkaloids which it yields. Mr. J. E. Howard¹ says, "I have experimented on a sample of brown warty Huamalies, agreeing in general appearance with Goebel's Pl. x. figs. 1-3, and found the bark rich in alkaloids, and with no peculiarity² such as always marks the two varieties of Cinchona."

Medicinal Properties. These must vary with the proportion of alkaloids which the bark contains. Some specimens are undoubtedly of first-rate medicinal quality.

VI. CORTEX CINCHONÆ DE JAEN.—ASH CINCHONA.

Quinquina de Loxa condv. A. Guibourt; China Joen; Blasen Ten-China, Bergen; China Joen, seu Tenra, seu Tenea, Goebel; Blackish Huannco, Batka; Cascarillo patido, Ruiz.—It is uncertain at what period it was introduced into commerce. Bergen states he found it in an old collection of drugs made in 1770. It agrees with the bark described in the Quinologia as *cascarillo patido* (C. ovata, Fl. Peruv.); a specimen of which, in Ruiz's collection of barks, was examined by Bergen,³ and found to be identical with Ash Cinchona. It is, therefore, the produce of *C. ovata var. vulgaris* of Weddell. It differs, however, completely, both in appearance and composition, from Carabaya bark, which, according to Dr. Weddell, is also obtained from this variety of *C. ovata*.

Mr. J. E. Howard⁴ admits seven sorts of bark of *C. ovata*, and refers ash bark to his first sort or the smooth-skinned or pale variety having a light brown substance.

Ash bark is usually imported in chests, but also in serons. It is met with in a quilled form only; the quills being of middling size, or somewhat thick; being from 4 to 16 inches long, from $3\frac{1}{2}$ to 1 inch in diameter, and from $\frac{3}{8}$ to 2 lines thick. A very remarkable character of this bark is the crookedness of the quills, which are more or less arched and twisted; from which circumstance we may infer the probability of its being obtained from a tree which grows in a damp situation. On the outer or epidermoid surface we observe a few transverse cracks, and some faint longitudinal cracks; but in these respects there is a manifest difference between this and Loxa bark. The colour of the outer surface varies between ash grey, whitish grey, and pale yellow, with blackish or brownish spots. The inner surface is either even or splintery, and of a cinnamon-brown colour. The fracture is even or splintery; the odour is tan-like; the taste feebly astrigent and bitter; the colour of the powder is cinnamon brown.

Ash cinchona must not be confounded with the *ashy crowed bark* to be hereafter described (p. 1639).

Under the name of "Cusco Bark" I have met with in commerce two barks which are probably the produce of *C. ovata var. vulgaris* of Weddell, and, therefore, are allied to Ash Cinchona. One of these is a thick coarse quilled bark; the other a thin, flat, leathery sort of bark, in pieces which are four or five inches broad.

Few cryptogamic plants are found on ash cinchona. The following is a list of them,

¹ *Pharmaceutical Journal*, vol. xii. p. 61, 1852.
² The peculiarity here alluded to is the presence of an intensely yellow colouring matter, from which it is difficult to separate the alkaloids.
³ *Monogr.* 319.
⁴ *Pharmaceutical Journal*, vol. xii. p. 126, 1852.
according to Bergen.\(^1\)—Graphis sculpturata; Porina granulata; Pyrenula verrucarioides; Leccanora punicea; Parmelia melanoleuca, and Usnea florido 8 Cinchone.

Goebel and Kirst\(^2\) obtained only 12 grains of quinine from a pound of the bark; but Winckler\(^3\) procured 28 grains from 16 ounces. Subsequently Manzini\(^4\) declared that it contained neither quinine nor cinchonine, but a new alkaloid, which he called cinchovatine or cinchovine. Winckler,\(^5\) however, after a careful comparison, found this supposed new alkaloid to be cuscinon or aricine. Guibourt\(^6\) regards it as cinchonine. From a mean-looking specimen Mr. J. E. Howard obtained, crystallized quinidine, 0:61, and crystallized cinchonine 0:86 per cent. Some flat pieces yielded him 1:2 of quinidine and 1:6 of cinchonine.

The medicinal powers of this bark must be inferior, on account of the small proportion of alkaloid which it yields.

VII. CORTEX CINCHONEÆ DE LOXA.—LOXA BARK.

SYNONYMES.—Quinquina de Loxa, Guibourt; China Loxa, Kron-China, Bergen; Cortex Chinois fusea, seu corone, s. de Loxa, s. peruvianus, Goebel; Loxa or Crown Bark, Engl. commerce.

HISTORY.—Loxa bark, if not the first, was one of the earliest kinds of Cinchona bark introduced into Europe. It was probably the bark which Horbinius\(^7\) in 1693, denominated Cascarilla della Oja, but which Condamine more correctly termed Corteza, or Cascava de Loxa.

Of late years, however, various kinds of quilled barks, differing in botanical origin, in appearance, and in chemical constitution, have been imported,—sometimes mixed, sometimes unmixed,—under the name of Loxa or crown bark.

BOTANY.—According to Humboldt\(^8\) (who speaks very positively on this point), the plant figured by M. de la Condamine is the one which Weddell terms Cinchona Condaminea var. a vera; though, as I have before stated (see ante, p. 1609, footnote), M. Guibourt entertains some doubt about the accuracy of this statement. It is probable, therefore, that this is the source of the original or old Loxa bark.

C. Condaminea var. ß Candollii furnishes an inferior *Loxa* bark. From M. Guibourt’s observation on the barks in M. Delessert’s collection, it would appear that *C. Condaminea var. β Candollii*, yields yellow *Loxa* bark (amarilla de Loxa).

The bark of *C. Condaminea var. γ lucnumefolia* has also been sold in London as crown bark: I shall distinguish it as white crown bark.

From Humboldt’s observations respecting the bark of *C. scrobiculata var. a genuina* (see ante, p. 1610), it would appear that this forms part of the *Loxa* bark of commerce. Mr. J. E. Howard\(^9\) thinks that *C. glandulifera* is the source of the H. O. crown bark. *C. cordifolia var. β rotundifolia* may perhaps yield the *Asky crown bark* of commerce.

COMMERCE.—Crown bark is imported from Loxa and Lima: in the former case it is shipped at Payta, in the latter at Callao. It is imported in serons and chests. After its arrival it is frequently picked and sorted. The slender, finest, thinnest, and longest quills, with a short transverse fracture, form the *finest* or *picked crown bark* (Cortex cinchone corone electus).\(^10\) A somewhat larger quill, with a silvery appearance of the

1. Monogr. S. 318.
10. Condamine observes: “They told me at Loxa, that anciently they preferred the largest barks (les plus grosses ecorces), which were put aside with care as the most precious; none, the smallest are preferred. One may suppose that the dealers find their advantage in this, because the fine quills go in a smaller compass. But a director of the English South Sea Company at Panama, by which place all the bark which goes to Europe necessarily passes, assured me that the preference now shown for the smallest quills is founded on analyses of English chemists of both barks, and it is probable that the difficulty of drying perfectly the large quills, and their consequently becoming damaged, has contributed to bring them into discredit. The common prejudice is, that, in order to lose none of their virtue, the tree should be stripped in the waning of the moon, and on
Vegetables.—Nat. Ord. Rubiaceæ.

Epidermis, derived from the adherent crustaceous lichens, constitutes the silvery crown bark. A similar kind, but in which the external coat has a speckled appearance from the whitish lichens, with the intermediate dark-brown color of the epidermis, constitutes the leopard crown bark.

Varieties and Description.—The chief and most important barks to which the name of Crown or Loxa bark has been applied, are the following:

1. Original or Old Loxa Bark.—This is the original or true crown bark, and is probably the produce of C. Condaminea var. a vera, Weddell. It is said to have received its name from the following circumstance:

In October 1804, a Spanish galley, returning from Peru, was taken by our countrymen off Cadiz. Among the treasures found therein were many parcels of cinchona bark, two sorts of which were distinguished from the others by their external appearance and mode of packing. Two of these chests were marked "Para la real familia," i.e., "For the royal family," and were lined with sheet iron; they contained fine quills, of thirteen inches long, tied up by means of "bass" into bundles of about three inches in diameter. Von Bergen states he received from England, in 1824, similar bundles, under the name of second crown. The other sort was marked "Para la real cort," i.e., "For the royal court." Occasionally, but less frequently than formerly, bundles thus packed occur in the serons of crown bark of commerce. Hayne pointed out some differences between the Loxa bark of commerce and a bark found in Humboldt's collection, marked Quina de Loxa, and which had been collected from C. Condaminea; the peculiar characteristics of the latter are the warty prominences, the transverse cracks, which do not form rings, the browner tint of the outer surface, and a more astringent taste. In a chest of 120 lbs. of commercial Loxa bark, Goebel found only three omees of bark corresponding to the description here given of the true Loxa bark.

I have received from Mr. Berthold Seemann a specimen of quina fina which he himself gathered from C. Condaminea var. a vera, Weddell, at Loxa. It is in slender quills, with numerous transverse cracks, and has a silvery appearance externally, from the presence of adherent crustaceous lichens. It is the kind which I have designated silvery crown bark.

Mr. J. E. Howard analysed some "fine old Loxa" quills which were sold in 1850. They had traditionally remained in the London Docks twenty-five or thirty years, and the packages were decaying with age. Some of them were tied up in bundles; some resembled quinquina gris fibreux royal d'Espagne of M. Guibourt; others were thick heavy quills. The first sort in bundles yielded him, in 100 parts of bark, quinine 0.714, quindine 0.0514, and cinchonine 0.04. The larger and stouter quills were richer in alkaloids, especially in cinchonine. "I conclude, therefore," says Mr. Howard, "that the old original 'crown bark,' the fine Loxa of Uritusina, was one which well merited its character, on account of the quantity of alkaloids contained, which (taking the whole together, for the bark is rich in cinchonine, and Calisaya is not) equals the sum total of alkaloids in some specimens of Calisaya bark."

2. White Crown Bark.—By this designation I propose to distinguish the lucuma-leaved cinchona bark. In 1848, a chest of it was sold in London as "crown bark," yet it differs in appearance considerably from the ordinary crown bark of commerce. The small or fine quills are scarcely distinguishable from some quills of silvery crown bark given me by Mr. Seemann, who gathered them from C. Condaminea. The large quills, however, present an entirely different appearance from every other sort of cinchona bark with which I am acquainted. "The coated large quills are devoid of transverse tracks, but are rugged externally from the longitudinal rents or fissures produced by the expansion of the growing stem; and the subjacent suberous coat which is thus exposed is remarkable for its white satiny or silvery lustre. This bark is the produce of C. Condaminea var. lucumafolia, Weddell; and its produce in alkaloids resembles that of other varieties of C. Condaminea.

The east side of the tree; and they did not forget to make affirmation before a notary of these circumstances in 1735, as well as of its having been gathered on the mountain of Cayamama, when the last Viceroy of Peru made a provision of bark to carry to Spain on his return. The interest of the collection, which forbids them to remain inactive three-quarters of the year, has caused most of those who gather the bark to give up their prejudice, such as my host at Cayamama, who assured me that all the seasons of the year were equally proper, so long as the weather was dry."
3. H. O. Crown 1 Bark.—This is the crown bark usually found in commerce. It is imported from Payta, and occurs in the form of single and double, fine and middling, ejected quills, which vary in length from 6 to 15 inches; in diameter, from 2 lines to an inch; in thickness, from one-third of a line to 2 lines.

a. Some of the quills are remarkably devoid of lichens; are composed of a thin bark, which externally has a brown shrivelled appearance, being covered with numerous longitudinal wrinkles, and having very few transverse cracks. The transverse fracture is short. The internal surface is of a cinnamon colour, but the fractured surface is pale yellow.

b. Other quills approximate in appearance to those of grey bark. They are larger and coarser than the preceding, are more or less greyish externally from adherent lichens, and are furnished with numerous transverse cracks, some of which extend completely around the quill in the form of a ring.

c. Some of the quills greatly resemble those of ashy crown bark, consisting of twisted quills, which have the same patchey (black and white) appearance, from the adherent lichens.

The origin of "H. O. crown" bark is not accurately known. Mr. Howard and myself found no bark exactly resembling it in Pavon's collection. As Humboldt states that the bark of C. scrobiculada is sold as "quina fina," it might be presumed that this is in part the source of the "H. O. crown" bark, which appears to have replaced, in commerce, the original old Loxa bark (C. Condominnea). But Mr. J. E. Howard has assigned several reasons for believing that ashy crown bark is identical with the cascarilla nigrilla of Poepigg, and, therefore, is produced by Cinchona glandulifera.

Mr. J. E. Howard has analysed two samples of this bark, and the following are his results:

<table>
<thead>
<tr>
<th>1000 parts.</th>
<th>Quinidine (finely crystallized from ether)</th>
<th>Cinchonine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine sample (in the market in 1850)</td>
<td>5-7</td>
<td>0-6</td>
</tr>
<tr>
<td>A beautiful sample (in the market in 1851)</td>
<td>10-5</td>
<td>0-8</td>
</tr>
</tbody>
</table>

The sample last mentioned "was in larger quills, and the large quills must always be expected to contain more alkaloid than those which consist almost entirely of outer coat. So that we have not only the substitution of barks poorer in alkaloids for the old Loxa richer in alkaloids, but we have quinidine substituted for quinine, if this be of any importance."

4. Ashy Crown Bark of English commerce; China Pseudo-Loxa or Dunkel-Taen-China, Bergen; Dunkle Jaen China, Goebel; Quinquina de Loxa cendré B., Guibourt.—This bark must not be confounded with the ash or pale Jaen bark (p. 1036), from which it is quite distinct. 2 It is imported from Lima in serons and bags. It occurs in quills of about the size of the fingers, and which abound in folaceous and filiform lichens (Parmelia melanoleuca, Slierta anarata, Usnea, &c.) The powdery and crustaceous lichens give this bark a very speckled or patchy appearance; the white, grey, and black patches being predominant. Some of the black patches are soot-like. Many of the quills are covered with rusty warts or fungoid tubercles which perhaps have been produced by the puncture of an insect. Quills covered with these warts (which are sometimes as large as a coffee seed) have a sebaceous appearance. The epidermis is marked by longitudinal wrinkles and transverse cracks, by which, as well as by its blacker colour, it is readily distinguished from ash bark. The internal surface is of an orange or cinnamon colour. The taste of this bark is bitter. This bark agrees with the specimen in Pavon's collection marked "Cascarilla con hojas redondas de Quiebro de Loxa" (i.e. "the bark of the round-leaved cinchona of the Quiebro of Loxa"). From this it would appear to be the produce of C. cordifolia var. 3 rotundifolia of Weddell. Bergen says that it agrees

1 "The 'H. O.' and a crown were brands adopted, in the time of the Spanish dominion, for two different sorts of bark, which are both included now under the general title, 'crown bark.'"—(J. E. Howard, Pharm. Journ., vol. xi. p. 494.)

2 M. Guibourt (Hist. Nat. des Drap. simp'y 4me éd. tom. iii. p. 152, 1852) has included both ash or pale Jaen bark and ashy crown bark under one name; viz. that of quinquina de Loxa cendré (ashy Loxa bark). The former constitutes his variety "A," the latter his variety "B."
with a bark contained in Ruiz’s collection, which was said to be obtained from *C. lancifolia* of Mutis. But it differs from the lancifolia barks with which I am acquainted.

This bark has been analysed by Mr. J. E. Howard; and the following are his results:

<table>
<thead>
<tr>
<th>1000 Parts of</th>
<th>Quinidine and Quinine.</th>
<th>Cinchonine.</th>
<th>Total Alkaloids.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashy crown, from Lima</td>
<td>5·00</td>
<td>9·14</td>
<td>14·14</td>
</tr>
<tr>
<td>Ashy crown mixed with corky crown, from Lima</td>
<td>4·00 (quinidine chiefly)</td>
<td>2·85</td>
<td>6·85</td>
</tr>
<tr>
<td>Ashy crown (corresponding with the Dunkele-Ten-China), from Lima</td>
<td>4·57</td>
<td>3·00</td>
<td>7·57</td>
</tr>
</tbody>
</table>

5. **Wiry Loxa Bark; Twiggy Loxa Bark.**—Imported from Payta in serons. In April 1852 I saw three serons of this bark put up for sale. It occurs in very slender, wire-like quills, which are tolerably smooth externally, with scarcely any transverse cracks. The epiderm is brown, in some places slightly grey, without any adherent foliaceous or filiform lichens. Many of the quills are lined by a thin shaving of pale yellow wood with the bark from the branch. Its taste is very astringent, and but slightly bitter. To the fracture it is short and resinous. It yields scarcely any alkaloid, and its quality, therefore, is very inferior. Nothing certain is known of its origin.

Cryptogamia.—The following is Féé’s list of the Cryptogamia found on Loxa bark:—

- Opegrapha globosa; O. Condaminea; Graphis fulgurata; Arthonia sinensis-graphia; *A. marginata*; Glyphis favulosa (rare); *Chiolecanthus effusum*; *Pyrenula verrucarioïdes*; *Ascidia Cinchonarum*; *Lepia flava*; *Lecidea permiana*; Lecana russula; L. subfusca; *id. var. β pulvulenta*; *Parmelia crenulata*; *P. glandulifera*; *Sticta aurata*; *Collema azureum*; and *C. diaphanum*.

Composition.—Loxa bark (quinquina gris) was analysed by Pelletier and Caventou, and by Bucholz.

Pelletier and Caventou’s Analysis.

Kinate of cinchonia.	Cinchonia	0·36
Kinate of lime.	Kinic acid	1·17
Green fatty matter.	Kinate of lime	1·30
Red cinchonic.	Hard resin (red cinchonic)	9·97
Soluble red colouring matter (tannin).	Bitter soft resin	1·56
Yellow colouring matter.	Fatty matter, with chlorophylle	0·78
Gum.	Tannin, with some chloride of calcium (?)	5·80
Starch.	Gum	4·43
Lignin.	Starch	a little
	Lignin	74·43

Bucholz’s Analysis.

| Grey cinchona. | Commercial Loxa bark | 99·80 |

Soubeiran states, that one lb. of Loxa bark yields from one and a half to two drachms of sulphate of cinchonia. It is somewhat remarkable that Von Santen obtained quina, and but little cinchonia, from Loxa bark, as the following table shows:

<table>
<thead>
<tr>
<th>1 lb. of Loxa Bark.</th>
<th>Sulphate of Quina.</th>
<th>Pure Cinchonia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine selected quills</td>
<td>5 grains.</td>
<td>—</td>
</tr>
<tr>
<td>Moderately thick quills and pieces</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Fine and middling quills</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Moderately thick pieces</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Selected thick, heavy pieces, with grater-like bark</td>
<td>53</td>
<td>26</td>
</tr>
</tbody>
</table>

1 On account of its remarkably slender quills, this bark might be presumed to be the *cascarilla delgada* or *delgadilla* (slender bark), or *cascarilla fina delgada* (fine slender bark), which Ruiz and Payon state is obtained from *Cinchona hispida*; but it is devoid of the small transversal cracks which, it is said, render the surface of the *delgada* bark rough. In its smoothness and colour, wiry Loxa bark somewhat resembles young *negrilla* bark.

2 *Journ. de Pharm.* vii. 70.

4 *Traité de Pharm.* i. 603.

5 Bergen, *Monogr. Tab.* zur 5ten Platte.
Winckler¹ procured from 16 ounces of selected Loxa bark 56 grains of alkaloids; namely, 33 grains of pure quinine and 23 grains of cinchonine.

Mr. Howard's analyses before quoted have shown that the different barks, known in commerce as Loxa or Crowu bark, vary considerably in the proportion of alkaloids which they contain.

MEDICINAL PROPERTIES.—Fine old Loxa bark is probably almost equal in therapeutic powers to Calisaya bark; and the same may be said of the lucuma-leaved cinchona bark. The ordinary Loxa barks of commerce are, however, very inferior in medicinal activity.

VIII. CORTEX CINCHONÆ RUBRÆ.—RED CINCHONA.

Cinchona rubra, L. E. D.

SYNONYMES.—*Quinquina rouge verruqueux, and non- verruqueux, Guibourt; China rubra Rothe China, Bergen; China rubra Cortex Chine ruber, Goebel; Cascarilla roxa verdadera, Laub. [genuine red cinchona].

HISTORY.—The earliest travellers in South America, who have noticed cinchona bark, distinguish the different sorts by their colour; and both Mr. Arrot and Mons. Condamine speak of a *red bark* (*cascarilla colorada*), and describe it as being of superior quality. Dr. Saunders² states, that in the year 1702 a parcel of bark (which he says was the red kind) was taken on board a Spanish vessel, and a portion of it fell into the hands of a celebrated London apothecary, Mr. D. Pearson. In 1779, another Spanish ship, bound from Lima to Cadiz, was taken by an English frigate, and carried into Lisbon. Her cargo consisted principally of red bark, and was, for the most part, sent to Oude, where it was purchased at a very low price by some London druggists, who, after some difficulty, contrived to get it introduced into practice.

BOTANY.—Although the term *red bark* is now usually employed to designate a particular sort of bark, yet a red colour is in reality not characteristic of any one bark in particular, but is common to many; and, moreover, it appears to be a non-essential quality, and to depend on accidental circumstances,—such as locality, soil, age of the tree, mode of drying the bark, &c. Thus *C. lancifolia* yields both a red as well as an orange bark; and some of the pieces of the red bark of commerce are scarcely distinguishable in colour from those of yellow bark. Weddell says he has met with the red tint in the barks of *C. ovata, C. scrobiculata, C. pulescens*, and even in *C. Calisaya*; and at one time he fancied that the first-mentioned of these species (*C. ovata*) was the source of the genuine red bark of commerce.

The *Cascarilla magnifolia var. a vulgaris* of Weddell (*Cinchiola oblongifolia of Mutis*) yields a purple-red bark called *Quina roxa,* or *Quina Azahar o roja de Santa Fé*; and which was supposed to be the red bark of commerce. But Bergen has examined the bark bearing this name in the collection of Ruiz, and finds that it is not commercial red bark, but the *Quinquina nova* of the French pharmacologists. Moreover, Schrader (who received a piece of the bark from Humboldt) declared it to be a new kind; and Guibourt³ states that the red bark of Mutis, which was deposited by Humboldt in the Museum of Natural History of Paris, is not commercial red bark, but *Quinquina nova.* To these statements may be added the testimony of Ruiz and Pavon, and of Humboldt; the two first of which writers state that the *Quina roxa* is obtained from *Cinchiola oblongifolia,* but they do not know the origin of *Quina colorada* (the red bark of commerce); and Schrader states that Humboldt declared he did not know the tree that yielded red bark.⁴

COMMERCE.—Imported from Guayaquil and Lima in chests. Good samples are scarce. I am informed by an experienced dealer that this bark was formerly imported in much larger-sized pieces than are now met with.

¹ Buchner's *Repertorium,* 2te Reihe, Bd. i. S. 213, 1835; and Bd. xxv. S. 325, 1842.
³ *Histoire des Drog.* 4me éd. t. iii. p. 128, 1850.
⁴ *The Cinchiola oblongifolia, Mutis (C. magnifolia, Fl. Peruv.)* is the *Cascarilla magnifolia var. a vulgaris,* Weddell. It is, therefore, a false cinchona, and its bark might be distinguished as *false red bark.* It is the Sasanilla bark of Batka (*Pharmaceutical Journal,* vol. xi. p. 321, 1852).
DESCRIPTION.—Red bark occurs in quills and flat pieces. The quills vary in diameter from two lines to an inch and a quarter; in thickness, from one-third to two lines; in length, from two to twelve or more inches. The so-called flat pieces are frequently slightly curled; their breadth is from one to five inches; their thickness from one-third to three-quarters of an inch; their length from two inches to two feet.

Red bark is generally coated, and consists of liber, the cellular and suberous coats, and usually more or less of the epidermis: its outer surface is usually rough, wrinkled, furrowed, and frequently warty. The colour of the epidermis varies: in the thinner quills it is greyish-brown, or faint red brown; in thick quills and flat pieces it varies from a reddish-brown to a chestnut-brown, frequently with a purplish tinge. As a general rule, it may be said that the larger and coarser the quills and pieces, the deeper the colour. Cryptogamic plants are not so frequent on this as on some other kinds of bark. The cellular coat is frequently thick and spongy, especially in large flat pieces; much more so than in yellow bark. It forms the round tubercles or warts. The inner surface of the bark is, in fine quills, finely fibrous; in large quills and flat pieces, coarsely fibrous, or even splintery. Its colour increases with the thickness and size of the pieces: thus, in fine quills it is light rusty brown; in thick quills and flat pieces it is a deep reddish or purplish brown. Some of the specimens of red bark which I have received from Von Bergen, as well as of those which I have found in English commerce, approach yellow bark in their colour. The transverse fracture of fine quills is smooth; of middling quills, somewhat fibrous; of thick quills and flat pieces, fibrous and splintery. The taste is strongly bitter, somewhat aromatic, but not so intense and persistent as that of yellow bark; the odour is feebly and tan-like; the colour of the powder is faint reddish brown.

VARIETIES.—The obvious and common distinction is into quilled red bark and flat red bark. The warty pieces constitute the quinquina verruqueux of Guibourt; the pieces without warts are the quinquina non- verruqueux of the same pharmacologist. In the red bark of commerce we frequently find pieces with a white micaceous suberous coat: these, which are probably the produce of a distinct species of Cinchona, constitute the quinquina rouge de Carthagène of Guibourt.1

The consumption of red cinchona being very small, but little attention has been paid to it, and no distinctions are made of it, except into the quilled and the flat; the latter being subdivided into coated and uncoated.

COMPOSITION.—According to Pelletier and Caventon,2 red bark contains superkinate of cinchonia, superkinate of quina, kinate of lime, red cinchonic, soluble red colouring matter (tannin), fatty matter, yellow colouring matter, tigain, and starch. Soubeiran3 states that one lb. of deep-red cinchona yields two draehms of sulphate of quina and one draehm of sulphate of cinchonia; while one lb. of pale red cinchona yields a draehm and a half of the sulphate of quina and one draehm of sulphate of cinchonia.

The following are the quantities of cinchona alkaloids obtained from this bark by Von Santen,4 by Michaelis, by Goebel and Kunze,5 and by Winckler.6

1 Hist. Nat. des Drog. 4ème édit. t. iii. p. 126.—In the 3d edit. of Guibourt's work, this bark is called quinquina rouge à épiderme blanc et micacé, and in the 2d edit. quinquina Carthagène rouge. The author thinks that it differs from spongy Colombia bark (quinquina de Colombie spongieux) only in colour. He says that "the evident resemblance which exists between the genuine red non-verrucaes bark and the red Lima bark, between the red woody Carthagena bark and woody Colombia bark, and lastly, between red and spongy Carthagena bark and spongy Colombia bark, has for some time past led me to think, what I have not hitherto stated verbally, that these red cinchonas do not constitute distinct species, but are only particular states of other species, caused probably by the great age of the trees."5

2 Journ. de Pharm. vii. 93.
3 Traité de Pharm. i. 603.
4 Bergen, Monoogr. Plate 1.
5 Pharm. Waarenk. i. 72.
6 Buchner's Repert. 2te Reihe, Bd. xxv. S. 325, 1842.
Cinchona:—Pitaya Condaminea Bark.

1 lb. of Bark.	Cinchonia.	Sulphate Quina.	Quina.
1. Fine quills of fresh appearance (from Cadiz in 1803) | 70 | 77 |
2. Large, broad, flat pieces, of fresh brownish-red appearance (same chest) | 90 | 15 |
3. Middling quills, from their pale appearance probably 20 years older than the previous (from Cadiz in 1819) | 97 | 31 |
4. Broad flat pieces, not so thick as No. 2 (same chest as No. 3) | 80 | 30 |
5. Middling quills, heavy, old (from London to Hamburgh in 1815: not met with now) | 150 | 11 |
6. Thicker, heavier quills (same chest) | 184 | 9 |
7. Thick flat pieces, quills, and fragments (above 80 years in Hamburgh: a pale kind) | 20 | 7 |
Von Sauten | 32 | — | 6
Michaëis | 65 | — | 40
Goebel and Kunze (flat pieces) | 180 | — | 8
Winckler ... | 80 | — | 6

Cryptogamia.—The following are the cryptogamic plants on red cinchona, according to Fée:

Lichens.—Opegrapha Bowplandi; O. farinacea; Graphis Acharii; G. exilis; G. frumentaria; Pyrenula verrucaroides; Verrucaria sinapisperma; Thelotrema urceolare; T. terebratum; T. myriocarpum; and Lecidea conspersa.

Medicinal Properties.—Red bark, when of good quality, approximates in its therapeutical powers to the best Calisaya bark.

IX. Cortex Cinchoneae Condamineae Pitayensis.—Pitaya Condaminea Bark.

Quinquina Pitaya, ou de la Colombie, ou de Antiocquia; Guibourt, Hist. des Drog. t. iii. p. 140, 4me ed. 1850; Quinquina Pitaya, Peretti, Journ. de Pharm. t. xxi. p. 513, 1835; Muratori, Pharm. Central-Blatt für 1839, p. 602. According to the observations of Mr. J. E. Howard and myself, made on M. Guibourt’s specimens, the quinquina brun de Carthagène of the last-mentioned author is identical with the Pitaya Condaminea bark.

The bark of Cinchona Condaminea var. e Pitayensis, Weddell, Imported into England from Buenaventura in New Granada.

Bark consisting of single or double quills, or half-rolled pieces. I have specimens which are more than a foot in length. Some samples, however, which I have received, consist of pieces not exceeding two or three inches in length, sometimes entirely, at others only partially, coated: the partially coated pieces consist of the suberos and cellular coats and liber. Epidermis, when present, dark brown, frequently coated by erustaceous lichen, marked by numerous closely set, transverse cracks, with prominent or slightly everted borders, which give the bark a grater-like feel; and here and there presenting round or oval warts or fungoid tubercles, varying in size from a grain of wheat to a

1 Cours d’Hist. Nat. ii. 265.
2 The designation “Pitaya or Pitoya bark” having been loosely applied to several different sorts of bark, it is somewhat difficult to determine with certainty the synonyms of the bark described in the text. From M. Guibourt I received samples of it in 1839. Mr. J. E. Howard informs me that the bark which M. Guibourt recently showed him as tigoneus Pitaya bark; and as the bark which Peretti analysed, is lanceolata bark. It is, therefore, probable that Peretti’s pitagya is identical with quinidinae.—The Pitaya-Condaminea bark above described must not be confounded with the bicolorad bark (quinquina bicolor of M. Guibourt), which has also been called “Pitaya bark.”
3 Histoire Naturelle des Quinquins, 1849.—More recently (Ann. des Sciences Naturelles, May 1849) Weddell has made this plant a distinct species under the name of C. Pitayensis; but, to avoid the confusion of names, I have preferred the designation of “Pitaya-Condaminea bark” to that of “Pitaya bark.”
SEED OF COFFEE, AND USUALLY MARKED LIKE THE LATTER WITH A LONGITUDINAL, SOMETIMES ALSO WITH A TRANSVERSE, FISSURE. THE SUBEROUS COAT IN SOME PIECES MUCH DEVELOPED, SPONGY OR FUNGUS, FAWN-YELLOW, SOMETIMES BROWN IN THE INTERIOR AND FAWN-YELLOW EXTERNALLY AND INTERNALLY. RESINOUS TISSUE, ON THE INSIDE OF THE SUBEROUS COAT FROM WHICH IT IS DEFINITELY SEPARATED, SHINING, OF A DARK REDISH COLOUR. LIBER GRADUALLY PASSING INTO THE RESINOUS COAT, HARD, DENSE, DARK REDISH-BROWN; CORTEX FIBRES FINE AND SHORT.

PITAYA-CODAMINEA IS A FIRM HEAVY BARK, HAVING A VERY BITTER, RATHER DISAGREEABLE FLAVOUR, WHICH IS SLOWLY DEVELOPED.

THIS BARK IS RICH IN ALKALOIDS, AND SERVES FOR THE MANUFACTURE OF DISULPHATE OF QUININE. IT CONTAINS CINCHINONE, QUINIDINE, AND QUININE. FROM ONE KILOGRAMME (OR 1000 GRAMMES) OF THIS BARK, M. GUIBOURT OBTAINED 23 GRAMMES OF CRYSTALLIZED CINCHINONE, AND 11 GRAMMES 52 CENTIGRAMMES OF SULPHATE OF QUININE; SHOWING THAT IT IS ONE OF THE RICHEST CINCHONA BARKS. MURATORI HAS PUBLISHED AN ANALYSIS OF "PITAYA BARK," BUT I AM DOUBTFUL WHETHER HIS BARK IS IDENTICAL WITH THAT WHICH I HAVE DESCRIBED. FROM 12 OUNCES OF BARK HE OBTAINED 17 GRAINS OF QUININE, 80 GRAINS OF CINCHINONE, AND 15 GRAINS OF A PECULIAR ALKALOIDS [QUINIDINE?].

IF THE OBSERVATIONS OF MR. HOWARD AND MYSELF, AS TO THE IDENTITIES OF GUIBOURT'S BROWN CARTHAGENA BARK AND THE PITAYA CONDAMINEA BARK, BE CORRECT, IT FOLLOWS THAT THIS IS THE BARK WHICH PELLETIER AND CAVENTOU ANALYSED UNDER THE NAME OF "QUININA CARTHAGÈNE," AND WHICH THEY FOUND TO CONTAIN BOTH QUININE AND CINCHONINE, AND TO BE PERFECTLY ANALOGOUS IN COMPOSITION TO RED BARK. THE RESINOID MATTER IN IT WAS VERY ABUNDANT.

CHEMICAL ANALYSIS PROVES THAT, IN A MEDICINAL POINT OF VIEW, THE PITAYA-CODAMINEA BARK IS ONE OF THE MOST VALUABLE CINCHONA BARKS. IN NEW GRANADA IT IS IN GREAT DEMAND; AND EXPERIMENTS MADE WITH IT IN ITALY SHOW THAT ITS REPUTATION IS WELL DESERVED.

X. CORTEX CINCHONÆ LANCIFOLIÆ.—LANCE-LEAVED CINCHONA BARK.

SYNONYMS.—Quina naranjada vel Q. primitiva, Mutis; Quinquina orangé, Humb.; Cascarilla naranjada de Santa Fé, Laubert; Quinquina Carthagène spongiosa, Guiibourt, 1826; Q. orangé de Mutis, Guiibourt, 1850; Quinquina rouge de Carthagène, Guiibourt; China flava fibrosa, Goebel, 1827-29; New Spurious Yellow Bark, Pereira, 1830; Cinchona aurantiacea de Santa Fé, Pereira, 1842; Orange-coloured Cinchona Bark; Cognetto [Caqueta?] Bark, English commerce; Bogota Bark, Chinurinde von Bogota (China Bogotensis), Mettenheimer, 1853.

IN ENGLISH COMMERCE THE NAME OF CARTHAGENA BARK IS APPLIED TO THIS, AS WELL AS TO THE BARK OF C. CORDIFOLIA, EVEN WHEN IT IS SHIPPED FROM A PORT ON THE PACIFIC. BY WAY OF DISTINCTION THE FORMER MAY BE CALLED SPONGY OR FIBROUS CARTHAGENA BARK, AND THE LATTER HAY CARPATHAGENA BARK.

HISTORY.—THIS BARK WAS DISTINCTLY NOTICED IN 1793 BY MUTIS, WHO CLAIMS TO BE THE DISCOVERER OF THE TREE YIELDING IT; BUT THE CLAIM IS CONTESTED BY LOPEZ RUIZ, WHO ASSERTS THAT HE DISCOVERED IT AT SANTA FÉ IN 1772. BY MUTIS AND HIS FOLLOWERS THE FEBrUFAge

1 Journ. de Pharm. t. vii. p. 101, 1821.
2 In The Times newspaper for September 29th, 1824, it is stated that a mule's load of "Pitaya bark" had been sent to the British Consul at Bogota, for transmission to England; the Colombians considering it to be equal, if not superior, to Peruvian bark. But as no description of the bark is given, it is impossible to determine what sort of bark is here referred to. More recently, the Government of Colombia sent to Rome, as a present to Pope Gregory XVI., some "Pitaya bark," which fetched a high price, and was said to be preferred in Colombia to other species of cinchona barks for the treatment of fevers (Journ. de Pharm. t. xxi. p. 513, 1875). A specimen of this bark was sent to Paris, and was declared by Guibourt (Bulld. de l'Académie Royale de Médecine, t. iv. p. 245, 1839-40) to be identical with his Colombia or Antioquia bark. The medicinal efficacy of Muratori's Pitaya bark has been proved by Dr. Vallenzesca, of Venice.
3 Vallenzesca, quoted by Muratori.
4 Pharm. Waarenkunde, p. 59.
6 Papel Periodico de Santa Fé, Num. iii. Oct. 11, 1793, p. 465; also, Mercurio Peruano de Historia, Literatura, y Noticias Públicas que da a luz la Sociedad Academica de Amantes de Lima, tomo xii. fol. 211, Lima, 1795.
7 Lambert's Illust. pp. 28 and 83; also, Lopez Ruiz, Defensa y Demostracion del verdadero descubridor de las Quinas del Reyno de Santa Fé, en Madrid, 1802.
qualities of this bark have been greatly lauded;—by others, much depreciated. "The effect of mercantile cunning," says M. Humboldt, "went so far, that, at the royal command, a quantity of the best orange-coloured cinchona bark, from New Granada, which M. Mutis had caused to be peeled at the expense of the king, was burned, as a decidedly injurious remedy, at a time when all the Spanish field-hospitals were in the greatest want of this valuable product of South America."1 In 1830 I met with it in English commerce under the name of New Spurious Yellow Bark. It was unsaleable, and lying in a warehouse at the London Docks. I sent a specimen of it to M. Guibourt, who identified it as the bark which he had described as spongy Carthagenæ bark (Quinquina Carthaginæ spongiosae), and which M. Humboldt had deposited in the Muséum d'Histoire Naturelle of Paris, as Mutis's Quina narranjada.

Within the last few years it has been again introduced into commerce by M. Lopez, of Bogota, as a source of quinine, under the name of Coqueta¹ (or Caqueta?) bark; and the high price of Calisaya bark has induced manufacturers to employ Coqueta bark in the manufacture of disulphate of quinine; and in this way it has obtained, as is observed by Mr. J. E. Howard,² "a certain reputation in commerce, and proves neither so good as was boasted on the one hand, nor so bad as was represented on the other, in the celebrated controversy between the botanists of Peru and of New Granada."

BOTANY.—This bark is the produce of C. lancifolia of Mutis (the C. Condaminea var. B lancifolia of Weddell).

COMMERCE.—The lancifolia bark is chiefly brought to England from New Granada, usually by way of Bogota and Carthagenæ on the Atlantic side. Occasionally a similar species of bark is brought from Lima in Peru.

DESCRIPTION.—The lancifolia barks of commerce vary considerably in appearance. Those obtained from the younger stems and branches would scarcely be identified, by a superficial observer, with those procured from older stems. But their leading and common characteristic is an extremely fibrous quality.³ They may be arranged in two divisions:

1. Barks of young stems and of branches, mostly quilled, coated usually with a brownish or yellowish epidermis, often covered with whitish crustaceous lichens, which give it a greyish or silvery appearance, as well as with foliaceous and fibrous lichens. The quills vary in size from that of the little finger to an inch and a half in diameter. Some of them are smoothish, others rather rough from numerous short slight cracks (longitudinal and transverse), with slightly everted edges. They are extremely fibrous, and moderately bitter. Altogether they would pass with many observers for grey barks.⁴ It is the very fibrous character of this bark that must have given origin to the name of towy bark (C. slupea; Quina estoposa). Mr. J. E. Howard considers this bark to be identical with Guibourt's King of Spain's fibrous red Luxa cinchona (quinquina de Luxa rouge fibreux du Roi d'Espagne), and with Lambert's lizard-coloured (lagartijada) bark, which is described as being entirely ligneous.

According to Mr. J. E. Howard, the bark which was analysed by Peretti,⁵ under the name of Pitaya bark, was a coated lancifolia bark in coarse quills. His opinion is founded on the examination of specimens shown to him by M. Guibourt,⁶ who has described it as being identical with Pitaya-Condaminea bark (see p. 1643).

Uncoated lancifolia quills are sometimes met with. In form and size they resemble coarse cassia lignea.

2. Barks of the trunk or of old stems composed of the liber, the cellular coat, and

¹ Humboldt, in Lambert's Illustr. p. 33.
² The commercial name for it is Coqueta or Coqueta. It is probable, I think, that the word should be Caqueta, one of the names of the Yapura or Japura river which rises in the Andes of New Granada.
⁴ The bark contained in Pavon's collection in the British Museum, and marked "Quina estoposa de Luxa" (Towy [or Fibrous] Cinehona of Luxa), is probably a lancifolia bark (see Mr. J. E. Howard's paper in the Pharmaceutical Journal, vol. xi. p. 558, 1852.)
⁵ In April 1852, some serons of a quilled lancifolia bark were exposed for sale at the London Docks, along with serons of grey barks, from which they did not appear to be distinguished.
⁶ Jour. de Pharmacie, t. xxi. p. 513, 1835.
⁷ Bulletin de l'Académie Royale de Médecine, t. iv. p. 245, 1839; and Hist. Nat. des Drogs, 4me édit. t. iii. p. 141, 1850.
usually a whitish or yellowish-white thin micaceous suberous coat. The larger pieces are semi-cylindrical, or more or less channelled, 4 or 5 inches in diameter, 2 2 of an inch thick, and vary in length from 1 or 2 to 21 inches. The liber is extremely fibrous, very slightly bitter, in some pieces almost insipid, and of an orange or red colour. The fracture of the cellular coat is short, of the liber long-fibrous or stringy. Many of the pieces are marked by one or more oblique grooves or depressions apparently produced by a twining plant, and which are almost peculiar to this bark.

In general, this bark, as found in commerce, is trimmed; that is, part of the outer coat has been removed by rasping. These trimmed pieces are somewhat smooth externally, covered with bark dust, as if abraded from mutual friction, and present here and there flat and angular marks, the result of the trimming process, and resembling those seen on trimmed Russian rhubarb (see ante, p. 1349).

In regard to colour, there are two sorts of lancifolia bark, one orange or yellow, the other red. Orange lancifolia bark is the standard sort, and to which the name of Coquettia bark is exclusively applied. It is Guibourt's quinquina orangé de Mutis. The red lancifolia bark is known in commerce as red Carthagena bark. It is Guibourt's quinquina rouge de Carthagène. It is a New Granada bark, gathered from a tree growing side by side with that which yields the orange lancifolia bark, and is employed by chemical manufacturers in the preparation of quinidine. The trees which respectively yield these two barks are probably varieties of the same species. A red lancifolia bark is imported from Peru, and is of better quality, for, though not rich in alkoloid, it yields quinine.

Composition.—This bark yields quinine, quinidine, and cinchonine, but in very variable proportions. In some sorts (e. g. the red Carthagena sort) the quinidine greatly preponderates; and hence they are sometimes called "quinidine barks."

Mr. J. E. Howard suspects that Peretti's pitayne is identical with quinidine.

The following are the results of some experiments on Coquettia bark:

Expt. 1.—7000 grains of bark yielded 156 grains of alkaloid, soluble in pure washed ether, and 44 grains of alkaloid, insoluble in ether but soluble in alcohol. The 158 grains of alkaloid, when converted into disulphate of quinine, yield 112 grains of the crystallized salt.

Expt. 2.—7000 grains of bark furnished 158 grains of alkaloid, which yielded 126 grains of crystallized disulphate of quinine.

Expt. 3.—7000 grains of bark gave 56 grains of alkaloid, which, converted into disulphate of quinine, yielded 36 grains of the crystallized salt.

Mr. Hindsley has kindly furnished me with his results obtained by operating on 1 lb. avoiding. (7000 grains) of bark: they are embodied with the preceding in the following table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. 1. Coquettia bark</td>
<td>112</td>
<td>Undetermined</td>
<td>Undetermined</td>
</tr>
<tr>
<td>2. "</td>
<td>126</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3. "</td>
<td>36</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Mr. Hindsley Coquettia trimmed</td>
<td>72</td>
<td>10:5</td>
<td>30:8</td>
</tr>
<tr>
<td>Uncotted quill lancifolia</td>
<td>32:2</td>
<td>17:5</td>
<td>24:5</td>
</tr>
<tr>
<td>57:4</td>
<td>16:1</td>
<td>88:2</td>
<td></td>
</tr>
</tbody>
</table>

Medicinal Properties.—Chemical analysis shows that this bark varies considerably in its strength; but in general it may be regarded as a moderately good bark.

XI. CORTEX CINCHONÆ DURÆ DE CARTHAGENA.—CARTHAGENA HARD CINCHONA BARK.

Synonymes.—Quinquina de Carthagène jaune pale, Guibourt; China flavâ dura; Harte gelbe China, Bergen; Quina amarilla [Bogotensium], Mutis; Quina jaune, Humboldt; Cascarilla-Mula vel Mula-Cascarilla, Peruv. and Boliv.; Yellow Bark of Santa Fé; Carthagena bark.

1 Ruiz, in his Quinoloyia (Germ. trans. p. 36) expresses his opinion that the stems and thick branches of cinchona trees should be rasped, before peeling them, in order to get rid of the epidermis.
Cinchona:—Carthagenæ Hard Cinchona Bark. 1647

History.—This bark was first noticed by Mutis, under the name of quina amarilla or yellow bark of Bogota. In English commerce the name of Carthagenæ bark is applied generally to the barks of C. cordifolia and C. lanceolata.

Botany.—Hard Carthagenæ bark is the produce of C. cordifolia var. a vera, Weddell. This is proved by the evidence of both Guibourt and Bergen, the former of whom examined Humboldt’s authentic specimens of Mutis’s yellow bark; and the latter, the specimens in Ruiz’s collection.

Commerce.—This bark is imported chiefly from New Granada, but sometimes from Peru and Bolivia. It usually comes over in drum-like serons of about 80 lbs. net, or in half-cheasts of about 70 lbs.

Description.—It occurs in fine, middling, and thick quills, and in flat pieces. The quills vary in diameter from three to eight lines, in thickness from half to one and a half lines, in length from five to nine, rarely to fifteen inches. The flat pieces are more or less twisted, arched, or warped (sometimes like pieces of dried horn) in drying, and are from a half to two inches broad, two to seven lines thick, and four to eight, rarely to twelve inches, long. Both quilled and flat pieces are met with either coated or uncoated. The coated pieces often bear considerable resemblance to Cusparia bark. Weddell compares the appearance of the derm of the quilled pieces to that of the bark of the same age of C. pubescens. The periderm or coat, which is usually more or less rubbed off, is thin, soft, somewhat cormy, laminated, with irregular longitudinal furrows; transverse cracks are very rare. The epidermis is whitish, yellowish-white, or ash grey. In the flat pieces the periderm is sometimes rendered tuberous by the development of small cellular masses between the periderm and the cellular coat. The uncoated pieces consist of the liber and cellular coat. On their external surface we frequently observe irregular, flexuous, longitudinal, but not very deep furrows. Here and there we perceive whitish or greyish spots arising from the persistence of shreds or fragments of the periderm. The internal surface varies from smoothish to fibrous; often the fibres project obliquely, giving the bark a scaly-fibrous appearance. The prevailing tint of the cortical layers is usually dull ochre-yellow. Externally the uncoated pieces are reddish or brownish-yellow. Internally the tint is brighter and more or less orange-coloured in the younger and fresh pieces: in older pieces it is more brownish. The transverse fracture short, externally suberous, internally more or less fibrous. The longitudinal fracture (which is with difficulty effected) is uneven, short, and in some pieces coarse-splintery. The taste is moderately bitter and astringent. The powder is cinnamon-coloured.

Some of the coarse uncoated quills are very smooth to the touch, and might well bear the name of velvet bark, which Humboldt says is applied to this bark by the common people in New Granada.

I have received from Sir William Hooker two sorts of hard Carthagenæ bark, differing but slightly from each other, accompanied with a note signed by Jose Manuel Restrepo, and dated Bogota, 13th of December, 1850. They are described as being the produce of two varieties of C. cordifolia:—

"C. cordifolia, No. 1.—The fruit of this species is long, yellow, and abundant. It is found in the forests under a higher temperature than C. lanceolata, and is more luxuriant and thicker than the latter.

"C. cordifolia, No. 2.—The fruit is smaller than that of No. 1, and is black. The fibres of the leaves have but little red, and rather incline to green. Is this the C. ovata of Weddell?

"In some forests these two kinds of bark produce no sulphate of quinine. To what can this be owing? Probably to the nature of the soil or the age of the tree?"

Cryptogamia.—Very few cryptogamia are found on this bark. The following are those mentioned by Bergen:—

Lichenes.—Trypethelium variolosum; Thelotrema bahianum; Pyrenula poronoides; P. discolor; Parmelia melanolunca; Usnea florida & Cinchona.

Composition.—This bark yields quinidine and cinchonine. Weddell says that in France it has been found to yield a very small proportion only of cinchonine, and scarcely any quinine. But the reports of the German chemists are very different.

The following are the quantities of the cinchona alkaloids which Von Santen and Goebel and Kirst obtained:—

1 Papel Periódico de Santa Fé de Bogota [edited by Rodrigo Socorro], No. 89-128, 1793-1794.
VEGETABLES.—NAT. ORD. RUBIACEÆ.

1 lb. of Bark. Cinchonia. Sulphate of Quina.

Von Santen 1. Quills and flat pieces (from Cadiz in 1814) ... 30 grs. ... 32 grs.
2. Flat pieces (from Curacao in 1806) 36 grs. ... 5 grs.

Goebel and Kirst found 56 grs. of Quina, and 43 grs. of pure Cinchonia.

The bark analysed under the name of Carthagenæ cinchona, by Pelletier and Caventon, was Carthagenæ brown cinchona (see Pilocarya Condomineæ bark, p. 1644).

Gelatine occasions no precipitate in the infusion; tincture of galls produces turbidity: sesquichloride of iron a green colour.

MEDICINAL PROPERTIES.—These are greatly inferior to those of Calisaya bark, though, according to Weddell, Mutis declares that “Ea est species, quæ Chinæ auctoritate perditam restituit, et quæ a tempo ejus introductionis, a. 1742, in medicina singulare pretium obtinuit.”

XII. CORTEX CINCHONÆ DE MARACAIBO.—MARACAIBO BARK.

In 1831, Mr. Carpenter, of Philadelphia, published some observations on a new variety of cinchona bark, called Maracaibo bark. In 1841, M. Guibourt met with, in commerce, large quantities of Maracaibo cinchona (quinquina de Maracaibo).

I have found in English commerce three barks under the name of "Maracaibo barks:"—
1. A root-bark which was given to me by Mr. J. E. Howard as "early Maracaibo bark," and to which I have already referred (see New Granada Cinchona Root-bark, p. 1628). It contains cinchonine.
2. A stem-bark consisting of short broken twisted quills and flat pieces, rarely more and usually less than three inches long. Some of the quills are entirely uncoated, and consist exclusively of liber. Other quills and flat pieces are partially covered externally by a greyish-white coat. This variety contains very little alkaloid, and is closely allied in appearance to the bark of Cinchona cordifolia. This probably is the sort referred to by Mr. Carpenter.
3. A very coarse powder or small fragments of the liber of a very bitter friable bark.

TABLE OF COMMERCIAL CINCHONA BARKS,

WITH THE BOTANICAL SPECIES FROM WHICH THEY ARE PRESUMED TO BE OBTAINED.

<table>
<thead>
<tr>
<th>Name</th>
<th>Remarks</th>
<th>Botanical Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Genuine Calisaya or Yellow Bark (Cinchona flavæ [Regia], Ph. Lond.)</td>
<td>Monopoly bark may be taken as the type</td>
<td>1. Cinchona Calisaya var. a vera, Weddell.</td>
</tr>
<tr>
<td>2. Josephian Calisaya Bark (Ichne-Cascariilla; Cascarilla del Pajonal, Boliv.)</td>
<td>Strictly speaking, they are false Calisaya barks</td>
<td>2. C. Calisaya var. β Josephiana, Weddell.</td>
</tr>
<tr>
<td>3. Bolivian Mulberry Calisaya (Cascarilla morada, Boliv.)</td>
<td>Exception No. 7, these barks are not distinguished by any special names in English commerce; but are usually known as spurious or false Calisaya barks. In France the designation of Calisaya léger (light or flimsy Calisaya) is given to some of them (e. g. to Nos. 3, 5, and 6). ...</td>
<td>3. C. Boliviana, Weddell.</td>
</tr>
<tr>
<td>5. Cascarilla provinciana, Huanuco; C. motosolo, Carabayá; Quepo-Cascarilla, Boliv.</td>
<td>...</td>
<td>5. C. micranthes, Wedd.</td>
</tr>
<tr>
<td>6. Cascarilla colorada del Cuzco; Cascarilla de Santa-Ana, Peruv.</td>
<td>...</td>
<td>6. C. scrobiculata var. a genuina, Wedd.</td>
</tr>
<tr>
<td>7. Peruvian Calisaya</td>
<td>...</td>
<td>7. C. scrobiculata var. β Delondriana, Wedd.</td>
</tr>
<tr>
<td>9. Carabayá Bark</td>
<td>This is not to be confused with No. 4. ...</td>
<td>9. C. ovata var. a vulgaris, Wedd.</td>
</tr>
<tr>
<td>10. Cusco Bark (Carna-carna, Peruv.; Cascarilla- or Quina-amaronillos, Carab.)</td>
<td>This is not to be confused with the red Cusco bark, No. 6 ...</td>
<td>10. C. pubescens var. α Pelletieriana, Wedd.</td>
</tr>
</tbody>
</table>

2. Guibourt, Hist. des Drogs. ii. 96.
Table of Commercial Cinchona Barks—continued.

<table>
<thead>
<tr>
<th>Name.</th>
<th>Remarks.</th>
<th>Botanical Species.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Cascarilla morada, Ruiz; Cascarilla bobo de hojas moradas, Huanuco...</td>
<td>Occasionally imported with No. 10, and not distinguished by name from it.</td>
<td>11. C. pubescens var. B purpurea, Wedd.</td>
</tr>
</tbody>
</table>
| 12. Grey Bark; Huanuco or Lima Bark (Cinchona cinerea, Ph. Ed.); — | These two sorts of grey bark are not distinguished in English commerce; they are usually imported mixed together, but are sometimes brought over separately. | 12. [a. C. nitida, Ruiz and Pavon. B. C. micrantha, Wedd.]
| 13. Huamalies Bark; Rusty Bark | Not to be confounded with ashy crown bark (No. 18). | 13. C. Condaminea var. B Chahuarguera, De Cand.? |
| 15. Original or True Crown Bark (Cinchona pallida [de Loxa], Ph. L.; Cinchona corone, Ph. Ed.) | | 15. C. Condaminea var. a vera, Wedd. |
| 18. Ashy Crown Bark (Quinquina de Loxa cendré B, Guib.; Dunkelté Ten-China, Bergen) | | 18. C. cordifolia var. β rotundifolia, Wedd.? |
| 20. Red Bark (Cinchona rubra, Ph. Lond.) | | 20. C. ——? |
| 22. Fibrous Carthagena Bark (Quinquina orangé de Mutis, Guib.) | The Coqetta or Bogota Bark is a variety of this. | 22. C. Condaminea var. δ lancifolia, Wedd. |
| 23. Hard Carthagena Bark (Quina amarilla, Mutis) | This and the preceding bark are called Carthagena Bark in English commerce. | 23. C. cordifolia var. a vera, Wedd. |
| 24. Maracaibo Bark, No. 2 | | 24. C. cordifolia? |
| 25. Bolivian Cinchona Root Bark | Both these root barks are in short, contorted, twisted pieces. | 25. C. Calsaya var. β Josephiana, Wedd. |
| 26. New Granada Cinchona Root Bark; Curly Maracaibo Bark | | 26. C. ——? |

The barks enumerated in the above table, and which have been previously described, yield very unequal quantities of the cinchona alkaloids, and, therefore, in a medicinal point of view, are of very different qualities. The following are, according to M. Guibourt, the most active barks:—

1. Calsaya bark.
2. Orange-yellow [includes C. micrantha, see ante, p. 1627].
3. Pitaya [Pitaya Condaminea, see ante, p. 1643].
4. Red genuine, verrucose [see ante, p. 1642].
5. Red genuine, non-verrucose [see ante, p. 1642].
6. Red Lima [Fine Grey, see ante, p. 1633].
7. Grey Lima [Inferior Grey, see ante, p. 1634].
8. Huamalies, white verrucose [see ante, p. 1635].

Composition.—In February 1791 Fourcroy\(^1\) published an analysis of *St. Lucia* or *St. Domingo* bark (a false cinchona bark yielded by *Exostemma*

\(^1\) *Ann. de Chim.* viii. 113; and ix. 13.
floribundum), which was long regarded as a model of vegetable analysis. In 1802 Seguin concluded, that, as the active principle of cinchona was precipitated by an infusion of nutgalls, it must be gelatine; and therefore proposed and employed the use of clarified glue as a febrifuge in intermittents! In 1803 Dr. Duncan, jun. showed that the active principle could not be gelatine, but must be a substance sui generis, which he therefore termed cinchonia. In 1806 Vauquelin published some experiments on seventeen kinds of cinchona. In 1810 Gomes succeeded in isolating cinchonia, and obtaining it in a crystalline form. In 1820 Pelletier and Caventon announced the existence of two cinchona alkaloids—cinchonia and quinia—in cinchona bark. In 1829 Pelletier and Coriol discovered a third cinchona alkaloid—aricina—in a new sort of cinchona bark, which they termed Arica bark (the bark of Cinchona pubescens var. a Pelletieriana, Weddell). In the same year (1829) Serturner gave the name of quinoidine (chinoïdine) to another supposed peculiar alkaloid contained in yellow and red barks; the existence of which, however, was denied by Henry fils and Delondre. In 1833 the last-mentioned chemists announced a new cinchona alkaloid, called quinidine, which they obtained from yellow bark, and which was doubtless contained in Serturner’s quinoidine: but, finding its composition to be identical with quinia, they subsequently stated that their supposed new alkaloid, quinidine, was nothing else than hydrate of quinine. In 1846 Liebig declared that a considerable portion of the resinous-looking body called quinoidine, which the makers of sulphate of quinine obtain from their mother waters, was amorphous quinine, and bore the same relation to ordinary quinine that barley-sugar does to sugar-candy. In 1849 a Dutch chemist, Van Heijnigen, submitted quinoidine to a careful examination, and found in it quinidine, or, as he termed it, β quinine; and the year following (1850) he obtained from it another alkaloid, which he called γ quinine.

The organic constituents of the cinchona barks, as determined by Pelletier and Caventou, and subsequently by other chemists, are quina, cinchonia, aricina, quinidine, kinic, tannic, and kinic acids, cinchona red, yellow colouring matter, green fatty matter, starch, gum, and lignin.

Puttfareken found that, by incineration, the cinchona barks yielded from 0.58 (yellow or Calisaya bark) to 3.4 (ash cinchona) per cent. of ashes, the chief constituent of which was carbonate of lime. Some barks (e.g. Calisaya and Huanuco) yielded ashes of a green colour, owing to the presence of mangane of potash. Puttfareken’s results favour the opinion that with the increase of the alkaloids in the barks, the proportion of lime diminishes.

1 Ann. de Chim. xei. 121; and xei. 273 and 304.
5 Journ. de Pharm. t. vii. p. 49, 1821.
6 Ibid. t. xv. p. 565, 1829.
7 Ibid. t. xvi. p. 44, 1830.
8 Ibid. t. xvi. p. 144, 1830.
9 Ibid. t. xix. p. 623, 1833.
10 Ibid. t. xx. p. 157, 1834.
13 Ibid. vol. xi. p. 521, 1852.
14 Ibid. vol. xi. p. 129, 1851.
Cinchona:—its Composition.

1. Volatile Oil of Cinchona Bark (Odorous, Aromatic, or Balsamic Principle.)—This was procured first by Fabbroni, afterwards by Trommsdorff. It was obtained by submitting bark with water to distillation. The distilled water had the peculiar odour of the bark, and a bitterish acrid taste. The oil which floated on the water was thick and butyrous, and had the peculiar odour of the bark, and an acrid taste. From 20 lbs. of bark, Trommsdorff obtained two grains of oil. Zenneck says the cinchona odour is imitated by a solution of turmeric in potash, as well as by chloride of iron.

2. Cinchо-tannic Acid (Tannic Acid; Astringent Principle; Soluble Red Colouring Matter).—Cinchо-tannic acid differs from the tannic acid of nutgalls in being less astringent, in yielding a green colour or precipitate with the salts of the sesquioxide of iron, and in the remarkable facility with which its solution absorbs the oxygen of the air, especially under the influence of alkalies. Furthermore, the compounds which it forms with acids are more soluble than those of the nutgall tannic acid. According to Schwarz, the formula of the hydrate of cinchо-tannic acid is C₁₂H₁₀O₇ + 2H₂O = C₁₂H₁₀O₉. The products of the oxidation of this acid are, according to the same authority, 1 eq. of cinchona red, C₁₂H₁₀O₇, 2 eq. of carbonic acid, 2CO₂, and 1 eq. of water, H₂O. So that it must absorb 3 eq. of oxygen.

3. Cinchona Red (Red Cinchonic; Insoluble Red Colouring Matter).—Berzelius and Schwarz regard this substance as a product of the oxidation of cinchо-tannic acid. It is an inodorous, insipid, reddish-brown substance, insoluble or nearly so in cold water, somewhat more soluble in hot water, but readily soluble in alcohol and alkalies. As obtained by Schwarz, it also dissolved easily in ether. Acids favour its solution in water. Its alkaline solution is intensely red. Dried at 212° Schwarz found it to consist of C₁₂H₁₀O₇.

In the previous edition of this work (p. 1396), I expressed an opinion that red cinchonic resembled in most of its properties catechuic acid (catechine) which is found in abundance in another genus of cinchonaceous plants (see Uncaria Gambiri). Pelouze and Frémy assert that the tannin contained in cinchona is nothing else than catechine acid, and red cinchonic is a product of its oxidation which precedes the formation of rubinic acid.

4. Kinic Acid (Cinchonic or Quinic Acid). C₁₁H₁₀O₄, 2H₂O. Exists in cinchona barks in combination probably with the cinchona alkaloids and with lime. It crystallises from its aqueous solution in prisms with rhombic bases. Its presence may be most readily detected by converting it into kinone (C₁₂H₁₀O₃). This is done by submitting the substance supposed to contain kinic acid to distillation with peroxide of manganese and sulphuric acid: the kinone distils over. It is a yellow crystallizable substance, soluble in water, and having a pungent odour. If its watery solution be treated with ammonia, it absorbs oxygen from the air, and becomes first brown, and finally black,—owing probably to the formation of melanic acid. (C₁₂H₁₁O₄ + 2O = C₁₂H₁₀O₆.) If chlorine water be added to another portion of the solution of kinone, the liquid assumes a bright green colour. Dr. Stenhouse has proposed to detect the presence of kinic acid in cinchona bark by converting it into kinone.

5. Kinovic Acid (Kinova Bitter; Chiococcic Acid.) C₁₂H₁₀O₂. Has been found in Calisaya bark, as well as in the false cinchona bark called quinquina nova. It exists in the latter bark most probably in combination with lime. It is a white amorphous substance, almost insoluble in water, but readily soluble in alcohol and ether. A solution of the kinovate of magnesia yields precipitates (kinovates) with solutions of acetate of lead, bicloride of mercury, and the salts of cinchona. Kinovic acid is devoid of febrifuge power.

6. Cinchona Alkaloids.—Three alkaloids obtained from genuine cinchona barks have been used in medicine; viz. Quina, Cinchonia, and Quinidina. Arietina, another but imperfectly known cinchoua alkaloid, has not hitherto been applied to medicinal purposes. The cinchona alkaloids exist in cinchona bark in combination with one or more acids;

1 Ber. Jahrb. 1807.
3 Pharm. Central-Blatt für 1832, S. 236.
5 Traité de Chimie, t. v, p. 585, 1831.
6 Cours de Chimie Générale, t. iii. p. 171, 1850.
9 Weil, Buchner's Repertor. 2te Reihe, Bd. iii. S. 396, 1835.
probably with kinic and tannic acids: according to Henry fils and Plisson,\(^1\) with kinic acid and cinchona red. They reside chiefly in the liber (see ante, p. 1619).

Cinchonia, quina, and aricina, were regarded by Pelletier as being respectively the monoxide, binoxide, and teroxide of an hypothetical nitrogenous base, which he called quinogen, and whose formula is \(\text{C}^{20}\text{H}^{12}\text{N}^{2}\). The following are the formulae and equivalents for those cinchona alkaloids which have been best studied:

<table>
<thead>
<tr>
<th>Cinchona Alkaloids</th>
<th>Formulae</th>
<th>Equivalents</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinidina</td>
<td>(\text{C}^{22}\text{H}^{22}\text{N}^{2}\text{O}^{2})</td>
<td>216</td>
<td>Leers.</td>
</tr>
<tr>
<td>Quina</td>
<td>(\text{C}^{22}\text{H}^{22}\text{N}^{2}\text{O}^{4})</td>
<td>300</td>
<td>Laurent.</td>
</tr>
<tr>
<td>Cinchonia</td>
<td>(\text{C}^{22}\text{H}^{22}\text{N}^{2}\text{O}^{2})</td>
<td>162</td>
<td>Liebig.</td>
</tr>
</tbody>
</table>

The following is a table showing the per centage amount of alkaloids obtained from the officinal barks of the British Pharmacopoeias.

<table>
<thead>
<tr>
<th>100 Parts of Bark</th>
<th>Quina</th>
<th>Quinidina</th>
<th>Cinchonia</th>
<th>Total Alkaloid</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calisaya:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average produce</td>
<td>2'50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncoated thick flat pieces</td>
<td>2'52</td>
<td>1'51</td>
<td>4'16</td>
<td>Pelletier and Soubiran.</td>
<td></td>
</tr>
<tr>
<td>Best sort</td>
<td>3'8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var. (\beta) Josephiana</td>
<td>3'29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Bark:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best sort</td>
<td>2'50</td>
<td>1'51</td>
<td>4'16</td>
<td>Pelletier and Soubiran.</td>
<td></td>
</tr>
<tr>
<td>Large broad flat pieces</td>
<td>2'52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark heavy flat coated pieces</td>
<td>0'104</td>
<td>2'34</td>
<td>5'11</td>
<td>Winckler.</td>
<td></td>
</tr>
<tr>
<td>Pale thin flat pieces</td>
<td>0'078</td>
<td>1'04</td>
<td>1'04</td>
<td>Winckler.</td>
<td></td>
</tr>
<tr>
<td>Loxa or Crown:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine old Loxa quills, in bundles</td>
<td>0'714</td>
<td>0'514</td>
<td>1'268</td>
<td>J. E. Howard.</td>
<td></td>
</tr>
<tr>
<td>Finest Crown</td>
<td>0'52</td>
<td>0'42</td>
<td>0'94</td>
<td>Riegel.</td>
<td></td>
</tr>
<tr>
<td>H. O. Crown, fine sample, 1850</td>
<td>0'57</td>
<td>0'06</td>
<td>0'63</td>
<td>J. E. Howard.</td>
<td></td>
</tr>
<tr>
<td>Ditto ditto 1851</td>
<td>1'05</td>
<td>0'08</td>
<td>1'13</td>
<td>J. E. Howard.</td>
<td></td>
</tr>
<tr>
<td>Ashy Crown, from Lima</td>
<td>0'5</td>
<td>0'914</td>
<td>1'414</td>
<td>J. E. Howard.</td>
<td></td>
</tr>
<tr>
<td>Ashy Crown mixed with Ashy Crown from Lima</td>
<td>0'4 (chiefly quinidina)</td>
<td>0'285</td>
<td>0'685</td>
<td>J. E. Howard.</td>
<td></td>
</tr>
<tr>
<td>Grey or Huanuco:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine grey</td>
<td>0'571</td>
<td>0'142</td>
<td>1'45</td>
<td>2'113</td>
<td>J. E. Howard.</td>
</tr>
<tr>
<td>Inferior or coarse grey</td>
<td>0'243</td>
<td>0'28</td>
<td>1'25</td>
<td>1'773</td>
<td>J. E. Howard.</td>
</tr>
<tr>
<td>Strong middling sized quills</td>
<td>2'5</td>
<td></td>
<td></td>
<td></td>
<td>Winckler.</td>
</tr>
</tbody>
</table>

1. Quina.

Quina; Quininum; Chinininum; Quinine. Formula \(\text{C}^{22}\text{H}^{22}\text{N}^{2}\text{O}^{4}\) (Laurent\(^2\)). Eq. 370.

\(^{+}\)Symb. Qu.—Discovered in 1820 by Pelletier and Caventou. It is a probable constituent of all genuine cinchona barks, but especially of the genuine yellow bark (Cinchona Calisaya), from which it is chiefly obtained. It is also procured by chemical manufacturers from the cheaper but inferior cinchona barks of Carabaya, Bolivia, and New Granada.

The simplest, readiest, and cheapest mode of procuring quina is by adding ammonia to a solution of the sulphate of quina and collecting and drying the precipitated quina.

As usually procured, quina is in the form of a whitish, porous mass. Pelletier crystallized it by dissolving it in alcohol of sp. gr. 0'815, and setting the solution aside to.

\(^1\) Journal de Pharmacie, t. xiii. pp. 269 and 369, 1827.

\(^2\) Ann. de Chim. et de Phys. 3d Sér. t. xix. pp. 359-377, 1847. Liebig's formula is \(\text{C}^{22}\text{H}^{12}\text{N}^{2}\): equiv. 162.
evaporate spontaneously in a dry place. Liebig obtained it from a somewhat ammoniacal watery solution, in the form of fine silky needles. Quina crystallized from its aqueous solution is a *hydrate*, and has for its formula \(\text{C}_9\text{H}_8\text{N}_2\text{O}_4\cdot6\text{H}_2\text{O} \).

Quina is inodorous, very bitter, and fusible at about 300° F. The fused mass, when cold, is yellow, translucent, friable, and somewhat like resin in appearance. One part of quina requires about 400 parts of cold water, or 250 parts of boiling water, or 2 parts of boiling alcohol and 60 parts of cold ether, to dissolve it. The aqueous and alcoholic solutions react as an alkali. Dissolved in either alcohol or acidulated water, quina possesses the property of left-handed rotatory polarization. At a temperature above 72° F. this rotatory power decreases.

When quina is distilled with excess of potash, an oily liquid base, called *quinoline* or *cincholine*, \(\text{C}_9\text{H}_8\text{FN} \), is obtained. Some other organic bases, as cinchonina and strychnia, also yield, when distilled with potash, the same product. Dr. Steuhouse\(^1\) has proposed to detect the presence of an alkaloid in bark by this test.

Quina and its salts may be readily detected by the following test:—if the alkaloid or its salt be diluted with water, and chlorine water be then added, the alkaloid is dissolved without producing any remarkable effect. But if ammonia be now added, the liquid acquires a grass-green colour.\(^2\) By this colour quina may be distinguished from cinchona and quinidina. If a substance suspected to contain quina be powdered, then shaken with ether, and afterwards successively treated with chlorine and ammonium, the liquid will assume a green colour if the slightest trace of quina be present.

The *salts of quina* are of two classes,—one termed *neutral*, the other *acid*: the former contain one, the latter two, equivalents of acid to each equivalent of base.\(^3\) They are for the most part readily crystallizable, very bitter, and of a pearly aspect. The less soluble salts are the oxalate, the tartrate, the tannate, and ferrocyanate. The soluble salts are more bitter than the corresponding salts of cinchonia. They yield precipitates on the addition of tannic acid (or tincture of nutgalls), ammonium, bi-chloride of mercuric, and bi-chloride of platinum. Hyposulphite of soda causes a white crystalline precipitate (*hyposulphite of quina*) when added to a solution of hydrochlorate of quina. According to Winckler,\(^4\) neither amorphous quina nor amorphous cinchona, when saturated with hydrochloric acid, yield any precipitate with the hyposulphite of soda.

The following is the composition of quina:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>38</td>
<td>228</td>
<td>73·54</td>
<td>73·54</td>
<td>74·40</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>22</td>
<td>22</td>
<td>7·09</td>
<td>7·07</td>
<td>7·61</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>2</td>
<td>28</td>
<td>9·08</td>
<td>—</td>
<td>8·11</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
<td>10·33</td>
<td>—</td>
<td>9·88</td>
</tr>
<tr>
<td>Anhydrous Quina</td>
<td>1</td>
<td>310</td>
<td>99·99</td>
<td>100·00</td>
<td>100·00</td>
</tr>
</tbody>
</table>

Amorphous Quina.—A supposed uncrystallizable form of quina contained in the mother-liquors from which sulphate of quina has crystallized, and which is usually found in the substance called *quinoidine*. Liebig\(^5\) considers that it bears the same relation to crystallizable quina that barley sugar does to sugar candy; and Winckler\(^6\) states that ordinary quina may be rendered amorphous by the action of acids. He further informs

\(^1\) *Memoirs of the Chemical Society*, vol. ii. p. 227, 1845.

\(^2\) Meeson (by mistake printed Roper), in the *Lond. Med. Gaz.* vol. xi. pp. 320 and 362; also in the *Phil. Mag.* Feb. 1835; André, *Journ. de Pharm.* xxii. 127, 1836. The green product of the action of chlorine and ammonium on quina has been called by Brandes and Leber (*Pharm. Central-Blatt für 1838*, p. 875), *dalleichin*, \(\text{C}_9\text{H}_8\text{N}_2\text{O}_4 \) (more properly *thallicchin*, from *Suckaefer*). They also mention two other products of decomposition; one termed *melanochin*, and the other *rusciochin*.

\(^3\) If Liebig's formula for quina be adopted, the above two classes of salts would be called respectively *basic* and *neutral*, although the latter possess an acid reaction. The duplication of the equivalent for quina, as suggested by Regnault, necessarily alters the nomenclature of the salts.

\(^4\) *Chemical Gazette*, vol. vi. p. 122, 1848.

\(^5\) *Lancet*.

\(^6\) *Chemical Gazette*, vol. vi. p. 121, 1848.
us that the amorphous cinchona alkaloids (quina and cinchonia) may be distinguished and separated from the crystalline alkaloids by hyposulphite of soda, which precipitates the latter, from their muriatic solution, in the form of crystalline hyposulphites, but occasions no precipitate with corresponding solutions of the amorphous alkaloids.

Some doubts, however, still exist as to the real nature of the so-called amorphous quina. Roder\(^1\) declares that it is merely ordinary quina combined with a resin; while Van Heijningen\(^2\) resolved the so-called quinoidine into ordinary quina, cinchonia, quinidine, and a resinous substance.

Dilute solutions of quina (especially an acidulated aqueous solution of the commercial sulphate) exhibit in certain aspects a peculiar celestial blue colour. This property has been denominated, by Professor Stokes,\(^3\) fluorescent. Sir John Herschel\(^4\) considered it to be a case of superficial, or, as he termed it, epiplectic (from επιπλεκτικός, a surface) dispersion. Sir D. Brewster,\(^5\) however, showed that the effect was not confined to the surface, but extended to a considerable depth into the body of the liquid, and he, therefore, regarded it as a particular case of internal dispersion. More recently, Professor Stokes has shown reason for concluding that in this process of true internal dispersion the chemical or invisible rays of the spectrum, which are more refrangible than the violent rays, change their refrangibility, thereby becoming visible, and produce the blue superficial light in question.\(^6\)

1. **Quina Sulphas (Quina Disulphas, Ph. Lond.)** See post.
2. **Quina Bisulphas.** Formerly called Neutral Sulphate of Quina. Formula\(^7\): \((\text{Qn, HO})_2\text{SO}_3 + 16\text{HO} \equiv (\text{C}_9\text{H}_{12}\text{N}_2\text{O}_5\text{H}_2\text{O}_4\text{HO}), 2\text{SO}_3 = 16\text{HO}.\) Eq. weight 543. — This salt is readily formed by adding sulphuric acid to the sulphate. It is sometimes produced in the manufacture of the latter salt, and remains, on account of its greater solubility, in the mother liquor, with the sulphate of cinchonia. It crystallizes in rectangular prisms or silky needles, reddens litmus, and dissolves in about 11 parts of water at ordinary temperatures, and also in spirits of wine. When heated, it melts in its water of crystallization, and at 213° loses, according to both Baup and Liebig, 24°6 per cent. of water. It is distinguished from the ordinary sulphate by its acid reaction and its greater solubility in water. Its solution is fluorescent, and possesses the property of left-handed rotatory polarization. With sulphate of the sesqui oxide of iron it forms a double salt, which crystallizes in octohedra resembling those of alum.

2. **Cinchonia.**

Cinchonine; Cinchonina; Cinchonium. Formula \(\text{C}_9\text{H}_{12}\text{N}_2\text{O}_5\), Laurent.\(^8\) Equiv. 294.

Symbol \(\text{Ci}.\) — Its presence was inferred in 1803 by Dr. Duncan, Jun.; but Gomes first succeeded in obtaining it in 1810. It is a probable constituent of all genuine Cinchona barks, but is met with most abundantly in Cusco and Grey barks. It is obtained from the sulphate of cinchonia in the same way that quina is procured from its sulphate.

Cinchonia readily crystallizes from its alcoholic solution. The crystals are anhydrous, colourless, inodorous, and bitter, though less so than quina. Their shape is that of a four-sided prism, with oblique terminal facets. It fuses, but with more difficulty than quina, and, by the cautious application of heat, it is volatilized, and yields a crystalline sublimate. During its sublimation it evolves an aromatic odour (by which, according to Liebig, it is distinguished from quina). Heated with potash, it yields cinchonine.

It is less soluble in water, alcohol, and ether, than quina. Thus cold water scarcely

7. Regnault (Cours Elément. de Chimie, 2me édit. 4me part, p. 720, 1850), gives the following formula for this salt: \(\text{C}_9\text{H}_{12}\text{N}_2\text{O}_5\text{H}_2\text{O}_4\text{HO} \equiv 2\text{SO}_3 + 8\text{HO} \). This would give only 15 per cent. for the water of crystallization. It is probable, therefore, that the "8HO" is a misprint for "16HO."
8. *Ann. der Chemie u. Pharm.* Bd. lxi. p. 99, 1847.—Liebig’s formula for it is \(\text{C}_9\text{H}_{12}\text{N}_2\text{O}_5\), and its corresponding equivalent 154.
dissolves any of it, and boiling water takes up only \(\frac{1}{2} \) th part of its weight. It is somewhat soluble in spirit of wine, and the more so in proportion as the spirit is stronger and its temperature higher. According to Duflos, strong spirit of wine dissolves only 3 per cent. of its weight of cinchonia. In ether it is insoluble, and by this property it is both distinguished and separated from quina. Cinchonia dissolved either in alcohol or in acidulated water possesses the property of right-handed rotatory polarization, and is thereby distinguished from quina, whose rotation is left-handed.

Cinchonia or its salts dissolves in chlorine water without undergoing any obvious change. In this respect it agrees with quina or quinidina. But if ammonia be added to the solution, a white precipitate is produced. By this latter character cinchonia is distinguished from both quina and quinidina.

Of the salts of cinchonia those which are interesting in a medicinal point of view are the two sulphates.

1. Cinchonie Sulphas; Sulphate of Cinchonia; Cinchoniae Disulphas. Formula \((C_6H_5O_3)_2SO_3 \cdot 2HO=(C_6H_5NO_2)_2SO_3+2HO \). Eq. Weight 361. The sulphate of cinchonia of commerce is usually obtained from the mother waters from which sulphate of quina has crystallized. The crystals of this salt are short, oblique prisms, terminated by dihedral summits. Its taste is bitter. When heated it becomes phosphorescent: at 212° it fuses; at 245° F. it loses its water of crystallization. At ordinary temperatures it is soluble in 6 5 parts of alcohol of sp. gr. 0'85, and in 11 5 parts of absolute alcohol. It requires 54 parts of cold water to dissolve it. Its solution possesses the property of right-handed rotatory polarization; and is not fluorescent. By these properties it is distinguished from the sulphates of quina and quinidina. In ether it is insoluble.

2. Cinchonie Bisulphas; Bisulphate of Cinchonia. Formerly called the Neutral Sulphate of Cinchonia. Formula \((C_6H_5O_3)_2SO_3+8HO=(C_6H_5NO_2)_2SO_3+8HO \). Eq. Weight 455.—Obtained by dissolving the sulphate in water acidulated with sulphuric acid, and evaporating the solution so that crystals may form. These are rhombooidal octahedra which, in dry air, become opaque and efflorescent. When heated they lose their water of crystallization. At ordinary temperatures 100 parts of this salt dissolve in 46 parts of water, in 90 parts of spirit wine, sp. gr. 0'85, or in 100 parts of absolute alcohol. It is insoluble in ether. The optical properties of a solution of this salt resemble those of a solution of the neutral sulphate of cinchonia.

3. Quinidina.

Quinidina or Quinidine; Chinidin; β Quinine; Cinchotin. Formula \(C_6H_5NO_2 \). (Leers) Eq. Weight 282: \(C_6H_5NO_2 \). Van Heijnngen, Hlassivetz. Symbol Qdn.—In 1833, Henry and Delomdre discovered this alkaloid, to which they gave the name of quinidine but, in the following year, they declared it to be identical with quina. It is probable, however, that Bucholz in 1822, and Thiel in 1823, had actually obtained it, though in an impure form. In 1848, Van Heijnngen recognized it as a peculiar base which possessed the same composition as quinine. He, therefore, called it β quinine to distinguish it from ordinary quinine, which he termed a quinina. His statement as to its composition was confirmed in 1850 by Hlassivetz, who called it the alkaloid cinchotin. Winckler, in 1848, gave a description of it and of some of its salts; and, in 1852, Leers published a very elaborate account of its salts.

It is found in many, perhaps in most, of the genuine Cinchona barks; especially in

2. Ibid. t. xx. p. 157, 1834.
lancefolia, ovata, cordifolia, and amygdalifolia barks. It is obtained from them by the same process as that by which quina is procured from the quina-yielding barks; but its sulphate, being more soluble than sulphate of quina, is left in the mother waters. In order to obtain the alkaloid pure it is to be repeatedly crystallized from its alcoholic solution to deprive it of a greenish yellow resinous substance, and then shaken with ether, to remove any adherent quina, until the ethereal liquor no longer indicates the presence of quina by yielding a green colour on the addition first of chlorine water, and afterwards of ammonia.

Quinidina readily crystallizes by the spontaneous evaporation of its solution in alcohol. The crystals are anhydrous, colourless, hard prisms, with a vitreous lustre. Their taste is bitter, but less so than that of quina. When heated in a platinum crucible over the flame of the spirit lamp they at first retain their shape and lustre, and then fuse, without either decomposing or giving out water, at 347° F., and form a clear wine-yellow liquid, which, by cooling, congeals into a whitish grey crystalline mass. If the heat be raised above 347°, the liquid takes fire and burns with a very sooty flame, and evolves an odour of quinole and of oil of bitter almonds. One part of quinidina is soluble in 2580 parts of water at 62½° F., or in 1858 parts of boiling water, or in 12 parts of alcohol, sp. gr. 0.835 at 62½° F. (in boiling spirit it is freely soluble) or in about 142 parts of ether at 62½° F. From both its alcoholic and ethereal solutions it readily crystallizes. A solution of quinidina in accluted water agrees with one of quina, both in possessing the property of left-handed polarisation, and in being fluorescent. These properties distinguish it from a solution of cinchonia.

If the solution of quinidina be treated first with chlorine water and then with ammonia, it does not become green like a solution of quina. It either yields a white precipitate like a solution of cinchonia, or, when a considerable excess of chlorine has been used, remains apparently uncharged.

The salts of quinidina are, for the most part, more soluble in water than those of quina. They readily dissolve in spirit of wine, but scarcely at all in ether. Like those of quina and cinchonia the salts of quinidina are of two kinds, the one neutral, the other acid salts.

1. Quinidine Sulphate; Sulphate of Quinidine. Formula Qdn,SO4H, + 6aq. = (C2H22N2O6)2SO4H, + 6aq. Eq. Weight 403. This salt crystallizes in long, silky, shining acicular crystals, which dissolve in 130 parts of water at 62½° F., or in 16 parts of boiling water. It is readily soluble in two parts of rectified spirit; but it is almost insoluble in ether. Zimmer states that in dry warm air it parts with its water of crystallization without delinquency or losing its crystalline aspect. Its aqueous solution agrees with a solution of sulphate of quina, in being fluorescent, and in possessing the property of left-handed rotatory polarization.

In appearance this salt closely resembles sulphate of quina. Winckler, indeed, says it is undistinguishable from the latter salt; but Zimmer states that it differs from the latter in having a greater sp. gravity and less flocculent crystallization. It appears to me also to have a more vitreous lustre. It differs also in its much greater solubility both in water and in rectified spirit. Moreover, if its solution be successively treated with chlorine-water and ammonia it does not yield a green colour as a solution of sulphate of quina. Furthermore, if a solution of sulphate of quinidina be decomposed by ammonia, the precipitated alkaloid (quinidina) may be readily distinguished from quina by its more difficult solubility in ether (see Quinae Sulphates).
1657

From sulphate of eichonia, the sulphate of quinidina is readily distinguished by the appearance of its crystals, by the difference of its solubility in water, in alcohol, and in ether, and by its solution being fluorescent and possessing the property of left-handed rotatory polarization.

2. **Quinidina Bisulphas**; Bisulphate of Quinidine; Acid Sulphate of Quinidine.

Formula Quin.2(SO₄)H₂,12aq. Eq. Weight 488. Obtained by adding sulphuric acid to the neutral salt. It consists of an asbestus-like mass of fine aeciliar crystals. By drying at 213° they lose 19 per cent. of water (Winckler).

Comparative Table of some distinguishing Properties of Quina, Quinidina, and Cinchonia.

<table>
<thead>
<tr>
<th></th>
<th>Quina.</th>
<th>Quinidina.</th>
<th>Cinchonia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The anhydrous alkaloid is</td>
<td>Amorphous (the hydrate crystallizes with difficulty).</td>
<td>Crystalline (crystallizes from the alcoholic solution). Bitter (less intensely so than quina).</td>
<td>Crystalline (readily crystallizes from the alcoholic solution), Bitterish, unpleasant (somewhat analogous to sulphate of magnesia).</td>
</tr>
<tr>
<td>Taste</td>
<td>Very bitter</td>
<td>Left-handed</td>
<td>Not fluorescent.</td>
</tr>
<tr>
<td>Optical properties of a solution of the alkaloid</td>
<td>Fluorescent</td>
<td>Fluorescent?</td>
<td>Right-handed.</td>
</tr>
<tr>
<td>Solubility of 1 part of alkaloid in Cold water</td>
<td>In 400 parts</td>
<td>In 2580 parts</td>
<td>Almost insoluble.</td>
</tr>
<tr>
<td>Solubility of 1 part of alkaloid in Cold rectified spirit</td>
<td>In 2 parts of boiling spirit; the solution does not deposit any thing when cold.</td>
<td>In 12 parts of cold spirit; the alkaloid is much more soluble in boiling spirit.</td>
<td>Insoluble.</td>
</tr>
<tr>
<td>A solution of the alkaloid (c. gr.) treated first with chlorine-water, then with ammonia</td>
<td>Becomes emerald-green.</td>
<td>Remains unchanged, or yields a white precipitate.</td>
<td>Becomes pinkish, and yields a white precipitate.</td>
</tr>
<tr>
<td>Solubility of 1 part of the sulphate of the alkaloid in Cold water</td>
<td>In 740 parts</td>
<td>In 130 parts</td>
<td>In 54 parts.</td>
</tr>
<tr>
<td>Solubility of 1 part of the sulphate of the alkaloid in Cold rectified spirit</td>
<td>In 30 parts</td>
<td>In 10 parts</td>
<td>In 61 parts [in 114 parts of anhydrous alcohol].</td>
</tr>
<tr>
<td>Solubility of 1 part of the sulphate of the alkaloid in Cold ether</td>
<td>In 60 parts</td>
<td>Easily soluble</td>
<td>Insoluble.</td>
</tr>
<tr>
<td>Solubility of 1 part of the sulphate of the alkaloid in Cold ether</td>
<td>[Much more soluble than in cold spirit.]</td>
<td>Very easily soluble.</td>
<td></td>
</tr>
<tr>
<td>Solubility of 1 part of the sulphate of the alkaloid in Cold ether</td>
<td>Slightly soluble</td>
<td>Almost insoluble</td>
<td></td>
</tr>
</tbody>
</table>

4. **Aricina.**

In 1829, Pelletier and Coriol obtained from Arica bark (see ante, p. 1630), an alkaloid to which they gave the name of *Aricine*. They describe it as being crystalline, and resembling in appearance eichonia, from which it was distinguished by not being volatile; by its solubility in ether; by its sulphate not crystallizing from its aqueous solution, but forming a tremulous jelly, which by dessication acquired a horny appearance; by the alkaloid acquiring a green colour by the action of nitric acid; and lastly, by its weaker saturating power. In 1833, Pelletier stated that the gelatinizing property of the sulphate only belonged to the neutral solution, for he found that when there was an excess of acid the sulphate crystallized in flattened needles; and he further observed that aricine contained one atom more oxygen than quina, its formula being $C_{30}H_{25}N_{2}O_{6}$.

These statements have not been confirmed by subsequent observers. Guibourt.

2 Leverköhn (*Buchner’s Repertorium*, Bd. xxxii. S. 478, 1829; and Bd. xxxiii. S. 353, 1830), also obtained from Cusco bark a substance whose sulphate possessed a gelatinizing property; but he declares it to be neither alkaline nor crystallizable.
declares that the bark yielded him cinchoina and not aricine; and from his statement (already quoted at p. 1632), it would appear that Pelletier himself subsequently doubted the peculiar nature of aricine. Winckler1 asserts that the green colouration by nitric acid depends on the presence of a minute portion of resin; but he admits the existence of a cinchona alkaloid, distinct from both quina and cinchonia, and which he calls cuscmaxin; and declares it to be identical with Manzini’s cinchovatina or cinchorine.2 Since the discovery of quinidine, however, the whole subject requires re-examination.

Pacinne.—This name (derived from Para and aricine) has been given by Winckler3 to a supposed distinct cinchona alkaloid obtained from Para bark. It closely resembles aricine, but differs from it by its greater solubility in ether, its uncrystallizability, and its greater equivalent weight. Nitric acid causes a precipitate in a solution of the sulphate of paretine. In this and some other properties paricine resembles bibirina (see ante, p. 1330). Winckler4 at first considered it to be identical with Manzin’s cinchovatina or cinchorine,5 but he subsequently discovered his error.

Chemical Characteristics.—The chief constituents of the cinchona barks for which tests or reagents are applied, are, the cinchona alkaloids and principally quina. But as the therapeutical value of the barks depends, in part, on their astringency, tests are also employed to detect the cincho-tannic acid. "There exists a law in Sweden," says Berzelius,6 "in virtue of which every cinchona bark imported into the country is tested by the infusion of galls, the persulphate of iron, a solution of gelatine, and emetic tartar; and it is proved by an experience of more than sixteen years, that the most efficacious bark is that which precipitates the most strongly a solution of gelatine and emetic tartar; in other words, that which contains the most tannin." Moreover, as the bitterness of cinchona barks is not in all, if indeed it is in any cases exclusively dependent on the alkaloids, but usually depends in part (in some of the false cinchona barks it depends exclusively) on the presence of vinonpic acid, Winckler7 recommends the testing of barks to determine the amount of this acid which they contain. Lastly, the detection of konic acid has been proposed by Dr. Steinhous as a means of discriminating the true cinchona barks from the false ones.

1. Tests for the Cinchona Alkaloids.—The tests for the cinchona alkaloids which deserve especial notice are the following:—

1. Tannic acid is a very delicate test of the cinchona alkaloids, which it precipitates from their solutions, in the form of tannates. On this depends the value of infusion or tincture of the galls, employed as a test of the goodness of bark by Vauquelin,8 by Berzelius,9 and by O. Henry.10 Winckler regards this as the only test applicable for the discovery of the cinchona alkaloids.

2. Chloride of platinum.—Duflos’s quinometrical method11 is founded on the property of the cinchona alkaloids to form with [neutral] chloride of platinum double salts (platinum-chlorides of the alkaloids) which are insoluble in alcohol, and very difficultly soluble in cold water. One grain of these salts dried in the air contains about half a grain of the alkaloids.

1 Buchner’s Repertorium, 2ter Reihe, Bd. xxv. p. 298, 1824.
2 Ibid. 2ter Reihe, Bd. xxxi. p. 249, 1843.
3 Ibid. 2ter Reihe, Bd. xlii. p. 29, 1846.
5 Chemical Gazette, vol. i. p. 45, 1842.
7 Jahrbuch für praktische Pharmacie, Bd. xxv. S. 129, 1852.
9 Ann. de Chimie, lix 113.
11 Journ. de Pharm. xx. 429, 1834.
12 Pharm. Central-Blatt für 1831, S. 537.
3. Production of cincholine.—Dr. Stenhouse \(^1\) has proposed to detect the cinchona alkaloids in a bark by the following process:—"Macerate the bark with dilute sulphuric acid, and precipitate with a slight excess of carbonate of soda or potash. Collect the dark coloured, very impure precipitate, and distil it with a great excess of caustic soda or potash: cincholin will distil over in oily drops if the bark has contained either of these vegetable alkaloids. Cineholin is easily recognisable by its peculiar taste and smell, and its strongly-marked alkaline properties. It is nearly insoluble in water, unless first neutralized by an acid, when it readily dissolves; but it is immediately precipitated in oily drops on the addition of an alkali." This test only indicates that the bark contains at least one alkaloid, the nature of which must be determined by other means; for other alkaloids (as strychnia) yield cineholin when distilled with potash.

Oxalate of Ammonia and Sulphate of Soda (see ante, p. 1623), have been used as tests of the alkaloid value of bark. They detect not the alkaloids, but lime; and it has been assumed (erroneously as I believe) that in proportion to the quantity of lime in bark so is that of the alkaloids. But Puttfareken’s results before referred to (see ante, p. 1650), lead to an opposite conclusion.

2. Tests for Tannic Acid.—These are three in number:

1. A solution of gelatine, which occasions in infusion of cinchona a whitish precipitate (cincho-tannate of gelatine).

2. A solution of a sesquiferruginous salt (as persulphate of iron or sesquichloride of iron) which produces a green colour or precipitate (cincho-tannate of the sesquioxide of iron).

Winckler \(^2\) says that the precipitates caused by sesquichloride of iron and isinglass solution are those formed by the oxidized tannin; and he adds, that the quantity of non-oxidised tannin, contained in the fluid obtained by filtration from the separated magma, may be determined by iodic acid, which oxidizes the tannin and causes the separation of a yellowish brown pulvulent precipitate, with the evolution of the odour of iodine. The amount of the two precipitates enables us to determine the proportion of the oxidized and pure cincho-tannic acid.

3. A solution of emetic tartar, which causes a dirty white precipitate (tannate of tetroxide of antimony).

3. Tests for Kinovic Acid.—The best test for this acid is sulphate of copper.

In an infusion of a cinchona bark devoid of kinovic acid sulphate of copper produces no appreciable effect; but when this acid is present a dark green colour is immediately produced, and very shortly a precipitate of kinovate of copper falls down, which, when collected and washed in a filter, has a bitter metallic taste. The amount of the precipitate is in proportion to the quantity of kinovic acid present.

4. Tests for Kinic Acid.—The readiest method of detecting this acid is that described by Dr. Stenhouse, and which consists in converting it into kinone (see Kinic Acid).

Winckler \(^3\) detects kinic acid by digesting the bark (previously exhausted by rectified spirit) in cold distilled water. Filter the infusion, and concentrate by evaporation. Then mix it with binoxide of manganese and moderately strong sulphuric acid, and submit the mixture to distillation. The slightest quantity of kinic acid may be detected by the production of kinine. The presence of this may be recognized by its odour; or, if this be doubtful, by the dark colour which the distilled liquor assumes on the addition of a few drops of a solution of ammonia.

Differential Diagnosis.—The differential diagnosis of the cinchona barks is effected by a consideration of the external or physical characters of the bark, by microscopical examinations, and by chemical means:

The external or physical characters of the more important of the genuine

\(^2\) Jahrbuch für praktische Pharmacie, Bd. xxv. S. 129, 1852.

\(^3\) Ibid. Bd. xxv. S. 136, 1852.
cinchona barks of commerce have been already described. Their examination may be greatly aided by coloured plates, but chiefly by comparison with well-authenticated specimens.

The microscopical examination of the barks is calculated to be more useful in comparing and distinguishing cinchona barks than is usually supposed (see ante, pp. 1617, 1618, 1624, 1628, and 1631; figures 327—348.)

The chemical diagnosis of the genuine and false cinchona barks has been attempted by E. F. Anthon. His most important results are embodied in the following table:

<table>
<thead>
<tr>
<th>Differential Chemical Diagnosis of True and False Cinchona Bark, according to E. F. Anthon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infusion of Bark with</td>
</tr>
<tr>
<td>KI, within 1/4 of an hour turbidness.</td>
</tr>
<tr>
<td>NH$_4$, turbidness and precipitate.</td>
</tr>
<tr>
<td>KI, after 1/3 of an hour no change.</td>
</tr>
<tr>
<td>NH$_4$, brownness without turbidness; no change.</td>
</tr>
<tr>
<td>SO$_4$, immediately turbidness and precipitate.</td>
</tr>
<tr>
<td>KI, immediately turbidness and precipitate.</td>
</tr>
<tr>
<td>KI, for the first hour no change.</td>
</tr>
<tr>
<td>CuO$_4$SO$_4$, immediately turbidness and precipitate.</td>
</tr>
<tr>
<td>CuO$_4$SO$_4$, no change.</td>
</tr>
<tr>
<td>BaO$_4$NO$_4$, turbidity and precipitate.</td>
</tr>
<tr>
<td>BaO$_4$NO$_4$, no change.</td>
</tr>
</tbody>
</table>

1 Coloured plates of the cinchona barks have been published by Bergen (Versuch einer Monographie d. China, 1826), by Goebel (Pharm. Warenkunde, 1827–29), and by Weddell (Hist. Naturelle des Quinquinas, 1849).

2 An excellent collection, partly formed by myself, and including the specimens exhibited by Messrs. Howards and Kent at the Great Exhibition in 1851, is contained in the museum of the Pharmaceutical Society, in Bloomsbury Square, London.—Pavon's collection of Peruvian barks, in the British Museum, is the largest original collection in England. It has been ably described by Mr. J. E. Howard (Pharmaceutical Journal, vols. xi. and xii. 1852).

3 Buchner's Repertorium, 2te Reihe, Bd. iv. p. 43, 1835; and Bd. vi. p. 29, 1836.
The infusion of bark used in these experiments was prepared by pouring 4 parts of boiling distilled water over one part of bark cut in very small pieces. After 12 hours digestion the liquid was filtered and the tests immediately applied. If the infusion be kept for some time before it is tested discordant results may be obtained.

The following were the tests employed:—

NH₃. Pure liquor ammonia, sp. gr. 0·990.
K₁. One part of iodide of potassium dissolved in 6 parts of water.
SO₃. Pure diluted sulphuric acid, sp. gr. 1·090.
Fe₂U₃. One part of pure sublimed chloride of iron dissolved in 8 parts of water.
FeO,SO₄. One part of newly made sulphate of the protoxide of iron dissolved in 6 parts of water.
Cu₂O,SO₄. One part of pure sulphate of copper dissolved in 12 parts of water.
Ba₃NO₅. A saturated aqueous solution of nitrate of baryta.
Na₂SO₄. One part of pure sulphate of soda dissolved in 6 parts of water.
Gelatine. One part of gelatine (weisser Leim) dissolved in 12 parts of water.
StCl. One part of newly made muriate of the protoxide of tin dissolved in 8 parts of water.

Quantitative Determination of the Cinchona Alkaloids. Quinometry.

—Various alcaloimetrical processes, applicable to the cinchona barks, have been recommended. They are essentially of two kinds: some consist in the use of certain reagents or tests already described, others are processes for the extraction of the alkaloids, which are obtained either in the free state or as salts (usually as sulphates).

The *Edinburgh Pharmacopoeia* gives the following directions for ascertaining the good quality of yellow bark:—

"A filtered decoction of 100 grains in two fluid ounces of distilled water gives, with a fluid ounce of concentrated solution of carbonate of soda, a precipitate, which, when heated in the fluid, becomes a fused mass, weighing when cold 2 grains or more, and easily soluble in solution of oxalic acid." In this process the native salts of the alkaloids extracted by the boiling water are decomposed by carbonate of soda. By heat the alkaloids fuse.

This process, however, is quite insufficient for the purposes of commerce.

In commerce the value of a cinchona bark mainly depends on the quantity of crystallizable sulphate of quina which it is capable of yielding; and it is not, therefore, sufficient to determine the amount of quina which it yields, because the whole of this may not be convertible into crystallizable sulphate.

Some manufacturers subject their barks to the operation, hereafter to be described, for the manufacture of the crystallized sulphate of quina. The quantity operated on should never be less than a pound of bark; and even then the product is always smaller (to the extent of at least from $\frac{1}{2}$ to $\frac{1}{3}$) than can be obtained in operations on a large scale, where the loss is proportionately smaller.

*Wöhler's cinchona bark test*¹ is thus applied:—Take half an ounce of the powdered bark, a sufficient quantity of water, and a scruple of hydrochloric acid. Boil, filter the decoction, and wash the residue with water. Evaporate the decoction to dryness, redissolve the extract in water acidulated with a few drops of hydrochloric acid: the cinchona red remains undissolved. Precipitate the alkaloids from the solution by ammonia, and collect, dry, and weigh the precipitate. The alkaloids are separated from each other by ether, which dissolves quina and quindina, but leaves the eichona.

*Buchner's cinchona bark test*² is thus employed:—Take one ounce of cinchona bark in

powder, twelve ounces of water, and dilute sulphuric acid half a scruple. Boil for half an hour. Wash the residual powder with four ounces of hot water. Filter the decoction and immediately add to it ammonia or carbonate of soda. Wash the precipitate with a little cold water, press it between folds of blotting paper, dry it in a water-bath, and then weigh it. The whole operation may be performed within one and a half or two hours. (The alkaloids comprising the precipitate may be separated from each other by ether.)

The following is Rabourdin’s cinchona bark test as applied for yellow bark:—Take five drachms of bark powdered and passed through a fine horse-hair sieve; exhaust it with water acidulated with hydrochloric acid (2 parts by weight of acid to 100 parts of water) in a displacement apparatus. The percolation of the liquid is to be stopped when it passes through colourless and insipid. We thus obtain about five or six ounces of liquid, to which about a drachm and a half of caustic potash and two and a half drachms of chloroform are to be added. Agitate them for a short time, and then set them aside. A whitish, very dense deposit, composed of quina, cinchonia, and chloroform, is formed. Sometimes the separation is completely effected in an instant, leaving a red transparent supernatant liquid which may be immediately decanted, and the chloroformic solution, washed, collected in a small capsule, and allowed to evaporate spontaneously, leaving the alkaloids in a pure state.

Winckler’s cinchona-bark test is as follows:—Exhaust the powdered bark by rectified spirit, sp. gr. 0.840. Decolorize the tincture by a mixture of equal parts of slacked lime and animal charcoal, and then distil off the greater part of the spirit in a water-bath. The residue contains the alkaloids in combination with kinovic acid (when this acid is a constituent of the bark), and a peculiar fatty matter. Frequently there is also present a small quantity of oxidized tannin, which is mechanically mixed with the other ingredients. To purify the alkaloids dissolve them in water acidulated with sulphuric acid, and filter the solution; by this means we get rid of the kinovic acid and fatty matter. Add to the filtered liquor a slight excess of ammonia, and evaporate the mixture to dryness; and then extract the sulphate of ammonia by means of a little cold water. The residual alkaloids are afterwards to be dried and weighed; as any further purification of them is attended with too great a loss to be practised. The quina and cinchonia are to be separated from each other by means of ether.

The separation of the cinchona-alkaloids from each other is usually effected by means of ether, which dissolves quina and quinidina, but leaves cinchona. Quinidina is separated from quina by its crystallization from its ethereal solution; quina not being crystallizable.

Pelletier and Caventou separated quina and cinchonia by means of boiling alcohol: as the solution cools the cinchonia crystallizes, leaving the quina in solution. Winckler employed rectified spirit to separate quinidina from quina: the former alkaloid crystallizes from the alcoholic solution.

The different solubilities of the sulphates of the three alkaloids in water may also be employed to separate them: the sulphate of quina is the first to deposit as the solution cools, leaving the sulphate of cinchonia in solution. Sulphate of quinidina has an intermediate solubility.

1 Journ. de Pharmacie et de Chemie, 3me sér. t. xix. p. 11, 1851; and Pharmaceutical Journal, vol. x. p. 470, 1851.
2 Journ. de Pharmacie, t. vii. p. 305.
Cinchona: Quantitative Determination of its Alkaloids. 1663

<table>
<thead>
<tr>
<th>TABLE showing the Quantity of Alkaloids obtained from Cinchona Barks, according to recent Authorities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 parts of Bark.</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>CaliSaya of Yellow Bark.</td>
</tr>
<tr>
<td>Best sort</td>
</tr>
<tr>
<td>Medium sort</td>
</tr>
<tr>
<td>Var. β Josephina</td>
</tr>
<tr>
<td>Carabaya Bark.</td>
</tr>
<tr>
<td>Commercial (see ante, p. 1629)</td>
</tr>
<tr>
<td>Red Bark.</td>
</tr>
<tr>
<td>Best sort</td>
</tr>
<tr>
<td>Broad flat pieces</td>
</tr>
<tr>
<td>Loxa Bark.</td>
</tr>
<tr>
<td>Original old sort in bundles</td>
</tr>
<tr>
<td>H. O. Crown, 1850...........</td>
</tr>
<tr>
<td>H. O. Crown, 1851...........</td>
</tr>
<tr>
<td>Ashy Crown.</td>
</tr>
<tr>
<td>Ashy crown mixed with corky crown.</td>
</tr>
<tr>
<td>The so-called finest crown.</td>
</tr>
<tr>
<td>Grey or Huamaco Bark.</td>
</tr>
<tr>
<td>Fine grey (Cinchona nitida)</td>
</tr>
<tr>
<td>Inferior or coarse grey (Cinchona microantha)</td>
</tr>
<tr>
<td>Heavy medium quills</td>
</tr>
<tr>
<td>Thick quills.</td>
</tr>
<tr>
<td>Ash-Bark.</td>
</tr>
<tr>
<td>Flat pieces</td>
</tr>
<tr>
<td>Mean-looking specimen.</td>
</tr>
<tr>
<td>Huamalies or Rusty Bark.</td>
</tr>
<tr>
<td>White-coated sort.</td>
</tr>
<tr>
<td>Thick quills and arched flat pieces.</td>
</tr>
<tr>
<td>Fine and medium quills and flat pieces.</td>
</tr>
<tr>
<td>Thick warty quills and flat pieces.</td>
</tr>
<tr>
<td>Pitaya-Condaminea Bark.</td>
</tr>
<tr>
<td>Of English Commerce.</td>
</tr>
<tr>
<td>Quinquina Pitaya.</td>
</tr>
<tr>
<td>Carthagena Bark.</td>
</tr>
<tr>
<td>α Hari sort (C. cardifolia)</td>
</tr>
<tr>
<td>β Fibrous sort (C. lancifolia)</td>
</tr>
<tr>
<td>China flavo dura.</td>
</tr>
<tr>
<td>China flavo fibra.</td>
</tr>
<tr>
<td>Coquetta bark.</td>
</tr>
<tr>
<td>Trimmed lancifolia bark.</td>
</tr>
<tr>
<td>Uncoted quill.</td>
</tr>
</tbody>
</table>
Physiological Effects.—Before I proceed to describe the effects of cinchona barks it appears to me desirable to notice the separate effects of those principles on whose combined operation the activity of the bark depends.

I. Effects of the Active Principles of Cinchona Bark.

The essential or tonic and antiperiodic or specific effects of the bark reside in the cinchona alkaloids; but these are aided by some of the other constituents. The astringent and aromatic qualities of the bark reside in other principles.

1. Effects of Cincho-tannic Acid.—Like other varieties of tannic acid this acid possesses astringent qualities, and promotes the tonic operation of the alkaloids. It is remarkable, in a chemical point of view, for the facility with which it suffers oxidation; and it is probable, therefore, that in its passage through the system it more readily undergoes oxidation than most other forms of tannic acid (see ante, p. 1230).

2. Effects of Kinovic Acid.—As this is a bitter principle it might be expected to possess tonic and possibly febrifuge properties. Dr. Weil, however, declares that it is not a febrifuge; for it failed to relieve a case of tertian fever which was afterwards readily cured by sulphate of quina. This is all that is known of its physiological and therapeutical powers.

3. Effects of Kinic Acid.—Nothing positive is known of the effects of kinic acid or the kinates. Kinate of lime, which Deschamps erroneously fancied to be the active principle of cinchona bark, is probably inert. It has neither bitterness nor stypticity.

4. Effects of Cinchona-red or Red Cinchonia.—May perhaps slightly contribute to the astringent and tonic effects of the barks.

5. Effects of the Volatile Oil and Resin.—The aromatic flavour depends on these principles.

6. Effects of the Cinchona Alkaloids.—Quina, cinchonia, and quinidina, are the only alkaloids with whose operation we are acquainted.

I. Effects of Quina. a. On Vegetables.—According to Goeppert, the leaves of plants plunged in a solution of sulphate of quina (gr. ss. of the salt to 3 ss. of water) presented evidences of contraction in six or eight hours.²

β. On Animals generally.—As soon as Pelletier had discovered the alkaloids in bark, he sent some of them to Magendie for trial, who ascertained that neither in the pure nor saline state were they poisonous; and he found that ten grains of the sulphate or acetate of these bases might be injected into the veins of a dog without any ill effect.² Hart¹ found that three grains of quina applied to a wound in a rabbit occasioned no ill effects.

Later observations, however, have shown that in certain doses sulphate of quinine proves fatal to animals. Melier⁵ found that it occasioned stupor, staggering, or sudden falling down, dilatations of the pupil, coma, convulsions,

¹ Buchner's Repertorium, 2te Reihe, Bd. iii. p. 396, 1835.
² De Candolle, Phys. Vég. 1840.
³ Journ. de Pharm. vii. 188.
⁵ Exper. et obs. sur les propriétés toxiques du sulfate de quinine (Mém. de l'Acad. Royale de Méd. t. x. p. 722, 1843).
and in all cases increased frequency of pulse. The *post-mortem* appearances were congestion of the lungs and deficient coagulability of the blood.

γ. *On Man.*—In *small doses* quina occasions an intensely bitter taste, promotes the appetite, and assists digestion. It possesses in a pre-eminent degree the properties of a pure or simple bitter (see ante, p. 210).

In *large doses* (as ten to twenty or more grains), disulphate of quina has produced three classes of effects:—

1. *Gastro-enteritic irritation,* marked by pain and heat in the gastric region, nausea, gripings, and purging. Occasionally pttyalism has been observed. Constipation sometimes follows its use.

2. *Excitement of the vascular system,* manifested by increased frequency and fulness of pulse and augmented respiration. Furred tongue, and other symptoms of a febrile state, are also observed.

3. *Disorder of the cerebro-spinal functions,* indicated by headache, giddiness, contracted, in some cases dilated, pupils, disorder of the external senses, agitation, difficulty of performing various voluntary acts (as writing), somnolence, in some cases delirium, in others stupor.

A remarkable case is mentioned by Trousseau and Pidoux. A soldier took forty-eight grains of sulphate of quina for the cure of an asthma [spasmodic], which returned daily at a certain hour. Four hours after taking it he experienced buzzing in the ears, diminished sensibility, giddiness, and violent vomitings. Seven hours after taking the quina he was blind and deaf, delirious, incapable of walking on account of the giddiness, and vomited bile copiously. In fact, he was in a state of intoxication. These effects subsided in the course of the night.

On man, as in the lower animals, sulphate of quina has produced fatal effects. Recamier, at the Hôtel Dieu, prescribed for a patient affected with acute rheumatism three grammes [=46 grs. Troy] of the sulphate in twelve powders, one to be taken every hour. The next day the quantity was increased to five grammes [=77 grs. Troy] to be taken every hour as before. When the patient had taken three and a half grammes [=53 grs. Troy] he was suddenly seized with violent agitation, followed by furious delirium and death in a few hours.

Dangerous consequences have been reported by other writers. But in many cases no ill effects have resulted from the use of large doses. Thus Bally has given 110 grains daily without any inconvenience. From these and other cases sulphate of quina has been denominated a *narcotic.* In some instances it has appeared to act as a *stimulant,* in others as a *sedative.*

I have already (see ante, p. 233) mentioned Piorry’s observation that quina diminishes the volume of the spleen, and in this way cures ague.

Sulphate of quina, when taken into the stomach, becomes absorbed into the blood, and is eliminated by the urine, the sweat, and the milk. Mérat even states that after the use of it he has observed in his own person that the expectorated mucus smells of cinchona!

1 Traité de Thérap. ii. 217.
3 Ibid. pp. 172 and 173.
4 Dunglison, New Remedies, 6th edit. p. 618, 1851.
5 Landerer, Buchner's Repert. 2te Reihe, Bd. v. p. 231; also Quévenne, Piorry, Lavallée, Melier, &c. quoted by Mérat (Suppl. au Dict. de Mat. Méd. p. 602, 1846).
II. Effects of Quinidina.—But few observations have hitherto been made on the effects of this alkaloid. From the similarity of its chemical properties to those of quina it has been inferred, and, as I believe, correctly, that it resembles the latter alkaloid in its medicinal qualities. Banduin\(^1\) declares it to be as effective a febrifuge as quina. I have for some months past used at the London Hospital the sulphate of quinidina as a substitute for sulphate of quina, and have found it equally serviceable both as a tonic and febrifuge. Several cases of ague in the Hospital have got entirely well under its use. I have administered it in varying doses not exceeding ten grains.

III. Effects of Cinchonia.—If we take into consideration the similarity of chemical properties of cinchonia and quina, we are led to suspect analogy of physiological effects. When they were in the first instance submitted to examination, cinchona and its salts were thought, principally on the evidence of Chomel, to be much inferior in activity to quina and its salts. But the subsequent observations of Dufour, Petroz, Pottier, Bally, Nieuwenhuis, Mariani, Bleynie, and others, have appeared to prove that the sulphates of these alkaloids may be substituted for each other.\(^9\) Nay, Bally gives the preference to the sulphate of cinchonia, on the ground that it is less irritating than the sulphate of quina. That cinchonia is as active as quina might have been anticipated, \(\textit{à priori}\), when we recollect that those barks in which cinchonia is the predominant principle were the first which were celebrated as therapeutic agents.

As cinchona and its salts are less bitter than quina and its salts, we might expect that the former would possess somewhat less medicinal activity than the latter; and this inference is probably correct. Moreover, as cinchonia and its salts have a more nauseous flavour, and are more allied to that of sulphate of magnesia, it might naturally be anticipated that large doses of sulphate of cinchonia would be more apt to create nausea and vomiting than like doses of sulphate of quina; and I have been informed by some medical friends that this is in reality the case. I must confess, however, that I have been unable to verify it. I have extensively used in hospital practice sulphate of cinchonia, in doses not exceeding ten grains, and have not met with the nausea and vomiting I expected to have met with. In a case of ague I ordered the patient (a young man) to take ten-grain doses of the sulphates of quina, quinidina, and cinchonia on separate successive days every two hours before dinner; that is, the sulphate of quina on one day, the sulphate of quinidina on the second, and the sulphate of cinchonia on the third day. The case was very carefully watched by one of my clinical clerks, but no difference of effect was discernible. No sickness or vomiting took place. I have found the sulphate of cinchonia valuable both as a tonic and a febrifuge, or antiperiodic.

Comparison of the Cinchona Alkaloids with their salts.—Some of the salts of the cinchona alkaloids being more soluble than their bases, it has been inferred that they are, consequently, more active. But it has been asserted by Nieuwenhuis, Mariani, Bleynie, and others, that the bases are equally active, and may be substituted for the salts with advantage.\(^2\) Acid

\(^1\) Quoted by Van Heijningen, in the \textit{Pharmaceutical Journal}, vol. ix. p. 327, 1850.

\(^2\) \textit{Dict. de Mèt. Méd.} t. v. p. 596.
drinks should be given to favour their solution in the stomach. Quina, in
the crude or impure state, has been employed with success by Trousseau. Its advantages over the disulphate are, that it is less apt to purge; it may be exhibited in a smaller dose, and it loses but little bitterness. This last prop-
erty facilitates the use of it, especially in children.

Comparison of the salts of the cinchona alkaloids with each other.—I
have already described the effects of the sulphate of quina. The bisulphate of quina is formed when we dissolve the sulphate in water, acidulated with sulphuric acid: it is somewhat more irritant than the last-mentioned salt. The phosphate of quina is said to be not so apt to disturb the stomach, or to excite the vascular system, as the sulphate. Hence it is better adapted for cases accompanied with gastric irritation and febrile disorder. The ferrocyanate of quina has been recommended, in preference to the sulphate, in intermittent fevers, accompanied with inflammatory symptoms. The tannate of quina has been declared, by Dr. Rolander, of Stockholm, to be the most powerful of the quina salts. The tannic acid, though not the peculiar febrifuge constituent of cinchona bark, yet contributes to its tonic powers, and thereby promotes the activity of the alkaloids. This statement is supported by the already referred-to remark of Berzelius that the most active cinchonas are those which contain the largest quantity of tannin. Recent observations have not, however, confirmed Rolander's statement. The nitrate, hydrochlorate, acetate, and citrate of quina, have been employed in medicine; but I am not acquainted with any remarkable advantages they possess over the sulphate. The kinate of quina, as being one of the native salts of alkaloid, deserves further examination. The arsenite of quina might, perhaps, be found available in some obstinate intermittents, and well deserves further examination. The valerianate of quina has been already noticed (see ante, p. 1586). The sulphate of quinidina is the only salt of quinidina whose effects have been examined. The salts of cinchonia, except the disulphate, have been imperfectly examined. 2

II. Effects of the Cinchona Barks.

The experiments of Dr. Adair Crawford 3 on the effects of tonics in promoting the cohesion of the animal tissues, have been already (see ante, p. 209) referred to. He found that a kitten's intestines, which had been immersed in a thick mixture of cinchona bark and water, required a greater weight to break them than those immersed in water merely, in the ratio of 25.5 to 20.7. He found, moreover, that the same effect was produced on the blood-vessels and nerves; but an opposite effect on the skin, the cohesion of which it diminished in the ratio of 24.5 to 7.9. Hence he inferred that cinchona bark strengthened the alimentary canal, blood-vessels, and nerves, but had a debilitating or relaxing effect on the skin. 4 The error pervading these inferences has been

1 Soubeiran, Traité de Pharm. i. 604.
3 Experimental Inquiry into the Effects of Tonics, 1816.
4 It is obvious that the tannic acid contained in cinchona bark would exercise a local chemical influence on the tissue, combining with both the albuminous and gelatinous tissues.
already pointed out. Admitting that the dead animal tissues are invariably affected by cinchona in the way Dr. Crawford states, the conclusion that living tissues would be influenced in the same way is not supported by facts. Cold water relaxes dead, but corruges living, animal tissues.

a. On Vegetables.—Leaves of plants immersed in an infusion of pale bark were dried, but not contracted, in twenty-four hours.¹

b. On Animals generally.—Dr. Freind² states that an ounce and a half of a strong decoction of bark, injected into the jugular vein of a dog, caused, in fifteen minutes, strong palpitations of the heart, and frequent spasms. Half an ounce more being injected, brought on tetanus and death. The blood was found after death liquid, the lungs red and turgid; the right ventricle was distended with blood, the left contained scarcely any. Rauschenbusch³ has also made experiments with cinchona bark. In animals to whom he had given it for some days, he found the stomach and alimentary canal contracted, and the coats thickened, but no traces of inflammation. The heart was firmer, the lungs covered with red spots, the liver yellowish, the bile watery and greenish. When the blood was exposed to the air, it remained dark-coloured for a longer time than usual, was less coagulable, and the serum separated more slowly: it appeared like that drawn in inflammatory cases. The pulse was stronger and fuller, the animal heat increased, and, when the bark had been used for a long period, the muscles were pale, and their energy enfeebled. Some experiments on the effect of cinchona on the blood-discs of frogs were made by Leeuwenhoek,⁴ who found that the infusion of bark divided some of the discs, and coagulated others.

γ. On Man.—The topical effects are astringent and slightly irritant. The astringency depends on tannic acid [and red cinchonic?]: hence those barks whose infusions are most powerfully affected by gelatine and the sesquiferruginous salts, enjoy the greatest astringent power. The constitutional effects are principally manifested by the disordered conditions of the vascular and cerebro-spinal systems. In some conditions of system cinchona operates as an irritant or stimulant; in others as a stomachic, tonic, and corroborant.

If a man in a state of perfect health take a small or moderate dose of bark, no obvious effects are produced,—or perhaps a little thirst, with some slight disorder of stomach; or a temporary excitement of appetite may be brought on. If the dose be increased, the alimentary canal becomes disordered (indicated by the nausea, vomiting, loss of appetite, thirst, and constipation, or even purging); a febrile state of the system is set up (manifested by the excitement of the vascular system, and dry tongue); and the cerebro-spinal system becomes disordered, as is shown by the throbbing headache and giddiness. The disturbance of the functions of the stomach is produced not only when the bark is given in the more nauseating form of powder, but also in the form of infusion, or decoction, or tincture. These symptoms indicate a stimulant operation, which is still more manifest when the bark is given to a person suffering with gastro-enteritic irritation, accompanied with fever. All

¹ De Candolle, Phys. Vég. 1349.
² Emmenol. c. xiv.
⁴ Contin. ad Epist. p. 119.
the morbid phenomena are exasperated, the febrile disorder is increased, and symptoms of gastritis come on. None of the effects now enumerated include those to which the term tonic is properly applicable. These are to be sought for in patients suffering from debility, without symptoms of local irritation. In such we find cinchona improves the appetite, promotes the digestive functions, and increases the strength of the pulse. The muscular system acquires more power, and the individual is capable of making greater exertion, both mental and bodily, than before; the tissues acquire more firmness to the touch, and lose their previous flabbiness: moreover, it has been asserted (and with great probability of truth) that the quality of the blood improves.

The real stomachic, tonic, and corroborative effects of cinchona, as indeed of other agents of the same class, are then only observed in certain morbid conditions.

"The general operation of cinchona bark," observes Sundelin, 1 "consists in the increase and exaltation of the tone of the irritable fibres and of the fibres of the vessels (hence by its use the pulse becomes fuller, stronger, and regular, and the muscular power increased); also in the general augmentation of the cohesion of the organic mass (hence it counteracts a tendency to liquefaction [Verflüssigung] and disintegration [Entmischung]), diminishes profuse secretions which proceed from atony of the extremities of the vessels and of the secreting surfaces and organs, and improves generally the crisis); and lastly, in the augmentation of the vital energy of the sensible system. (By the last-mentioned property it restores sensibility, when defective or abnormally increased, and the property of reaction of the nervous system, to their normal state, and augments the influence of this system on the muscular fibre and on the reproductive system.)" As these effects are not produced until the active constituents of the bark have been absorbed, they take place gradually, and by the long-continued use of this agent.

The power possessed by cinchona of suspending or completely stopping periodical diseases, deserves to be noticed here, though it will have to be again referred to hereafter. It is doubtless in some way related to the before-mentioned effects; but the connection is, as yet, mysterious and incomprehensible.

Comparison of the cinchona barks with each other.—Those barks are the most active which contain the largest proportion of the cinchona alkaloids, especially of quina. In this point of view yellow or Calisaya bark stands preeminent; and Dr. Relph's 2 assertion of its superiority to both the red and the pale barks is fully borne out by modern observations. Red bark is also a very valuable sort. The experiments and observations of Saunders, 3 Rigby, 4 Kentish, 5 Irving, 6 and Skeete, 7 seem to have established its superiority to the pale or quilled kind. But in adopting this statement we ought, if possible, to ascertain what kind of pale bark was used in making the above observations; and also to determine whether the red bark referred to be identical with that now in commerce. Mr. J.E. Howard (see ante, p. 1638)

1 Handbuch d. speziellen Heilmittelkunde, Bd. ii. S. 307, 3te Aufl. 1833.
2 Inquiry into the Medical Efficacy of Yellow Bark, 1794.
3 Observations on the superior Efficacy of Red Peruvian Bark, 1782.
4 Essay on the Use of Red Peruvian Bark, 1783.
5 Experiments and Observations on a New Species of Bark, 1784.
6 Experiments on Red and Quilled Peruvian Bark, 1785.
7 Experiments and Observations on Quilled and Peruvian Bark, 1786.
has shown that the original or old Loxa bark, the sort probably which was originally employed under the name of pale or Crown bark, is as rich in cinchona alkaloids as many specimens of Calisaya bark.

The H. O. Crown bark and ashy Crown bark are, especially the last mentioned bark, greatly inferior to the old Loxa bark: yet they are the barks usually found in the shops under the name of pale or quilled bark. Fine grey bark is a bark of excellent quality. Pitaya-Condaminea bark, is but little known in commerce; but it is a bark rich in cinchona alkaloids.

Comparison of the effects of the cinchona barks with their alkaloids.

—It has been asserted, that the cinchona alkaloids possess all the medicinal properties of the barks, and may be substituted for them on every occasion; but I cannot subscribe to either of these statements; for, in the first place, the alkaloids are deficient in the aromatic quality possessed by the barks, and which assists them to sit easily on the stomach; and it is to this circumstance that I am disposed to refer a fact which I have often observed, that sulphate of quina will sometimes irritate the stomach, occasion nausea and pain, and give rise to febrile symptoms, while the infusion of bark is retained without the least uncasiness. Moreover, we must not overlook the bark, which confers on bark an astringent property. So that while we admit that the essential tonic operation of the barks depends on the alkaloids which they contain, yet the latter are not always equally efficacious. In some cases, however, they are of great advantage, since they enable us to obtain, in a small volume, the tonic operation of a large quantity of bark.

Uses.—From the preceding account of the physiological effects of cinchona, some of the indications and contra-indications for its use may be readily inferred. Thus its topical employment is obviously indicated in cases of local relaxation, with or without excessive secretion; also in poisoning by those agents whose compounds with tannic acid are difficultly soluble, and, therefore, not readily absorbed. But as a topical remedy, or astringent, cinchona is greatly inferior to many other agents which contain a much larger quantity of tannic acid. The contra-indications for the local use of cinchona, are, states of irritation (nervous or vascular), and of inflammation. In these conditions it aggravates the morbid symptoms.

The indications for its use, as a general or constitutional remedy, are, debility with atony and laxity of the solids, and profuse discharges from the secreting organs. I have observed that it proves less successful, and often quite fails, when the complexion is chlorotic or anaemic: in such cases chalybeates often succeed where cinchonia is useless or injurious. As contra-indications for its employment, may be enumerated acute inflammation, inflammatory fever, plethora, active hemorrhages, inflammatory dropsies, &c. To these may be added, an extremely debilitated condition of the digestive and assimilative organs. Thus, patients recovering from protracted fever are at first unable to support the use of bark, which acts as an irritant to the stomach, and causes an increase of the febrile symptoms. In such cases I have found infusion of calumba a good preparative for cinchona.

Hitherto I have referred to those indications only which have an obvious relation to the known physiological effects of cinchona. But the diseases in which this remedy manifests the greatest therapeutic power, are those which assume an intermittent or periodical type. Now in such the methodus medendi is quite inexplicable; and, therefore, the remedy has been called a
specific, an antiperiodic, and a febrifuge. But the more intimately we become acquainted with the pathology of disease, and the operation of medicines, the less evidence have we of the specific influence of particular medicines over particular maladies. Some diseases, however, are exceedingly obscure; their seat or nature, and the condition of system under which they occur, or the cause of their occurrence, being little known. There are also many medicines, the precise action of which is imperfectly understood, but which evidently exercise a most important, though to us quite inexplicable, influence over the system. Now it sometimes happens that imperfectly-known diseases are most remarkably influenced by remedies the agency of which we cannot comprehend: in other words, we can trace no known relation between the physiological effects of the remedy, and its therapeutical influence. This incomprehensible relationship exists between arsenic and lepra; between the cinchona bark and ague. But though this connection is to us mysterious (for I do not admit the various hypotheses which have been formed to account for it), we are not to conclude that it is necessarily more intimate than that which exists in ordinary cases.

1. In periodical or intermittent diseases.—The system is subject to several diseases, which assume a periodical form; that is, they disappear and return at regular intervals. When the patient appears to be quite well during the interval (i.e., when the intermission is perfect and regular) the disease is called an intermittent; whereas it is called remittent when the second paroxysm makes its appearance before the first has wholly subsided (i.e., when the disease presents exacerbations and remissions, but not intermissions). The pathology of these affections is involved in great obscurity, and the cause or causes of their periodicity are completely unknown. Various circumstances, however, induce us to regard intermittent maladies as morbid affections of the nervous system; for the phenomena of periodicity, both healthy and morbid, seem to be essentially nervous. One of the most curious circumstances connected with the history of these diseases is the facility with which they are sometimes cured. It is well known that sudden and powerful impressions, both mental and corporeal (as those caused by terror, alcohol, opium, cinchona, arsenious acid, &c.), made during the intermission, will sometimes prevent the return of the succeeding paroxysm; and occasionally from that time all morbid phenomena disappear. In remittent diseases, on the other hand, the same impressions are much less frequently successful, and sometimes, instead of palliating, exasperate the symptoms. The agents which are capable, under certain circumstances, of making these curative impressions, are apparently so dissimilar in their nature and physiological action, that we can trace in their methodus medendi scarcely any thing in common, save that of making a powerful impression on the nervous system. Of these antiperiodic agents cinchona and arsenious acids stand pre-eminent for their greater frequency of success, and, therefore, are those usually resorted to. I have already (see p. 663) made some remarks on their relative therapeutical value. They differ in two particulars; first, cinchona may be given, as an antiperiodic, in any quantity which the stomach can bear; whereas, arsenic acid must be exhibited in cautiously-regulated doses; secondly, there are two modes of attempting the cure of an intermittent by cinchona;—

1 See some remarks on periodic movements in Müller's Elem. of Phys. by Baly, vol. i. p. 924.
one is, to put an immediate stop to the disease by the use of very large doses of the remedy given a few hours prior to the recurrence of the paroxysm,—the other is to extinguish the disease gradually by the exhibition of moderate doses at short intervals during the whole period of the intermission, so that the violence of every succeeding paroxysm is somewhat less than that of the preceding one;—but in the case of arsenious acid the latter method is alone safe, and, therefore, to be adopted.

It has been asserted that cinchona is admissible in the interval only of an intermittent fever; and that if it be exhibited during the paroxysm it has a tendency to prevent the subsidence of the latter. But this statement is much overcharged. Morton\(^1\) and others have given it in almost every stage without injury. Dr. Heberden\(^2\) observes, "the only harm which I believe would follow from taking the bark even in the middle of the fit is, that it might occasion a sickness, and might harass the patient by being vomited up, and might set him against it." It is, however, more efficacious during the interval, though it may not be absolutely hurtful in the paroxysm. Dr. Cullen\(^3\) was strongly of opinion that the nearer the exhibition of the cinchona is to the time of accession, the more certainly effectual will it be. I have already stated (p. 663) that arsenious acid may be given with good effect during the whole period (paroxysm and intermission) of the disease.

A very necessary condition to its perfect success is that it sit well on the stomach; for if it occasion vomiting or purging it is much less likely to act beneficially. Hence an emetic and a purgative are recommended to precede its employment. The use of these is more especially necessary if the disease be recent. For an adult, about fifteen grains of ipecacuanha, with a grain of tartarised antimony, may be exhibited as an emetic, unless there be symptoms of determination to the brain, or of inflammation of the digestive organs. A senna draught, with a calomel pill, forms a good purgative. To enable it to sit well on the stomach, cinchona (or the sulphate of quina) is frequently given in conjunction with aromatics. The infusion or decoction of cinchona, though much less effective, is, however, less liable to disturb the stomach than the powder of cinchona or the sulphate of quina. Opium is sometimes a necessary adjunct to cinchona to prevent its running off by the bowels. In some cases where the stomach was too irritable to admit of the administration of cinchona or sulphate of quina by the mouth, these agents have been otherwise introduced into the system. Thus clysters of cinchona were used by Helvetius, Torti, and Baglivi.\(^4\) Van Swieten\(^5\) says he has often seen this method successful in infants; but that it takes three times as much bark as would suffice if the remedy were swallowed. Cataplasm\(^s\) of cinchona have also been employed. Rosenstein applied them to the abdomen; Torti to the wrist.\(^6\) Alexander\(^7\) cured an ague by a pediluvium of decoction of cinchona; but Heberden\(^8\) tried it without success. Bark jackets were employed with

\(^1\) Pyretologia.
\(^2\) Comment. art. Feb. Intern.
\(^3\) Mat. Med. ii. 96.
\(^4\) Murray, App. Med. i. 871.
\(^5\) Commentaries, vii. 277.
\(^6\) Murray, op. cit. 872.
\(^7\) Exper. cit. 872.
\(^8\) Comment.
success in the agues of children by Dr. Pye. They consisted of waistcoats between whose layers powdered cinchona was quilted. The dry powder of cinchona has been applied to the skin: thus Dr. Darwin strewed it in the patient's bed. Chrestien\(^2\) successfully used the tincture and alcoholic extract by the iatraleptic method. More recently sulphate of quina has been employed in the same way. The last-mentioned operation has also been applied by the endermic method:\(^3\) but this mode of using it is sometimes attended with intense pain and an eschar.\(^4\) To infants at the breast Rosenstein advises its indirect exhibition by the nurse, in whose milk its active principle is administered to the child.\(^5\) More recently sulphate of quina mixed with tobacco (in the proportion of fifteen grains of the former to an ounce of the latter) has been employed as a snuff in intermittent headache.

Cinchona and its preparations prove most successful in the simple or uncomplicated form of intermittents; that is, where the disease appears to be purely nervous. But when agues are accompanied with inflammatory excitement or with visceral disease, cinchona generally proves either useless or injurious. In remittents it proves much less successful than in regularly-formed intermittents. In all these cases we endeavour to promote the efficiency of the cinchona by reducing the disease to the form of a pure or simple intermittent. The means to effect this must of course depend on a variety of circumstances; but blood-letting, both general and local, purgatives, and diaphoretics, are those which for the most part will be found available. Under some circumstances, mercury given in alterative doses, or even as a very slight sialogogue, proves beneficial.

Intermittent fevers are not the only periodical diseases in which cinchona has been found beneficial. It is a remedy which has proved serviceable in several other cases in which a paroxysm (of pain, spasm, inflammation, hemorrhage, or fever) returns at stated periods. Thus intermittent neuralgia, rheumatism, headache, anaurositis, catarrh, ophthalmia, stricture, &c., have been greatly benefited by its use. Some of these affections have been regarded as masked agues. When periodical diseases recur at uncertain periods, as in the case of epilepsy, no particular advantage can be expected from the use of cinchona.

2. In continued fever.—In the latter stage of continued fever, when the vital powers are beginning to sink, and when there is no marked and decided symptom of inflammatory disease of the brain or digestive organs, cinchona or sulphate of quina sometimes proves highly beneficial. If the tongue be dry, as well as furred, and the skin hot and dry, no advantage, but the reverse, can be anticipated from its employment. It is most applicable to the low forms of fever occurring in debilitated constitutions. When exacerbations or remissions, however indistinct, occur at regular periods, the administration of cinchona is the more likely to be followed by good effects. Under the preceding circumstances there can scarcely be two opinions as to the admissibility of bark. But on the general propriety of administering

1 Med. Obs. and Ing. ii. 245.
2 De la Méthode Iatrolept. 232 and 270.
3 Archiv. Gén. de Méd. 1826; Revue Méd. 1827.
4 Trousseau and Pidoux, Traité de Thérap. ii. 219.
5 Ibid. 231.
this remedy in continued fever, considerable difference of opinion has prevailed. Dr. Heberden cautiously observes, "I am not so sure of its being useful, as I am of its being innocent." In order to avoid offending the stomach, it is frequently advisable to begin with the infusion, for which, afterwards, first the decoction, then the sulphate of quina, may be substituted. In the stage of convalescence, the use of cinchona or sulphate of quina may often be advantageously preceded by infusion of calumba: without this precaution, irritation of the stomach or febrile symptoms are readily set up.

3. In inflammatory diseases.—As a general rule, stimulants and tonics, as cinchona, are improper in inflammatory diseases. Yet to this statement, which applies principally to the first stage, to acute and active cases, and to the disease when it occurs in strong and vigorous habits, many exceptions exist. Thus when it takes place in old and debilitated constitutions; when it is of a mild or atonic character, and has existed for some time without giving rise to any obvious organic changes; when it assumes an intermittent or even remittent form; or when it is of a certain quality, which experience has shown to be less benefited by ordinary antiphlogistic measures, cinchona is sometimes admissible and advantageous after evacuations have been made proportioned to the activity of the disease and the vigour of the system. In scrofulous inflammation (as of the eye) its value is fully appreciated. In rheumatism, in which disease Morton, Fothergill, Saunders, and Haygarth, have so strongly recommended it, its use is now obsolete, except under circumstances similar to those which regulate its employment in ordinary inflammation. The same remarks apply to its employment in erysipelas inflammation, in which it was at one time much esteemed.

4. In maladies characterised by atony and debility.—Cinchona is useful in a great variety of diseases dependent on, or attended by, a deficiency of tone or strength, as indicated by a soft and lax condition of the solids, weak pulse, incapability of great exertion, impaired appetite, and dyspeptic symptoms. Thus, in chronic atonic affections of the alimentary canal, it proves very serviceable, especially in some forms of dyspepsia and anorexia. In these it should be given half an hour or an hour before meal-times. In some chronic maladies of the nervous system, as chorea, when it occurs in delicate girls; also in the neuralgia of weakly subjects. Disulphate of quina has been used by Dr. Bright in tetanus. In mortification, it is useful in those cases in which tonics and astringents are obviously indicated; but it has no specific power of checking the disease, as was formerly supposed. In passive hemorrhages, from relaxation of vessels, as in some cases of profuse menstruation, or uterine hemorrhage consequent on miscarriage. In profuse mucous discharges with great debility, as in leucorrhœa, excessive bronchial secretion, old diarrhœas, &c. In cachectic diseases, as enlargements and indurations of the absorbent glands, of a scrofulous nature, strumous ophthalmia, obstinate ulcers, &c. Also in venereal diseases, when the secondary symptoms occur in shattered and broken-down constitutions, and after the full use of mercury. Likewise in some of the chronic skin diseases, which are seen in cachetic habits.

1 Clatterbuck, On the Seat and Nature of Fever, 399, 2nd edit. 1825.
2 Comment.
3 Guy's Hospital Reports, vol. i.
4 See Dr. J. Fordyce, Med. Obs. and Inq. i. 184.
5. In the convalescence of either acute or chronic lingering diseases, as fever, inflammation, hemorrhage, profuse suppuration, &c.; also after important surgical operations, when the strength is greatly reduced. In no class of cases is the efficacy of cinchona or its alkaloids more manifest than in these.

6. As a topical astringent and antiseptic.—The efficacy of cinchona as an astringent and antiseptic depends on tannic acid. But as many vegetable substances exceed cinchona in the quantity of this acid which they contain, so they surpass it in astringency. Hence the topical uses of bark are comparatively unimportant; and, for the most part, are nearly obsolete. Powdered cinchona is frequently employed as a tooth powder. Formerly it was used as an application to mortified parts, foul ulcers, caries, &c. The decoction, with or without hydrochloric acid, is applied as a gargle in putrid sore throat.

7. As a chemical antidote.—The value of cinchona bark, as a chemical antidote, depends on its tannic acid. I have already offered some observations on its employment in poisoning by emetic tartar (see p. 704.) I believe, in all cases it might be advantageously replaced by other and more powerful astringents; as nutgalls, or on an emergency, green tea.

Administration.—In the form of powder, cinchona is now rarely administered. The bulk of a full dose, its disagreeable taste, its tendency to cause nausea and vomiting, and the quantity of inert woody fibre which it contains, form great objections to its employment. Yet of its great efficacy, as a febrifuge or antiperiodic, in intermitten ts, and of its superiority in these cases to the decoction or infusion, no doubt can exist; but sulphate of quina has almost entirely superseded it. The dose of the powder of cinchona is from a scruple to a drachm, or even more than this when the stomach can bear it.

1. Infusum Cinchonæ, L. E.; Infusion of Bark. (Yellow Cinchona [any species of Cinchona, according to prescription, E.], bruised [in powder, E.], 5j.; Boiling [Distilled, L.] Water, Qj. Macerate for two [four, E.] hours in a covered vessel, and strain [through linen or calico, E.])—Water extracts from cinchona bark the quinates of quina, cinchonia, and lime, gum, soluble red cinchonic (tannic acid) and yellow colouring matter. The greater part of the cinchona alkaloids remains in the marc, as a very small quantity only of the compound of red cinchonic and the cinchona alkaloids is extracted. The London College has very properly directed yellow bark (the most powerful of the cinchona barks) to be used in the preparation of the infusion.—The infusion of cinchona is stomachic and tonic, but is scarcely energetic enough to be febrifuge. It is a light preparation, applicable as a tonic where the stomach is very delicate, and cannot support the more active preparations of this medicine.—The dose is ½j. to 2½j. thrice a-day.

2. Infusum Cinchonæ Pallidæ, L.; Infusum Cinchonæ, D.; Infusion of Pale Bark. (Prepare this in the same manner as Infusum Cinchonæ, L.—Take of Peruvian Bark (Crowu or Pale), in coarse powder, 8j.; Boiling Water, Oss. Infuse for one hour in a covered vessel, and filter through paper. The product should measure about eight ounces, D.)—Dose, 5j. to 5½j. This infusion is inferior to the preceding in activity, and is a very unnecessary one. It is said to oppress the stomach less than that of the other cinchona bark: the reason is obvious,—it is weaker.
3. INFUSUM CINCHONÆ SPISSATUM, L.; Insipissated Infusion of Bark.
(Yellow Cinchona, coarsely bruised, lbv. ; Distilled Water, Ov. ; Rectified Spirit, as much as may be sufficient. Macerate the cinchona in the same manner as we have directed the Extractum Cinchonæ to be prepared, and strain. Evaporate the mixed infusions, in a water-bath, to a fourth part, and set aside that the dregs may subside. Pour off the clear liquor, and strain what remains. Then mix them, and again evaporate until the sp. gr. of the liquor becomes 1:200. Into this, when it has become cold, drop the spirit very slowly, that three fluidrachms may be added to each fluidounce of the liquor. Lastly, set aside the liquor for twenty days that the dregs may entirely subside.)—Concentrated solutions of this kind have long been in use to save trouble in preparing the ordinary infusion. The insipissated infusion of the College is said to be from twenty-four to thirty-six times the strength of the pharmacopœial ordinary infusion; but it is obvious that the preparation must be liable to variation in strength. In a general way, fʒj. may be considered equal to fʒiiij. of the infusion.

4. INFUSUM CINCHONÆ PALLIDÆ SPISSATUM, L.; Insipissated Infusion of Pale Bark. (Prepare this in the same manner as Infusum Cinchonæ spissatum.)—An unnecessary preparation. Its properties are similar to those of the preceding preparation, but its strength is less.

5. DECOCTUM CINCHONÆ, L. E.; Decoction of Bark. (Yellow Bark, bruised, ʒx.; Distilled Water, Ov. ; Boil for ten minutes in a covered vessel, and strain the liquor while hot, L.—Crown, Grey, Yellow, or Red Cinchona, bruised, ʒj.; Water, fʒxxiv. Mix them, boil for ten minutes, let the decoction cool, then filter it, and evaporate to sixteen fluidounces, E.)—The preparation of the London College becomes turbid on cooling; the Edinburgh College directs the preparation to be filtered after it has become cold.

By boiling, water extracts from cinchona the kinates of quina, cinchonia, and lime, gum, soluble red cinchonic (tannic acid), yellow colouring matter; starch, and a portion of the compound of the red cinchonic with the cinchona alkaloids. While hot, the liquor is transparent; but, as it cools, it becomes turbid,—owing partly to the deposition of the tannate of starch when the temperature falls below 88° F., and partly because the red cinchonic compound, being more soluble in hot than in cold water, is deposited on cooling. If the deposit, with a portion of the supernatant liquor, be poured off and gently heated, it is dissolved. The sesquichloride of iron almost blackens it: a few drops of sulphuric acid and a few drops of solution of iodine render it bluish-black,—indicative of the presence of starch. Of 146 parts of the deposit from decoction of yellow (Calisaya) bark, Soubeiran¹ found 60 parts (principally tannate of starch) were insoluble in alcohol, and the remaining 86 parts were readily soluble in alcohol, and yielded the cinchona alkaloids. The same author also found that, by decoction, yellow (Calisaya) bark lost two-thirds of its weight; whereas, by infusion, it merely lost one-third of its weight. If the water employed in preparing the decoction or infusion be acidulated (with sulphuric or hydrochloric acid), the medicinal value of the preparation is greatly increased; for the acid decomposes the insoluble red cinchonic salt, and forms with the cinchona alkaloids a soluble combination. Alkaline solu-

¹ Traité de Pharm. i. 607.
tions, on the other hand, yield less powerful, though highly coloured, preparations: they readily dissolve the red cinchonic and the acids, but they render the alkaloids insoluble. Decoction of cinchona is stomachic, tonic, and febrifuge. The dose is $\frac{1}{3}$j. to $\frac{1}{5}$ij.

6. DECOCTUM CINCHONAE PALLIDÆ, L.; Decoctum Cinchone, D.; Decoction of Pale Bark. (Prepared like Decoctum Cinchone, L.—Take of Peruvian Bark [Crown or Pale], in coarse powder, $\frac{3}{5}$ss.; Water, Oss. Boil for ten minutes in a covered vessel, and strain while hot. The product should measure about eight ounces, D.)—The properties, uses, and doses are like the preceding preparation, than which it is weaker.

7. DECOCTUM CINCHONAE RUBRÆ, L.; Decoction of Red Bark. (Prepared like Decoctum Cinchone.)—Its properties, uses, and doses are similar to those of Decoctum Cinchone, L.

8. TINCTURA CINCHONÆ, L. E.; Tincture of Bark. (Yellow [Yellow, or any other species, according to prescription, E.], Cinchona, bruised [in fine powder, E.], $\frac{3}{8}$viiij.; Proof Spirit, Oij. Macerate for seven days, then express and strain. The directions of the Edinburgh College are as follows: “Percolate the bark with the spirit, the bark being previously moistened with a very little spirit, left thus for ten or twelve hours, and then firmly packed in the cylinder. This tincture may also be prepared, though much less expeditiously, and with much greater loss, by the usual process of digestion, the bark being in that case reduced to coarse powder only.”) —Spirit extracts all the bitter and astringent principles of cinchona, —both the kinates of the cinchona alkaloids, as well as the combination of these substances with the red cinchonic. If the spirit be too concentrated, the kinates are less readily dissolved by it. Tincture of cinchona is stomachic, tonic, and stimulant.—The dose of it is $\frac{1}{5}$j. to $\frac{1}{5}$iiij. It is usually employed as an adjuvant to the infusion or decoction of cinchona, or to the solution of the disulphate of quina.

9. TINCTURA CINCHONÆ PALLIDÆ, L.; Tinctura Cinchone, D.; Tincture of Pale Bark. (Prepared like Tinctura Cinchone, L.—Take of Peruvian Bark [Crown or Pale], in coarse powder, $\frac{3}{8}$viiij.; Proof Spirit, Oij. Macerate for fourteen days, strain, express, and filter, D.)—Properties, uses, and doses as the preceding preparation, than which it is weaker.

10. TINCTURA CINCHONÆ COMPOSITA, L. E. D.; Compound Tincture of Bark. (Pale Cinchona [Yellow Bark, E.], bruised [coarsely powdered, D. E.]; fine, if percolation be followed, E.], $\frac{3}{8}$iv.; Orange Peel [Bitter, E. D.], dried [bruised, E.], $\frac{3}{8}$ij. [ij. D.]; Serpentina, bruised, $\frac{3}{8}$vij.; Saffron [chopped, E. D.], $\frac{3}{8}$ij.; Cochineal, powdered, $\frac{3}{8}$j.; Proof Spirit, Oij. Digest for seven [fourteen, D.] days, then express and strain. “Digest for seven days; strain and express strongly; filter the liquors. This tincture may also be conveniently prepared by the method of percolation, in the same way as the compound tincture of cardamom,” E.) —This is usually sold as Huxham’s Tincture of Bark. It is a more agreeable and more stimulant, though less powerful, tonic than the simple tincture, and is less apt to disturb the stomach. Made according to the London Pharmacopeia, it contains one-half less cinchona than the simple tincture. It is employed as a tonic and stomachic.—The dose of it is $\frac{1}{5}$j. to $\frac{1}{5}$iiij.
11. Extractum Cinchone, L. E.; Extract of Bark. (Yellow Bark, coarsely bruised, lbij.; Distilled Water, Ovij. Add four pints of water to the cinchona, and stir constantly with a spatula until the bark is thoroughly moistened: macerate for twenty-four hours, and strain through linen. Macerate the residuum in the remaining water for twenty-four hours, and strain. Then evaporate the mixed liquors to a proper consistence, L.—Take any of the varieties of Cinchona, but especially the Yellow or Red Cinchona, in fine powder, 5ij.; Proof Spirit, f3xxiv. Percolate the cinchona with the spirit; distil off the greater part of the spirit; and evaporate what remains in an open vessel over the vapour-bath to a due consistence, E.)—The watery extract of cinchona (extractum cinchone, L.) contains the same constituents already mentioned as being found in decoction of bark. Mr. Brande says lance-leaved (i.e., pale) bark yields 30 per cent. of watery extract. The active principles of this preparation are the kinates of the cinchona alkaloids. The spiritious extract (extractum cinchone, E.) is a more efficacious preparation, as it contains, besides the alkaline kinates, the compound of the red cinchonic with the cinchona alkaloids. When prepared with rectified spirit, 24 per cent. of extract is obtained from pale bark. But as the Edinburgh College direct proof spirit to be employed, the produce is larger. —Well-prepared (i.e., not decomposed by evaporation) extract is a very useful preparation, which, however, has been nearly superseded by sulphate of quina. It is given in the form of pill, in doses of from grs. v. to grs. xx. The watery extract may be dissolved in water or in infusion of roses; and for administration to children, in syrup of mulberries or of orange-peel. Extract of bark, however, is rarely employed in medicine.

These two extracts are prepared in the same manner as Extractum Cinchone, L.

14. Quina Disulphas, L.; Quina Sulphas, E. D.; Sulphate of Quinine, offic.; Subsulphate of Quina.—[Although the Disulphate of Quinine is now placed by the London College among the articles of Materia Medica, we have considered it proper to retain the author's description of the method of preparing this salt according to the formula of previous editions of the Pharmacopoeia.—Ed.]

Take of Heart-leaved Cinchona, bruised, lb. viij.; Sulphuric Acid, 3ix.; Purified Animal Charcoal, 3ij.; Hydrated Oxide of Lead; Solution of Ammonia; Distilled Water, each as much as may be sufficient. Mix four ounces and two drachms of the Sulphuric Acid with six gallons of distilled Water, and add the Cinchona to them; boil for an hour and strain. In the same manner again boil what remains in Acid and Water, mixed in the same proportions, for an hour, and again strain. Finally, boil the Cinchona in eight gallons of distilled water and strain. Wash what remains frequently with boiling distilled water. To the mixed liquors add Oxide of Lead, while moist, nearly to saturation. Pour of the supernatant liquor, and wash what is thrown down with distilled water. Boil down the liquors for a quarter of an hour, and strain; then gradually add Solution of Ammonia to precipitate the Quina. Wash this until nothing alkaline is perceptible. Let what remains be saturated with the rest of the Sulphuric Acid, diluted. Afterwards digest with two ounces of Animal Charcoal, and strain. Lastly, the Charcoal being thoroughly washed, evaporate the liquor cautiously, that crystals may be produced.

Mr. Phillips\(^1\) gives the following explanation of this process. “The quina

\(^1\) Transl. of the Pharm.
exists in combination with a peculiar acid, called Kinic Acid, forming with it Kinate of Quina, which is soluble to a certain extent in water, and is rendered more so by the sulphuric acid employed in the process, and perhaps by decomposing it. Whatever may be the state of combination, the solution contains sulphuric acid, kinic acid, and quina, mixed with extractive and colouring matter, the latter being got rid of by the animal charcoal. On adding oxide of lead the sulphuric acid combines with it, and the resulting sulphate being insoluble is precipitated, while the kinic acid and quina remain in solution; when ammonia is added, after the separation of the sulphate of lead, the kinic acid unites with it, and the kinate of ammonia formed is soluble, while the quina is precipitated, and this, when afterwards combined with sulphuric acid, forms disulphate of quina, which crystallizes."

The directions of the Edinburgh College for the preparation of disulphate of quina are as follows:—

Take of Yellow Bark, in coarse powder, one pound; Carbonate of Soda, eight ounces; Sulphuric Acid, half a fluidounce; Purified Animal Charcoal, two drachms. Boil the bark for an hour in four pints of water, in which half the carbonate of soda has been dissolved; strain and express strongly through linen or calico; moisten the residue with water, and express again, and repeat this twice. Boil the residuum for half an hour with four pints of water and half the sulphuric acid; strain, express strongly, moisten with water, and express again. Boil the residuum with three pints of water and a fourth part of the acid; strain and squeeze as before. Boil again the residuum with the same quantity of water and acid; strain and squeeze as formerly. Concentrate the whole acid liquors to about a pint; let the product cool; filter it, and dissolve in it the remainder of the carbonate of soda. Collect the impure quina on a cloth, wash it slightly, and squeeze out the liquor with the hand. Break down the moist precipitate in a pint of distilled water; add nearly one fluidounce of sulphuric acid, heat it to 212°, and stir occasionally. Should any precipitate retain its grey colour, and the liquid be neutral, add sulphuric acid, drop by drop, stirring constantly, till the grey colour disappears. Should the liquid reddened litmus, neutralize it with a little carbonate of soda. Should crystals form on the surface, add boiling distilled water to dissolve them. Filter through paper, preserving the funnel hot; set the liquid aside to crystallize; collect and squeeze the crystals; dissolve them in a pint of distilled water heated to 212°; digest the solution for fifteen minutes with the animal charcoal; filter, and crystallise as before. Dry the crystals with a heat not exceeding 140°.

The mother-liquors of each crystallization will yield a little more salt by concentration and cooling.

The object of this process is to extract, by means of the solution of carbonate of soda, the acids, the colouring and extractive matters, the gum, &c. from the bark, but leaving the cinchona alkaloids. Stolze used for this purpose lime; Badollier and Scharlau caustic potash. The alkaline decoction has a very deep colour. By boiling the residuum in water acidulated with sulphuric acid, the alkaloids are dissolved. On the addition of carbonate of soda, double decomposition takes place, and the impure quina is precipitated. This is afterwards dissolved in water acidulated with sulphuric acid, and the filtered liquid is set aside to crystallize. The impure disulphate of quina thus obtained is re-dissolved in boiling water, and the solution, after being decolorized by digestion with animal charcoal, is filtered, and put aside to crystallize.

I have repeated this process, which has the great merit of obviating the use of alcohol, and I believe it to be an excellent one, combining both simplicity and economy. In one experiment I employed one lb. of picked uncoated yellow (Calisaya) bark, and found that the precipitated impure quina required two fluidrubs and five minimis of sulphuric acid to saturate it, instead of one fluidruble, directed by the Edinburgh College. In another
experiment I could not get the impure sulphate of quina to crystallize until it had been digested with animal charcoal.

The process of the Dublin College is similar to the method of manufacturing disulphate of quina which has been usually followed by manufacturers in this country: it is as follows:—

Coarsely pulverized yellow (Calisaya) bark is boiled with water acidulated with sulphuric or hydrochloric acid. The residuum boiled a second or a third time with aciddulated water. Some repeat the process a fourth time. Finely-powdered slacked lime is added to the filtered decoction (when cold), until the liquor is sensibly alkaline, and acquires a dark colour. The precipitate is collected, drained on a cloth, and then submitted to graduated pressure (usually in a hydraulic press). The cake thus obtained is, when dry, reduced to powder, and digested in rectified spirit. The filtered tincture is distilled until the residuum (impure quina) in the retort has a brown viscid appearance. This residuum is then to be carefully saturated with very diluted sulphuric acid, the solution filtered, and set aside to crystallize. The disulphate of quina thus obtained is yellowish-brown. It is drained in a cloth, compressed, dissolved in water, decolorized by animal charcoal, re-crystallized, and dried. This last part of the process must be very carefully conducted, to avoid efflorescence.

Some persons think it preferable to convert the quina of this alcoholic solution into a sulphate before distillation, in order to separate the fatty matter. I am informed, by a maker of this salt, that the use of spirit in the process does not, on the large scale, add much more than a penny an ounce to the cost of the disulphate, as the greater part is recovered.

On the large scale the decoction of the bark is usually prepared in a large vat, the boiling being effected by steam. The acidulated decoction contains the quina, the cinchonia, the yellow colouring matter, the red cinchonic, the kinic, and the sulphuric (or hydrochloric) acids. The lime saturates all the acids, and forms soluble salts (if sulphuric acid have been employed, sulphate of lime is formed, the greater part of which precipitates), which remain in the liquid with a portion of red colouring matter. The precipitate is composed of quina, cinchona, a combination of lime and red cinchonic, fatty matter, excess of lime, and, when sulphuric acid has been employed, sulphate of lime: the whole is contaminated with colouring matter. Alcohol extracts from this precipitate the quina and cinchonia, the fatty matter, and the colouring matter; leaving undissolved the excess of lime, the compound of lime with the red cinchonic, and, when sulphuric has been used, sulphate of lime. The sulphuric acid being then added to the impure quina, converts it into a disulphate. On account of the expense of spirit of wine, various substitutes have been proposed. Pyroxilic spirit has been tried; but I believe has not answered. Pelletier has taken out a patent for the employment of a volatile oil (oil of turpentine). The dried cake of quina and lime, obtained in the usual manner, is to be digested in oil of turpentine, which dissolves the quina. The oleaginous solution is then to be agitated with water acidulated with sulphuric acid, by which a sulphate of quina is obtained. By repose, the oil rises to the top, and after removal may be employed again, while the solution of the sulphate is to be evaporated as usual. Hitherto, however, this process has not succeeded, partly because the turpentine does not extract more than nineteen-twentieths of the quina present. If any attempts, however, should be made to procure the disulphate in America, it is possible that some modification of this process would be the best.

Disulphate of quina occurs in small, fibrous, odourless, very bitter crystals, which have a pearly aspect, and a flexibility like amianthus. Exposed to the air, they effloresce slightly. When heated they become luminous; friction
promotes this phosphorescence. At 240° F. they melt like wax; at a more elevated temperature the salt assumes a fine red colour; and when ignited in the air burns, leaving at first a carbonaceous residuum, but which is subsequently dissipated. One part of this salt requires 80 parts of cold alcohol (sp. gr. 0·850) or 740 parts of cold, or 30 parts of boiling, water to dissolve it: as the saturated solution cools, part of the salt separates. A remarkable property of this salt is to give a blue tinge to the surface of water (see Quina, ante). The following is the composition of this salt:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Quina</td>
<td>2</td>
<td>324</td>
</tr>
<tr>
<td>Water</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>Crystallized Disulphate of Quina...</td>
<td>1</td>
<td>436</td>
</tr>
</tbody>
</table>

By exposure to the air the crystals lose 4 (Soubiran says 6) equivalents of water, equal to about eight per cent. When fused they evolve two more equivalents. One hundred grains of the crystals dissolved in water, acidulated with hydrochloric acid, yield by the addition of chloride of barium a quantity of sulphate of baryta, which when ignited weighs 26·6 grs. For the tests, see Quina, ante.

Adulterations.—Various foreign bodies (as earthy and alkaline salts, gum, sugar, starch, fatty matters, sulphate of cinchonia, and salicine) are, it is said, occasionally intermixed with disulphate of quina. The following are the tests by which the presence of these bodies is ascertained:—By digesting disulphate quina in alcohol this salt is dissolved, leaving any alkaline or earthy sulphates, gum, or starch, that may be present. Gum is soluble in cold water; starch is coloured blue by a solution of iodine. When heated in the open air the disulphate of quina is burned and dissipated: the earthy salts, on the other hand, are left. The disulphate is soluble in water acidulated with sulphuric acid, whereas fatty matters are insoluble. To detect sugar, add to a solution of the disulphate, carbonate of potash: quina is precipitated, while sulphate of potash and sugar are left in solution: the latter may be detected by its sweet taste, or by evaporating the liquid to dryness, and digesting the residue with spirit, which dissolves the sugar, but leaves the sulphate. Ammoniacal salts are detected by the ammoniacal odour emitted on the addition of caustic potash. Salicine may be recognized by oil of vitriol, which turns it red. Sulphate of cinchonia may be made to crystallize, in a pulverulent form, by stirring the solution, and in this state it may be readily intermixed with disulphate of quina. This fraud, I suspect, has been recently carried on to no very slight extent. To detect it, precipitate a solution of the suspected salt in water by potash; collect the precipitate, and boil it in alcohol. The cinchona crystallizes as the liquor cools, while the quina remains in the mother-liquor.

The characteristic marks of the purity of disulphate of quina are, according to the London College, as follows:—

"It is dissolved by water, especially when mixed with an acid. Quina is thrown down by ammonia; the liquor being evaporated ought not to taste of sugar. One hundred parts of disulphate of quina lose eight or ten parts of water by a gentle heat. It is destroyed by heat. Chlorine being first added to it, and afterwards ammonia, it becomes green." From 100 grains dissolved in water mixed with hydrochloric acid, 26·6 grains of sulphate of barytes, dried at a red heat, are obtained.
The characters given by the Edinburgh College are as follows:—

“A solution of ten grains in a fluidounce of distilled water, and two or three drops of sulphuric acid, if decomposed by a solution of half an ounce of carbonate of soda, in two waters, and heated till the precipitate shrinks and fuses, yields, on cooling, a solid mass, which, when dry, weighs 7½ grains, and in powder dissolves entirely in a solution of oxalic acid.

The quantity of carbonate of soda required to decompose 10 grs. of disulphate of quina, to which a few drops (say six grains) of sulphuric acid have been added, is less than twenty-five grains.1

Disulphate of quina is given in doses of from 9r. j. to grs. v. Occasionally it is exhibited in much larger doses as a febrifuge; but it is very apt to disagree, causing disturbance of stomach, febrile disorders, and headache. I have known fourteen grains taken, and have heard of a scruple or half a drachm being exhibited at a dose. It may be given either in the form of pill, made with conserve of roses, or dissolved in some aqueous liquid by the aid of an acid. Infusion of roses is a favourite vehicle for it. An ointment (composed of 3j. of disulphate of quina and 3j. of lard) rubbed into the axilla has been used with success to cure ague in children.2

15. Tinctura Quinæ Composita, L.; Compound Tincture of Quinine. (Disulphate of Quinine, 3v. and 3j.; Tincture of Orange, Oij. Digest for seven days, or until the quinine be dissolved, and strain.)—The solution is hastened by digesting the mixture in a warm place. Mr. Squire states that in seven days only 39-40ths of the quinine are dissolved. Every fluiddrachm contains about one grain of the disulphate.—Dose, f3j. to f5ij. or more.

16. Quinæ Muriæ, D.—A process for preparing this salt is given in the Dublin Pharmacopœia. It is procured in decomposing a solution of Disulphate of Quina by a solution of Chloride of Barium. It is employed in the preparation of the Valerianate of Quinine.

17. Quinæ Valerianæ, D.—This salt is prepared in decomposing Muriate of Quina by the Valerianate of Soda (see ante, p. 1586).

Nauclea Gambir, Hunter.

Sex. Syst. Pentandria, Monogynia.

(The extract obtained from the leaves, E.; Gambir, or Gambir-Catechu.)

History.—Gambier, or Gambir, is the Malay name of an extract obtained from the leaves of this shrub. Rumphius3 has described the plant under the name of Funis uncatus or Daun Gatta Gambir.

Botany.—Gen. Char.—Limb of calyx short, urceolate, 5-cleft. Corolla funnel-shaped; tube slender; throat naked; lobes 5, spreading, oval-oblong. Anthers enclosed or protruded. Style filiform, protruded; stigma tumid, undivided. Capsules pedicellate, clavate, tapering to the base. Seeds

3 Herb. Amboin. vol. v. tab. 34.
numerous, imbricated, winged. — Climbing shrubs. Peduncles when old becoming axillary compressed hooked spines. Flowers in loose heads (Lindley; De Cand.)

Sp. Char.—Branches terete. Leaves ovate-lanceolate, acute, with short petioles, smooth on both sides. Stipules ovate. Peduncles axillary, solitary, opposite, bracteolated about the middle; the lowest ones sterile, converted into hooked spines (De Cand.)

Hab.—Islands of East Indian Archipelago. Extensively cultivated. On the Island of Bintang there are 60,000 Gambir plantations.1

Extraction of Gambir.—Two methods of obtaining Gambir are described: one consists in boiling the leaves in water, and inspissating the decoction; the other, which yields the best Gambir, consists in infusing the leaves in warm water, by which a fecula is obtained, which is inspissated by the heat of the sun, and formed into cakes.2

Dr. Campbell3 has described the method of making the circular or cyllindrical variety of Gambir, as followed in the colony established by the Sultan of Moco, where the manufacture is carried on to a considerable extent. It consists in shredding and bruising the young shoots and leaves "in water for some hours, until a fecula is deposited; this, inspissated in the sun to the consistence of a paste, is thrown into moulds of a circular form, and in this state the Gambir is brought to market." Dr. Roxburgh4 describes the manufacture of the cubical variety as practised eastward to the Bay of Bengal. The process consists in "boiling the leaves and young shoots; evaporating the decoction by fire and the heat of the sun. When sufficiently inspissated, it is spread out thin, and cut into little square cakes, and dried." Mr. Bennett5 has given a very full account of the method of making the cubical variety as practised at Singapore. The leaves are plucked from the pruning, and boiled in a quali, or cauldron (made of bark, with an iron bottom); after being boiled twice and rinsed, they are used as a manure for the pepper vine. The decoction is evaporated to the consistence of a very thick extract, of a light, yellowish, brown colour, like clay, which is placed in oblong moulds. The pieces thus obtained are divided into squares, and dried in the sun on a raised platform. Hunter6 says, Sago is often intermixed with the extract, but Bennett denies that this is done at Singapore. [The decoction of the leaves is said to be thickened by the manufacturers at Singapore by stirring it with a piece of wood obtained from a tree of the country, which it is to be presumed supplies mucilaginous and starchy matters. Seemann, unfortunately, could not succeed in obtaining this wood from the Chinaman whose laboratory he visited.7—Ed.] The best Gambir is made at Rio, in the isle of Bintang; the next best is that of Lingin.

Commerce.—Gambir (the cubical variety) is imported from Singapore principally. Its principal use here is for tanning; and among dealers it is

1 Bennett's *Wanderings*, ii.
2 *Asiatic Researches*, xi. 188.
3 Roxburgh, _Pl. Ind._ i. 518.
4 Ibid.
5 *Wanderings*, ii. 183.
6 _Linn. Trans._ ix.
7 Hooker's _Journal of Botany._
distinguished from catechu, cutch, &c. by the name of terra japonica. The following are the quantities imported during the last four years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1836</td>
<td>970 tons</td>
</tr>
<tr>
<td>1837</td>
<td>8738</td>
</tr>
<tr>
<td>1838</td>
<td>1600 tons</td>
</tr>
<tr>
<td>1839</td>
<td>5213</td>
</tr>
</tbody>
</table>

During the last three years, its price has varied from 15s. to 26s. per cwt. The duty on it is 1s. per cwt. It is brought over in cane baskets, lined with palm leaves. Mr. Bennett says they are made of a kind of rattan found in the jungle at Singapore.

Description and Varieties. — **Gambir** (Terra Japonica, of tanners; Catechu in square cakes, of druggists; Cubical Resinous Catechu, of Guibourt; Gambir of Second Quality, Bennett), occurs in cubes, whose faces are about one inch square. When thrown into water, it floats. These cubes are externally of a deep reddish or yellowish brown colour; their fracture is dull and porous, and internally their colour is paler than that of their surface, being yellowish cinnamon brown; the fractured surface not unfrequently presenting some darker feebly shining stripes, extending from without inwards. This kind has no odour; its taste is powerfully astringent and bitter, but subsequently becoming sweetish. It melts entirely in the mouth. When heated in a platinum crucible it undergoes a kind of semifusion, and swells up; and when incinerated leaves a light white ash. Nees v. Esenbeck says twenty grains of this Gambir leave only half a grain of ash. It is partially soluble in cold water. When boiled in water it is almost completely dissolved, and yields a decoction which, while hot, is of a clear reddish brown colour, but, on cooling, becomes turbid, owing to the deposition of catechine. By digestion in ether it forms a deep reddish-brown tincture, which, by evaporation, yields a reddish-brown astringent extract: the portion which is insoluble in ether is dark brown, tough and elastic. Examined by the microscope, Gambir is found to consist in great part of myriads of minute crystals (catechine) intermixed with a kind of mucous tissue.

Mr. Bennett has described three qualities of Gambir, specimens of which are contained in my own collection, as well as in that of the Medico-Botanical Society of London. To these I must add a fourth, which I have received from Professor Guibourt.

1. **Small Circular Moulded Gambir:** Gambir of the first quality, Bennett; Lozenge Gambir. — This occurs in small round cakes, about the size of a small lozenge. Its form is something like that of a plano-convex lens, slightly flattened on the convex side. One of its surfaces is flat, round, about half an inch in diameter; the other one is convex, with a star-like pattern impressed on it. Its colour is pale pinkish yellowish white. It has a chalky or earthy feel, and is brittle. Specimens of this are in the collection of the Medico-Botanical Society.

2. **Amylaceous Lozenge Gambir.** — Under the name of Gambir, or China Catechu, I have received from Bombay small circular cakes of Gambir adulterated with sago meal. The cakes are circular and cylindrical, about 3½ lines in diameter, and 2 lines thick; flat at the bottom, and slightly convex at the top. They are greyish yellowish white; have a cretaceous feel, and are easily reduced to powder. Their decoction when cold is rendered blue by tincture of iodine. Examined by the microscope multitudes of particles of sago may be detected, intermixed with crystals of catechine. I have received the same kind of Gambir from Dr. D. Maclagan, of Edinburgh, under the name of White Gambir.
Gambir.—Composition; Physiological Effects; Uses. 1685

2. Gambir in Parallelopipeds: Gambir of the second quality, Bennet.—This occurs in two forms: cubes (forming the Gambir of English commerce, described in the text), and square prisms or oblong pieces. The latter I received from Dr. Maclagan, of Edinburgh, under the name of Yellow Gambir in parallelopipeds. The length of the prisms is two inches; the size of the terminal faces half an inch square. In other respects the oblong variety agrees with the square kind.

3. Cylindrical Gambir: Gambir of the third quality, Bennet.—This occurs in circular discs, or short cylindrical pieces, the length of the cylinder being about one-third of an inch, while its diameter is one inch and a quarter. One of the round surfaces is marked with the fibres of a cloth, on which the cakes have been dried. The colour internally is pale, dull, pinkish yellow, externally being a shade darker. Its fracture is dull and porous. It is easily scraped to powder with the nail, and in this state has a chalky feel. Its taste is astringent, but less so than the other kinds; it is gritty under the teeth. It sinks in water. The samples in the Medico-Botanical Society are somewhat smaller than those which I have found in commerce. This kind contains many impurities.

4. Cubical Amylaceous Gambir.—It is in cubes, which swim in water, and whose faces are about half an inch square. Externally these cubes are dark brown, being darker coloured than the kind just described. Its fracture is dull and porous, its colour internally being pale cinnamon brown. It is readily distinguished from all other kinds of Gambir, by the black colour produced when the tincture of iodine is applied to the fractured surface. When digested in water it is resolved into two parts—

<table>
<thead>
<tr>
<th>Matter soluble in water</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter insoluble in water, principally amylaceous</td>
<td>55</td>
</tr>
</tbody>
</table>

The amylaceous matter is probably sago.

Composition.—Gambir (the cubical variety) was analysed by Nees v. Esenbeck,¹ who found Tannic Acid 36 to 40 per cent., Peculiar Matter, Gum or Gummy Extractive, Tannic Deposit (similar to red cinchonie), and 2½ per cent. of Woody Fibre.

1. TANNIC ACID.—The properties of this acid have been before (p. 1230) described. That extracted from Gambir is soluble in water, alcohol, and ether, and gives a green colour to the salts of iron.

2. CATECHINE; Catechu Acid; Tanningensäure, Buchner; Resinous Tannin, Nees.—When Gambir is treated with cold water, an insoluble residuum is left; this is impure catechine, and was termed by Nees, Resinous Tannin. When obtained quite pure, it is a white, light powder, composed of silky needles, having a peculiar sweet taste. It is very slightly soluble only in cold water, more so in boiling water. Ether, and especially alcohol, are better solvents for it. It produces a green colour with salts of iron, but does not produce a precipitate with a gelatinous solution. Its composition is $C_{10}H_{6}O_9$. If it be digested in caustic potash, and the solution exposed to the air, oxygen is absorbed, and the catechuic acid is converted into Japonic Acid, composed of $C_{12}H_{4}O_4$. But if it be dissolved in carbonate of potash, and exposed to the air without heat, it is converted into Rubinic Acid, composed of $C_{21}H_{3}O_5$.

Physiological Effects.—Gambir is one of the most powerful of the pure astringents, whose effects have been before described (see p. 158). Its sweet taste depends, in part at least, on catechuic acid.

Uses.—It is employed by druggists as catechu (see Acacia Catechu).

[Gambir is the name applied to the extract of the leaves, while catechu is the extract of the inner wood.—Ed.]

¹ Pharm. Centr.-Blatt für 1830, 45.
Order LIV. CAPRIFOLIACEÆ, Jussieu.—The Honey-Suckle Tribe.

Characters.—Calyx superior, 4- or 5-cleft, usually with 2 or more bracts at its base. Corolla superior, monopetalous or polypetalous, rotate or tubular, regular or irregular. Stamens epipetalous, equal in number to the lobes of the corolla, and alternate with them. Ovary with from 1 to 3 or 4 cells, one of which is often monospermous, the others polyspermous: in the former the ovule is pendulous; style 1; stigmas 1, or 3 to 4. Fruit indehiscent, 1- or more-celled, either dry, fleshy, or succulent, crowned by the persistent lobes of the calyx. Seeds either solitary and pendulous, or numerous and attached to the axis; testa often long; embryo straight, in fleshy albumen; radicle next the hilum.—Shrubs or herbaceous plants, with opposite leaves, destitute of stipules. Flowers usually corymbose, and often sweet-scented (Lindley).

Properties.—Not uniform.

234. Sambucus nigra, Linn.—Common Elder.

Sex. Syst. Pentandria, Trigynia. (Flores, L.—Flowers, E.—Flores, Bacca, Cortex interior, D.)

History.—Hippocrates employed the elder (άκτρη) in medicine.

Botany. Gen. Char.—Limb of the calyx small, 5-cleft. Corolla rotate, pitcher-shaped, 5-cleft; its lobes obtuse. Stamens 5. Style none. Stigmas 3, sessile. Berry roundish, scarcely crowned, pulpy, 1-celled (Gartn.), 3- to 5-seeded; funiculi bearing the oblong seeds in the axis of the fruit (De Cand.)

Sp. Char.—Stem shrubby, somewhat arboreous. Leaves pinnatisect, smooth; segments ovate-lanceolate, serrate. Corymbbs 5-partite (De Cand.)

Stem much and irregularly (though always oppositely) branched, of quick growth; branches (after a year's growth) clothed with smooth gray bark, and filled with a light spongy pith. Leaflets deep green, smooth, usually 2-pair, with an odd one. Cymes [corymbbs] large, smooth, of numerous cream-coloured flowers, with a sweet but faint smell; some in each cyme sessile. Berries globular, purplish-black; their stalks reddish (Smith).

Hab.—Indigenous: in hedges, coppices, and woods; common.

Description.—The liber or inner bark (cortex interior sambuci) is collected from the branches: its colour is greenish-white; its taste sweetish astringent; its odour feeble. Its infusion is rendered slightly green by the sesquichloride of iron. Elder flowers (flores sambuci) are white when fresh, but by drying become yellow, and retain an agreeable odour. Elder berries (baccae sambuci) yield, by expression, a purple juice, called elder rob.

Composition.—I am unacquainted with any analysis of elder bark. 1 The flowers were analysed by Eliason, 2 who obtained from them volatile oil, acrid resin, tannic acid, oxidised extractive, nitrogenous extractive, gum, woody fibre, glutinous matter, albumen, malates of potash and lime, mineral salts, and a trace of sulphur. Elder juice contains malic

1 Simon has analysed the bark of the root, and states that its active principle is a soft uncrystallizable resin. Twenty grains of the alcoholic extract of the bark produced vomiting four or five times, and as many stools (Journal de Pharmacie, 1540, p. 247).
acid, a little citric acid, sugar, pectin, and colouring matter, which is reddened by acids, and made green by alkalies.

Physiological Effects.—The flowers, owing to their volatile oil, are mildly stimulant, and, perhaps, sudorific. The berries are cooling, aperient, and diuretic. The inner bark (liber) is hydragogue, cathartic, and emetic. The leaves, probably, possess similar, though less energetic, properties.

Uses.—The flowers are seldom employed, except in the preparation of elder-flower water and elder ointment. The use of the berries is now almost solely confined to the manufacture of elder wine. The inspissated juice of the berries is, however, an officinal preparation. The inner bark has been used as a hydragogue cathartic in dropsy. It may be given in decoction (prepared by boiling 3j. of the bark in Oij. of water to Oj.), in doses of fjiij. Smaller doses have been used as an aperient and resolvent in various chronic disorders.

1. **AQUA SAMBUCI, L. E.; Elder Water.** (Elder Flowers [fresh], lb. x; Water, Cong. ij.; Rectified Spirit, fjiij. E. Mix them, and let a gallon distil.)—Elder water is frequently made from the pickled flowers (flores sambuci saliti) which are prepared with alternate layers of the flowers and common salt compressed and preserved in a well-closed vessel [usually a cask]: the water which exudes being rejected. It is principally used as a perfume.

2. **UNGUENTUM SAMBUCI, L.; Elder Ointment** (Elder Flowers, Lard, of each lb. j. Boil the Elder Flowers in the Lard until they become crisp; then press through a linen cloth.)—The Unguentum Sambuci, Ph. L., is the white elder ointment of the shops. Except in its agreeable odour it has no advantage over spermaceri ointment. It is popularly used as a cooling application to irritable surfaces.

Order LV. ARALIACEÆ, Richard.—The Aralia Tribe.

Aralie, Jussieu.

235. **Panax quinquefolium.—Ginseng.**

1. **Panax quinquefolium, Linn.** is a native of North America, growing in the Northern, Middle, and Western States of the Union. Its root is the American Ginseng (radix ginseng). It is exported to China, where it is highly valued. Pieces of it are said to be occasionally found intermixed with senega root.

2. **Panax Schinseng, Nees v. Esenbeck,** is a native of Asia, and has been usually confounded with the preceding species. Nees admits three varieties:—P. Schin-seng, var. coraiensis; P. Schin-seng, var. japonica; and P. Schin-seng, var. nepalensis (P. Pseudo-ginseng, Wallich). The root of this species is the Asiatic Ginseng (radix ninsi.)

The Chinese physicians ascribe the most improbable and extravagant virtues to ginseng. They regard it as an invigorating and aphrodisiac agent. At Pekin it is said to have been sometimes worth its weight in gold! To the taste it is mucilaginous, sweetish, somewhat bitter, and slightly aromatic. In Europe it is believed to possess very little power.
Order LVI. Umbelliferae, Jussieu.—The Umbelliferous Tribe.

Apicaeæ, Lindley.

Diagnosis.—Polypetalous dicotyledons, with definite perigynous stamens, concrete carpella, an inferior ovary of several cells, pendulous solitary ovula, leaves sheathing at the base, umbellate flowers, embryo at the base of fleshy albumen.

Characters.—Tube of the calyx adherent to the ovary; the limb [superior calyx of Lindley] entire, or 5-toothed, or obsolete. Petals 5, inserted into the upper part of the calyx [inserted on the outside of a fleshy epigynous disc, Lindley], usually inflexed at the point; aestivation imbricate, rarely valvate. Stamens 5, alternate with the petals, incurred in aestivation. Ovary [inferior, Lindley] adherent to the calyx, 2- (rarely 1-) celled, with solitary pendulous ovules: styles 2, distinct, incrassated at the base into stylopodia, covering the whole of the ovary; stigmas simple. Fruit (called diachena, polyachena, or cremocarpum from κρεμασ I suspend, and καρποσ fruit), consisting of two mericarps (from μερις a part) (i.e. 2 carpella, with half of the calyx attached, so that they can be called neither carpella nor achenia), separable from a common axis (carphophorus from καρπος fruit, and φοιν I bear), to which they adhere by their face (commisurae); the dorsal surface of each carpel is traversed by ridges, of which 5 are primary (costæ seu juga primaria), and 4 secondary (juga secundaria); the latter are sometimes absent: the spaces between the ridges are called channels (valleculæ). In the channels, within the pericarp, are, sometimes, linear oily receptacles, called vitæ. Seed pendulous, usually adhering inseparably to the pericarp, rarely loose: embryo minute, pendulous from the apex of the axis (carphophorus); radicle pointing to the hilum; albumen abundant, horny, flat (Orthospermae), or rolled inwards at the edges (Camphylapermae), or rarely curved inwards from the base to the apex (Cylospereae).—Herbaceous plants, with fistular furrowed stems. Leaves usually divided, sometimes simple, sheathing at the base. Flowers in umbels, white, pink, yellow, or blue, generally surrounded by an involucre (condensed from De Candolle).

Properties.—Extremely variable.

The Umbelliferae may be thus arranged:

1. Umbelliferous carminative fruits used in medicine:
 - Caraway.
 - Anise.
 - Fennel.
 - Angelica.
 - Dill.
 - Cumin.
 - Coriander.
 - Fanugreek.

2. Umbelliferous roots used in medicine:
 - Angelica.
 - Carrot.

3. Umbelliferous fetid gum resins:
 - Assafetida.
 - Galbanum.
 - Sagapenum.
 - Ammoniacum.

4. Narcotic Umbelliferae:
 - Conium.

1. Umbelliferous Aromatic or Carminative Fruits.

Vitta.—These are not present in all umbelliferous fruits. They exist, however, in all the fruits now under consideration. In fact, these fruits owe their aromatic and carminative qualities to the oil contained in these vitæ.
a. In general the vitae are found in the channels or valleculæ; and in some cases there is only one,—in others there are more than one vitae in each channel. Sometimes there are vitae also at the commissure.

Ex.—Univittate channels: (bivittate commissurc) Caraway; Funiculus; Anethum; Cumin; Carrot.

Ex.—Multivittate channels: Anise.

b. In some cases, however, the vitae are not found in the channels, but in the commissure only.

Ex.—Coriander: commissure bivittate.

The contents of these vitae is an oleo-resinous juice. It is usually deeply coloured. Probably primitively it is oil (volatile) which has become resinified by the air.

Volatile Oil.—When the fruits are submitted to distillation with water, the volatile oil comes over with the water.

The quantity obtained varies with the fruit and a variety of circumstances. In a general way, we may say 4 or 5 per cent. is the amount.

It is probable that in all cases there are two oils obtained from the fruit; one a pure hydrocarbon,—the other an oxyhydrocarbon. At least, in a few cases, by re-distilling the oil with caustic potash, we obtain a pure hydrocarbon. In the case of caraway oil, this hydrocarbon (carum) has for its formula $C_{10}H_{10}$. In the case of cumin, it (cuminum) has a formula $C_{18}H_{24}$.

The oxyhydrocarboaceous oil is probably an acid formed by the union of the hydrocarbon with atmospheric oxygen. A still higher oxidation probably furnishes a resin. The agency of the potash, in the distillation, is to fix the acid by combining with it: the non-acid or pure hydrocarbon then distils over.

Dissolved in alcohol, we obtain the so-called spirits (as of caraway, anise, &c.) Besides the pharmaceutical preparations of this kind, there are analogous ones sold by the spirit dealer under the name of compounds or British liqueurs (as aniseed, caraway, &c.) These are weaker than the pharmaceutical spirits, and sweetened.

Diffused through or slightly dissolved in water, these oils impregnate the water with their odour, and to a certain extent with their medicinal properties. Caraway, dill, anise, and other waters, are examples.

Of the properties of the oils individually some remarks will be made hereafter. Those which are subject to fraud or substitution, accidental or purposed, especially deserve notice.

1. OIL OF FENNEL.—There are two varieties—the oil of sweet fennel and the oil of wild fennel. The London College orders sweet fennel. The Edinburgh College adopts Funiculus officinalis. Now this by botanists is usually regarded as only a variety, perhaps, of the wild fennel. Christison says the seed is found among nurserymen as Florence seed.

2. OIL OF ANISE.—I notice this for the purpose of mentioning that oil of star-anise is frequently substituted for it. I know of no ill-consequences likely to result therefrom: one oil is probably as good as another. Still, as there is a difference in price, the substitution of one for the other is a fraud.

Respecting caraway, dill, cumin, angelica, and coriander fruits (called seeds), I have nothing particular to remark. Carrot fruit deserves notice for its structure (see Daucus Carota).

236. CARUM CARUI, Linn.—COMMON CARAWAY.

Sex. Synt. Pentandria, Digynia.

(Fructus, L.—Fruit, E.—Sema, D.)

History.—Caraway is not mentioned in the writings attributed to Hippocrates. Pliny¹ and Dioscorides², however, speak of it: the former calls it Careum (from Caria, its native country),—the latter terms it κάρος.

² Lib. iii. cap. 66.

Sp. Char.—Root fusiform. Leaves bipinnatisect; the lower segments of the branches decussate, all many-cleft. Involucre none (De Cand.)

Biennial. Stem branched, about 2 feet high. Umbels numerous, dense. Flowers white or pale flesh-coloured; appear in June.

Hab.—In meadows and pastures all over Europe; naturalised in England. Largely cultivated in Essex.

Description.—The mericarps, commonly called caraway seeds (fructus seu semina carui) are from 1½ to 2 lines long, usually separated, slightly curved inwards, of a brownish colour, with five lighter coloured primary ridges; there are no secondary ones. In each channel is one vitta, and on the commissure are two. The smell is aromatic and peculiar, the taste warm and spicy. The caraway of the shops is in part the produce of this country, but is partly supplied from Germany. In 1839, duty (30s. per cwt.) was paid on 515 cwts. which were imported.

Composition.—No analysis of the fruit has been made. The aromatic qualities depend on a volatile oil. (See below.)

Physiological Effects.—Caraway is an aromatic stimulant and condiment. Its effects are similar to those of dill and anise.

Uses.—Caraway is principally consumed by the confectioner and cook. It is also used by the distiller for flavouring liqueurs. Its medicinal employment is not extensive. It is given to relieve the flatulent colic of children, and enters, as an adjuvant or corrective, into several officinal compounds. It is less seldom employed in substance than in the form of oil, spirit, or water.

4. OLEUM CARUI, L. E. D.; Oil of Caraway. (Obtained by submitting the fruit [bruised, E.] to distillation with water.)—The quantity obtained from a given weight of fruit is variable: Recluz says about 4.7 per cent.; but I am informed, by a manufacturing chemist, that he has obtained 213 lbs. of oil from 35 cwts. of the fruit; which is about 5.43 per cent. When fresh prepared it is colourless; but it becomes yellow and subsequently brown by keeping. It is limpid, and has the aromatic odour of the fruit and an acrid taste. Its sp. gr. is 0.950 (0.938 P. L.) According to Schweizer,¹ it

¹ Pharmaceutisches Central-Blatt für 1841, S. 789.
consists of carbon 86·14, hydrogen 10·68, and oxygen 3·18. When submitted to distillation with caustic potash, it yields a carbo-hydrogen (carvuen) whose formula is $C^{10}H^8$. The brown residue in the retort yields, when mixed with water, a brown resin and a brown alkaline solution. If the latter be saturated with an acid and distilled, an acrid oil (carvencrol) is obtained. Oil of caraway is generally employed in the preparation of the spirit and water. It is used to impart flavour, to correct the nauseating and griping qualities of some medicines, and to relieve flatulence. It is frequently added to cathartic pills and powders.—Dose, one to ten drops.

[2. SPIRITUS CARUI, L. E.; Spirit of Caraway. (Oil of Caraway, $f_{3}ij$. [Bruised Caraway, lb. ss. E.]; Proof Spirit, Cong. j. [Ovij. E.]. Mix. [Water, Ojss. E.]} Macerate for two days in a covered vessel, E.; distil off lb. vij. E., by a gentle heat. The simple solution of the oil, as recommended by the London College, is by far the best mode of preparing this and the other spirits of the Pharmacopoeia.—Ed.] It is aromatic and carminative. Dose, $f_{3}ij$. to $f_{5}iv$. Sweetened with sugar, this spirit is drunk in Germany as a dram (Kümelliqueur; Kümelbrandtwein).

3. AQUA CARUI, L. D.; Caraway Water. (Caraway Oil, $f_{3}ij$.; Powdered Flint, $j_{3}ij$.; Distilled Water, Cong. j. Beat up the oil thoroughly first with the flint, afterwards with the water, and filter the liquor, L. Essence of Caraway, $j_{3}j$.; Distilled Water, $j_{5}ix$. Mix with agitation, and filter through paper, D.)—This water is employed as a carminative vehicle for purgatives (as saline purgatives, magnesia, &c.) and in the flatulent colic of children.

237. PIMPINELLA ANISUM, Linn.—THE ANISE.

Ser. Syst. Pentandria, Digynia.
(Fructus, L.—Fruit, E.—Semaia, D.)

History.—Anise was used by Hippocrates. It is also mentioned by Pliny and Dioscorides. The latter terms it ἀνίσυ. It was introduced into this country in 1551. In our translation of the New Testament, the word anise occurs instead of dill.

Botany. Gen. Char.—Margin of the calyx obsolete. Petals obovate, emarginate, with an inflexed lobe. Fruit contracted at the side, ovate, crowned by a cushion-like disk, and reflexed, somewhat capitate styles. Mericarps [half-fruits] with five, filiform, equal ridges, the lateral ones being marginal. Channels multivittate, with a bifid free carpophorus. Seed gibbous convex, anteriorly flattish. Roots simple, radical leaves pinnatisect; the segments roundish, toothed, rarely undivided; those of the stem more finely cut. Umbels of many rays. Involucre none. Petals white, rarely pink or yellow (De Cand.)

Sp. Char.—Stem smooth. Radical leaves cordate, somewhat roundish, lobed, incised, serrate; middle ones pinnate lobed, the lobes cuneate or lan-

3 Lib. iii. cap. 65.
4 Matth. xxiii. 23.
ceolate; the upper ones trisid, undivided, linear. *Fruit* bearing a few scattered hairs (De Cand.)

Hab.—Island of Scio and Egypt. Largely cultivated for its fruit in Malta, Spain, and various parts of Germany. It also grows in Asia.

Description.—The fruit, called *aniseed* (*fructus seu semina anisi*), is slightly compressed at the sides. The separated mericarps are ovate, of a grayish-green colour, with five paler, thin, filiform, primary ridges (there are no secondary ones), and covered with downy hairs. In each channel are three vitæ. The odour is aromatic, and similar to that of the fruit of *Illicinium anisatum*, or *star anise*, a plant belonging to the family Winteraceae. The taste is sweetish and aromatic. By careless observers, aniseed may be confounded with the fruit of hemlock.

Commerce.—Aniseed is principally imported from Alicant and Germany (the first is preferred); but some is also brought from the East Indies. In 1839, duty (5s. per cwt.) was paid on 192 cwt.

Composition.—A very elaborate analysis of the fruit was made by Brandes and Reimann in 1826. The following are their results:—

- Volatile oil 3·00,
- Stearin combined with chlorophylle 0·12,
- Resin 0·58,
- Fatty oil soluble in alcohol 3·38,
- Phytocol 7·85,
- Incrystallizable sugar 0·65,
- Gum 6·50,
- Extractive 0·50,
- Substance analogous to ulmin (Anis-ulmin) 8·60,
- Gumboin 2·90,
- Lignin 32·85,
- Salts (acetate, malate, phosphate, and sulphate) of lime and potash 8·17,
- Inorganic salts, with silicic acid and oxide of iron 3·55,
- Water 23·00 (excess 1·65).

Oil of Anise (see below).

Physiological Effects.—Anise is an aromatic stimulant. Its effects are similar to those of dill. The odour of anise is said to be recognised in the milk of those who have taken it: moreover, the urine, we are told, acquires an unpleasant smell from it: hence it would appear that the oil of anise becomes absorbed. It has been supposed to promote the secretion of milk, urine, bronchial mucus, and of the menses, though without sufficient evidence. Vogel says that he accidentally discovered that pigeons are readily killed by a few drops of the oleum anisi. Hillefield also notices its poisonous operation on pigeons.

Uses.—Anise is used to flavour liqueurs, sweetmeats, confectionary of various kinds, ragouts, &c.

In medicine it is employed to relieve flatulence and colicky pains, especially of children, and to prevent the gripping effects of some cathartics. Nurses sometimes take it to promote the secretion of milk. It has also been employed in pulmonary affections. It is used as a horse medicine.

1. **OLEUM ANISI**, L. E. D.; *Oil of Anise*. (Obtained by submitting the fruit with water to distillation.)—Mr. Brandes says, that from one cwt. of fruit about two pounds of oil are obtained. The greater part of the oil consumed in this country is foreign. The oil of anise of the shops is imported

into this country from Germany and the East Indies. In 1839 duty (1s. 4d. per lb.) was paid on 1544 lbs. It is procured, by distillation, from the fruit, in whose pericarp it resides. When carefully prepared it is transparent and nearly colourless, having a slightly yellow tinge. It has the odour and taste of the fruit from which it is obtained. Its specific gravity increases with its age: thus Martius says, that when the oil is fresh distilled, the specific gravity is only 0·979; but after keeping it for a year and a half, the specific gravity had increased to 0·9853. It congeals at 50° F., and does not liquefy again under 62°. It is soluble in all proportions in alcohol; but spirit, whose specific gravity is 0·84, dissolves only 0·42 of its weight. By exposure to the air it forms resin, and becomes less disposed to concrete. It is composed of two volatile oils,—one solid at ordinary temperatures (stearoptène); the other liquid (éleoptène),—in the following proportions:—éleoptène 75, stearoptene 25. According to Cahours, the stearoptene consists of C_{20}H_{12}O_{2}.

The oleum badiani, or the oil of star-anise (Illicium anisatum), has the odour and taste of the oil of anise; but it preserves its fluidity at 35·6 F. It is sometimes fraudulently substituted for the oleum anisi.

Adulterations.—Spermactei, which is said to be sometimes added to oil of anise, to promote its solidification, may be distinguished by its insolubility in cold alcohol. Camphor, said to be added for the same purpose, is recognised by its odour.—Dose, five to fifteen drops on sugar, or rubbed up with sugar in camphor mixture.

2. SPIRITUS ANISI, L.; Spirit of Anise. (Oil of Anise, f_{5}j.; Proof Spirit, Cong. j. Dissolve.)—Stimulant, stomachic, and carminative. Dr. Montgomery says that the preparation under this name formerly in the Dublin Pharmacopoeia had nearly the composition of the Irish Usquebaugh, which is coloured yellow by saffron, or green by sap-green. A spirit of anise, sweetened with sugar, is sold by the liqueur dealers. A somewhat similar compound is prepared in France, under the name of crème d'anise.—Dose, f_{5}j. to f_{5}iv.

3. AQUA ANISI, D.; Anise Water. (Extemporaneously made by diffusing the oil through water by the aid of sugar or spirit; or, according to the Dublin formula, by mixing 5j. of the oil with half a gallon of water, and filtering.)—Employed to relieve flatulent colic of infants, and as a vehicle for other medicines.

238. FÆNICULUM VULGARE, Gært.—COMMON FENNEL.

Fæniculum officinale, E.

Sex. Syst. Pentandria, Monogynia.

History.—Fennel (μάραθος) was used by Hippocrates. Some botanists (e. g. Matthiolus) have been of opinion that the μάραθος of Dioscorides is sweet fennel (Fæniculum dulce, De Cand.), and that the ἰππομάραθος of the

1 Observ. on the Dubl. Pharm.
2 P. 551, &c. ed. Fuss.
3 Lib. iii. cap. 51.
same authority is common fennel (Fæniculum vulgare, De Cand.); but the latter part of the opinion, from an observation of Bauhin,2 does not appear probable.3

Botany. Gen. Char.—Margin of the calyx swollen, obsolete, toothless. Petals roundish, entire, involute, with a squarish, blunt lobe. Fruit by a transverse section nearly taper. Mericarps [half-fruits] with five prominent, bluntly-keeled ridges, of which the lateral ones are marginal and rather broader. Channels univittate. Commissure bivittate. Seed nearly semi-terete.—Biennial or perennial herbs. Stems taper, somewhat striated, branched. Leaves pinnatisect, compound; the segments linear, setaceous. Involucre scarcely any. Flowers yellow (De Cand.)

Sp. Char.—Stem somewhat terete at the base. Lobes of the leaves linear, subulate, elongated. Umbels of 13 to 20 rays. Involucre none (De Cand.)

A biennial, three or four feet high. Flowers golden yellow. Fruit scarcely two lines long, oval, of a dark or blackish aspect; the channel is brownish owing to the vitta, the ridges are pale yellowish gray.

Hab.—Sandy and chalky ground all over Europe.

Description.—The fruit, called wild fennel seed (semina seu fructus Feniculi vulgaris) has a strong aromatic, acrid taste, and an aromatic odour. Its other qualities have been described.

Composition.—The peculiar properties of the fruit depend on a volatile oil.

Oil of Common, Wild, or Bitter Fennel (Oleum Feniculi vulgaris.)—A pale yellow, limpid oil, having the peculiar odour of the fruit. Its sp. gr. is 0.997. It congeals by a cold below 50°, though with much more difficulty than oil of anise. It consists of a stearoptène which has the same composition as that of oil of anise; and a liquid oil which is isomeric with oil of turpentine. [The formula of oil of fennel is C\textsubscript{30}H\textsubscript{52}O\textsubscript{2}.—Ed.]

Physiological Effects.—Aromatic stimulant, similar to those of sweet fennel.

Uses.—This species is not employed in medicine.

239. FÆNICULUM DULCE, C. Bauhin; De Cand.—SWEET FENNEL.

Sex. Syst. Pentandria, Monogynia.

(Fructus, L.)

History.—This plant is regarded by some botanists as a cultivated variety of the former plant. De Candolle4 is the principal systematic writer who regards them as distinct species.

Sp. Char.—Stem somewhat compressed at the base. Radical leaves somewhat distichous; lobes capillary, elongated. Umbels of six to eight rays (De Cand.)

This plant differs from F. vulgare in several other particulars. It is an

1 Lib. iii. cap. 82.
2 Prodromus, p. 76.
3 Dierbach, Arzneim. d. Hippocr, 191.
4 Prodr. iv. 142.
annual and much smaller plant. It flowers earlier. Its turiones are sweeter, less aromatic, and therefore edible. The fruit is much longer; some of the specimens being nearly five lines in length, less compressed, somewhat curved and paler, with a greenish tinge.

Hab.—Italy, Portugal, &c. Cultivated as a pot-herb, and for garnishing.

Description.—The fruit, termed sweet fennel seeds (fructus seu semina faniculi dulcis vel faniculi cretici), has a more agreeable odour and flavour than common or wild fennel. Two kinds are known in trade, shorts and longs: the latter is most esteemed.

Composition.—The peculiar properties of the fruit depend on a volatile oil.

Physiological Effects.—Sweet fennel is an aromatic stimulant; its effects are similar to those of anise or dill.

Uses.—Seldom employed. May be given in the flatulent colic of children, or as a carminative vehicle for remedies which are apt to gripe.

1. **OLEUM FENICULI, L. E. D.; Oil of Sweet Fennel; Oleum Faniculi dulcis.** (Obtained by submitting the fruit [bruised, E.] with water to distillation.) — Nineteen cwt.s of the fruit (shorts) yield 78 lbs. of oil. This oil is distinguished from the oil of wild fennel by its more agreeable odour and taste. Stimulant and carminative. Seldom used.—Dose, two to twenty drops.

2. **AQUA FENICULI, E. D.; Fennel Water.** (Obtained like *Aqua Anethi*, see p. 1696.)—Carminative. Employed to relieve flatulent colic of infants, and as a vehicle for other medicines.—Dose, for an adult, f3j. to f3iij.; for an infant, f3j. to f3ij.

240. **ANETHUM GRAVEOLENS, Linn.**—**COMMON GARDEN DILL.**

Sex. Syst. Pentandria, Digynia.

(Fructus, L.—Fruit, E.)

History.—This plant is mentioned by Hippocrates,² by Dioscorides,³ and by Pliny.⁴ It is also noticed in the New Testament.⁵

Botany. **Gen. Char.**—Margin of the calyx obsolete. Petals roundish, entire, involute, with a squarish retuse lobe. Fruit lenticular, flattened from the back, surrounded by a flattened border. Mericarps [half-fruits] with equidistant, filiform ridges; the three intermediate [dorsal] acutely keeled, the two lateral more obsolete, losing themselves in the border. Vittae broad, solitary in the channels, the whole of which they fill, two on the commissure. Seeds slightly convex, flat in front.—Smooth erect annuals. Leaves decompound, with setaceous linear lobes. Involutre and involucellae none. Flowers yellow (De Cand.)

Sp. Char.—Fruit elliptical, surrounded with flat dilated margin (De Cand.)

¹ Private information.
² Opera, p. 359, ed. Pess.
³ Lib. iii. cap. 67.
⁵ Matt. xxiii. 23.

Root tapering long. Stem one and a half to two feet high, finely striated, simply branched. Leaves tripinnate; segments fine capillary; leaf-stalks broad and sheathing at the base. The plant greatly resembles common fennel, though its odour is less agreeable.

Description.—The fruit, commonly called dill seed (fructus seu semina anethi) is oval, flat, dorsally compressed, about a line and a half long, and from a half to one line broad, brown and surrounded by a lighter-coloured membranous margin (ala). Each mericarp (or half-fruit) has five primary ridges, but no secondary ones. In each channel is one vitta, and on the commissure are two vittae. These vittae contain the aromatic oil. The odour of the fruit is strongly aromatic; the taste warm and pungent.

Composition.—Dill owes its peculiar properties to a volatile oil. (See below.)

Physiological Effects.—Aromatic stimulant, carminative and condimentary, analogous to other aromatic umbelliferous fruits.

Uses.—Employed as a condiment by the Cossacks. London1 says the leaves “are used to heighten the relish of some vegetable pickles, particularly cucumbers; and also occasionally in soups and pickles.”

In medicine it is principally employed in the diseases of children. It is a common domestic remedy among nurses, to relieve flatulence and griping of infants. Occasionally it is taken under the idea of its promoting the secretion of milk. Practitioners generally use dill as a vehicle for the exhibition of purgative and other medicines to children, the griping of which it assists in preventing. The whole fruits may be given to adults in doses of ten grains to a drachm.

1. Oleum Anethi, L.; Oil of Dill. (Obtained by submitting the bruised fruit of dill, with water, to distillation.)—Two cwts. of the fruit yield 8 lbs. 5 ozs. of oil.2 This oil is pale yellow. Its sp. gr. is 0.881. Its odour is peculiar and penetrating, analogous to that of the fruit. Its taste is hot, but sweetish. Alcohol and ether readily dissolve it. According to Tietzmann, 1440 parts of water dissolve one part of this oil. Principally used to prepare dill water. May be taken in the dose of a few drops on sugar, or dissolved in spirit.

2. Aqual Anethi, L. E.; Dill Water. (Dill, bruised, lb. iss. [3xviii. E.]; Rectified Spirit, 3ij. E.; Water, Cong. ij. Mix. Let a gallon distil. [Vel, Oil of Dill, f5ij.; Powdered Flint, 5ij.; Distilled Water, Cong. j. Beat up the oil carefully first with the flint, afterwards with the water, and strain the liquor. According to the London Pharmacopoeia it may be made like the Aqua Carui, by triturating the oil with powdered flint and filtering through paper.—Ed.]—Carminative. Dose for adults, f5j. to f35ij.; for infants, f5j. to f3ij. It is generally given to infants with their food.

1 Encyclopaedia of Gardening.
2 Private information.
241. CUMINUM CUMINUM, Linn.—THE OFFICINAL CUMIN.

Sex. Syst. Pentandria, Digynia.
(Tractus, L.—Fruit, E.)

History.—This plant is mentioned in both the Old and New Testament, and by Hippocrates, Dioscorides, and Pliny. The Greeks call it κύμινον ἀμοινον vel αθωπικόν.

Botany. Gen. Char.—Teeth of the calyx 5, lanceolate, setaceous, unequal, persistent. Petals oblong, emarginate, erect, spreading, with an inflexed lobe. Fruit contracted at the side. Mericarps [half-fruits] with wingless ridges; the primary ones 5, filiform, minutely muricated, the laterals forming a border; the secondary ones 4, more prominent, and aculeate. Channels under the secondary ridges 1-vittate. Carpophorus bipartite. Seed somewhat concave anteriorly, on the back convex.—Herbs. Leaves many-cleft: lobes linear, setaceous. Leaflets of the involucre 2 to 4, simple or divided. Involucellum halved, 2- to 4-leaved, becoming reflexed. Flowers white or pink (De Cand.)

Sp. Char.—Lobes of the leaves linear, setaceous, acute. Umbel 3- to 5-cleft. Partial involucre equalling the pubescent fruit (De Cand.)

Root annual. Stem slender, branched, about a foot high. Leaves filiform. Flowers white or reddish.

Hab.—Upper Egypt, Ethiopia. Extensively cultivated in Sicily and Malta.

Description.—The fruit, commonly termed cumin seeds (fructus seu semina cumini), is larger than anise, and of a light-brown or grayish-yellow colour. It has some resemblance to, though it is larger than, caraway. Each mericarp has five primary ridges, which are filiform, and furnished with very fine prickles. The four secondary ridges are prominent and prickly. Under each of these is one vitta. The odour of the fruit is strong and aromatic. Both odour and taste are somewhat analogous to, but less agreeable than, caraway. Cumin is imported from Sicily and Malta. In 1839, duty (2s. per cwt.) was paid on 53 cwt.

Composition.—The peculiar properties of cumin reside in a volatile oil.

Oil of Cumin; Oleum Cuminis.—Obtained by submitting the fruit to distillation with water. Sixteen cwt. of the fruit yield about 44 lbs. of oil. This oil, as usually met with, is pale yellow and limpid. Its smell is disagreeable; its taste very acrid. It consists of two oils, one a carbo-hydrogen, called Cumea or Cymen, C_{10}H_{14}O_{2}; the other an oxygennated oil called Hydruret of Caryn, C_{20}H_{12}O_{2}+H. Caryn is an hypothetical base composed of C_{2}H_{10}O_{2}. When treated with caustic potash, oil of cumin yields hydrated cuminic acid, C_{30}H_{10}O_{3}+Aq. This is a crystallizable solid.

Physiological Effects.—Cumin agrees with the other aromatic umbelliferous fruits in its mildly stimulant and carminative qualities.

Uses.—Internally cumin is rarely used; caraway being an equally efficient and a much more agreeable medicine. As a discutient and resolvent,

1 Isaiah xxviii. 27; Matthew xxii. 23.
2 Opera, 407, &c. ed. Fos.
3 Lib. iii. cap. 68.
it is employed, externally, in the form of plaster (Emplastrum cumini, Ph. L. 1824) and cataplasma (cataplasma cymino, Quincy). In the recent London Pharmacopœia the Emplastrum Cuminii has been restored. The dose of Cumin seeds is grs. xv. to 3ss. It is principally used in veterinary surgery.

[EMPLASTRUM CUMINI, L. (Cumin, Caraway, Laurel, each \(\frac{5}{2}\)ij.; Prepared Burgundy Pitch, lbs. ij.; Wax, \(\frac{7}{2}\)ij.; Olive Oil, Water, each \(\frac{1}{2}\)iss. Add the oil and water to the pitch and wax melted together and powdered dry, then evaporate to a proper consistence.)—This preparation was excluded from the Ph. L. of 1836, but is now restored.—Ed.]

242. CORIANDRUM SATIVUM, Linn.—THE OFFICINAL CORIANDER.

Sex. Syst. Pentandria, Digynia.
(Fructus, L.—Fruit, E.—Semina, D.)

History.—Coriander is mentioned by Moses. It was used by Hippocrates, Dioscorides and Pliny also mention it. The Greeks called it κόρινθος or κορίνθιον.

Sp. Char.—The only species.

Root tapering. Stem erect, twelve to eighteen inches high. Leaves scarcely stalked, all bipinnate and cut; the leaflets of some of the lowermost wedge-shaped or fan-shaped; acute notched; of the rest, in fine, linear segments. Flowers white, often with a reddish tint.

Hab.—Grows wild about Ipswich and some parts of Essex, but is not really indigenous. Native of the south of Europe. Cultivated in Essex.

Description.—The fruit, commonly termed coriander seeds (fructus seu semina coriandri), is globular, about the size of white pepper, of a grayish-yellow colour, and is finely ribbed. It consists of two hemispherical mericarps, adherent by their concave surfaces. Each mericarp has five primary ridges, which are depressed and wavy; and four secondary ridges, more prominent and carinate. The channels are without vitre, but the commissure has two. The odour of coriander is peculiar and aromatic.

1 Exod. xvi. 31.
2 Opera, 559, 529, &c. ed. Fos. 3 Lib. iii. cap. 71.
4 Hist. Nat. lib. xx. cap. 82, ed. Valp.
Garden Angelica:—History.

Composition.—The odour, taste, and medicinal qualities of the fruit depend on volatile oil.

Volatile Oil of Coriander (Oleum Coriandri).—Yellowish; smells strongly and pretty agreeably of the coriander.

Physiological Effects.—Aromatic stimulant, like the other carminative umbelliferous fruits.

Uses.—Dr. Cullen considered coriander as more powerfully correcting the odour and taste of senna than any other aromatic; and hence it was formerly a constituent of the compound infusion of senna, though now ginger is substituted for it. It is only employed in medicine as an adjuvant or corrigent. It is used, however, by the confectioners and distillers. It is a constituent of the Confectio senna.—The dose of coriander is 3ss. to 3j.

2. Umbelliferous Roots used in Medicine.

There are only two umbelliferous roots used in medicine and introduced into the Pharmacopoeia. These are, Angelica and Carrot. Both contain a volatile oil.

243. Archangelica Officinalis, Hoffm. and Koch.—
Garden Angelica.

Angelica Archangelica, Linn. E. D.

Sex. Syst. Pentandria, Digynia.

(Root, E.—Semina, D.)

History.—It is doubtful whether the ancient Greeks and Romans were acquainted with this plant, as no certain notice of it appears in their writings. C. Bauhin calls it Angelica sativa.

Botany. Gen. Char.—Margin of the calyx with 5 short teeth. Petals elliptical, entire, acuminate, with the point curved inwards. Fruit somewhat compressed at the back, with a somewhat central raphé, 2-winged on each side. Mericarps [half-fruits] with thick, keeled ridges; the three dorsal ones elevated, the two lateral ones dilated into a twice as broad wing. Seed not adhering to the integument; the nucleus free, covered all over with numerous vittae. Carpophorus 2-partite.—Perennial herbs. Leaves pinnatisect; segments broadly ovate, acute, coarsely dentate, terminal, lobed. Petioles large, sheathing, sacate. Involucre scarcely any; partial one halved, many-leaved. Flowers white, or greenish (De Cand.)

Sp. Char.—Stem smooth, terete, striated. Leaves bipinnatisect; segments subcordate, lobed, sharply serrated, the odd one 3-lobed; sheaths loose, sac-
Vegetables. Leaflets of the partial involucre equalling the partial umbel (De Cand.)

root biennial, large, fleshy, branched, resinous, pungently aromatic. _Stem_ four or five feet high, a little glaucous. _Foliage, stalks, and even the flowers_, bright green. It flowers from June to September.

Hab. — Indigenous; northern parts of Europe. Cultivated in moist situations, and on the banks of ditches.

Description. — The dried angelica root (_radix angelicae_) of the shops is imported from Hamburg in casks. In 1839 duty (4s. per cwt.) was paid on 386 cwts. Formerly _Spanish angelica_ was alone employed for medicinal purposes. The dried root of the shops consists of a short cylindrical head, from which numerous branches arise. The size of these branches varies: the larger ones are as thick as the little finger, and six or eight inches long. Externally the root is corrugated, and greyish brown. Internally it is dirty white, and presents, when cut transversely, numerous dark points, which are the cut extremities of vessels or intercellular spaces filled with a liquid, strongly odorous oil or oleo-resin. To the taste the root is at first sweet, then hot, aromatic, and bitter. The odour is peculiar, and not very disagreeable. The fruit, called _angelica seeds_ (fructus seu semina angelicae), have the odour and taste, but in a diminished degree, of the root.

Composition. — Angelica root has been analysed by John,¹ and by Bucholz and Brandes. The latter chemists obtained volatile oil about 0'70, acrid soft resin 6'02, bitter extractive 26'40, gum with some common salt 31'75, starch (not inulin) 5'40, woody fibre 8'60, peculiar matter (oxidized extractive?) 0'66, albumen 0'97, water 17'50, [loss 2'0]. The aromatic qualities of the root and seeds depend on the volatile oil and resin.

Physiological Effects. — Both root and seeds are pungent aromatic stimulants and mild tonics.

Uses. — Angelica (either root or seeds) is scarcely employed in modern practice, though it was formerly much esteemed. The tender stems, stalks, and midribs of the leaves, are made, with sugar, into a sweetmeat or candy (candied angelica; caules seu rami angelicae conditi), which, taken as a dessert, is a very agreeable stomachic. The seeds were formerly used in the preparation of the _Spiritus anisi compositus_ of the Dublin Pharmacopoeia. The principal consumption of angelica root and seeds is by rectifiers and compounders in the preparation of gin and the liqueur termed bitters.

¹ Gmelin, Handb. d. Chem. ii. 1277.
244. DAUCUS CAROTA (var. SATIVA), Linn.—COMMON OR WILD CARROT.

Sex. Syst. Pentandria, Digynia.
(Fructus; Radix recens, L.—Radix, D.)
D. Carota var. sativa, De Candolle, E. (Root).
D. Carota var. sylvestris, D. (Semen).

History.—According to Dr. Sibthorp,¹ this plant is the σταφυλίνος of Dioscorides.² Hippocrates³ employed it in medicine under the same name. The σταφυλίνος ὁγρός of Dioscorides is, according to Dr. Sibthorp, the Daucus guttatus.

Botany. Gen. Char.—Margin of the calyx 5-toothed. Petals obovate, emarginate, with an inflexed point; the outer generally radiating, and deeply bident. Fruit somewhat compressed from the back, ovate or oblong. Mericarps [half-fruits] with the five primary ridges filiform and bristly; the three middle ones at the back; the two laterals on the plane of the commissure; the four secondary ridges equal, more prominent, winged, split into a simple row of spines. Channels beneath the secondary ridges 1-vittate. Seed anteriorly flattish.—Usually biennial herbs. Leaves bipinnatisect. Involucre of many, tri-, or pinnatifid leaflets; partial involucre of many, entire, or trifid leaflets. Flowers white or yellow; the central generally fleshy, blackish purple, sterile (De Cand.)

Sp. Char.—Stem hispid. Leaves 2- or 3-pinnatisect; the segments pinnatifid; the lobes lanceolate, cuspidate, almost equal to the umbel. Prickles equal to the diameter of the oblong-oval fruit (De Cand.)

Root slender, yellowish, aromatic, and sweetish. Stem two or three feet high, branched, erect, leafy, hairy or bristly. Leaves on broad, concave, ribbed footstalks, distinctly hairy. Umbels large, white, except the one central neutral flower, which is blood-red. Fruit small, protected by the incurvation of the flower-stalks, by which the umbels are rendered hollow, like a bird’s nest (condensed from Smith).

Hab.—Indigenous; in pastures and the borders of fields, in a gravelly soil, common. Europe, Crimea, and the Caucasus; from thence, probably, carried to China, Cochini-China, and America.

Daucus Carota var. sativa, DC., E.; Cultivated or Garden Carrot.—This has a thick succulent root, whose colour varies. Loudon mentions ten garden varieties.

Description.—The officinal root is that of the cultivated plant (radix dauci sativi). It is tap-shaped, now and then branched, reddish, or pale straw-coloured, succulent, of a peculiar, not unpleasant odour, and a sweet, mucilaginous, agreeable taste. Carrot juice (rob dauci) is reddish, turbid, with the odour and taste of the root. By standing, a succulent matter (amylum dauci), which has been recently employed in medicine, is deposited.⁴ It coagulates at a temperature under 212° F. "The coagulum is yellow, and

¹ Prodr. Fl. Græc. i. 183.
² Lib. iii. cap. 59.
³ Page 686, ed. Fusc.
⁴ Pharm. Central-Blatt für 1841, p. 204.
when dried amounts to 0·629 of the juice. The root of the wild, or uncultivated, carrot is small, woody, acrid, and bitter, with a strong aromatic odour.

The official fruits, usually called carrot seeds (fructus seu semina dauci sylvestris) are those of the wild carrot: they are brownish, from one to one and a half lines long, with a peculiar and aromatic odour, and a bitter and warm taste. Their other characters have been already described. The seeds of the cultivated carrot are much milder.

Composition.—The fruit (commonly termed seeds) has not been analysed: the seeds owe their peculiar properties to volatile oil (oleum seminum dauci sylvestris). The root has been analyzed by Vauquelin, by Wackenroder, and by C. Sprengel. The constituents of the expressed juice, evaporated to dryness, are, according to Wackenroder, fixed oil with some volatile oil 1·0, carotin 0·34, uncrystallizable sugar with some starch and malic acid 93·71, albumen 4·35, ashes composed of alumina, lime, and iron 0·60.

1. Volatile Oil of Carrot Tree.—Colourless, has a smell of carrots, a strong, permanent, unpleasant taste, and a sp. gr. of 0·8863 at 54° F. It is little soluble in water, but very soluble in alcohol and ether. From 34 lbs. of the fresh root only half a drachm of oil was obtained. It is probable that the volatile oil of carrot-fruits possesses analogous properties.

2. Carotin.—A crystalline, ruby red, tasteless, odourless, neutral substance. It is fusible and combustible, but not volatile, soluble in the mixed and volatile oils, slightly so in alcohol, not in ether unless fat oil be present. Its solutions are decolorized by solar light.

3. Pectic Acid.—By the action of alkalis on the ligneous tissue of carrots, Braconnot procured pectic acid. I have repeated his experiments, and can confirm his statements, but the quantity obtained is small. Pectic acid consists, according to Frémon, of C\(_{20}\)H\(_{30}\)O\(_{2}\).

Physiological Effects and Uses.—The fruit (or seed of the shops) of the carrot is an aromatic stimulant and carminative, like the other aromatic umbelliferous fruits. Areteus says it possesses diuretic properties, a statement confirmed by Eberle. It has been employed in suppressions of urine and painful micturition, and also in dropsies. The expressed juice has been used as an anthelmintic.

The boiled root is a well-known article of food. Raw scraped carrot is sometimes applied to chapped nipples: it is a stimulant, and occasionally proves a painful, application. Boiled carrots are only employed in the form of poultices to ill-conditioned sloughing sores.

3. Umbelliferous Pectid Gum Resins.

These are solid compounds, essentially composed of resin, gum, and volatile oil. The most important are Assafetida, Galbanum, Ammoniacum, Sagapenum, and Opoponax.

They are obtained from the roots and stems of umbelliferous plants growing in eastern countries, Persia especially. By distillation with water they yield a volatile oil. This

5. For further details respecting the medicinal uses of the carrot, see Bridault, Traité sur la Carotte, et Recueil d'Observations sur l'Usage et les Effets salutaires de cette Plante dans les Maladies externes et internes, 8vo. Rochelle, An. xi.
oil, at least in the case of assafoetida, is sulphuretted. It is remarkable that many of the strong smelling fetid volatile oils (as garlic, mustard, &c.) also contain sulphur. The action of alcohol and water upon these gum resins may be thus generally stated:—Alcohol dissolves the oil and the resin, and leaves the gum. Water subsequently added to the alcoholic liquid precipitates the resin.

Water dissolves the gum, and suspends the oil and resin, forming a milky mixture.

We are in want of good means of distinguishing the different gum resins chemically. Their peculiar odours at present enable us to distinguish them. In some cases these odours become particularly distinctive by heat, as in the case of ammoniacum. The gum resin of assafoetida is reddened by light.

245. NARTHEX (Ferula) ASSAFOETIDA, (Falconer).—THE ASSAFOETIDA FERULA.

Sex. Syst. Peutandria, Digynia.
(Gummi-resina, L. D.—Gummi-resinous exudation, E.)

History.—It is uncertain at what period assafoetida was first known or described. The difficulty in determining its history arises from the confusion which has existed with respect to the Succus Cyrenaicus and assafoetida. By many writers the two substances were considered to be identical;¹ but this opinion seems now to have been satisfactorily disproved by the discovery of the plant, called by the Greeks σίδηον, by the Romans laserpitium (Thapsia Silphion, Viviani), which yields the Cyrenaic juice, and which agrees tolerably well with the rude figures struck on the Cyrenean coins.² It would appear, however, that the Cyrenaic juice becoming scarce, the ancients employed some other substance of similar, though inferior, properties, as a substitute, and to both of these they applied the term laser. "For many years," says Pliny,³ "this plant [laserpitium or silphion] has not been found in Cyrenaica, because the publicans [or farmers of the taxes] who rent the pastures, finding it more profitable, destroy it as food for cattle. One stalk only, found in our days, was sent to the Emperor Nero. We may know when cattle meet with young shoots of it, by the sleeping of the sheep when they have eaten it, and the sneezing of the goats. For a long time past the only laser brought to us is that which is produced abundantly in Persia, Media, and America; but it is far inferior to the Cyrenaic." It is not at all improbable that the laser of Persia may have been our assafoetida. The word "assafoetida," says Murray,⁴ "seems to have been introduced by the Monks into the school of Salernum." But it appears to have been of oriental origin, and may be, as some have suspected, derived from the word laser. Nicolaus Myrepsus,⁵ almost the last of the Greek physicians, and who lived, according to Sprengel,⁶ about 1227 A. D., speaks of ἀσαφτιδὰ, "There are two kinds of Assa [i. e. laser, Lat. trans.]," ⁷ says Avicenna,⁸ "one fetid, the other odoriferous."³

¹ See Geoffroy, Tract. de Mat. Med. ii. 609.
⁴ App. Med. i. 361.
⁶ Hist. de Méd. iv. 368.
⁷ Lib. 2ndus, tr. 2ndus, cap. 53.
⁸ The word ferula is derived from ferire, to strike. The stalks were used as rods for children, because they made more noise than did harm (London). The term ferula is, in fact, an English word to indicate the instrument with which scholars are beaten on the hand (Walker). The instrument
BOTANY. Gen. Char.—Umbels compound. Involucres 0. Calyx obsolete. Fruit thin, compressed at the back with a dilated border. Ridges 3 only, dorsal. Vittae 1 to each dorsal furrow, and 2 to the laterals. Albumen thin, flat.

Sp. Char.—Assafetida (Falconer). Radical leaves 3-parted; segments bipinnatifid, with oblong-lanceolate, obtuse, decurrent lobes.

Hab.—Saristan, Afghanistain, the Punjab.

Root perennial, tapering, ponderous, increasing to the size of a man's arm or leg, covered with a blackish-coloured bark, beset near the top with many strong, rigid fibres; its internal substance white, fleshy, abounding with a thick, milky juice, which has an excessively strong, fetid, alliaceous smell. Stem two or three yards high or more, six or seven inches in circumference at the base, smooth. Radical leaves nearly two feet long. Kämpfer compares their shape to the leaves of Paeonia officinalis; but in colour, and other respects, he says they resemble Ligusticum Levisticum, or Lovage. The fruit is flat, thin, reddish-brown, like that of parsnip, only rather larger and darker (Kämpfer).

This is now considered to be the genuine assafetida plant; but there is reason to believe that a gum-resin, like assafetida, is obtained from other species of ferula. Ferula persica has been described by Dr. Pope as the true assafetida plant; and the Edinburgh College has admitted it as being, probably, one source of assafetida. Michaux sent its fruit from Persia as assafetida. That it does really yield assafetida seems furthermore probable, from the strong smell of that drug which pervades the whole plant. It is, I think, not unlikely that the tear and lump assafetida of the shops are procured from different species. Dr. Royle suggests, that Prangos pabularia was one of the kinds of Silphion of the ancients, and may be an assafetida plant.

Extraction.—Assafetida is obtained by making incisions into the upper part of the root; the footstalks of the leaves and the fibres at the top of the root being previously removed. Kämpfer divides the business of collecting into four parts; the first begins about the middle of April, and consists in digging the earth about the root, removing the leaves and fibres, which are afterwards laid over the root to defend it from the sun. The second commences on the 25th of May. Each collector is provided with a sharp knife to cut the root, a broad iron spatula to scrape off the juice, a cup fixed to his thigh to receive it, and two baskets hung over his shoulders upon a pole. The top of the root is then cut off transversely, and, on the third day (i.e. the 27th of May), the juice is scraped off and put in the cups. A fresh incision is then made, and the juice removed the day but one following (i.e. the 29th of May), when they again cut the roots. The cups are from time to time emptied into large vessels. The juice is exposed to the sun to become harder, and is conveyed home in the baskets (see fig. 352, p. 1705). The third and fourth acts are mere repetitions of the second. The third commences about the 10th of June, the fourth about the 3d of

is a little wooden pallet or slice (Chambers). Hence Martial calls it the sceptrum pedagogorum or schoolmaster's sceptre (see Lemery).

1 Auen. exot. 533.
3 Phil. Trans. vol. lixv.
4 Lindley, Fl. Med. 46.
6 Illustr. 230.
July. Except after the last operation, the roots are carefully defended from the sun, after each incision, by covering them with leaves.¹

FIG. 352

Extraction of Assafcetida.

Commerce.—Assafcetida is exported from the Persian Gulf to Bombay, from whence it is sent to Europe. It comes over usually in casks and cases. In 1825 the quantity imported was 106,770 lbs.; in 1830 only 8,722 lbs. The quantity retained for home consumption is, however, very small. In 1838 (duty 6s. per cwt.) was paid on 60 cwt.; in 1839, on 24 cwt.

Description and Varieties.—Assafcetida (*Assafcetida; Gummi Assafcetida, offic.*) occurs in irregular pieces of variable size. Externally they are yellowish- or pinkish-brown. The fracture is conchoidal, whitish, or milk-white, translucent, pearly, with a waxy lustre. By exposure to light and air the recently-fractured surface acquires, in a few hours, a violet-red or peach-blossom red colour, which after some days or weeks diminishes in intensity, and gradually passes into yellowish or pinkish-brown. Assafcetida is fusible and inflammable, burning in the air with a white flame and the evolution of much smoke. Its taste is acrid and bitter, and its odour strong.

¹ Kämpfer, *op. cit.*

allaceous, and peculiar; to most persons being remarkably disagreeable, whence the Germans have denominated assafoetida Teufelsdreck or Stercus Diaboli; in plain English, Devil's dung. However, this dislike to the assafoetida is not universal; some of the Asiatics being exceedingly fond of it, taking it with their food as a condiment, or using it to flavour their sauces, or even eating it alone. Hence, among some of the older writers, we find it denominated Cibus Deorum,—Food of the Gods. Captain M. Kinny's tells us, that in Persia the leaves of the plant are eaten like common greens, as is the root when roasted: and Lient. Burnes, speaking of assafoetida, says "in the fresh state it has the same abominable smell; yet our fellow-travellers greedily devoured it." But the fondness for this substance is not confined to the Asiatics; for I am assured, by an experienced gastronome, that the finest relish which a beef-steak can possess, may be communicated by rubbing the gridiron, on which the steak is to be cooked, with assafoetida.

I am acquainted with three varieties only of assafoetida:—

a. Assafoetida in the Tear (Assafoetida in granis seu lachrymis). Assafoetida of the Ferula persica.—This kind, which is comparatively rare, occurs in distinct, roundish, flattened, or oval tears, and also in irregular pieces, varying from the size of a pea to that of a walnut, of a yellow or brownish-yellow colour externally, but white internally. I think it not at all improbable that this variety is obtained from a different plant to that which furnishes the lump variety; for its colour, externally, is more yellow, its odour is much feebler, and its fresh-fractured surface becomes more slowly and less intensely red by exposure to the air. As it has considerable resemblance to ammoniacum in the tear (with which, indeed, except by its odour, it might be readily confounded), may it not be the substance which Olivier calls ammoniacum, and which he says is produced by Ferula persica?

b. Lump Assafoetida (Assafoetida in massis); Assafoetida of the Ferula Assafoetida.—This variety is the kind usually met with in the shops. It occurs in variable sized masses, of irregular forms, and having a reddish or brownish-yellow colour. Frequently these masses are observed to be made up of tears, agglutinated by a reddish-brown substance: these form that kind of assafoetida sometimes denominated amygdaloid (assafoetida amygdaloides).

γ. Stony Assafoetida (Assafoetida petraea).—I have never met with this kind in English commerce. My samples were received from Dr. Martiny. It occurs in irregular, more or less angular pieces, which have the odour of assafoetida, and a yellowish-brown colour, and present numerous small shining points or plates. It slightly effervesces in hydrochloric acid. By incinuration it yields a white ash, which strongly effervesces on the addition of acids. Angelini found in stony assafoetida, 51·9 per cent. of gypsum.

Composition.—Assafoetida has been analysed by Pelletier, Trommsdorff, Brandes, and Angelini.6—

1. Ainslie, Mat. Ind. i. 21.
2. Travels, ii. 243.
3. [According to Guibourt, the reason why it does not become so red by exposure to air is owing to the fact that it contains less volatile oil.—Ed.]
5. Bull. de Pharm. iii. 556.
1. **Volatile Oil of Assafetida.**—This is obtained by distilling assafetida with either water or alcohol. It is on this principle that the odour of this gum-resin depends. It is lighter than water, and is at first colourless, but by exposure to the air acquires a yellow tinge. It dissolves in all proportions in alcohol and ether, but requires more than 2000 times its weight of water to dissolve it. Its taste is at first mild, then bitter and acrid; its odour is very strong. It evaporates very quickly, and soon fills a large room with its odour. Sulphur, and probably phosphorus, are among its elementary constituents. The presence of sulphur in assafetida is shown in various ways: thus if chloride of barium be added to water distilled from assafetida, and likewise a little chlorine, the sulphur becomes gradually acidified, and after some time a precipitate of sulphate of baryta is formed. If the oil be rubbed with mercury, it forms sulphate of mercury. Moreover, if pills made of assafetida be rolled in silver leaf, the latter, after a few days, is blackened by the formation of a sulphuret of silver. According to Illasiwetz the oil is composed of two sulphures of the hydrocarbon, $C_{26}H_{22}$, and when fresh distilled, like the essential oils of black mustard and horseradish, it contains no oxygen. It becomes acid by exposure to air, and on boiling the oil hydrosulphuric acid is disengaged.

2. **Resin of Assafetida.**—The resinous matter of assafetida is soluble in alcohol. When the alcoholic solution is mixed with water, a milky fluid is formed, owing to the deposition of the hydrated resin. Oil of turpentine and the oil of almonds also dissolve the resin, but less readily than alcohol. The resin obtained by evaporating the alcoholic solution, consists, according to Johnston, of $C_{29}H_{26}O_6$. By exposure to the sun's rays it becomes violet red. Brandes has shown that the resin of assafetida is of two kinds; one insoluble in ether, the other soluble. The proportion of the first to the second is as 1:6 to 47:25.

a. **Resin insoluble in ether.**—Is brownish-yellow, brittle, tasteless, has a slight alliaceous odour, is fusible, and soluble in warm caustic potash.

b. **Resin soluble in ether.**—Is greenish-brown, brittle, has an aromatic odour, and a faint, but permanent, alliaceous bitter taste. Chlorine decolorizes it. Cold oil of vitriol renders it dark red: if heat be applied, sulphurous acid is evolved, and the mixture becomes black: if the liquid be diluted with water, and saturated with an alkali, the surface assumes a sky-blue colour. Nitric acid renders it first orange, then yellow, and makes it almost insoluble in ether. Hydrochloric acid dissolves it, and colours it pale-red. It dissolves in boiling concentrated acetic acid, but is deposited when the solution cools.

Characteristics.—Assafetida possesses the usual characteristics of a gum-resin. From other gum-resins it is distinguished by its peculiar odour, which is especially obvious when a small portion of this substance is heated on the point of a knife, and by its fresh-fractured surface becoming red on exposure to air. Heated with sulphuric acid it is blackened, yields a dark, blood-red liquid, and develops sulphurous acid gas: if the liquid be diluted with water, and saturated with caustic potash, it becomes blue, especially on the surface, by reflected light, similar to that observed when disulphate of quina is dissolved in water (see p. 1054).

Physiological Effects.—Assafetida is usually placed, by pharmacological writers, among those remedies denominated antispasmodics or stimulants.
It is the most powerful of the fetid gum-resins. Its local effects are moderate: it is devoid of those acid and irritating properties possessed by gamboge, euphorbium, scammony, and many other resinous and gummy-resinous substances. In the mouth, as already mentioned, it causes a sensation of heat, and the same effect, accompanied by eruptions, is experienced in the stomach, when it is swallowed. In Professor Jörg and his pupils (males and females), who endeavoured to elucidate the effects of this medicine by experiments made on themselves, doses of assafoetida, not exceeding a scruple, caused uneasiness and pain of the stomach, increased secretion of the gastro-intestinal membrane, and alvine evacuations. The pulse was increased in frequency, the animal heat augmented, the respiration quickened, and the secretions from the bronchial membrane and skin promoted. A very constant effect was headache and giddiness. The urino-genital apparatus appeared to be specifically affected, for in the males there was an increase of the venereal feelings, with irritation about the glans penis, while in the females the eata-menial discharge appeared before its usual period, and uterine pain was experienced. These stimulant effects of assafoetida were observed in a greater or less degree in all the nine persons experimented on; and it should be borne in mind, that the dose did not, in any one case, exceed a scruple. Very opposite to these results, and to the observations of practitioners generally, is the statement of MM. Trousseau and Pidoux, who tell us that they have taken half an ounce of good assafoetida at one dose, with no other effect than that of altering the odour of their secretions, by which they were kept for two days in an infected atmosphere, possessing a more horrible degree of fetidity than even assafoetida itself! These apparently contradictory results seem to prove that different individuals are most unequally susceptible of the influence of this remedy. The influence of assafoetida in convulsive and spasmodic diseases seems indisputable. As in these cases the functions of the excito-motory system are the functions principally or essentially involved, it is not assuming too much to suppose that the influence of assafoetida is principally directed to the excito motory nerves. To paraphrase the words of Dr. M. Hall, assafoetida acts through the excitator nerves; its effects are manifested through the motor nerves. The varying degrees of excitability or susceptibility (natural and morbid) of these nerves in different subjects, will, perhaps, in some measure account for the unequal effects produced by this agent on different healthy individuals, as well as for the therapeutical influence in certain subjects being disproportionate to the observed physiological effects.

Assafoetida, or its odorous principle, becomes absorbed by the veins, though slowly. Flandrin gave half a pound of this gum-resin to a horse; the animal was fed as usual, and killed sixteen hours afterwards. The odour of assafoetida was distinguished in the veins of the stomach, of the small intestine, and the caecum: it was not noticed in the arterial blood, nor in the lymph. Tiedemann and Gmelin were not successful in their search for it; they gave two draehms of assafoetida to a dog, and at the end of three hours were unable to recognize

3 Lectures, in the Lancet, April 14, 1838.
4 Magendie, Physiol. by Milligen, 288, 1823.
5 Veräch, S. 9.
the odour of it either in the chyle of the thoracic duct, or in the blood of the splenic and portal veins; but they detected it in the stomach and small intestines. In farther proof of the opinion that assafetida becomes absorbed, may be mentioned the detection of the odour of this substance in the secretions. The experience of MM. Trousseau and Pidoux, already related, may be adduced as corroborative of this statement. We are told that the transpiration of Asians who use assafetida daily, is extremely fetid; a circumstance to which Aristophanes\(^1\) alludes. Vogt\(^2\) says, that the secretions from curious ulcers sometimes smell of assafetida, when this substance has been taken for some time.

The stimulant influence of assafetida over the organs of circulation and of secretion (as the bronchial membrane and skin), depends apparently on the topical action of the oily and resinous particles on the vessels in their passage through the latter.

Uses.—From the foregoing remarks it will be readily gathered, that assafetida is contraindicated in febrile and inflammatory diseases, on account of its stimulant properties; as also in vascular irritation, or inflammation of the stomach, on account of its topical influence on this viscus. On the other hand, it is found highly useful in spasmodic or convulsive diseases not dependent on disease of the nervous centres, but of the kind called by Dr. Hall eccentric.

1. In spasmodic and convulsive diseases.—Few remedies have acquired such celebrity in hysteria, as assafetida. Dr. Cullen\(^3\) speaks in the highest terms of it, and I believe the experience of most practitioners corroborates his opinion of its virtues. "I have found it," says he, "to be the most powerful in all hysterical cases; and when the presence of an hysterical paroxysm prevented medicines being taken by the mouth, I have found it given in oyster to be very effectual." When the circulation is very languid, ammonia may with advantage be conjoined. Schönheyder\(^4\) recommends assafetida with opium, in the form of oyster. In infantine convulsions, clysters of assafetida are often used with good effect. Even in the epilepsy of adults they are not always without value. In purely spasmodic asthma, I have never seen relief from the use of assafetida. This observation, which accords with Dr. Cullen’s experience, does not agree with the statements of others. Trousseau and Pidoux\(^5\) declare they have seen it produce good and undoubted effects. But in old chronic catarrhs, with occasional spasmodic difficulty of breathing and spasmodic cough, I have procured the most marked relief by the combined use of assafetida and ammonia. I have no experience of the use of this gum-resin in the disease called laryngismus stridulus, in which Millar,\(^6\) and others, have found it beneficial. In hooping cough, both Millar and Kopp\(^7\) have found it beneficial. It promotes expectoration, and diminishes both the violence and frequency of the attacks. The repugnance which children manifest to its use is, however, a great drawback to its em-

1 Equites, Act. ii. Scen. 4.
2 Pharmakodynam. ii. 126, 2te Aufl.
4 Acta Reg. Soc. Hafn. i. 168.
6 Observations on the Asthma and Hooping Cough, 1769.
7 Lond. Med. Gaz. i. 581.
ployement. In flatulent colic of hysterical and dyspeptic individuals, or of infants, few remedies are more efficacious, when the disease is unaccompanied by any marks of inflammatory action, and is attended with constipation. Of its efficacy in the flatulent colic of infants, I can speak from repeated observation; it is given with great benefit in the form of clyster. In most cases, its laxative operation is an advantage; but should this be an objection, it may be counteracted by the addition of laudanum.

2. As a stimulating expectorant and antispasmodic in chronic catarrh, it is often of considerable use. It is adapted for old persons, and where the disease is of long standing. I have found it most beneficial in those cases where the cough and difficulty of breathing assume at intervals a spasmodic form, and where the wheezing is considerable. In such I have found full doses of assafoetida with ammonia give great relief. In delicate females, subject to repeated attacks of catarrh, attended with wasting, sweating, and other constitutional symptoms of phthisis, I have found assafoetida of frequent benefit. In these cases it does not act merely by its expectorant effects, for oftentimes one good consequence of its use is diminution of excessive bronchial secretion.

3. In affections of the alimentary canal.—The use of assafoetida in flatulent colic has been above noticed. It is often of considerable value in relieving flatulence in old persons, especially in hypochondriacal and hysterical subjects, and when accompanied with constipation, as it has a laxative effect. It provokes the expulsion of the gaseous matter, and appears to aid in preventing its reproduction. It is beneficially used in the form of clyster, to relieve a tympanitic condition of the abdomen and flatulent distension of the bowels in low fevers. In constipation with flatulence, it is a useful addition to purgative mixtures or enemata. It has often been used as an anthelmintic; but is of less frequent efficacy.

4. As an emmenagogue in uterine obstructions (amenorrhœa and chlorosis) assafoetida has been employed from a notion that it specifies affected the womb,—an opinion which is supported by the reports of Jörg’s female pupils, that it brought on the catamenial discharge earlier than usual. Experience, however, has not been much in favour of the emmenagogue operation of assafoetida when this remedy has been employed in uterine diseases. "Whether it be owing," says Dr. Cullen, "to the imperfect state in which we too frequently have this medicine, or to somewhat in the nature of the amenorrhœa, I would not positively determine; but this is certain, that I have very seldom succeeded in employing the assafoetida as an emmenagogue."

5. As a condiment.—I have already referred to the condimentary uses made of assafoetida, especially by oriental nations. At the Pass of "Dundan Shikun," says Lieutenant Burns,¹ "we found the assafoetida plant in exuberance, and which our fellow-travellers ate with great relish." It is much used by the Brahmans against flatulence, and to correct their cold vegetable food.²

Administration.—The dose of assafoetida is from grs. v. to 3j. or 5ss.

¹ Travels, i. 143.
² Ainslie, Materia Ludica, vol. i. 21.
It may be given in substance, in the form of pill, or made into an emulsion. In hysteria and flatulent colic, where we want an immediate effect, it is best administered in a liquid form. Used as an enema, it may be administered to the extent of two drachms, rubbed up with warm water. The following are the official preparations of assafoetida:

1. **Enema Assafoetida**, L. [Enema Fætidum, D. E.]; Assafoetida or Fetid Clyster. (Assafoetida, prepared, 5j.; decoction of Barley, Oss. Beat up the assafoetida with the decoction gradually added until they are perfectly mixed. According to the Dublin Pharmacopœia, two drachms of the tincture are to be added to twelve ounces of water.)—The fetid clyster is a valuable stimulant, antispasmodic, and carminative purgative, which may be used with most beneficial results in hysteria, flatulent colic, infantile convulsions, and worms in the rectum.

3. **Pilulae Assafoetida**, D. E.; Assafoetida Pills. (Assafoetida, Galbanum, and Myrrh, three parts of each; Conserve of Red Roses, four parts, or a sufficiency; mix them, and beat them into a proper pill mass, E.—Galbanum, 5j.; Myrrh and Treacle, of each 3j.; Assafoetida, 5ij. Heat all the ingredients in a capsule, by means of a steam or water bath, and stir the mass until it assumes a uniform consistence, D.)—As the most powerful ingredient of this combination is assafoetida, the more appropriate name for the pills would be pilulae assafoetida composita. This compound is stimulant and antispasmodic. It is used in hysteria, chlorosis, &c. Dose, grs. x. to 3j.

5. **Spiritus Ammoniæ Fætidus**, L. E. D. (See ante, p. 435.)

6. **Emplastrum Assafoetida**, E.; Plaster of Assafoetida. (Litharge Plaster; Assafoetida, of each 3ij.; Galbanum; Bees'-wax, of each 3j. Liquefy the gum-resins together, and strain them; then add the plaster and wax, also in the fluid state, and mix them all thoroughly.)—It is applied as an antispasmodic, over the stomach or abdomen in hysteria with flatulence, to the chest or between the shoulders in hooping-cough.
246. **FERULA? AN UNCERTAIN SPECIES YIELDING SAGAPENUM, L.**
Sex. Syst. Pentandria, Digynia.
(Gummi-resina, L.)

History.—Sagapenum (σαγαπενον) is mentioned both by Hippocrates and Dioscorides. Pliny calls it Sacopenum. Dioscorides says it is a liquor obtained from a ferulaceous plant growing in Media.

Botany.—Nothing is known with respect to the plant yielding sagapenum. Willdenow considered it to be Ferula persica, and he has been followed by Sprengel and Fée. But his opinion was not supported by any well-ascertained fact; on the contrary, several circumstances already mentioned seem to show that this plant produces a kind of assafoetida. There is, indeed, no evidence to prove that sagapenum is got from a Ferula, for the statement of Dioscorides cannot be admitted as having much weight.

Description.—Two kinds of sagapenum (sagapenum; gummi sagapenum) are occasionally met with. The finest (sagapenum in the tear) consists of masses made up of agglutinated, brownish-yellow, semi-transparent tears, and resembling galbanum, but having a darker colour and a more allaceous odour. A commoner kind (soft sagapenum) occurs in soft, tough masses, in which no distinct tears are distinguishable. When heated on the point of a knife in the candle, sagapenum gives out a much more aromatic and agreeable odour than galbanum. It has a hot and acrid taste. It is imported from the Levant.

Composition.—Sagapenum has been analysed by Pelletier, and by Brandes.

<table>
<thead>
<tr>
<th>Pelletier’s Analysis</th>
<th>Brandes’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>Resins</td>
</tr>
<tr>
<td>54.26</td>
<td>50.29</td>
</tr>
<tr>
<td>Gum</td>
<td>Gum, with calcareous salts</td>
</tr>
<tr>
<td>31.94</td>
<td>32.72</td>
</tr>
<tr>
<td>Volatile oil and loss</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>11.80</td>
<td>3.73</td>
</tr>
<tr>
<td>Bassorin</td>
<td>Bassorin</td>
</tr>
<tr>
<td>1.00</td>
<td>4.48</td>
</tr>
<tr>
<td>Malate of lime</td>
<td>Malate and phosphate of lime</td>
</tr>
<tr>
<td>0.40</td>
<td>1.12</td>
</tr>
<tr>
<td>Peculiar matter</td>
<td>Impurities</td>
</tr>
<tr>
<td>0.60</td>
<td>4.30</td>
</tr>
<tr>
<td>Sagapenum</td>
<td>Water</td>
</tr>
<tr>
<td>10.00</td>
<td>4.60</td>
</tr>
<tr>
<td></td>
<td>Sagapenum</td>
</tr>
<tr>
<td></td>
<td>10.124</td>
</tr>
</tbody>
</table>

1. **Oil of Sagapenum.**—Pale yellow, lighter than water, soluble in alcohol and ether. Has a strong alliaceous odour, and a mild (afterwards hot) bitter, alliaceous taste. Sulphuric acid renders it dark red.

2. **Resin of Sagapenum.**—Obtained by evaporating an alcoholic solution, it is pale yellow, having a strong garlic odour, and becoming fluid at 212° F. Its composition, according to Johnston, is C10H18O9. By the action of ether it is resolved into two resins.

a. **Resin insoluble in ether.**—Brownish-yellow, tasteless, odourless, fusible, soluble in warm liquor potasse and in spirit, but insoluble in the oils of turpentine and almonds.

b. **Resin soluble in ether.**—Reddish-yellow, with a feeble odour of sagapenum, and a mild (afterwards bitter) taste. It is soluble in spirit, and slightly so in the oils of turpentine and almonds. It dissolves in sulphuric acid, forming a blood-red solution, from which water separates a violet substance.

1 Page 626, ed. Fuss.
2 Lib. iii. cap. 95.
4 Bull. de Pharm. iii. 481.
5 Gmelin, Handb. d. Chem. ii. 625.
Physiological Effects and Uses.—Its effects and uses are the same as those of assafætida. It is usually considered to hold an intermediate rank between assafætida and galbanum; but it is rarely employed.

Administration.—It is given in substance, in the form of pill, in doses of from grs. v. to 3j. or 5ss.

1. Sagapenum Præparatum. (Prepared in the same manner as directed for Ammoniacum: vide Ammoniacum preparatum.)—It enters into the composition of the Pilula Galbani Composita of the London Pharmacopœia (see post). Sagapenum is used as a warm stimulating purgative in dyspepsia, with flatulence and costiveness. Dose grs. v. to 3j.

247. Dorema Ammoniacum, Don.—The Ammoniacum Dorema.

History.—The term ammoniacum has been applied to two different gum-resins; one, the produce of Ferula tingitana; the other, of Dorema Ammoniacum. The first is the ammoniacum of Hippocrates, Dioscorides, and Pliny; the latter is the commercial ammoniacum of the present day.

Dioscorides says ἀμμωνιακόν is obtained from a species of Ferula, which he calls ἀγασολλίς, growing near Cyrene, in Africa. Pliny terms the plant Metopion, and says it grows in that part of Africa which is subject to Ethiopia, near the temple of Jupiter Ammon, which, as well as the gum-resin, received its name from ἀμμως, sand, on account of the sandy soil of the country. Both Dioscorides and Pliny mention two kinds of ammoniacum: the best, called Thraxton (θαξίσθια) resembled olibanum, and had an odour like castoreum, and a bitter taste; and the commonest, termed Phyrama (φυράμα) had a resinous appearance, and was adulterated with earth and stones. African ammoniacum (in Arabic, Fasōgh or Feshook) is, Dr. Lindley informs me, "certainly the produce of Ferula tingitana."

I have not been able to ascertain when Persian ammoniacum (the produce of Dorema Ammoniacum) first came into use. As the Greeks and Romans make no mention of it, they were, probably, unacquainted with it. Avicenna does not mention the origin of his ammoniacum (assach, Arab.) The ammoniac (eschak, Arab.) of Abu Mansur Mowafik, an ancient Persian physician, who wrote about 1055 A.D., was doubtless of the Persian kind; as was also the ammoniac (derukht ushak) of Beva Ben Khuas Khan, A.D. 1512. The Arabic terms (assach, ushak, and oshac,) by which the three last-named authors designate ammoniac, resemble the name (oshac) by which the ammoniacum plant is now known in Persia; hence we infer they all referred to the same object.

1 Page 670, ed. Fæs.
2 Lib. iii. cap. 98.
4 Lib. ii. cap. 8.
5 Lib. Fund. Pharm. i. 35, ined. R. Seligmann, 1830.
6 Ainslie, Mat. Ind. i. 160.
7 Linn. Trans. xvi. 605.

Botany. Gen. Char.—Epigynous disk cup-shaped. Fruit slightly compressed from the back, edged; with three distinct, filiform, primary ridges near the middle, and, alternating with them, four obtuse secondary ridges; the whole enveloped in wool. Vitae, 1 to each secondary ridge, 1 to each primary marginal ridge, and 4 to the commissure, of which two are very small (Lindley).

Sp. Char.—The only species.

A glaucous green plant, about 7 feet high, looking like the Opoponax. Root perennial. Stem about 4 inches in circumferences at the base. Leaves large, petiolate, somewhat bipinnate, 2 feet long; pinnae in three pairs; petioles downy, sheathing at the base. Umbels proliferous, racemose; partial ones globose, on short stalks, often arranged in a spiked manner. Involucre, general or partial, none. Petals white. Stamens and styles white. Ovaries buried in wool. Fruit naked. (Condensed from Don.)

Hab.—Persia, in the province of Irak, near Jezud Khast, and on the plains between Yerdekaust and Kumisha.

Extraction.—The whole plant is abundantly pervaded with a milky juice, which oozes forth upon the slightest puncture being made, even at the ends of the leaves. This juice, when hardened, constitutes ammoniacum. Through the kindness of my friend Dr. Lindley, there is in my museum the upper part of the (apparently flowering) stem, about ten inches long, with lumps of ammoniacum sticking to it at the origin of every branch. It was gathered by Sir J. McNiell, in Persia (I believe between Ghorian and Khaff). It does not appear that artificial incisions are ever made in the stem. Lieut.-Col. Kennet¹ says, "When the plant has attained perfection, innumerable beetles, armed with an anterior and posterior probe of half an inch in length, pierce it in all directions; it [ammoniacum] soon becomes dry, and is then picked off, and sent via Bushire to India, and various parts of the world."

Commerce.—Ammoniac is usually imported from Bombay, but occasionally it comes from the Levant. It is brought over in chests, cases, and boxes. The quantity imported is but small.

Description.—Common or Persian ammoniacum, usually termed gum ammoniacum or ammoniac (gummi ammoniacum), occurs in two forms; in the tear and in the lump.

a. Ammoniacum in the Tear (Ammoniacum in lachrymis seu granis) occurs in distinct dry tears, usually more or less spheroidal, though frequently of irregular forms, varying in size from that of the fruit of coriander (or even smaller) to that of a walnut. Externally they are of a yellow (pale reddish or brownish) colour, with a waxy lustre; internally they are white or opalescent, opaque, or only feebly translucent at the edge of thin films. At ordinary temperatures it is moderately hard and brittle, but softens like wax in the hand.

b. Lump Ammoniacum (Ammoniacum in placentis seu massis).—This occurs in masses usually composed of agglutinated tears, whose properties it possesses. It is sometimes met with in soft plastic masses of a darker colour, and mixed with various impurities. To separate these, it is melted and strained (Strained ammoniacum; Ammoniacum colatum).

Both kinds have a faint, unpleasant, peculiar odour, by which this gum-

¹ Linn. Trans. xvi. 605.
Ammoniacum Dorema:—Composition; Effects. 1715

Resin may be readily distinguished from all others. This odour is best detected by heating the ammoniacum on the point of a pen-knife. The taste is bitter, nauseous, and acrid. Umbelliferous fruits are not unfrequently found intermixed with both sorts. In most of its other properties ammoniacum agrees with other gum-resins.

I am indebted to Dr. Lindley for a fine sample of African Ammoniacum (άμμωνικος, Diosc.) It was sent by W. D. Hays, Esq., the British Consul at Tangier, to the Hon. W. T. Fox Strangways, and is marked, "Gum Ammoniac or Fausgh, Tangier, 17 June, 1839, J. W. D. II." It is an oblong piece, about three inches long, and one and a half inches thick, and broad. Its weight is about 830 grains. Externally it is irregular and uneven, and has a dirty appearance, similar to what ammoniacum would acquire from repeated handling and long exposure to the air in a dusty situation. It is partially covered with paper. A few pieces of reddish chalky earth (which effervesces with acids) are found sticking to it, thus confirming the account given of it by Jackson, though the quantity of this on my specimen is not sufficient to affect in any way the saleability of it. It appears to be made up of agglutinated tears, like the lump Persian ammoniacum. Internally it has very much the appearance of lump ammoniacum, but is not so white, but has a brownish, reddish, and in some places a faint bluish tint. Its odour is very faint, and not at all like Persian ammoniacum. Heated on the point of a knife, its distinction from Persian ammoniacum is very obvious. Its taste is also much smaller than that of the commercial ammoniacum. Rubbed with water, it forms an emulsion like the latter. It is the produce of Ferula tingitana (Lindley).

COMPOSITION.—Ammoniacum has been analysed by Calmeyer, Bucholz, Braconnot, and by Hagen.

<table>
<thead>
<tr>
<th>Braconnot's Analysis</th>
<th>Hagen's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin 70'0</td>
<td>Resin 68'6</td>
</tr>
<tr>
<td>Gum 18'4</td>
<td>Gum 19'3</td>
</tr>
<tr>
<td>Gluteniform matter, insoluble in water and alcohol 4'4</td>
<td>Gluten (colla) 5'4</td>
</tr>
<tr>
<td>Water 6'0</td>
<td>Extractive 1'6</td>
</tr>
<tr>
<td>Loss 1'2</td>
<td>Sand 2'3</td>
</tr>
<tr>
<td>Ammoniacum 100'0</td>
<td>[Volatile oil and water] 2'8</td>
</tr>
</tbody>
</table>

1. Volatile Oil of Ammoniacum.—Transparent, lighter than water.
2. Resin of Ammoniacum.—Reddish-yellow, tasteless, has the odour of the gum-resin. Soluble in alcalies and alcohol; partially soluble in ether and the oils (fixed and volatile). Its constitution, according to Johnston, is C40H80O9.

Physiological Effects.—The effects of ammoniacum are similar to, though less powerful than, those of assafoetida and of the other fetid gum-resins already mentioned. MM. Trousseau and Pidoux assert that in all the cases in which they have employed it, it had no stimulant effect either local or general. "We have taken," say these authors, "two drachms of this substance at once, without experiencing any of those accidents complaisantly indicated by authors." I would remark, however, that the local irritation produced by the plaster of ammoniacum is known to most practitioners,—a popular eruption being a frequent result of the application of this agent. Ammoniacum contains much less volatile oil than either assafoetida or gal-

1 Account of the Empire of Morocco, 3d edit. p. 156.
3 Ann. de Chem. lxviii. 69.
4 Schwartz, Pharm. Tabel. 280, 2te Ausg.
5 Traité de Thérap. p. 19.

Vol. 11.
banum; its stimulant influence is less than either of these. Full doses of it readily disturb the stomach.

Uses.—Though applicable to all the same cases as assafetida and the other fetid gum-resins, its internal use is principally or almost solely confined to chronic pulmonary affections. It is not fitted for irritation or inflammation of the bronchial membrane. But in chronic coughs, with deficient expectoration, or in chronic catarrhs and asthmatic cases of old persons with profuse secretion, it sometimes gives slight relief. Though I have seen it extensively employed, in a few cases only have I observed it beneficial. As a topical, discutient, or resolvent application, in the form of plaster, to glandular enlargements and indolent affections of the joints, it occasionally proves useful.

Administration.—The dose of ammoniacum is from grs. x. to 5ss. It may be given in the form of pill or emulsion. It is a constituent of the Compound pills of squills, a very useful expectorant in old catarrhs.

1. MISTURA AMMONIACI, L. D.; Lac Ammoniaci; Ammoniacum Mixture. (Ammoniacum, 5v. [3ij. D.]; Water, Oj. [Water, f 3viij. D.]. Rub the ammoniacum with the water gradually poured on, until they are perfectly mixed. [It should be strained through muslin, D.]).—The resinous constituent of ammoniacum is more effectually suspended in water by the aid of the yolk of an egg. This mixture operates as a stimulant to the bronchial membrane, and is used as an expectorant in chronic coughs, humoral asthma, &c. It is a convenient and useful vehicle for squills or ipecacuanha. Dose, f 3ss. to f 3j.

2. EMPLASTRUM AMMONIACI, L. E. D.; Plaster of Ammoniacum. (Ammoniacum, 5v.; Diluted Acetic Acid, f 3viij.; [Distilled Vinegar, f 3ix. E.]; Gum Ammoniac in coarse powder, 3iv.; Proof Spirit, f 3iv. D.]. Dissolve the ammoniacum in the acid, vinegar, or spirit, then evaporate the liquor with a slow fire, L. [over the vapour-bath, E.; or water-bath, D.], constantly stirring, to a proper consistence. The best solvent is undoubtedly Proof Spirit, as recommended in the Dublin Pharmacopoeia.)—A very adhesive, stimulant, and discutient or resolvent plaster. It sometimes causes an eruption. It is applied to indolent swellings, as of the glands and joints. A very useful application to the housemaid’s swollen knee.

3. EMPLASTRUM AMMONIACI CUM HYDARGYRO, L. E. D. (See p. 836). [The appearance of a new edition of the Dublin Pharmacopoeia since the first volume of this work was printed, renders it necessary to state here that the Emplastrum Ammoniaci cum Hydargyro is no longer made as there directed. The present formula is Ammoniac Plaster, 3iv.; and Mercurial Plaster, 3viij. These plasters are melted together by means of a steam- or water-bath, and constantly stirred until the mixture stiffens on cooling.—Ed.]

4. AMMONIACUM PREPARATUM, L.; Prepared Ammoniacum. (Ammoniacum, in the mass, lb. j.; Water, as much as may be necessary to cover the ammoniacum. Boil until mixed; strain the mixture through a hair sieve, and evaporate by water-bath, carefully stirring, so that it hardens on cooling.)—This cleansing is only necessary for the ammoniacum as obtained in the mass (lump ammoniacum), but is not required for the tear ammoniacum.
248. GALBANUM OFFICINALE, Don.—OFFICINAL GALBANUM.

Sex. Syst. Pentandria, Digynia.

(Gummi-resina, L. D.—Concrete gummy-resinous exudation of an imperfectly ascertained umbelliferous plant, probably a species of Opoidia, E.)

History.—Galbanum is mentioned by Moses, who ranks it among the sweet spices. It was used in medicine by Hippocrates: Dioscorides says it (καλβανος) is the μετώπον, growing in Syria.

Botany.—Much uncertainty still exists respecting the plant which yields galbanum. "The Babon Galbanum of Linnaeus possesses neither the smell nor the taste of Galbanum, but in these particulars agrees better with Fennel, and the fruit has no resemblance whatever to that found in the gum." The Dublin College in its new Pharmacopoeia describes galbanum as the gum-resinous exudation of the Opoidia galbanifera. This is assigned on the authority of Lindley. Mr. Don found an umbelliferous fruit in the galbanum of commerce, which he believes to be that of the plant yielding this gum-resin; and, as it constitutes a new genus, he has called it Galbanum officinale. The following are the characters of the fruit:

Fruit compressed at the back, elliptical; ridges seven, elevated, compressed, bluntly keeled, not winged; the lateral distinct, marginal. Channels broadish, concave, without vitae. Commissure flat, dilated, bivittate; vittae broad, somewhat curved. (Don.)

But though it is not at all improbable that these fruits are the produce of the galbanum plant, yet no proof of this has been hitherto adduced, and Dr. Lindley, therefore, very properly asks, "Did the fruit found by Mr. Don upon the gum really belong to it?"

More recently Sir John M'Niell sent home specimens of a plant called a second sort of ammoniacum, gathered near Durrood, July 27, 1838, to the branches of which are sticking lumps of a pale yellow waxy gum-resin, which Dr. Lindley took for galbanum; and the plant which yields it being essentially different from all others, has been named by him Opoidia galbanifera, the name now selected by the Dublin College. Dr. Lindley was kind enough to send me a small fragment of this gum-resin for examination, but I was unable to identify it with any other known product of the order Umbellifere. It certainly was neither assafoetida nor ammoniacum; nor did it appear to me to be either sagapenum or galbanum. The precise country where galbanum is produced has not been hitherto ascertained. Dioscorides says it is obtained in Syria; a statement which is perhaps correct, though hitherto no evidence of this has been obtained. It is not improbable that it is also procured in Persia, or even in Arabia, as suggested by Dr. Royle: Opoidia galbanifera grows in the province of Khorasan, near Durrood. The German pharmacologists distinguish two varieties—Galbanum Levanticum and Gal-
VEGETABLES.—NAT. ORD. UMBELLIFERÆ.

Vegetables. The names indicate the localities whence they are supposed to be derived.

Extraction.—Geoffroy¹ says, though I know not on whose authority, that galbanum is generally obtained by making an incision into the stalks about three fingers' breadth above the root, from which it issues in drops, and in a few hours becomes dry, and hard enough to gather.

Description.—The gum-resin galbanum (galbanum seu gummi-resina galbanum) occurs in the two forms of tears and lump.

a. **Galbanum in the Tear** (galbanum in lachrymis seu granatis) is rare: it occurs in distinct, round, yellow or brownish-yellow, translucent tears; none of which, in my collection, exceed the size of a pea. Their fracture is feebly resinous and yellow.

b. **Lump Galbanum** (galbanum in massis) is the ordinary galbanum of commerce. It consists of large irregular masses of a brownish or dark brownish-yellow colour, and composed of agglutinated tears, some of which, when broken, are observed to be translucent and blueish, or pearl-white. The mericarp, pieces of the stem, &c. are found intermixed with the tears. To separate these, galbanum is melted and strained (strained galbanum; galbanum colatum). The odour of both kinds is the same; viz. balsamic, and peculiar. The taste is hot, acid, and bitter. When exposed to cold, galbanum becomes brittle, and may be reduced to powder. In many of its other properties it agrees with the other gum-resins. It is imported from the Levant and from India in cases and chests.

Recently another gum-resin from India has been introduced as galbanum; but it is said to resemble the latter in colour only, and to be unsaleable.²

Composition.—Galbanum has been analysed by Neumann,³ Pelletier,⁴ Fiddechow, and Mcissuer.⁵

Pelletier's Analysis.

<table>
<thead>
<tr>
<th>Pelletier's Analysis</th>
<th>Meissner's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>Resin</td>
</tr>
<tr>
<td>66:86</td>
<td>65:8</td>
</tr>
<tr>
<td>Gum</td>
<td>Gum</td>
</tr>
<tr>
<td>19:28</td>
<td>22:6</td>
</tr>
<tr>
<td>Volatile oil and loss</td>
<td>Bassorin</td>
</tr>
<tr>
<td>6:34</td>
<td>1:8</td>
</tr>
<tr>
<td>Wood and impurities</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>7:52</td>
<td>3:4</td>
</tr>
<tr>
<td>Supermalate of lime</td>
<td>Bitter matter with malic acid</td>
</tr>
<tr>
<td>traces</td>
<td>0:2</td>
</tr>
<tr>
<td>Galbanum</td>
<td>Vegetable remains</td>
</tr>
<tr>
<td>100:00</td>
<td>2:8</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td>2:0</td>
</tr>
<tr>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
</tr>
</tbody>
</table>

1. **Volatile Oil of Galbanum.**—Obtained by submitting the gum-resin, with water, to distillation. It is colourless and limpid. Its sp. gr. is 0:912; its odour is like that of galbanum and camphor; its taste is hot, afterwards cooling and bitterish. It is soluble in spirit, ether, and the fixed oils.

2. **Resin.**—Is the residue obtained by boiling the alcoholic extract of galbanum in water. It is dark yellowish-brown, transparent, brittle, and tasteless; soluble in ether and alcohol, scarcely so in spirit containing 50 per cent. of water, or in almond oil. Very slightly soluble in oil of turpentine, even when aided by heat. It dissolves in oil of vitriol, forming a dark yellowish-brown liquid. According to Pelletier, galbanum-resin has the remarkable property of yielding an indigo-blue oil when heated to 248° F. or 266° F. The composition of galbanum resin is, according to Johnston, C₄₇H₇₂O₇.

¹ Trait. de Mat. Méd. ii. 623.
² Mr. E. Solly, Proceedings of the Committee of Commerce and Agriculture of the Royal Asiatic Society, p. 144, Lond. 1841.
³ Pfaff, Syst. de Mat. Méd. iii. 294.
⁴ Bull. de Pharm. iv. 97.
⁵ Schwartze, Pharm. Tabel. 284, 2te Ausg.
Physiological Effects.—The general effects of galbanum are those of the fetid antispasmodic gum-resins already described. It is usually ranked between assafoetida and ammoniacum, being weaker than the former but stronger than the latter. As it yields, by distillation, more volatile oil than assafoetida does, it has been supposed that it must exceed the latter in its stimulant influence over the vascular system; but as an antispasmodic, it is decidedly inferior to assafoetida. A specific stimulant influence over the uterus has been ascribed to it: hence the Germans call it Mutterharz (i.e. uterine resin).

Uses.—Galbanum is principally adapted for relaxed and torpid habits, and is objectionable in inflammatory or febrile disorders. It is employed in the same cases as assafoetida, with which it is generally given in combination. It is principally used in chronic mucous or pituitous catarrh, in which it often-times proves serviceable. It has also been employed in amenorrhcea and chronic rheumatism. Externally it is applied as a mild stimulant, resolvent, or suppurant, in indolent swellings.

Administration.—It may be given in substance, in the form of pill, in doses of from grs. x. to 5ss., or in the form of emulsion.

1. Pilulæ Galbani Composite, L. (Prepared Galbanum, 5ij.; Myrrh, Prepared Sagapenum, each 5ij.; Prepared Assafoetida, 5ij.; Soft Soap, 5ij.; Treacle, as much as may be necessary. Beat all together that a mass may be formed).—Dose, gr. x. to gr. xx.

2. Emplastrum Galbani, L.; Emplastrum gummosum, E.; Plaster of Galbanum. (Galbanum, 3vij.; Plaster of Lead, lb. iij.; American Turpentine, 3j.; Preparcd Frankincense, powderd, 5ijj. Add first the Frankincense, then the Plaster of Lead melted over a slow fire, to the Galbanum and Turpentine melted together, and mix them all, L.—"Litharge plaster, 3iv.; ammoniac, galbanum, and bees' wax, of each 5ss. Melt the gum-resins together, and strain them: melt also together the plaster and wax: add the former to the latter mixture, and mix the whole thoroughly." E.)—This plaster, spread upon leather, is applied to indolent tumours, to promote their supputation, and to disperse them. Its operation appears to be that of a mild stimulant. It is also applied to the chest in chronic pulmonary complaints. In weakly, rickety children, with weakness of the lower extremities, it is applied to the lumbar region.

3. Galbanum Preparatum, L.—This is directed to be prepared in the same manner as is ordered for the prepared ammoniacum.

249. Opoponax Chironium, Koch.—The Opoponax.

Pastinaca, Opoponax, Linn. Sex. Syst. Pentandria, Monogynia. (Gummi-resina.)

History.—Hippocrates¹ employed opoponax (πανάκες). Theophrastus² mentions four, and Dioscorides³ three kinds of πανάκες. The latter of these

¹ Opera, p. 402, ed. Fæs.
² Hist. Plant. lib. ix. c. 12.
³ Lib. iii. cap. 55–7.
writers has given a good account of opoponax (ὀποπόναξ), which he says is procured from πατάκες ἤρακλεον.

Sp. Char.—The only species.—A plant six or seven feet high, resembling the parsnip.

Hab.—Sunny parts of the south of France, Italy, Sicily, Croatia, and Greece.

Extraction.—According to Dioscorides, whose account is probably correct, this gum-resin is obtained by incisions into the root; a milky juice exudes, which, by drying, becomes yellow, and forms opoponax.

Description.—Opoponax (gummi opoponax) occurs in irregular yellowish-red lumps (opoponax in massis), or in reddish tears (opoponax in lachrymis). It has an acrid bitter taste, and an unpleasant odour. Rubbed with water it forms an emulsion. Its general properties as a gum-resin have been already noticed.

Composition.—Opoponax has been analysed by Pelletier. He found the constituents to be—

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>42.0</td>
</tr>
<tr>
<td>Gum</td>
<td>33.4</td>
</tr>
<tr>
<td>Starch</td>
<td>4.2</td>
</tr>
<tr>
<td>Extractive</td>
<td>1.6</td>
</tr>
<tr>
<td>Wax</td>
<td>0.3</td>
</tr>
<tr>
<td>Malic acid</td>
<td>2.8</td>
</tr>
<tr>
<td>Lignin</td>
<td>9.8</td>
</tr>
<tr>
<td>Volatile oil, traces of caoutchouc, and loss</td>
<td>5.9</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Resin.—Reddish-yellow; fusible at 122° F. Soluble in alkalies, alcohol, and ether. The alkaline solution is reddish; the resin is precipitated from it by hydrochloric acid, in the form of yellow flocks. Nitric acid acts freely on the resin. Its composition, according to Johnston, is C_{60}H_{25}O_{14}.

Physiological Effects.—Similar to the other fetid, antispasmodic gum-resins. It is, perhaps, more allied to ammoniacum than to any other of these substances.

Uses.—Opoponax is rarely employed. It is adapted to the same cases as the other gum-resins of this class.

[Although opoponax no longer finds a place in any British Pharmacopoeia, we have thought it desirable to retain the description given by the author; as, judging of the future by the past, it will probably be restored to the Materia Medica in a future edition of the Pharmacopoeia.—Ed.]

1 Bull. de Pharm. iv. 49.
250. CONIUM MACULATUM, Linn.—THE COMMON OR SPOTTED HEMLOCK.

Sex. Syst. Pentandria, Digynia.
Folia, L.E.D.

History.—This plant is usually supposed to be the κωνειον of the Greek writers,—the celebrated Athenian state poison, by which Socrates and Phocion died,—and the cicuta of the Roman authors. Various reasons contribute to give the common opinion on this point a high degree of probability. Dioscorides described the plant sufficiently well to prove it must have been one of the Umbelliferae; and he tells us that it had a heavy odour, and a fruit like that of anise. The latter simile applies to our Conium, for a very intelligent druggist mistook, in my presence, the fruit of the hemlock for that of anise; and at the examination for M.B. at the University of London, in 1839, a considerable number of the candidates, to whom the hemlock fruit was shown, made the same mistake. Dioscorides also tells us that the κωνειον of Crete and Megara was the most powerful, and next to this came that of Attica, Chio, and Cilicia. Now Dr. Sibthorp found Conium maculatum growing near Constantinople, not unfrequently in the Peloponnesus, and most abundantly between Athens and Megara. So that the locality of our Conium agrees, as far as has been ascertained, with that of the ancient plant. Moreover, Conium maculatum is at this present time called by the Greeks κωνειον. We may gather from the poetical account of the effects of κωνειον given by Nicander, that this plant “brings on obliteration of the mental faculties, dimness of sight, giddiness, staggering, stifling, coldness of the limbs, and death by asphyxia; a view of its effects,” says Dr. Christison, “which differs little from the modern notions of the poisonous action of the spotted hemlock.” It is also remarkable that the ancients regarded κωνειον as having the power of discussing tumours—a virtue which has been assigned to hemlock by writers of the present day.

I am fully aware that the characters of the ancient plant, as given us by Dioscorides and Pliny, are insufficient to distinguish it from some other Umbelliferae; yet I think the evidence of its being our Conium maculatum is deserving of much greater confidence than Dr. Christison is disposed to give it. The absence of all notice, in the writings of the ancients, of the purple spots on the stem, has been urged against the probability of this opinion. “Pliny’s term nigricans, applied to the stem, is but a feeble approach,” says Dr. Christison, “to the very remarkable character of the modern plant, the purple-spotted stem.” But in 1839 I showed to the pupils attending my

1 This word is sometimes incorrectly accented co'nium. But “those words which, in Greek, are written with ei before a vowel, and in Latin with e or i, have the e or i long; as Ἐνέας, Κασιοπεα, Κυθαρε, Κεντα urea,” &c. (Grant’s Institutes of Latin Grammar, 2d edit. p. 343, 1823).
3 Plutarch’s Lives.
4 Lib. iv. cap. 79.
5 Prodr. Fl. Graece, i. 187.
6 Ελληνικα Φαρμακοποια, 1837.
7 Αλεξιφαρμακα, f. 54–5; Paris, 1549.
9 Hist. Nat. lib. xxv. cap. 95, ed. Valp.

lectures a stem of hemlock to which the term *blackish* might be applied without greater impropriety of language than is daily made use of when a man is said to have a black eye; for the dark purple spots had coalesced so as to cover most completely the lower part of the stem. Admitting, however, that the term is not strictly correct, I would observe, first, that there is no poisonous umbelliferous plant to which it applies so well as to hemlock; and, secondly, Dioscorides and Pliny may be well excused for using it, seeing that a distinguished toxicologist described the spots on the stem as *blackish*.¹

It is evident that our generic term *Conium* is derived from the Greek word κώνιον. Linnaeus has been censured by Lamarck for using this name, since the Latin authors call our hemlock *Cicuta*, which he, therefore, contends ought to be its designation now. But it should be remembered that Linnaeus has only restored its ancient name, for the word Cicuta is unknown to the Greek language. By modern botanists the latter term is applied to a distinct genus of plants; and when, therefore, we meet with it in botanical works, we must not confound it with the cicuta of the Romans. Especially careful should the student be not to confound *Conium maculatum* with *Cicuta maculata*. It is certainly much to be regretted that such a ground of confusion should exist, but I am afraid it is now too late to obviate it.

Sp. Char.—Leaflet of the partial *involute* laceolate. Partial *umbel* short (De Cand.)

Root biennial, tap-shaped, fusiform, whitish, from 6 to 12 inches long, somewhat resembling a young parsnip. *Stem* from 2 to 6 feet high, round, smooth, glaucous, shining, hollow, spotted with dark purple. *Leaves* tripinnate, with lanceolate, pinnatifid leaflets, of a dark and shining green colour, smooth, very fetid when bruised, with long, furrowed footstalks, sheathing at their base. *Umbels* of many general as well as partial rays. *General involucre* of several (usually 3 to 7) leaflets; *partial involucre* of 3 leaflets on one side. Margin of *calyx* obsolete. *Petals* 5, obcordate, white, with inflexed points. *Stamina* 5, epigynous, as long as the petals. *Ovarium* ovate, 2-celled, striated; *styles* 2, filiform, spreading; *stigma* round. *Fruit* ovate, compressed laterally; *mericarps* [half-fruits] with 5 primary, but no secondary, ridges, which are undulato-crenated; the channels have many striae, but no vittae. *Seed* with a deep, hollow groove in front.

Hab.—Indigenous; hedges and waste ground, especially near towns and villages. In other parts of Europe, the East of Asia, and in the cultivated parts of North America and Chili, into which it has been introduced.

¹ See Orilla, *Toxicol. Gén.* ii. 299, 1818. [In a later edition of his Toxicology (1843), Orilla describes the stem of the plant as "offrant des taches d'une couleur pourpre foncée." *Toxicologie*, ii. 422, 1843.—En.]
In distinguishing Conium maculatum from other Umbelliferae, the following characters should be attended to:—The large, round, smooth, spotted stem; the smooth, dark, and shining green colour of the lower leaves; the general involucre of from 3 to 7 leaflets; the partial involucre of 3 leaflets; the fruit with undulated, crenated, primary ridges. To these must be added, that the whole herb, when bruised, has a disagreeable smell (compared by some to that of mice, by others to that of fresh cautharides, or of cats' urine).

The indigenous Umbelliferae most likely to be confounded with Conium maculatum are, Ethusa Cynapium and Anthriscus vulgaris. (Ethusa Cynapium, or Fool's Parsley, is distinguished from hemlock by its smaller size, by the absence of the strong disagreeable smell which distinguishes the leaves of hemlock, by the want of a general involucre, by the 3 long, narrow, unilateral, pendulous leaflets composing the partial involucre, by the ridges of the fruit being entire (i.e. not undulate or crenate), and by the presence of villette. Anthriscus vulgaris, or Common Beaked-Parsley, is known from hemlock by the paler colour and slight hairiness of the leaves, by the absence of spots on the stem, by the swelling under each joint, by the absence of a general involucre, by the roughness of the fruit, and by the absence of a strong unpleasant odour when the leaves are bruised. Anthriscus sylvestris (Cherophyllum sylvestre), or Common Cow-Parsley, is scarcely likely to be confounded with hemlock. The stem, though purplish, is striated, downy at the lower part, and slightly swollen below the joint; the leaves are rough-edged; there is no general involucre; and the partial one usually consists of 5 or more leaflets."

Description.—The leaves (folia conii) only are officinal. They should be gathered from wild plants, just before the time or at the commencement of flowering. If intended for drying, the larger stalks should be removed, and the foliaceous parts quickly dried in baskets by the gentle heat (not exceeding 120° F.) of a proper stove. Exclusion from solar light contributes greatly to the preservation of the colour. If properly dried, the leaves should have a fine green colour, and their characteristic odour; and when rubbed with caustic potash they should evolve the odour of conia. They should be preserved in cool, closed, perfectly opaque, and dry vessels. Tin canisters possess these properties. However, no reliance can be placed on the dried leaves, however carefully prepared, for they sometimes yield no conia, though they possess the proper hemlock-odour and a fine green colour. If the fresh leaves be subjected to pressure, they yield a greenish juice (succus conii) from which, on standing, a green fecula subsides. The fruit, commonly termed hemlock seeds (fructus seu semina conii), has very little odour, and a slight, somewhat bitterish taste. It retains for a much longer time than the leaves its active principle unchanged (see Conia).¹

Composition.—Schrader² made a comparative analysis of wild and cultivated hemlock, but with no important result. He also made a comparative examination of hemlock and cabbage (Brassica oleracea), the only curious part of which was, that he found a striking resemblance between them.³ Peschier⁴ found in hemlock a salt which he called coniate of conia, being composed of a peculiar crystallizable acid (conic acid, or conic acid), and a peculiar base. Hemlock juice was analysed by Bertrand;⁵ the leaves by Dr. Golding

¹ [Conia, like hydrocyanic acid, undergoes spontaneous changes whereby it is resolved into ammonia and a bitter extractive matter, which is possessed of no poisonous properties. The salts of conia dissolved in water are thus rapidly converted into harmless substances. This tendency to spontaneous change, which is materially increased by a high temperature, may account for the variable proportion of the active principle in some of the preparations of Hemlock, as also for the conflicting accounts of authors regarding their medicinal action.—Ed.]
² Berlin Jahrbiich, 1805, S. 152.
⁵ Recueil de Mén. de Méd. de Chir. et de Pharm. Méd. t. ix. p. 300.
Bird; the ashes by Brandes. An analysis of hemlock (leaves?) by the last-mentioned chemist is quoted by Mérat and De Lens. Peschier and Brandes first announced the existence, in this plant, of a peculiar basic principle, which Giseke, in 1827, obtained in combination with sulphuric acid. But Geiger, in 1831, procured it, for the first time, in an isolated form, and described some of its properties and effects on animals. It was afterwards examined by Dr. Christison, and by MM. Boutran-Charlard and O. Henry.

Schrader's Analyses.

<table>
<thead>
<tr>
<th></th>
<th>Hemlock.</th>
<th>Cabbage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive</td>
<td>2:73</td>
<td>2:34</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>3:52</td>
<td>2:89</td>
</tr>
<tr>
<td>Resin</td>
<td>0:15</td>
<td>0:05</td>
</tr>
<tr>
<td>Vegetable albumen</td>
<td>0:31</td>
<td>0:29</td>
</tr>
<tr>
<td>Green feacula</td>
<td>0:80</td>
<td>0:63</td>
</tr>
<tr>
<td>Water, with acetic acid and various salts</td>
<td>92:49</td>
<td>93:80</td>
</tr>
<tr>
<td>Total</td>
<td>100:00</td>
<td>100:00</td>
</tr>
</tbody>
</table>

Brandes's Analysis.

<table>
<thead>
<tr>
<th></th>
<th>Peculiar basic principle (conicine).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very odorous oil.</td>
</tr>
<tr>
<td></td>
<td>Vegetable albumen.</td>
</tr>
<tr>
<td></td>
<td>Resins.</td>
</tr>
<tr>
<td></td>
<td>Colouring matter.</td>
</tr>
<tr>
<td></td>
<td>Salts.</td>
</tr>
<tr>
<td></td>
<td>[Lignin and water].</td>
</tr>
</tbody>
</table>

1. **Volatile Oil of Hemlock** *(Odorous principle).*—The distilled water of hemlock possesses, in a high degree, the characteristic odour of hemlock, but is scarcely, if at all, poisonous. Hence it is obvious that the odorous matter is not the active principle. Furthermore it shows that the characteristic odour of hemlock, in the different preparations of this plant, is not to be taken as a necessary indication of their activity. Bertrand isolated the odorous matter, and found it to be a volatile oil of an acrid taste and peculiar odour.

2. **Conia Co** *(Conicine; Concin; Cicutine).*—Exists in hemlock in combination with an acid *(conic acid, Peschier)*; so that it cannot be recognised by its odour, nor obtained by distillation, without the assistance of an alkali. It exists, probably, in all parts of the plant, but is more copious in the fruit than in the leaves; and, most remarkably, it may be preserved for a much longer time in the former than in the latter. Geiger procured from 6 lbs. of fresh, and 9 lbs. of dried fruits, about one ounce of conia; whereas from 100 lbs. of the fresh herb he obtained only a drachm of this alkaloid. He could get traces only of it in fresh-dried leaves, while he extracted a drachm of it from nine ounces of the fruit which had been preserved (not very carefully) for sixteen years. This by no means agrees with my own observations and experiments; for I have found that fruit which had been kept for three years yielded only a very minute portion of conia; though from the same sample, when fresh gathered, I had obtained a considerable quantity. From 40 lbs. of the ripe, but green, seeds (mericarps), Dr. Christison obtained two ounces and a half of hydrated conia. Conia, free from all impurity but water, may be obtained by distilling the alcoholic soft or syrupy extract of the seeds (mericarps) with its own weight of water and a little caustic potash. The conia passes over readily, and floats on the surface of the water (which contains conia in solution). When pure, conia is an oily-looking, transparent liquid, lighter than water; sp. gr. 0·89. Its odour is strong, penetrating, and stupefying, somewhat like that of hemlock, or more analogous to a combination of the odours of tobacco and mice. Its vapour excites a flow of tears. Its taste is acrid; it is sparingly soluble in water, but is entirely soluble in alcohol and ether. It reddens turmeric, and neutralizes the dilute acids, forming salts. While saturating, the liquors have a bluish-green tint, which subsequently passes to a reddish-brown. It combines with about a fourth of its weight of water to form a *hydrate of conia*, in which state it has a strong alkaline reaction. When placed in a vacuum, in the presence of

5. *Mag. für Pharm.* xxxv. 75 and 259.
bodies very attractive of water, it in part volatilizes, and leaves a reddish, very acrid, pitchy residue, which appears to be anhydrous [partially decomposed?] conia. The vapour of conia is inflammable. By exposure to the air, liquid conia acquires a dark colour, and is resolved into a brown resin and ammonia. Its boiling point is 370° F. (338° C.), but it readily distils with water at 219° F. [It is partially decomposed when heated in contact with air, ammonia being produced. It is also decomposed by the strong mineral acids as well as by chlorine, yielding coloured compounds.—Ed.]

Conia is characterized by its liquidity at ordinary temperatures, its volatility, its peculiar odour, its reddening turmeric paper, its vapour forming white fumes (hydrochlorate of conia) with the vapour of hydrochloric acid, its solution in water forming, with infusion of nutgalls, a white precipitate (tannate of conia), its sulphate and other salts being deliquescent and soluble in alcohol, its not being reddened by either nitric or iodic acids, and lastly, by its alcoholic solution not being precipitated by the alcoholic solution of carbozatic acid. Several of the salts of conia are crystallizable. When solutions of them are evaporated, they lose a part of their base, the odour of which becomes sensible. The nitrate of conia, when decomposed by heat, yields brown pyrogenous products. The solution of hydrochlorate, when evaporated in air, becomes first purple, then deep blue. Potash added to a salt of conia sets the base free, which is then recognised by its odour.

Liebig analysed conia. Its constituents are:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Liebig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>12</td>
<td>72</td>
<td>66:67</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>14</td>
<td>14</td>
<td>12:96</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>12:96</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>7:41</td>
</tr>
<tr>
<td>Conia</td>
<td>1</td>
<td>108</td>
<td>100:00</td>
</tr>
</tbody>
</table>

But, according to Artigosa, its formula is \(\text{C}^{14}\text{H}^{14}\text{N}\).

The effects of conia have been tried on mammals (the dog, cat, rabbit, and mouse), birds (pigeon, kite, and sparrow), reptiles (slow-worm), amphibia (the frog), annelids (earth-worm), and insects (fly and flea). One drop placed in the eye of a rabbit killed it in nine minutes; three drops employed in the same way killed a strong cat in a minute and a half; five drops poured into the throat of a small dog began to act in thirty seconds, and in as many more motion and respiration had entirely ceased. [It does not dilate the pupil.—Ed.]

The following are the symptoms produced, as detailed by Dr. Christison:—“It is, in the first place, a local irritant. It has an acrid taste; when dropped into the eye, or on the peritoneum, it causes redness or vascularity; and to whatever texture or part it is applied, expressions of pain are immediately excited. But these local effects are soon overwhelmed by the indirect or remote action which speedily follows. This consists essentially of swiftly-spreading palsy of the muscles,—affecting first those of voluntary motion, then the respiratory muscles of the chest and abdomen, lastly the diaphragm, and thus ending in death by asphyxia.” Convulsive tremors, and twitches of the limbs, sometimes, though not invariably, are observed. The external senses do not appear to be affected until respiration is impaired. If a rabbit be lifted up by his ears when under the influence of the poison, he makes the same kind of struggles to be released that he does when in health. So also if we place him in an uneasy posture, he makes attempts to alter his position, proving that his senses are unimpaired. After death the muscles are susceptible of the galvanic influence. M.M. Boutran-Charlard and O. Henry state, that most of the animals to whom they gave conia became “a prey to the most dreadful convulsions. The plaintive cries, the contortions, and the rigidity of the limbs, which have always preceded death, leave no doubt as to the cruel pains which this kind of poisoning brings on.” This account agrees neither with my own observations, nor with those published by Dr. Christison.

Does conia become absorbed? In favour of the affirmative view of this question may be mentioned the fact, that this alkalii acts on all the textures admitting of absorption; and that the quickness with which the effects occur are in proportion to the absorbing power of the part. But the rapidity of its action, when introduced into the veins, is a barrier to the supposition of its acting on the nervous centres by local contact; for Dr. Christison states, that two drops, neutralized by dilute muriatic acid, and injected into the femoral vein of a young dog, killed the animal in two or three seconds at farthest.
The primary seat of the action of conia is probably the spinal cord. In this, conia and strychnia agree; but in the nature of the effect they seem, as Dr. Christison has observed, to be the counterparts of each other. Conia exhausts the nervous energy of the cord, and causes muscular paralysis; strychnia irritates it, and produces permanent spasm of the respiratory muscles. It is evident, therefore, that, like strychnia and nux vomica, its operation is on the seat of the reflex functions, which, according to Mr. Grainger, is the gray matter of the spinal cord.

These effects of conia suggest its employment in convulsive or spasmodic diseases; as tetanus, poisoning by strychnia, brucia, or nux vomica, hydrophobia, &c. I have tried it on two rabbits under the influence of strychnia, and found that it stopped the convulsions, but hastened rather than prevented death. In September, 1838, it was tried in a case of hydrophobia at the London Hospital. The following is a brief report of the case:—"In the case of hydrophobia, in a middle-aged man, after the disease was fully formed, two minims of conia, dissolved in thirty drops of acetic acid, were applied endermically to the precordium (the cuticle being previously removed by a blister). The effects were instantaneous. The pulse fell from 64 to 46, and became more regular. The vomiting and convulsions ceased; the respiration became less difficult, and the symptoms of the disease appeared to be altogether mitigated. The man expressed himself as feeling much better, and entertaining hopes of an ultimate recovery. These effects were, however, but transitory, and in about seven minutes the symptoms began to reappear, and shortly assumed their previous urgency. Three minims of conia were injected into the rectum about a quarter of an hour after the endemic application of it, but it produced no effect in allaying the symptoms of the disease. The remedy was not repeated, and the man became rapidly worse, and died in a few hours." The properties of conicine have been recently examined by Orfila.

3. EMPIREUMATIC Oil of Hemlock (Pyro-conia ?).—This oil, obtained by the destructive distillation of hemlock, resembles, according to Dr. Morries, that procured from foxglove.

CHARACTERISTICS FOR MEDICO-LEGAL PURPOSES.—Hemlock can only be properly recognised by its botanical characters, already described: yet its remarkable odour may sometimes be of considerable assistance in recognising the plant or its preparations; nor is the fact to be lost sight of, that a solution of potash rubbed with the leaves or fruit develops a strong smell of conia. In some cases it might be possible to obtain conia by distilling the alcoholic extract of the suspected substance with water and caustic potash.

PHYSIOLOGICAL EFFECTS. a. On Vegetables.—Marcet placed a haricot plant (Phaseolus vulgaris) in a solution of five grains of the extract of hemlock. In a few minutes the two lower leaves curled at their extremities; the next day they were yellow, and subsequently died. Schübler and Zeller also confirm its poisonous operation.

β. On Animals generally.—The effects of hemlock on animals have been tried by Harder, Wepfer, Orfila, and Schubarth. The animals experimented on were the dog, wolf, rabbit, and guinea-pig. The action of hemlock on the solipedes and ruminants is very much less energetic than on the carnivora. Moiroud has given three pounds and a half of the plant to a young horse, without inconvenience; but in another instance the decoction of four

2 See his paper in Annales d'Hygiène, 1851, ii. p. 147.
8 Toxicol. Gén. ii.
10 Pharm. Vét. 359.
ounces proved fatal. It caused dejection, stupor, dilatation of the pupils, trembling, salivation, nausea, spasmodic contraction of the muscles of the extremities, rolling of the eye, grinding of the teeth, and copious cold sweats. From the observations of Orfila, hemlock is a local irritant (though this action was not constantly observed), and produces giddiness, convulsions, loss of sensibility, palsy, and coma. This account, as Dr. Christison observes, does not agree with the symptoms induced by conia, which does not seem to affect the senses so long as the respiration goes on. "But it is possible," he adds, "that the difference is more apparent than real, and that hemlock has been supposed to extinguish sensation, merely because by inducing paralysis it takes away the power of expression; at least, in some experiments I have made, sensation did not appear to be affected; and the whole phenomena were identical with those produced by conia. In these experiments I used very strong extracts, prepared by absolute alcohol from the fresh leaves or full-grown seeds; and each of them occasioned, in doses of thirty grains or thereabouts, paralysis of the voluntary muscles, with occasional slight convulsions, then paralysis of the respiratory muscles of the chest and abdomen, and finally cessation of the action of the diaphragm. Sensation appeared to continue so long as it was practicable to make an observation on the subject; and the heart contracted vigorously for a long time after death." But from the united observations of the effects of hemlock on animals and man, I cannot help suspecting, either that this plant contains a second active principle, whose operation is somewhat distinct from conia, or that the influence of this alkaloid is greatly modified in the plant by combination with other matters.

γ. On Man.—In small or medicinal doses, hemlock has been frequently administered for a considerable period, with obvious relief, in certain diseases (tumours of various kinds, for example), without any other evident effect; hence the statement of some authors, that hemlock acts insensibly on the system. "It seldom purges," says Storck, "and very rarely vomits. Sometimes it increases perspiration, and often it occasions a copious discharge of viscid urine. In many patients, nevertheless, it does not sensibly augment any of the secretions." Long-continued use, especially if the doses be increased, will sometimes occasion disorder of the digestive organs or of the nervous system, dryness of the throat, thirst, and occasionally, it is said, an eruption on the skin. Choquet mentions the case of a man who gradually increased the dose of the extract to half a drachm; it produced slight delirium and syncope, which obliged him to suspend its use. The ancients were of opinion that hemlock exercised a specific influence over the breasts and testicles. "It extinguishes the milk," says Dioscorides, "and prevents the development of the mammas of virgins; moreover, in boys it causes wasting of the testicles." Pliny gives a similar account of it, and adds, "it reduces all tumours." The same notions of its effects seem to have been entertained by the Arabs; for Avicenna praises it as a remedy for tumours of the breasts and testicles. More recently, somewhat similar effects on the breasts

1 Essay on Hemlock, Eng. tr. 2d edit. 1762.
2 Orfila, Toxicol. Gén. ii. (not mentioned in later editions.—En.)
have been ascribed to it. In two cases it is said to have caused atrophy of the mammae.

In large or poisonous doses the symptoms are those indicating disorder of the cerebro-spinal functions. In some of the best recorded cases the leading symptom was coma; the effects being altogether analogous to those of opium. In other instances, convulsions, or violent delirium, or both, were the prominent symptoms. As an illustration of the comatose condition sometimes brought on by this poison, I shall quote a case recorded by M. Haaf, a French army surgeon, and which occurred to him while in garrison at Torrequemada, in Spain, in March, 1812. A soldier having eaten of some broth into which hemlock had been put, went to sleep immediately after his supper. In an hour and a half he was found groaning and breathing with difficulty; in consequence of which M. Haaf was sent for. He found his patient in a profound sleep, without sense, respiring with difficulty, and lying on the ground. His pulse was 30, small, and hard; the extremities cold; the face bluish, and distended with blood, like that of a person strangulated. Twelve grains of emetic tartar were given, and occasioned some fruitless attempts to vomit. He became gradually worse, had violent palpitations of the heart, and died in three hours after his fatal supper. Several other cases in which coma was the leading symptom might be quoted, but the one just related is the best.

We have no well-detailed cases in which delirium was the leading symptom. The following must suffice, by way of illustration; it is from Kircher: Two priests ate hemlock root by mistake; they became raving mad, and mistaking themselves for geese, plunged into the water. For three years they suffered with partial palsy and violent pain. Orfila also mentions a vine-dresser and his wife, who became mad and furious from hemlock.

General paralysis has also been observed in this form of poisoning. A case in which this was a most prominent symptom is mentioned by Alderson. An overdose of Conium maculatum “produced general paralysis: the under jaw fell, the saliva ran from the patient’s mouth, the urine dropped from the bladder, and the contents of the rectum were discharged; in short, every voluntary muscle lost its energy, and the patient continued for nearly an hour in this most deplorable state, unable to move or to command the slightest exertion, though all the time perfectly sensible.” He recovered by the use of stimulants.

As illustrations of the convulsions caused by hemlock, I may refer to the cases mentioned by Limprecht and Ehrhard. The first states that an old woman suffered for three months with abdominal pain and convulsive movements of the limbs, in consequence of eating hemlock root. Ehrhard mentions trismus as one of the symptoms in another case. Dr. Watson has related two cases in which giddiness, coma, and convulsions occurred. These

2 Wibmer, Wirk. &c. ii. 172.
4 Wibmer, op. cit.
5 Phil. Trans. vol. xliii. No. 473, p. 18.
statements, as well as others of a like tendency which might be quoted, do not agree with the (as yet ascertained) effects of conia.

The *post-mortem* appearances throw but little light on the *modus operandi* of hemlock. Venous congestion, especially of the cerebral vessels, a fluid condition of the blood, and, in the lower animals, redness of the alimentary canal, are the occasional appearances.

Uses.—In the present state of uncertainty with respect to the real physiological operation of hemlock, it is obviously impossible to lay down indications or contra-indications for its use, which can be much relied on. Acute inflammation, fever, apoplexy, or tendency to it, and paralysis, are among the circumstances which oppose the employment of hemlock.

The uses of hemlock may be reduced to two heads: those which depend on its influence over the organic functions; and, secondly, those which have reference to its influence over the cerebro-spinal system. The resolvent or discutient and alterative uses come under the first head; the antispasmodic and anodyne under the second.

1. **As a resolvent or discutient and alterative.**—Under the continued use of small and repeated doses of hemlock, glandular and visceral enlargements have frequently subsided; hence has arisen the opinion, entertained in all ages, of the resolvent and discutient powers of this remedy, and of the stimulus which it communicates to the absorbing vessels. The mammae and the skin are the parts in which these powers have been supposed to be more especially manifested; and the asserted effects (wasting of the breast, profuse sweating, and eruptions) of hemlock on these parts, in healthy individuals, lend support to this opinion. But the influence of hemlock over the organic functions does not appear to be limited to this resolvent operation. In foul ulcers the quality of the discharge has been greatly improved, while pain has been alleviated, and the tendency of the sores to spread has apparently been greatly diminished. If, then, these effects be really referable to hemlock (and they have been asserted by so many writers, in all ages, that we can scarcely refuse to admit them), they prove that this plant exercises a most profound influence over nutrition and the other organic functions, and which we have no better term to indicate than that of alterative. But so frequently has this influence failed to manifest itself, especially in those cases where it was most desired, that a very proper doubt has prevailed among practitioners of the present day, whether it really exists, and whether those phenomena which have been supposed to indicate it, are not really referable to other influences and circumstances. That hemlock has some influence of the kind referred to, I do not doubt; but it has been greatly exaggerated, and thereby much unmerited discredit has been brought on the remedy; for practitioners, finding that it would not do all that had been ascribed to it, have frequently dismissed it as altogether useless. Whether the failures ought, in part at least, to be ascribed to imperfect modes of preparing and administering this plant, we are, as yet, unable positively to affirm. One fact, however, is certain, that many of the preparations of hemlock in ordinary cases are inert, or nearly so; and others, probably, have had their properties greatly changed in the process of their preparation. The remark made by Dr. Christison, with respect to the physiological effects of this plant, applies well to the point under discussion. "If," says this writer, "physicians or physiologists would
acquire definite information as to the physiological effects of hemlock, in small or medicinal doses, they must begin the inquiry anew. Little importance can be attached to any thing already done in this field, as I have no doubt whatever that by far the greater proportion of the preparations of hemlock hitherto employed have been of very little energy, and, in the doses commonly used, are absolutely inert."

The diseases to which the preceding remarks especially apply, are, enlargements and indurations of the absorbing and secreting glands and of the viscera, scrofula, obstinate chronic skin diseases, and foul ulcers. I am not prepared to offer any opinion, as to whether the diseases to which the terms scirrhous and cancer are strictly applicable, have ever been cured by hemlock. One fact is undoubtedly, that diseases, supposed to have been scirrhous and cancerous, have been greatly alleviated, and, in some cases, apparently cured by this remedy. This fact does not rest on the sole testimony of Storck, but on that of a multitude of practitioners. Bayle has collected, from various writers, forty-six cases of cancerous diseases, said to have been cured, and twenty-eight ameliorated, by hemlock. In scrofula, in which disease Fothergill, and many others, have praised it, it seems to be occasionally useful as a palliative in irritable constitutions. It allays the pain, and assists in reducing the volume of enlarged lymphatic glands, and in scrofulous ulcerations improves the quality of the discharge, and disposes the sores to heal. Even enlargements of the liver, spleen, and pancreas, have been, at times, apparently, benefited by hemlock. In mammary tumours and profuse secretion of milk (galactorrhæa), a trial of it should never be omitted. In bronchocele it has been found efficacious by Dr. Gibson, Professor of Surgery in the University of Pennsylvania. In syphilis it is useful, by alleviating nocturnal pains, and in diminishing the tendency to spread of irritable sores. In chronic skin diseases (lepra, herpes, &c.) it is now but rarely employed.

2. As a cerebro-spinal agent (antispasmodic and anodyne).—The power possessed by conia of paralysing the motor nerves, suggests the employment of hemlock as an antispasmodic. Hitherto, however, trials of it have been made in a few spasmodic diseases only, and those have not proved favourable to its reputation. In some spasmodic affections of the respiratory organs it has gained a temporary celebrity only. In hooping cough, Dr. Butter spoke favourably of it, as having the advantage over opium of not being liable to check expectoration. But though the violent and periodic fits of coughing are obviously of a spasmodic nature, and therefore, apparently adapted for the use of hemlock, experience has fully proved that the disease is one which will run through a certain course. At the best, therefore, hemlock can prove a palliative only. In other forms of spasmodic cough, as well as in spasmodic asthma, hemlock deserves farther trial. In tetanus, conia or hemlock held out some hopes of doing good. Mr. Curling has

2 See Bayle, Bibl. Thérap. ii. 618.
3 Med. Obs. and Ing. iii. 400.
4 See Bayle, op. cit.
5 United States Dispensatory.
7 Treat. on the Kink-cough, 1773.
kindly furnished me with the notes of a case which occurred in the London Hospital. A tincture of hemlock seeds was exhibited on the eighth day of the disease, at first in doses of $\frac{m}{xx}$ every hour, which were increased in the course of the three following days to $\frac{f}{2ij}$ every quarter of an hour, until the patient (a man aged 46) had taken, in all, two pints! but without any decided effect on the spasms or brain. Morphia and laudanum were afterwards used, but the man died. A small quantity of conia, obtained from three ounces of the same tincture used in this case, killed a cat in less than four minutes. In a case of chorea, treated by Mr. Curling, no relief was obtained by the use of the above-mentioned tincture, given to the extent of three ounces in twelve hours. The patient (a young man) ultimately died, exhausted from the long-continued and violent convulsions of nearly all the voluntary muscles.

Hemlock has been frequently employed as an anodyne, and often with apparent relief. As, however, conia does not appear to have the same paralyzing influence over the sensitive, that it has over the motor nerves, some doubt has been raised on the real anodyne influence of hemlock. However, in tender glandular enlargements, in painful ulcers, in scirrhous and cancer, in rheumatism, and in neuralgia, hemlock has, at times, evidently mitigated pain; and its power of allaying troublesome cough, is, in some instances, referable to its diminishing the preternatural sensibility of the bronchial membrane.

Anaphrodisiac properties have been ascribed to hemlock, and hence this remedy has been used in nymphomania and satyriasis.

Administration.—Hemlock is used in the form of powder, tincture, extract, ointment, and poultice.

Antidotes.—No chemical antidote is known for hemlock, though it is not improbable that an infusion of galls might be serviceable, as mentioned for conia. The first object, therefore, is to evacuate the poison from the stomach; this is to be effected by the same means as directed for poisoning by opium. If the poison be suspected to have passed into the bowels, a purgative is to be administered, unless diarrhoea have come on. The subsequent treatment will depend on the symptoms: blood-letting is frequently required, to relieve the congested state of the cerebral vessels. Opium is generally prejudicial. Artificial respiration should not be omitted in extreme cases. As strychnia and nux vomica appear to produce a condition of the spinal cord opposite to that of conia, it is a question whether either of these agents might not be serviceable in the treatment of a case of poisoning by hemlock.

4. Pulvis Conii; Powder of Hemlock.—The powder, when properly prepared from the leaves, has the peculiar odour of the plant, and a fine green colour; but neither the odour nor the colour are absolutely indicative of activity. The test of the presence of conia is caustic potash, and, as the Edinburgh College properly observes, “the powder, triturated with aqua potassae, exhales a powerful odour of conia.” But the odour of the volatile oil of the plant being very analogous to that of conia, creates some difficulty with inexperienced persons. The vapour of conia, evolved from powdered hemlock by potash, fumes with hydrochloric acid; but the same occurs with ammonia, set free by the same agent. As the powder, however well prepared,
quickly spoils by keeping, it is not a preparation which deserves confidence, and should never be used if it have been kept beyond the year. The dose of it is three or four grains twice or thrice daily, the quantity being gradually increased until some obvious effect (nausea, dryness of the throat, giddiness, headache, or disordered vision) in the system is produced. As different parcels of the powder possess very unequal powers, it is necessary, when changing the parcels, to recommence with small doses. I have elsewhere referred to the observation of Geiger, as to the small quantity, or even entire absence, of conia, in the dried leaves of hemlock.

2. TINCTURA CONII, L. E.; Tincture of Hemlock. (Hemlock leaves, dried, 3v.; Proof Spirit, Oij. Macerate for seven days and strain, L. The formula of the Edinburgh College is as follows: "Fresh leaves of Conium, 3xij.; Tincture of Cardamom, Oss.; Rectified Spirit, Oiss. Bruise the hemlock leaves, and express the juice strongly; bruise the residuum, pack it firmly in a percolator; transmit first the tincture of cardamom, and then the rectified spirit, allowing the spirituous liquors to mix with the expressed juice as they pass through; add gently water enough to the percolator for pushing through the spirit remaining in the residuum. Filter the liquor after agitation.")—The process of the Edinburgh College yields a much more energetic preparation than that of the London College, as it obviates the necessity of drying the leaves, and, therefore, much deserves the preference. If, however, the percolation were dispensed with, and the tincture prepared merely by adding spirit (not tincture of cardamom) to the expressed juice, the process would be greatly improved. If the leaves have been sufficiently pressed, the percolation is scarcely necessary, and, therefore, only adds to the labour and expense of the process. Any active matter lost by omitting percolation, may be easily compensated by increasing the quantity of juice employed, the cost of which scarcely deserves notice. The employment of tincture of cardamom is objectionable, since it prevents the apothecary from forming a judgment of the colour, taste, and smell of, and the effect of potash on, this preparation: hence, in the London tincture it has been judiciously omitted. And lastly, if the percolation process be adopted, surely the directions of the Edinburgh College are too loose. The quantity of water which is to be employed "for pushing through the spirit" should be accurately defined, or it will be impossible to have preparations made at different times, and by different persons, of uniform strength. Good tincture of hemlock should evolve a strong odour of conia on the addition of potash. In 1837 I recommended the use of an alcoholic tincture of the bruised fruit. More recently, Dr Osborne has advised the same. Tinctura conii, L. is given in doses of f3ss. or f3j. which are to be gradually increased until some effect is produced. Tinctura conii, E. must be employed more cautiously; though the quantity of hemlock leaves used by the Edinburgh College would, if dried, be scarcely half that employed by the London College (as 1000 parts of the fresh leaves yield only 185 parts when dried, according to Henry and

Spotted Hemlock:—Its Extract.

Guibourt). The drying, however, as I have already noticed, greatly deteriorates the activity of the leaves.

Succus Conii; Preserved Juice of Hemlock.—The method of preparing the preserved vegetable juices has been described. Mr. Bentley informs me that from 1 cwt. of hemlock leaves gathered in May he procured twelve imperial quarts of juice. The preserved juice of hemlock appears to me to be an excellent preparation.

3. Extractum Conii, L. E. D.; (Succus spissatus Conii, D.); Extract of Hemlock. (The London College directs this extract to be prepared in the same manner as Extract ofaconite; viz. fresh hemlock leaves, lb. j.; bruise in a stone mortar; then press out the juice, and evaporate it undecfected to a proper consistence; and the Dublin College adopts a method of preparation the same as that for Extractum Belladonna. The following are the directions of the Edinburgh College: "Take of Conium any convenient quantity, beat it into a uniform pulp in a marble mortar, express the juice, and filter it. Let this juice be evaporated to the consistence of a very firm extract, either in a vacuum with the aid of heat, or spontaneously in shallow vessels exposed to a strong current of air freed of dust by gauez skreen. This extract is of good quality only when a very strong odour of conia is disengaged by degrees, on its being carefully triturated with aqua potassae."—Most of the extract of the shops is inert, or nearly so. "We were one day," says Orfila, 2 "in the shop of an apothecary, who had several times furnished us with the extract of hemlock, which we had administered to dogs in the dose of ten drachms, without producing any serious accident. We endeavoured to prove to him that the medicine was badly prepared; and, in order to convince him effectually, we swallowed, in the presence of several persons who happened to be in his shop, a drachm of this extract (seventy-two grains) dissolved in two drachms of water. We felt no effect from it, whilst twenty or thirty grains of the extract, well prepared, would have probably proved fatal to us. Let it be conceived now what advantage a person is likely to derive from such an extract, who takes one or two grains of it per day, or even thirty or forty, with the hope of getting rid of a scirrhous tumour, or of any other disease."

The extract of hemlock contains very little conia; this has been shewn by Geiber and Christison, and has been verified by myself. From 3iv. of extract, procured from one of the most respectable drug houses in town, I was unable to procure any sensible quantity of this alkali. "From what has come under my own observation," says Dr. Christison, "the extracts of hemlock may become feeble, if not inert, in one of two ways,—either by the heat being continued after the concentration has been carried to a certain extent, or by long keeping. On the one hand, I have always observed, that from the point at which the extract attains the consistence of thin syrup, ammonia begins to be given off in abundance, together with a modified odour of conia; and, on the other hand, I have found extracts, which were unquestionably well prepared at first, entirely destitute of conia in a few years,—a remark which applies even to the superior extract prepared by Mr. Barry, of London, by evaporation in vacuo."
Mr. Brande1 observes that "the most active extract is that which is procured by moderate pressure from the leaves only; when the stalks and stems are used and violent pressure employed, the extract is glutinous, dark-coloured, and viscid, and less active than in the former case, when it has a somewhat mealy consistency, and an olive-green colour. With every caution, however, on the part of the operator, the colour, odour, and efficacy of extract of hemlock will vary with the season, and with the situation and soil in which the herb has grown. The best method of preparing this and similar extracts consists in gradually heating the expressed juice to a temperature of about 212\textdegree [by which the vegetable albumen is coagulated, and retains, mechanically or chemically, a portion of the active principle], then to suffer it to cool, to strain it through moderately fine linen, and evaporate the strained liquor, and when it has nearly acquired a proper consistency, to add the matter which remained upon the strainer." One cwt. of hemlock yields from three to five lbs. of extract. If ammonia be evolved during the preparation of the extract, we may infer that a decomposition of the conia is going on. However carefully extract of hemlock may be prepared, I prefer for medicinal use the tincture made with the expressed juice as before stated. The dose of the extract should, at the commencement, be two or three grains, and gradually increased to five grains, or until some obvious effect is produced. [The goodness of the extract may be determined by the disengagement of a strong odour of conia when it is gradually triturated with Liquor Potassae.—Ed.]

4. PILULÆ CONI COMPOSITE, L.; Compound Pills of Hemlock. (Extract of Hemlock, 5_v; Ipecacuanha, powdered, 5_j; Treacle, as much as may be sufficient. Beat them together until incorporated.)—Antispasmodic, slightly narcotic, and expectorant. Used in spasmodic coughs, bronchitis, and the incipient stage of phthisis.—Dose, grs. v. to grs. x. twice or thrice daily. [In this preparation the London College has substituted treacle for a solution of gum.—Ed.]

5. UNGUENTUM CONI, L.; Hemlock Ointment. (Fresh leaves of Hemlock, Prepared Hogs' Lard, of each, lb. j. Boil the leaves in the lard until they become crisp, then express through linen.)—It is employed as an anodyne application to foul, painful, and cancerous sores, to glandular and scirrhous swellings, and to painful piles. An extemporaneous substitute may be prepared with lard and the extract of hemlock.

6. CATAPLASMA CONI, L.; Hemlock Poultice. (Extract of Hemlock, 3_j; Boiling Water, 3_x; Powdered Linseed, $3ivss$. Add the Linseed gradually to the water, constantly stirring to make a cataplasm. On this spread the extract, first softened with water.)—A poultice of hemlock is sometimes employed as a soothing anodyne application to cancerous, scrofulous, venereal, and other foul ulcers. It is sometimes prepared with the unstrained decoction and bruised meal; occasionally the bruised leaves, or the dried herb with hot water, are used. Hemlock fomentation (\textit{fotus conii}) is sometimes applied to painful swellings. It is prepared with the herb (fresh when it can be procured) and hot water.

1 Diet. of Pharm. 195.
OTHER UMBELLIFERÆ, DIETETICAL OR POISONOUS.

All the more important medicinal Umbelliferae have been noticed. It remains now to enumerate those plants in common use for dietetical purposes, or which are indigenous and poisonous.

Of the Dietetical Umbelliferae several have been already mentioned. To these may be added Parsley (Petroselinum sativum) and Chervil (Anthriscus Cerefolium), used as pot-herbs and garnishings; the Parsnip (Pastinaca sativa) and Skirret (Sium Sizarum), employed on account of their esculent roots; Celery (Aptum graveolens), an acetasarian plant, the blanched leaf-stalks of which are eaten raw as a salad; Common Samphire (Crithmum maritimum), which is pickled; Eryngo (Eryngium campestre), the root of which is preserved, and eaten as a candy (Candied Eryngo; Radix Eryngii condita); and Lovage (Levisticum officinale), used by distillers for preparing a liqueur termed lovage.

The Poisonous Indigenous Umbelliferae are aero-narcotics. When swallowed, they cause gastric irritation, giddiness, delirium, convulsions, and coma. The most important (after Conium maculatum, before mentioned), are Pool’s Parsley (Ethusa Cynapium), which contains a peculiar alkaloid called cynapina; Hemlock Water-dropwort (Eranthe crocata); Celery-leaved Water-dropwort (Eranthe apiifolia); and Water Hemlock (Cicuta virosa.)

Order LVII. CUCURBITACEÆ, Jussieu.—THE GOURD TRIBE.

Characters.—Flowers usually unisexual, sometimes hermaphrodite. Calyx 5-toothed, sometimes obsolete. Corolla 5-parted, scarcely distinguishable from the calyx, very cellular, with strongly-marked reticulated veins, sometimes fringed. Stamens 5, either distinct or cohering in 3 parcels; anthers 2-celled, very long and sinuous. Ovary inferior 1-celled, with 3 parietal placentæ; style short; stigmas very thick, velvety, or fringed. Fruit fleshy, more or less succulent [occasionally dry, opening by valves], crowned by the scar of the calyx, 1-celled [in some Momordicas 3- or 4-celled], with three parietal placentæ. Seeds flat, ovate, enveloped in an aril, which is either juicy or dry and membranous; testa coryaceous, often thick at the margin; embryo flat, with no albumen; cotyledons foliaceous, veined; radicle next the hilum.—Roots annual or perennial, fibrous or tuberous. Stem succulent, climbing by means of tendrils formed by abortive leaves (stipules, St. Hild.) Leaves palmated, or with palmated ribs, very succulent, covered with numerous asperities. Flowers white, red, or yellow (Lindley).

Properties.—Variable; suspicious. The roots and fruits of many species are drastic cathartics. The fruits of other species are employed as articles of food.

251. CITRULLUS (Cucumis, Linn.) COLOCYNTHIS, Schrad.—THE BITTER CUCUMBER, OR COLOCYNTH.

Sex. Syst. Monoeia, Syngenesia.

(Fructus Decorticatus, L.—Pulp of the Fruit, Ἐ.—Fructus pulpa, D.)

History.—Colocynth is supposed to be the plant termed, in the Old

1 The followers of Linnaeus are by no means agreed with their great master, or among themselves, as to the true order of Cucumis, and some other cucurbitaceous genera. The male flowers have, apparently, three stamina; but of these, two have an anomalous structure, and are regarded by some botanists as stamina with doubly-folded anthers; by others, as being composed each of two adherent stamina. Hence some have considered the flowers to be triandrous, others pentandrous,—the latter, taking into account the adhesion of the stamina, consider them to be syngenesious, triadelphous (polyadelphous), or monadelphous. So that while Linnaeus adopted Monoeia,
Testament,\(^1\) the wild vine (literally the vine of the field), whose fruit the Sacred historian calls pakkoth, a word which in our translation is rendered wild gourd. To understand the passage referred to, it is to be remembered that different kinds of gourd are commonly used in the East for shredding into pottages.\(^2\) Colocynth was employed by the Greeks at a very early period. Hippocrates\(^3\) employed κολοκυνθικὸς γύρῳ (cucurbita sylvestris, or wild gourd) only in pessaries for bringing on menstruation. Dioscorides\(^4\) gives a good description of colocynth. Pliny\(^5\) calls it colocynthis.

Sp. Char.—Stem procumbent, somewhat hispid. Leaves cordate-ovate, many-lobed, white, with hairs beneath; the lobes obtuse; the petioles as long as the lamina. Tendrils short. Flowers axillary, solitary, stalked; females with the tube of the calyx globose, somewhat hispid, the limb campanulate, with narrow segments. Petals small. Fruit globose, smooth, yellow, when ripe, with a thin solid rind and a very bitter flesh (De Cand.)

Root annual, white, branched. Stems herbaceous, angular, branched. Leaves bright green on the upper side, paler, and clothed with whitish hairs underneath. Tendril filiform, branching, opposite each leaf. Calyx 5-toothed. Corolla yellow, with greenish veins. Males: stamens 3, short, free; two of which have doubly-bent anthers, or consist of two anthers; in which case the number of stamens is really five. Females: ovarium round, smooth, inferior; style short, cylindrical; stigmas 3; filaments without anthers. Fruit (pepo) about the size of an orange, with a thin but solid rind.

Hab.—Japan, the sandy lands of Coromandel, Cape of Good Hope, Syria, Nubia, Egypt, Turkey, and the islands of the Grecian Archipelago. Cultivated in Spain.

Preparation of the Fruit.—The fruit is gathered in autumn, when ripe and yellow, and in most countries is peeled and dried, either by the sun or by stoves.

Commerce.—Colocynth is imported from Spain (Almeria, Gibraltar, Cadiz, and Malaga) Trieste, Smyrna, Alexandretta, and Mogadore. It comes over in cases, casks, boxes, &c. In 1839, duty (2d. per lb.) was paid on 10,417 lbs.

Description.—The fruit called colocynth or coloquintida (colocynthis; poma colocynthidis) is imported either peeled (generally), or sometimes unpeeled. Its pulp (pulpa colocynthidis exsiccata) is nearly white, insipid, light, spongy, porous, tough, intensely and nauseously bitter. The

1 2 Kings, iv. 39.
2 Picture Bible, ii. 226.
3 Pages 263 and 265, ed. Fæs.
4 Lib. iv. cap. 178.
5 Hist. Nat. xx. 8, ed. Valp.
6 Hooker's Journal of Botany, iii. 271.
seeds ("semina colocynthis") are smooth, either white or yellowish white ("white colocynth seeds"), or brownish ("black colocynth seeds"), bitter, especially the dark-coloured ones, and inodorous. By digesting them in repeated portions of boiling water, and afterwards well washing them, the greater part of the bitterness may be extracted. Two kinds of colocynth, distinguished as Turkey and Mogadore colocynth, are known in commerce.

a. Turkey Colocynth: Peeled Colocynth.—This is imported from the Levant and Spain. The usual size of each pepo is about two or three inches in diameter; the shape is more or less globular, according to the evenness with which the rind has been removed, and the degree of contraction in drying; the colour is white, or pale yellowish white. One hundred parts by weight are said to consist of 28 parts pulp, and 72 parts seed.

β. Mogadore Colocynth: Unpeeled Colocynth.—The pepo of this kind is larger than the preceding, and is covered with a yellowish, smooth, firm rind. It is imported from Mogadore in small quantity only, and is principally used by druggists for shew-bottles.

The seeds of colocynth are usually described as white, perfectly bland, and highly nutritious. Captain Lyon states they constitute an important article of food in Northern Africa. "The seeds of Cucurbitaceae," says De Candolle, "do not participate in the qualities of the pulp which surrounds them; they are bland, demulcent, of an oily nature, and susceptible of easily taking the form of an emulsion." These statements do not apply to Colocynth seeds of commerce, which I never found devoid of bitterness; and Hillefeld says a scruple of them purged a dog. Heise found them poisonous.

Composition.—In 1817, Braconnot analysed the watery extract. The pulp was analysed in 1818 by Meissner. Vauquelin examined the active principle.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Meissner's Analysis</th>
<th>Braconnot's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bitter matter (Colocynthin)</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Extractive</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Bitter fixed oil</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Resin insoluble in ether</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>Gum</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Bassorin</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Gummy extract (obtained from the ligneous fibre by potash)</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>Vegetable jelly</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Phosphate of lime and magnesia</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Ligneous fibre</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Colocynth Pulp</td>
<td>101.8</td>
</tr>
</tbody>
</table>

Colocynth: Colocynthite; Bitter or Purgative Principle of Colocynth.—By digesting the watery extract of colocynth in alcohol, and evaporating the tincture thus procured, we obtain a mass, composed, according to Vauquelin, of a bitter principle and acetate of potash. A little water readily dissolves the latter, leaving the bitter resinoid matter, to

1 Duncan, Edinb. Dispens.
3 Marx, Lehre v. d. Giften, ii. 27.
4 Ibid. 34.
5 Journ. de Phys. lxxiv. 337.
7 Journ. de Pharm. x. 416.
which the name of *Colocynthin* has been applied. It is a yellowish brown, translucent, brittle substance, dissolving in water, but much more readily in alcohol. The aqueous solution is precipitated by the tincture of galls, and by some metallic solutions (proto-sulphate of iron, sulphate of copper, and nitrate of mercury). [This latter effect is owing, however, to the colocynthin not being pure; as Mr. Wm. Bastieck has shown that when quite pure from foreign matters, it possesses neither basic nor acid properties. It appears also, from the experiments of the same gentleman, that colocynthin is oxidized by digestion with nitric acid, and a substance formed having weak acid properties, for which he proposes the name of colocynthic acid.1—Ed.]

Chemical Characteristics.—The cold infusion is pale yellow, and very bitter; nitrate of mercury, sulphate of copper, and acetate of lead, cause it gelatinous-flocculent precipitates (*pectates*?); sesquichloride of iron and tincture of nutgalls do not render it turbid. Powdered colocynth gives scarcely any evidence of the presence of starch, on mixing it with tincture of iodine and water.

Physiological Effects. a. On Animals generally.—The animals on whom the action of colocynth has been examined are horses, dogs, sheep, and pigs. On dogs its operation appears to be analogous to that on man. Thus Viborg,2 states that two drachms caused in a dog violent vomiting and purging; and Orfila3 has shewn that three drachms introduced into the stomach (the cesophagus being tied) are capable of causing death. It is remarkable, however, that its operation on horses is comparatively slight, at least according to the testimony of Viborg, Bourgelat, and Moiroud.4 The last mentioned writer says he has given four drachms to a horse without exciting the least disorder; and he adds that another cucurbitaceous plant (bryony) has likewise very little effect on the horse.

b. On Man.—Thunberg5 tells us that, at the Cape of Good Hope, the colocynth fruit is said to be eaten when pickled, both by the natives and colonists, although it is very bitter. Mr. Dunsterville, Surgeon, of Algoa Bay, formerly one of my pupils, tells me that the colocynth growing there does not possess the least bitterness. This may not be the medicinal plant.

Colocynth taken in small or moderate doses acts as a very safe and useful purgative. Its operation is not limited to the acceleration of the vermicular movements, but is extended to the secreting and exhaling vessels of the alimentary canal, whose functions it promotes. Moreover, it stimulates the other abdominal organs; and after the absorption of its bitter acid principle, it not unfrequently proves diuretic. In full doses, it operates as a very active or drastic cathartic and hydragogue; but I have never seen any ill effects from its use. These remarks apply to the compound extract, the only preparation of colocynth of which I have personal experience. It would appear, partly from observation in the human subject, and also from the experiments of Orfila on dogs, that colocynth is one of those purgatives which exert a specific stimulant influence over the large intestines. In excessive doses, colocynth, both in powder and decoction, has on several occasions

1. *Pharmaceutical Transactions*, x. 239.
operated as a mortal poison, causing violent vomiting and purging, griping pain, and other symptoms of gastro-intestinal inflammation. A tea-spoonful and a half of the powder (about 3iss.) has proved fatal.\(^1\) In a case related by Orfila\(^2\) there were, besides the preceding symptoms, dimness of sight and slight delirium. In M. Carron d'Annecy's case\(^3\) the purging was followed by extreme tension and tenderness of belly, suppression of stools and urine, retraction of the testicles, and priapism. On a post-mortem examination there were found, besides the usual evidences of inflammation of the bowels, traces of inflammation of the liver, kidneys, and the bladder.

Considered in relation to other cathartics, colocynth will be found to rank near gamboge, from which it is distinguished by at least two circumstances; first, its cathartic effect is not the mere result of its topical acrid operation, but, in part, of its specific influence over the bowels; secondly, its action on the large intestine is more manifest than that of gamboge. In the latter property, colocynth approximates to aloes; but while it greatly exceeds the latter in its cathartic and hydragogue effects, it is devoid of the tonic influence possessed by aloes, when used in small doses.

Uses. Besides being useful as an ordinary purgative, colocynth is adapted for acting as a stimulus to the abdominal and pelvic vessels and nerves in cases of torpor or inactivity, and on the principle of counter-irritation already explained for determining from other organs. The objections to its use are acute inflammatory affections of the alimentary canal, diseases of the large intestine, &c. The following are the principal cases in which it is employed:

1. In habitual constipation. As an ordinary purgative for keeping the bowels regular, the compound extract of colocynth is in common use both among the public and medical men. It operates mildly, certainly, and effectually. I am acquainted with individuals who have taken this substance for years without suffering any inconvenience therefrom. The simple extract is sometimes employed as a substitute, but is less advantageous.

2. In alvine obstruction. In some cases of obstinate constipation, with sickness, and other symptoms of an extremely irritable stomach, the compound extract of colocynth occasionally proves invaluable. Occupying but a small bulk, it is retained on the stomach, and succeeds in producing alvine evacuations, where the ordinary liquid purgatives fail, in consequence of being vomited up. Doubtful cases of intus-susception and hernia, even with stercoraceous vomiting, I have seen completely relieved by it. More than once have I known an operation averted by its use, in those who, in addition to the above symptoms, had old hernia, which led the surgeon to suspect strangulation. A slight degree of abdominal tenderness is not to be considered as absolutely prohibiting its use. Occasionally the extract is rubbed down with soap and water, and administered as an enema (see Enema Colocynthidis).

3. In diseases of the brain. In apoplexy, or a tendency thereto, in

\(^1\) Christison, On Poisons.
\(^2\) Toxicol. Gén.
\(^3\) Ibid.
paralysis, insanity, violent headache, &c. colocynth is sometimes employed with good effect, on the principle of revulsion or counter-irritation.

4. In dropsy.—In dropsical affections, colocynth has been used as a hydragogue. But in this country it is less frequently employed for this than for other purposes: various other hydragogues (especially elaterium and jalap) being usually preferred. It is sometimes employed as a diuretic, being given in the form of decoction. Hufeland regarded it as a most effectual diuretic in persons of a cold and sluggish habit of body.¹

5. In amenorrhœa and chlorosis.—In some cases of obstructed menstruation, benefit is obtained by the use of drastic purgatives, like colocynth, which act on the rectum, and, by contiguous sympathy, affect the uterus.

Administration.—The powder, which is rarely used, may be administered in doses of from two to eight or ten grains, intimately mixed with some mild powder (gum, or starch). The decoction (prepared by boiling 3ij. of colocynth in Oj. of water for six minutes, and, according to Hufeland, adding to the strained liquor, f3ij. of the spirit of sulphuric ether, and f3j. of syrup of orange peel) is given in doses of f3ss. three times a day. The tincture (prepared according to the Prussian Pharmacopœia, by digesting 3j. of colocynth pulp and 3j. of star anise, in lb. j. of rectified spirit) is given in doses of twenty drops. Colocynth has been employed iatralyptically by Dr. Chrestien.²

The tincture of colocynth, or an ointment consisting of twenty grains of the powder mixed with hog’s-lard, has been used by way of friction on the abdomen and inner side of the thighs, in disorders of the intellectual functions. Diuresis was a common effect.

Antidote. See Elaterium.

The following are the official preparations of colocynth:—

1. Extractum Colocynthidis, L. E.; Extract of Colocynth. (Colocynth cut in pieces, rejecting the seeds, lbs. iij.; Distilled Water Cong. ss. Macerate the colocynth for thirty-six hours, frequently squeezing it with the hand. Press out the liquor and finally evaporate to a proper consistence, L. Colocynth, lb. j.; Water, Cong. ij. Boil gently for six hours, replacing the evaporated water occasionally. Strain the liquor while hot, and evaporate it in the vapour bath to due consistency, E').—When the decoction is very concentrated, it readily gelatinizes on cooling; hence it is necessary to strain it while hot. At Apothecaries’ Hall, the produce of 100 lbs. of pulp is about 65 lbs of extract.³ Extract of colocynth is an objectionable preparation, as it is very apt to become either mouldy or tough and hard by keeping. The dose of it is grs. v. to 3j.

2. Pilula Colocynthidis Composita, L. D. Pilula Colocynthidis, E. (formerly called Compound Extract of Colocynth). (Extract of Colocynth, 3j.; Powdered Extract of Aloes, 3vi.; Powdered Scammony, 3ij.; Powdered Cardamoms, 5ss.; Soft Soap, 3jss. Mix the powders, and the remaining ingredients being added, beat all together so that a mass may be formed, L.;

¹ Eberle, Mat. Med. 2d edit. i. 119.
³ Barker and Montgomery, Obs. on the Dub. Pharm.
Pulp of Colocynth, in fine powder, \(\frac{3}{ij} \); Hepatic Aloes, in fine powder, \(\frac{5ij}{ij} \); Scammony, in fine powder, \(\frac{3j}{ij} \); Oil of Cloves, \(\frac{3ij}{ij} \); Castile Soap, \(\frac{3j}{ij} \); Treacle, by weight, \(5x \). Reduce the soap to a fine powder, and mix it with the colocynth, aloes, and scammony, then rub all together with the oil of cloves and treacle, and beat them into a mass of a uniform consistence, \(D. \) The process of the Edinburgh College is as follows:—"Scocotrine or East Indian Aloes, and Scammony, of each, eight parts; Colocynth, four parts; Sulphate of Potash, and Oil of Cloves, of each, one part; Rectified Spirit, a sufficiency. Pulverize the aloes, scammony, and sulphate of potash, together; mix with them the colocynth previously reduced to fine powder; add the oil of cloves; and, with the aid of a small quantity of rectified spirit, beat the whole into a proper pill mass, which is to be divided into five-grain pills." Compound pill of colocynth, made according to the London Pharmacopoeia, is an exceedingly valuable preparation; but owing to carelessness, inattention, fraud, or ignorance, the preparation of the shops is very unequal in its powers. The aloes used in the process should be purified (by straining) as directed by the London College: the necessity of this will be obvious to any one who has ever seen a cwt. of aloes melted. Should the Cape variety be substituted for the finer kind of aloes, the odour will detect the fraud. The scammony employed should be of the best quality. If the common (i.e. adulterated) kinds be used, the activity of the preparation is thereby deteriorated. If the compound pill, rolled into a ball and dropped into water, effervesce\(^2\) on the addition of hydrochloric acid, we may infer that the scammony employed was adulterated with chalk. If the filtered decoction, slightly acidified, become blue or purplish on the addition of tincture of iodine, the presence of some starchy substance (as jalap or adulterated scammony) may be inferred. The mode of detecting gamboge will be described hereafter (see Gamboige). If colocynth seeds have been employed as a substance for the pulp, the tenacity of the extract, I am told, is greatly deteriorated. Some druggists substitute oil of cardamoms for the powder of the seeds, and by this means increase the odour of the preparation; but unless some inert powder be added to compensate for the powder of the seeds omitted, the strength of the preparation would be somewhat greater than that intended in the Pharmacopoeia.

The compound pill of colocynth is a powerful, sure, yet safe cathartic. Its uses are the same as those of extract of colocynth before described. The dose of it is from five grains to a scruple. Calomel is frequently given in combination with it. The Pilulæ catharticae compositæ, U. S. contain the compound pill of colocynth, extract of jalap, and calomel. Extract of Hyoscyamus is frequently given in conjunction with the compound extract of colocynth. (See Pilulae colocyntidis et Hyoscyami, E.)

In the shops a cheap substitute for the compound pill of colocynth is often sold under the name of pill cochic (pilulae coeic, or pilulae cochic minores of Galen). The substitute sold under this name at Apothecaries' Hall, London, is the Pilulae colocyntidis, Ph. Ed. without the sulphate of potash.

1. In the Dublin preparations, avoirdupois weight is directed to be used.
2. If the extract has been kept for some time it will effervesce, though it be made from pure scammony,—probably from the alkali of the soap becoming carbonated.
Colocynth is a constituent of Morison's Pills.

3. PILULÆ COLOCYNTHIDIS ET HYOSCYAMI, E.; Pills of Colocynth and Henbane. (Colocynth-pill mass, two parts; Extract of Hyoscyamus, one part. Beat them well together, adding a few drops of rectified spirit, if necessary; and divide the mass into thirty-six pills.)—Extract of hyoscyamus diminishes the pain and griping frequently experienced from the use of colocynth, but does not injure its evacuant properties. Both Sir H. Halford and Dr. Paris bear testimony to this.—The dose of this pill is grs. v. to grs. xv.

4. ENEMA COLOCYNTHIDIS, L.; Colocynth Glyster. Extract of Colocynth, 3ss.; Soft Soap, 3j.; Water, Oj. Mix and rub them together.—A useful cathartic enema in obstinate constipation, whether arising from colic, or from other non-inflammatory conditions.

252. ECBALIUM OFFICINARUM, L.; ECBALIUM AGRESTE, D. (Momordica Elaterium).—WILD OR SPIRTING CUCUMBER.

Sex. Syst. Monocoea, Syngenesia, Liam.

(Fructus recens tantum non maturus, L.—Feculence of the juice of the fruit, E.—Fructus; Feculence, Folium, D.)

History.—The term ἐλατήριον (from ἐλαυνω, I impel or urge forward) was employed by the Greeks to signify, not merely a medicine prepared from the σικὺς ἄγρως, or wild cucumber (Momordica Elaterium), but also any purgative substance. Hippocrates employed the root and leaves of the plant, as well as ἐλατήριον, in medicine. Dioscorides minutely describes the method of preparing ἐλατήριον by drying the feculence of the expressed juice of the fruit, and making it into troches. Pliny calls the plant Cucumis sylvestris, and gives a short account of the method of making elaterium. C. Bauhin terms the plant Cucumis asininus, or asses' cucumber.

Botany.—Gen. Char.—Tendrils lateral. Stamens monadelphous. Anthers connate. Calyx of males campanulate. Fruit expelling the seeds with elasticity; indehiscent. (Richard.)

Sp. Char.—Hispid, scabrous. Stem dwarf, without tendrils. Leaves cordate, somewhat lobed, crenate-toothed, very rugose, on long stalks. (Richard.)—Ed.

Root annual. Stem thick, round, trailing, and branching. Leaves ob-

2 Pharmacologia, 6th edit. i. 299.
3 See the note to Cucumis Colocynthis, p. 1735.
4 Fesins, Econom. Hipp.
5 Opera, ed. Fes. pp. 418, 547, and 577.
6 Lib. iv. cap. 155.
8 Pinax, 314.
tuse, grayish, and strongly reticulated on the under side; petioles long and bristly. *Flowers* axillary: the males form racemes of 5 or 6 flowers. *Calyx* adherent, with 5 lanceolate acute teeth. *Corolla* campanulate, yellow, reticulated with green veins. *Males*: *Stamina* 3, two of which bear doubly-foliated *anthers* [or 5, four of which cohere, so as to form two bundles of two anthers each]. *Females*: *filaments* 3, sterile; *ovarium* inferior, 1-celled (spuriously 3-celled; *style* simple; *stigmas* 3, bifid. *Pepo* small, elliptical, pedunculated, grayish-green, covered with soft prickles; when ripe separating from its stalk, and expelling, with considerable violence, its brown seeds, and a thin mucus through the aperture at the insertion of the stalk.

The phenomenon of the expulsion of the seeds of this plant has acquired, of late years, increased interest, from the circumstance of Dutrochet¹ having adduced it as one of the effects of endosmosis. It is well known that when two fluids of unequal density are separated from each other by membrane (animal or vegetable), a double permeation of fluids takes place,—that is, each fluid passes through the membrane, and mixes with the other fluid: the current in one direction is called endosmosis, that in the opposite direction *exosmosis*.

Now to apply these facts to the phenomena of the Elaterium apple. In the centre of this fruit, and surrounding the seeds, is a very singular variety of organic matter, which appears like thick mucus. It is called by some botanists *placental matter* (see fig. 353, c.) External to this, that is, in the tissue of the pericarp, there is another organic liquid, whose density is less than that of the placental matter. These two fluids being separated from each other by membrane, are in a proper condition for the operation of endosmosis; consequently the central cell gradually becomes very much distended (at the expense of the liquid in the tissue of the pericarp), and ultimately gives way at the weakest point—namely, where the peduncle is articulated with the fruit, and the contents of the cells are expelled with great violence, from the sudden contraction of the distended tissues.

Seat of elaterium.—Some years since Dr. Clutterbuck² ascertained that the active substance, elaterium, "is neither lodged in the roots, leaves, flowers, nor stalks, in any considerable quantity; nor is it to be found in the body of the fruit itself, or in the seeds contained within it; it was only in the juice around the seeds, therefore, that it could be looked for," and here it was found. The precise situation of it will be readily comprehended by inspecting a transverse section of the elaterium pepo (see fig. 353, c.) We observe that the external portion of the pericarp (namely, the epicarp) is furnished with rigid hairs; within the epicarp is a whitish *sarcocarp*, forming what Dr. Clutterbuck terms the body of the fruit. The centre of the fruit is divided into three cells, by projec-

tions of the three parietal placenta to which the seeds are attached. Between these projections, and surrounding the seeds, is the pulp, the placental matter, or the juice around the seeds (Clutterbuck). It is paler than the sarcocarp, and is composed of a very lax tissue, which, as the fruit matures, takes on, says Aug. St.-Hilaire, a gelatinous consistency, becomes disorganized, and melts into water.

"The centre of the fruit of Momordica Elaterium," says Dutrochet¹, "contains a very singular organic substance, and which has no resemblance to any other vegetable tissue. It seems to be a green very thick mucus. Viewed by the microscope, it appears to consist of an immense quantity of very small globules, agglomerated sometimes confusedly, sometimes so as to form irregular stripes. This substance is penetrated by a whitish liquid, by a sort of emulsion, which is so much the more dense as we observe it at an epoch nearer maturity. This aqueous liquid escapes immediately we open the green fruit. By the microscope we see some almost imperceptible globules which swim in this liquid. At the epoch of maturity this whitish liquid is much more abundant, and at the same time much denser; the globules, which it holds in suspension, have become much larger."

Hab.—South of Europe. Common on rubbish in the villages of Greece and the Archipelago. A few acres of it are annually cultivated at Mitcham.

Extraction of Elaterium.—We are indebted to Dr. Clutterbuck for the present improved method of manufacturing elaterium.

a. Dr. Clutterbuck's Process.—"The cucumbers should be gathered when nearly as ripe as possible, and without violence that might endanger their bursting. They should then be wetted by the affusion of cold water, that less of the juice when they are cut may adhere to the external surface. In this state they should be cut through longitudinally, and the juice allowed to strain through a fine sieve, placed in a large earthenware vessel. The seeds and surrounding pulp should be scooped out upon the sieve, and washed with repeated affusions of cold water, by which they will be freed from all adhering juice. Something will be saved also by afterwards rinsing the split cucumbers themselves in cold water, from which a portion of elaterium may be collected.

"After standing a few hours a sediment is formed, from which the clear liquor is to be poured off; it is then to be thinly spread on fine linen, and exposed to the air to dry; a gentle warmth may be employed without injury, but the access of sunshine destroys the fine green colour which the substance otherwise acquires." From forty fruits, Dr. Clutterbuck obtained only six grains of elaterium. The elaterium thus procured is of the finest quality; but the product is very small.

b. Process of the British Pharmacopoeias.—The London College gives the following directions for its preparation:—Slice ripe wild cucumbers lengthwise, and strain the juice, very gently expressed, through a very fine hair-sieve; then set it by for some hours, until the thicker part has subsided. The thinner supernatant part being rejected, dry the thicker part with a gentle heat.—The processes of the Edinburgh and Dublin Colleges are essentially the same.

g. Process actually followed.—The following is the mode of preparation which I have seen practised at Apothecaries' Hall, London:—The fruits are cut longitudinally in halves by women, and are then placed in a hempen cloth and put into a common screw press. Apparently a tolerable pressure is applied, but for a few minutes only, being removed before all the juice has ceased running out. A greenish slightly turbid liquor runs out. When the fruits are taken out of the press they are but very slightly crushed, so that the pressure cannot have been great. The juice as it runs from the press falls into a hair-sieve, through which it flows into a cylindrical-lipped glass jar. Here it is allowed to remain for about two hours, during which time a greenish felcula is deposited. The supernatant liquor is then carefully poured off, and the thicker liquor at the bottom is placed on a paper filter supported by a cloth filter stretched on a wooden frame. A bitter, yellowish-brown (sherry-coloured) liquor runs through, and a green mass is left on the filter. The latter is then carefully dried by a stove, and constitutes the finest elaterium. The mother liquor which was poured off from the deposit is placed in shallow brown

pans, and there lets fall a fresh deposit, which when separated and dried forms a paler elaterium.

After the elaterium has been deposited from the juice, a mucilaginous matter subsides, which greatly deteriorates the elaterium (if it has not been previously separated), and renders it when dry, dark, gummy, and much curled.

Theory of the Process.—Dr. Clutterbuck's experiments have shown that the finest elaterium is obtained without pressure from the fruits when nearly as ripe as possible. In practice, however, pressure must be employed; because the cucumbers must not be too ripe when gathered, or they are apt to burst during their journey to town, or by handling; and in this imperfectly ripe state the juice does not flow from them until pressure be employed. If the juice of one of the fruits be received on a plate of glass, it is at first nearly colourless and transparent. In a few minutes, however, by exposure to the air, it becomes slightly turbid (milky); and small white coagula are formed in it. By slow and spontaneous evaporation crystals of a rhomboidal figure are perceptible on the glass when examined by a magnifier. These crystals are Elaterin. They are probably formed by the influence of the air on the juice. Elaterium of commerce consists essentially of this elaterin contaminated with the green colouring matter, cellular tissue, and starch, expressed from the fruit, and mixed with the residue obtained by drying the bitter liquor above referred to, with which the tissues and elaterin were moistened.

Description.—The Elaterium (Elaterium; Extractum Elaterii, L. E. D.) of commerce is a very variable article. Two kinds are distinguished, the English and the Maltese.

1. English Elaterium (Elaterium anglicum) is manufactured at Apothecaries' Hall, at Mitcham, and perhaps at other places. The finest (Elaterium album, Aut.) occurs in light, friable, thin, very slightly curled flakes, or flat cakes, or fragments, which frequently bear the impression of the paper or muslin on which the elaterium was dried. Its colour is pale, greyish green, which by exposure becomes yellowish. Its taste is acrid and bitterish; it has a faint animal odour (not very dissimilar to that of ergot of rye), but combined with a fragrancy which reminds me of senna or tea. By keeping nine or ten years, a sample of good elaterium in my museum has assumed a sparkling appearance, as if it contained very minute crystals.

Inferior kinds (Elaterium nigrum, Auct.) are sometimes hard, break with difficulty, or with a resinous fracture, are much curled, gummy, and dark coloured (brown or olive-green). They are probably prepared from the juice, after the finest elaterium has been separated. In my museum, I have several varieties of this inferior kind, which were collected by Dr. Clutterbuck. One is in the form of a brownish powder. Dr. Clutterbuck states, that of the best specimens of elaterium from Apothecaries' Hall, spirit dissolves more than half; while of inferior sorts, a fourth part only is dissolved. Mr. Barry's says that the solubility of elaterium, manufactured by Dr. Clutterbuck's process, is as follows:—

2. Maltese Elaterium (Elaterium melitense).—This is imported from Malta. It is in much larger flakes than the best English elaterium, and frequently has some adherent paper on which it has been dried; its colour is much paler, sometimes with hardly a trace of green. Some specimens are more friable and softer, and occasionally are rather chalky to the touch. My specimens are mixtures of chalk and starch; hence they effervesc with acids, and become blue with iodine. I am assured that Maltese elaterium is mixed, in this country, with buckthorn juice, to deepen its colour, and promote its purgative operation.

Composition.—Braconnot\(^1\) analysed the expressed, boiled, filtered, and evaporated juice of the plant. Soon after Dr. Clutterbuck's experiments on elaterium, Dr. Paris\(^2\) analysed this substance. In 1831, Mr. Hennell\(^3\) published an analysis of it. In 1835, Landerer\(^4\) examined the juice of the fruit growing in Nauplia (Napoli). Furthermore, the active principle of elaterium was examined in 1831 by Dr. Morries,\(^5\) and afterwards by Marquart.\(^6\)

<table>
<thead>
<tr>
<th>Dr. Paris's Analysis</th>
<th>Mr. Hennell's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elatia ({) Bitter matter (})</td>
<td>1.2</td>
</tr>
<tr>
<td>Extractive</td>
<td>2.6</td>
</tr>
<tr>
<td>Fecula</td>
<td>2.8</td>
</tr>
<tr>
<td>Gluten</td>
<td>0.5</td>
</tr>
<tr>
<td>Woody matter</td>
<td>2.5</td>
</tr>
<tr>
<td>Water</td>
<td>0.4</td>
</tr>
</tbody>
</table>

| Elaterium | 10.0 |

1. Elaterin (Elaterior; Momordicinæ).—Dr. Clutterbuck shewed, in 1819, that the active principle of elaterium was insoluble in water, but soluble in alcohol; for he found a watery infusion of eight grains had no effect, whereas the alcoholic extract in the dose of one-sixteenth of a grain produced considerable purging, and often vomiting; and when the dose was increased to a quarter of a grain the effect was more considerable, and often took place in a very few minutes. The action of these liquids on elaterium led Dr. Clutterbuck to believe that the active principle was of a resinous nature. But the alcoholic tincture of elaterium contains three principles: elaterin, the green resin, and a bitter matter. By treating this alcoholic extract with boiling distilled water, the bitter matter is dissolved: the residue (elaterin and green resin) was termed by Dr. Paris elatin. Dr. Morries, in 1831, separated the green resin and isolated elaterin; though Mr. Hennell seems to have discovered it about the same time. Dr. Morries obtained it by evaporating the alcoholic tincture of elaterium to the consistence of thin oil, and then throwing it into boiling distilled water; a white crystalline precipitate was formed, which increased

\(^1\) Journ. Phys. lxxxiv. 292.
\(^2\) Pharmacologia.
\(^3\) Journal of the Royal Institution, i. 532.
\(^4\) Pharm. Central-Blatt für 1835, 154.
\(^6\) Pharm. Central-Blatt für 1833, S. 850.
as the liquor cooled. This precipitate was afterwards purified by a second solution in alcohol and subsequent precipitation by water. Mr. Hennell’s process was different. He separated the resin from the crystalline matter of the alcoholic extract of elaterium by ether, which took up the resin and left the elaterium; the latter was then purified by solution in hot alcohol and subsequent crystallization. Marquart’s process is less likely to yield pure elaterium, since he procured it from an extract prepared by evaporating the expressed juice. Another method (founded I presume on the directions of the Edinburgh College) for the determination of the goodness of elaterium, is to treat the alcoholic extract of elaterium with a solution of potash, which takes up the bitter matter as well as the resin, and leaves the elaterin. The quantity of elaterin in elaterium is thus stated by different authorities:

<table>
<thead>
<tr>
<th>100 parts of Elaterium.</th>
<th>Quantity of Elaterin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared according to the London College (Hennell)</td>
<td>44</td>
</tr>
<tr>
<td>Best British Elaterium (Morries)</td>
<td>26</td>
</tr>
<tr>
<td>Worst ditto (Morries)</td>
<td>15</td>
</tr>
<tr>
<td>French Elaterium (Morries)</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Elaterium (Edinburgh Pharmacopœia)</td>
<td>14:3 to 25</td>
</tr>
<tr>
<td>Best specimens (Balmer)</td>
<td>33</td>
</tr>
<tr>
<td>Fine sample, prepared at Apothecaries’ Hall in 1839, and dried by steam heat (Pereira)</td>
<td>26</td>
</tr>
</tbody>
</table>

These discrepancies must arise principally from the different degrees of goodness of samples examined; but partly also from different modes of proceeding. I found that 30 grs. of fine elaterium, prepared at Apothecaries’ Hall in 1839, lost by drying on a steam bath 1:5 grs. Boiled in repeated portions of rectified spirit, the dried mass lost 18 grs. The concentrated green tincture poured into dilute liquor potasse (see process of the Edinburgh Pharmacopœia, p. 1506) deposited crystals which, dried by steam heat, weighed 7:5 grs.

Elaterin possesses the following qualities: it is crystalline, and has a silky appearance; the crystals, viewed by a magnifying glass, are observed to be rounded prisms with striated sides; it is very bitter, but odourless; it is neither acid nor alkaline, and is insoluble in water, but soluble in hot alcohol. Mr. Hennell says it is only very slightly soluble in ether; whereas Dr. Morries states it to be readily soluble in both ether and fixed oil. It is fusible, according to Mr. Hennell, at 350° F., or at 390° Phillips. Mr. Hennell states that it is composed of Carbon 36°9, Hydrogen 23°9, and Oxygen 39°2, which nearly corresponds to the formula C3H11O2. Dr. Morries says, that at a high temperature it is dissipated in a thick, white, pungent vapour, having an ammoniacal odour: if so, nitrogen must be a constituent. But neither by the odour, nor by turmeric, can I detect ammonia in this vapour. The late Dr. Duncan, of Edinburgh, ascertained that in doses of one-twelfth or one-sixteenth of a grain it had all the effects of a dose of elaterium. “A tenth of a grain,” says Dr. Christison, “as I have myself witnessed, will sometimes cause purging in man; and a fifth of a grain, in two doses, administered at an interval of twenty-four hours to a rabbit, killed it in seventeen hours after the second dose.” Dr. Golding Bird thinks one-sixteenth of a grain a fair dose to commence with: he repeats it every two hours until some effect is produced. It may be taken dissolved in spirit, and by this diffused through an aqueous vehicle.

2. Green Resin (Chlorophylium).—Is insoluble in water, but dissolves in alcohol, ether, and caustic potash. It does not reddens litmus, though from its ready solubility in caustic potash its acid nature might be suspected. Some of it, prepared by Mr. Hennell, was tried at St. Bartholomew’s Hospital, and found to act powerfully as a purgative in doses of less than a third of a grain. Perhaps this might have arisen from the presence of elaterin; for twenty-one grains of the resin yielded four grains of elaterin.

3. Bitter Matter.—This is soluble both in water and alcohol. Its taste is intensely bitter: its colour is brownish yellow.

Characteristics.—Good elaterium is friable, has a pale greenish-gray colour, and an animal odour. Digested in rectified spirit it yields a fine
green tincture. Thrown into water it floats. It does not effervesce in diluted hydrochloric acid: the acid liquor being digested on elaterium, and subsequently rendered nearly neutral by ammonia, gives scarcely any cloudiness on the addition of oxalate of ammonia. Touched with tincture of iodine, it gives no evidence of the presence of starch; though if it be boiled in water, the decoction, when cold, gives traces of starch, by the blue colour developed on the addition of iodine. If the ash formed by the burning of elaterium in the air be ignited in the outer cone of the flame of a candle, the presence of potash is indicated by the bluish or violet tinge.

Maltese elaterium has no odour, and scarcely any green tinge. Examined by the microscope, it is found to contain globules of wheaten starch. It sinks in water, effervesces with diluted hydrochloric acid, yielding a solution which, when nearly neutralized by ammonia, gives a copious precipitate (oxalate of lime) on the addition of oxalate of ammonia. Tincture of iodine stains it bluish or greenish black (iodide of starch). If the cinder obtained by burning Maltese elaterium in the air be ignited in the outer cone of the flame of the candle, it communicates an orange tint to the flame (lime?).

The adulteration of elaterium by starch was known to Dioscorides. The Edinburgh College, (1841), gives the following characteristics of good elaterium:

"Colour pale-gray: when exhausted by rectified spirit, the solution, concentrated, and poured into hot diluted aqua potassse, deposits, on cooling, minute silky, colourless crystals, weighing from a seventh to a fourth of the elaterium."

In the Edinburgh Pharmacopoeia for 1839, it was stated that elaterium should yield "at least a seventh" of elaterin; and in the first edition of the "Elements," I observe that "these characteristics are not sufficiently accurate. Good elaterium is pale greenish-gray: and when treated as the College directs, should yield 26 per cent. of crystals (i. e. elaterin)." It will be seen that the College has somewhat modified its original statement.

Physiological Effects. a. On Vegetables.—Macaire found a branch of the Momordica Elaterium was speedily destroyed by immersing it in a solution of the extract of this plant.¹

b. On Animals.—Viborg² gave a pound of the fruit of Momordica Elaterium to a horse without any effect. Two and a half pounds of the whole plant (roots, leaves, and stem) also appeared inert.

The only experiments made with the extract of elaterium that I am acquainted with, are those of Orfila³ on dogs. They are three in number, and prove that this substance is a powerful local irritant, producing death even when it has been applied to the cellular tissue of the thigh, in consequence, as he supposes, of the nervous system being sympathetically affected. Moreover, he concludes, from his observations, that elaterium exerts a special action on the rectum.

g. On Man.—The acridity of elaterium in its local operation is well shown by various facts. Pliny truly observes that the juice of the elaterium

¹ Méms. de la Soc. de Phys. de Genève, iv.
³ Tox. Gêa.
apple is dangerous when applied to the eye; and Dr. Clutterbuck mentions that some of it “getting accidentally into the eye in one instance, it occasioned severe pain and inflammation, with an erysipelatous swelling of the eyelids, that continued till the following day.” We have a further proof of its irritant properties in the inflammation and ulceration of the fingers of those employed in its preparation. When swallowed, it irritates the gastro-intestinal membrane, and occasions vomiting and violent purging; hence it is called a drastic purgative. Fine elaterium, in the dose of 1-8th of a grain, seldom fails to purge violently, and sometimes to vomit. This was long since noticed by Dr. Clutterbuck; and I can verify his statement from repeated observations. Even 1-16th of a grain will generally excite considerable purging. The elaterium of the shops, however, is rarely so active as this; and I have known two grains given with no more effect than the pure elaterium would excite in the dose of 1-8th of a grain. Elaterium powerfully excites the secretions and exhaling vessels of the alimentary canal, and thereby occasions very watery stools: hence the term hydragogue applied to it. In some dropisical cases I have known a single dose discharge several pints of fluid by the bowels. The gripings and the increased number of evacuations prove that the irritation is not confined to the mucous coat, but is extended to the muscular coat. Under the influence of a full dose, the pulse is excited, the tongue becomes dry, and sometimes furred, and great thirst is produced. Occasionally the skin becomes damp under the operation of elaterium.

Elaterium has been supposed to exert a specific influence over the uterus. Thus Dioscorides and even later writers state that it provokes the menses, and is apt to produce the death of the fetus in utero. Its uterine influence, however, is probably not greater, in proportion to its cathartic property, than that of other violent drastics, which act powerfully on the large intestines.

Does elaterium become absorbed? We have no stronger evidence to offer in favour of the affirmative of this question than that mentioned by Hip pocrates\(^1\), that the milk of women and goats who have eaten elaterium, or the wild cucumber, possesses purgative properties. Furthermore, the accident which occurred to Dr. Robert Dickson, Lecturer on Botany at St. George’s Hospital, seems to prove that absorption must have taken place by the skin\(^2\). Dr. Dickson carried a specimen of the plant in his hat to his lodgings, in Paris, from the Jardin-du-Roi. In half an hour he experienced violent headache, which was followed by colicky pain, violent purging, vomiting, and fever.

Considered with respect to other cathartics, we find it pre-eminently distinguished by the violence of its purgative effect. Croton oil alone approximates to it. Its hydragogue operation exceeds that of most, if not all other, ordinarily used drastics.

Uses.—The principal use of elaterium is to excite watery evacuations in dropsy, by which a twofold effect is to be hoped for; viz. first, absorption of the effused fluid; secondly, the stoppage of any further effusion in consequence of the metastasis of vital action from the seat of the dropsy to the

\(^1\) Εἰτίομον, lib. vi. sect. 5.
intestinal membrane. In dropsies dependent on, or accompanied with, disease of the kidney, the evacuation of water from the bowels is much to be preferred to the employment of stimulating diuretics, which may add to the severity of the renal malady. Of the violent hydragogue purgatives, elaterium I believe to be the most useful in dropsy. It evacuates more watery fluid than the others; while, if it be good, its operation may be relied on. It is objectionable where there is great debility, and where any inflammatory or other disease of the bowels exists. I have seen the fatal termination of dropsy apparently accelerated by the use of elaterium. A dropsical patient, much debilitated, took, by order of his physician, a dose of elaterium, which caused excessive alvine evacuations, great exhaustion, sinking of the pulse, syncope, and death. Where no contra-indication to the use of elaterium exists, one or two doses of it should be given every other day, for a week or ten days. If continued longer than this, it might perhaps bring on an inflammatory condition of the bowels. Dr. Darwall¹ mentions a case in which hypercatharsis and maniacal delirium were produced by the prolonged use of elaterium; the delirium, however, went off in a few hours. Some tonic (usually gentian) is commonly conjoined with elaterium. Thus a pill composed of elaterium and extract of gentian is frequently employed; or we may exhibit infusion of gentian on alternate days with the elaterium. Where there is a febrile condition of system, and also where there is an irritable or inflammatory condition of the alimentary canal, elaterium is inadmissible. It is best adapted for cold phlegmatic constitutions. Sydenham² recommended elaterium in dropsy: afterwards Lister³, Heberden⁴, Ferrier⁵, Clutterbuck⁶, and other experienced practitioners, bore testimony to its exceeding great efficacy. But judging by the doses recommended, all of them, except the last-mentioned writer, seem to have been unaware of the great activity of the medicine when pure.

2. In cerebral affections, such as apoplexy, or a tendency to it (manifested by sleepiness, stupor, or giddiness), mania, &c., elaterium, as a drastic purgative, sometimes proves serviceable on the principle of counter-irritation or revulsion.

3. In obstinate constipation from sluggishness of the intestinal tube, elaterium is occasionally useful. But care must be taken to ascertain that the constipation does not depend on any mechanical impediment (as hernia, or intus-susception,) to the passage of the feces.

4. In gout.—A combination of elaterium and opium has been found serviceable in gout.

Administration.—The dose of good elaterium is from one-sixteenth to one-half of a grain. I hear and read of practitioners giving this substance to the extent of one, two, or even three grains; but this can only be from the bad quality of the drug. I have repeatedly employed, and seen others

² Works, by Dr. Pechey, 4th edit. p. 393, 1703.
³ De hydrope.
⁴ Comment. art. Dropsy.
⁶ Lectures in Lancet for May 6, 1826, p. 170.
⁷ Sutton, Tracts on Gout, p. 201.
exhibit elaterium, and have always observed that a quarter of a grain of good elaterium acted very powerfully, sometimes bringing away several pints of fluid; and half a grain usually occasioning vomiting, as well as violent purging. I confess I should not venture to exhibit a grain of the same preparation. It is usually given in the form of pills. The basis of the pills may be extract of gentian.

As elaterin (the active principle of elaterium) is soluble in rectified spirit, a tincture of elaterium (tinctura elaterii) may be employed. It contains, besides elaterin, a bitter principle and green resin. Elaterin has been given either in powder (mixed with sixty-four times its weight of bitartrate of potash), or in solution in rectified spirit (solutio elaterine) by Dr. Golding Bird in doses of one-sixteenth to one-eighth of a grain.

Antidotes.—In the event of a case of poisoning by elaterium, the remedies would be demulcent drinks and clysters, opium, the warm bath, and fomentations to the abdomen; stimulants (such as ammonia and brandy) if the circulation fail; bloodletting to subdue the inflammatory symptoms, should the state of the general system not contraindicate it.

OTHER DIETETICAL, MEDICINAL, OR POISONOUS CUCURBITACEÆ.

The fruits of several cucurbitaceous plants are employed as articles of food. The Cucumber (Cucumis sativus), the Melon (Cucumis melo), the Water Melon (Cucumis Citrullus), the Vegetable Marrow (Cucurbita ovifera), the Pumpkin or Pumplin (Cucurbita pepo), and the Melon-Pumpkin or Squash (Cucurbita melopepo), are those in most frequent use. They contain a watery, sweet or acidulous cooling pulp, which is slightly nutritious when taken raw, and in some habits proves laxative.

The fresh root of Bryonia dioica is sold by herbalists under the name of White Bryony and mandrake root. Fashioned into a rude representation of the human figure, I have seen it exhibited at an herb-shop as a sign. Bryony root contains a peculiar bitter matter called bryonia. The root operates as a violent emetic and purgative. I have seen one case of poisoning by it. The symptoms were those of cholera. As the accident occurred at the time when this disease was raging here, the practitioner who was called in concluded it was a case of cholera, and mislook a piece of bryony root, shewn him as being part of what the patient had eaten, for a piece of turnip. The patient (a woman) recovered. Bryony root is employed as a topical application to bruised parts.

Order LVIII. MYRTACEÆ, R. Brown.—The Myrtle Tribe.

Characters.—Sepals 4-6, generally 5, concreted into a tube, which is adnate to the ovary, sometimes distinct at the apex, and as far as the margin of the ovary, at other times concreted at the apex, and as far as the throat. Petals inserted on the calyx, as many as the sepals with which they alternate, and quincuncial in aestivation, very rarely absent. Stamens inserted with the petals, often in many rows, double, or generally many times the number of the petals: filaments either free or variously all connected or polydolophous, before flowering somewhat incurved; anthers ovate, bilocular, small, dehiscing by a double chink. Carpella 4-6, generally 5, by abortion often fewer, concrete into a many-celled ovary, which is adnate to the calyx. Style, composed of many partial styles.
concreted, and, therefore, called single, with a simple stigma. Fruit various, many-celled, many-seeded. Seeds various; embryo exalbuminous (De Cand.)—Trees or shrubs. Leaves generally opposite, rarely alternate, exstipulate, quite entire, dotted with pellucid glands, and usually with a vein running parallel with their margin. Inflorescence variable; usually axillary. Flowers red, white, occasionally yellow, never blue.

Properties.—Aromatic volatile oil and astringent matter (especially the former) are the principles to which the medicinal properties of Myrtaceae are referable. The pellucid dotting of the leaves and other parts indicates the volatile oil.

253. MELALEUCA MINOR, Smith, L. E.; MELALEUCA CAJUPUTI, D.—THE LESSER MELALEUCA.

Melaleuca Cajuputi, Maton, Roxburgh.

Sex. Syst. Polyadelphia, Icosandra.

(Oleum è foliis distillatum, L.—Volatile oil of the leaves, E.)

History.—This tree was described by Rumphius under the names of *Arbor alba minor*, Cajuputi, *Dunn kitsjil*, and *Caju-kilan*. It has got its name from its colour *kayu-puti*, which signifies white wood, and hence its appellation, as given to it by Rumphius, *arbor alba*.1

Botany. Gen. Char.—Tube of the calyx almost hemispherical; limb 5-partite. Petals 5. Bundles of stamens 5, elongated, alternate with the petals; anthers incumbent. Style filiform; stigma obtuse. Capsule connate with, and enclosed in, the thickened tube of the calyx, which is adnate at its base to the branch; 3-celled, many-seeded. Seeds angular (De Cand.)—Trees or shrubs. Leaves alternate or opposite, quite entire, equal at the base. Flowers sessile, or somewhat adnate, spiked or capitate, white, yellowish, or purplish.

Sp. Char.—Leaves alternate, elliptical-lanceolate, somewhat acute, slightly falcate, 3-5-nerved. Flowers spiked, rather distant. Rachis, calyx, and branchlets, villose (De Cand.)

Trunk tolerably erect, but crooked: bark thick, spongy, whitish ash-coloured, the exterior lamina peeling off in thin flakes. Branches scattered, often drooping. Leaves short-stalked, while young silky, when full grown smooth, deep green, from 3 to 5 inches long, and from half to three-quarters of an inch broad, very aromatic when bruised. Spikes terminal. Bracts solitary, lanceolate. Calyx urceolate. Corolla white. Filaments from 30 to 40, united into five portions at the base: anthers with a yellow gland at the apex. Style rather longer than the stamina; stigma obscurely 3-lobed; ovary ovate, united to the calyx. Capsule 3-valved.2

Hab.—Moluccas.

Extraction of the Oil.—Rumphius states that the leaves are gathered on a warm day, and placed in a sack, where they become hot and damp. They are then macerated in water, and left to ferment for a night, and afterwards submitted to distillation. Two sackfuls of the leaves yield scarcely three drachms of oil, which is limpid, pellucid, and volatile. Lesson has described the method of obtaining the oil at Bourou, one of the Moluccas.

1 Herb. Amboin. lib. ii. p. 76.
2 Mat. Indica, i. 261; and Crawford, Hist. Ind. Archip. vol. i. p. 513.
3 Condensed from Roxburgh, Fl. Ind. iii. 395; and Trans. Med.-Bot. Soc. April 11, 1828.
4 Herb. Amboin.
islands. The leaves, he says, are gathered in the latter end of September, and put into the cuciurbit of a copper alembic, surmounted by a neck, terminated by a capital without a refrigeratory, and a sufficient quantity of water is then added. By distillation, this liquid is made to traverse a worm immersed in a hogshead filled with water, and is collected in a vessel; the oil which floats is very light, and of an herbaceous green colour, which is owing to chlorophyll, or perhaps a somewhat different resinous principle. By rectification it becomes colourless.

Description.—Cajuput or Kyapootie oil (oleum cajuputi) is usually imported in green glass bottles (in appearance similar to long-necked beer bottles). Its colour is green, the tint being that of a strong solution of chloride of copper. It is transparent, limpid, of a strong penetrating smell, resembling the combined odour of camphor, rosemary, and cardamom, and of an aromatic camphoraceous taste, succeeded by a sensation of coolness like that caused by oil of peppermint. In the mass the odour is disagreeable, but in small quantity, as when rubbed on the hand, is much more fragrant. An apparently pure sample, which has been several years in my museum, has a sp. gr. of 0·925. Dr. Thomson² says, the sp. gr. varies from 0·914 to 0·9274; while Mr. Brande³ states it to be 0·980. Oil of cajuput is soluble in alcohol. Its boiling point is 343°. When carefully distilled with water, the first portion of oil which passes over is very light, and quite colourless: but towards the end of the process a heavier and greenish oil distils over.

Composition.—According to Blanchet⁴ the composition of oil of cajuput \((\text{C}_{10}\text{H}_{80})\) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
<td>60</td>
<td>77·92</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>9</td>
<td>11·69</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>10·39</td>
</tr>
<tr>
<td>Cajuput Oil</td>
<td>1</td>
<td>77</td>
<td>100·00</td>
</tr>
</tbody>
</table>

Adulteration.—M. Guibourt⁵ detected in several samples of oil of cajuputi, oxide of copper in solution. It is, he says, easily recognised by shaking the oil with a solution of ferrocyanide of potassium, when a red precipitate \((\text{ferrocyanide of copper})\) is formed. To this metal, derived as is supposed from the copper vessels in which the oil has sojourned, M. Guibourt ascribes the green colour of the oil. This conclusion, however, was somewhat premature; for all the samples of the oil which I have examined were, though green, quite devoid of copper; and Mr. Brande observes, that none of the samples which he has examined have contained even a trace of copper.

In 1831, oil of cajuputi was extolled as a remedy for cholera.⁶ In consequence of the great demand for it, which was thereby created, the price rose from 2 to 14 shillings per ounce; and various imitations of it soon made

3. *Dict. of Pharm.*
4. Quoted by Thomson, *op. cit.*
their appearance in the market. One of these consisted of oil of rosemary flavoured with camphor and oil of cardamoms, and coloured. Except on this extraordinary occasion, the oil of cajuputi met with in the shops of this country I believe to be pure as imported.

Physiological Effects.—Cajuput oil is a powerful antispasmodic diffusible stimulant and sudorific. From the ordinary distilled oils (as those of the labiate plants and umbelliferous fruits) it is distinguished by its stronger influence over the nervous system (evinced by its antispasmodic qualities) and by the greater diffusibility of its stimulant operation. It is allied to valerian, between which and camphor it ought to be placed, in a physiological classification; but in large doses it does not disorder the mental faculties as these two medicines do.

Uses.—Cajuput oil has acquired considerable celebrity among the Malays; and has been more frequently employed in Germany than in any other European nation. By British practitioners its uses have hitherto been very limited. As a diffusible stimulant it is useful where we wish promptly to raise the energy of the vital powers, especially when at the same time any spasmodic movements are to be allayed. With these views it has been employed in low fevers, paralytic affections, and cholera. In the last mentioned diseases it acquired an ephemeral reputation, in consequence of the favourable reports of Sir Matthew Tierney, and others. As an antispasmodic, it is a very efficacious remedy, in painful spasmodic affections of the stomach, and in flatulent colic; but of its uses in epilepsy, chorea, hysteria, tetanus, spasmodic asthma, and some other spasmodic diseases, in which its efficacy has been extolled by oriental and continental practitioners, I have no experience. As a stimulating sudorific, it proves occasionally useful in chronic rheumatism, painful affections, and local paralysis. As an anthelmintic, it was used by Rudolphi.

Administration.—The dose of it is from 2 to 10, or even more, drops. It may be taken on sugar, or in the form of an emulsion.

254. CARYOPHYLLUS AROMATICUS, Liou. L. E. D. — The Clove Tree.

Sex. Syst. Icosandria, Monogynia.

(Flos nondum explicatus; Oleum è flore nondum explicato destillatum, L.—Dried undeveloped flower; Volatile oil of the undeveloped flowers, E.—Flores nondum explicati, et Oleum volatile, D.)

History.—The *garyophyllon* of Pliny cannot have been our clove, since this naturalist describes it as being like a peppercorn, but larger and more brittle. Indeed, it is not certain who first speaks of the clove. Paulus Aegineta notices *καρυνύφωλλον*, and, I think, probably refers to the clove; though Sprengel regards Simeon Seth as the first who mentions cloves.

Botany. Gen. Char.—Tube of the calyx cylindrical; limb 4-partite.

3. *De re medica*, lib. vii. cap. 3.
Petals 4, adhering by their points in a sort of calyptra. Stamens distinct, arranged in four parcels, inserted in a quadrangular fleshy hollow near the teeth of the calyx. Ovary 2-celled, each cell containing 20 ovules. Berry, when ripe, 1- or 2-celled, 1- or 2-seeded. Seeds cylindrical or semi-ovate: cotyledons thick, fleshy, concave externally, sinuous in various ways internally; radicle arising from the centre of the cotyledons, straight, superiorly hidden by the cotyledons.—Trees. Leaves opposite, coriaceous, dotted. Cymes terminal or in the forking of the branches; somewhat corymbose (De Cand.)

Sp. Char.—Leaves obovate-oblong, acuminate at both ends. Cymes many-flowered (De Cand.)

Trunk from 15 to 30 feet high. Leaves about 4 inches long, with a strong midrib and parallel lateral nerves; footstalks slender, aromatic; almost 2 inches long. Flowers odorous. Calyx at first green, afterwards purplish-red. Petals 4, larger than the calyx, imbricated into a globe in bud, at length spreading, roundish, concave, yellowish-red, very soon caducous. In the centre of the calyx, and occupying the top of the ovary, is a quadrangular elevated line (or gland) surrounding, but not embracing, the base of the shortish, obtusely subulate style. Filaments much longer than the petals, yellow: anthers ovate-cordate, yellow, two-celled. Ovary oblong, or almost cylindrical. Berry purplish, elliptical, 1-seeded. Seed with a thin, soft integument; embryo elliptical, greenish, dotted (Condensed from Bot. Mag. t. 2749.)

Hab.—Molucca Islands; where, as well as at Sumatra, Mauritius, Bourbon, Martinique, and St. Vincent's, it is now extensively cultivated. The shortsighted and selfish policy of the Dutch, to limit the cultivation of the plant to the Molucca Islands, has, therefore, completely failed.1

Collection.—Cloves are collected by the hand, or beaten with reeds, so as to fall upon cloths placed under the tree, and dried by fire, or, what is better, in the sun.

Commerce.—They are imported in casks or bags. Those produced in the Molucca Islands usually come by way of Rotterdam. In 1839 duty (6d. per lb.) was paid on 93,549 lbs.

Description.—The clove of commerce (caryophyllus) is the unexpanded flower, the corolla forming a ball or sphere at the top, between the four teeth of the calyx, and thus with the tapering, somewhat quadrangular tube of the calyx, giving the appearance of a nail (whence the word clove, from the French clou, a nail). The length of the clove is from five to ten lines; its thickness from 1 to 1-and-a-half lines. Its colour is dark-brown with a yellowish-red tint; the corolla somewhat deeper. Good cloves should be

1 See Marsden, History of Sumatra. 3d ed. p. 146; Smith, in Rees' Cyclop. art. Caryophyllus; Crawford, East. Archip. iii. 388; Hooker, Bot. Mag. t. 2749.
dark brown, and perfect in all parts, have a strong fragrant odour, and a hot acrid taste, and when slightly pressed with the nail, give out oil. They are distinguished in commerce by their place of growth. Those from the East Indies (Amboyna and Bencoolen cloves) are the best: they are the largest, plumpest, and most oily. The Bencoolen clove is the most esteemed. Cloves produced in the French possessions (Bourbon and Cayenne cloves) are smaller, more shrivelled, contain less oil, and are of inferior value. The Cayenne clove is the least esteemed.

Under the name of Mother Cloves (matrices caryophylli seu anthophylli) are described, in several authors, the fruits of the clove (fructus caryophylli aromatici) which have occasionally been introduced as articles of commerce, and a sample of which has been preserved in the collection of the East India House. On the 8th of February, 1841, five bags of mother cloves were put up for sale in London. They have the shape of an olive, than which they are smaller. Superiorly they are crowned with the four teeth of the calyx, with the remains of the style in the centre. Their colour is similar to that of the clove: their odour and flavour similar, but much weaker. Internally we find the embryo with its two sinuous cotyledons.

The broken peduncles of the clove (clove stalks; griffe de girofle) are sometimes substituted by distillers for cloves (Guibourt).

Composition.—Cloves were analyzed by Trommsdorff, who found them to consist of, volatile oil 18, almost tasteless resin 6, peculiar kind of tannin 13, difficultly soluble extractive with tannin 4, gum 13, woody fibre 28, and water 18.

1. **Volatile Oil** (See p. 1757.)

2. **Eugenin (Stharopilene of Oil of Cloves).**—This was found in oil of cloves by Bonastre. It is in thin, white, pearly scales, which become yellow by keeping. It is very soluble in alcohol and ether; has the odour and taste of cloves, but weaker, and is reddened by nitric acid. According to Dumas, its composition is Carbon 72-25, Hydrogen 7-64, Oxygen 20-11; or C₅₀H₁₂O₄.

3. **Caryophyllin (Clove sub-resin).**—First described by Lodibert, and afterwards examined by Bonastre. It is extracted from cloves by alcohol. The Molucca cloves yield the largest quantity of it; those of Bourbon contain less; and the Cayenne cloves none. It is a satiny, crystalline, odourless, tasteless, fusible and volatile substance; insoluble in water, soluble in alcohol and ether; slightly so in caustic alcalis. It is reddened by sulphuric acid. According to Dumas it is composed of Carbon 79-5, Hydrogen 10-5, Oxygen 10-0; hence its formula is C₅₀H₁₀O₄; so that its composition is similar to that of camphor. [Dr. Sheridan Muspratt has lately examined the constitution of caryophyllin, and has arrived at the same result as Dumas. Dr. M. also believes cloves to contain a peculiar acid, which he has not yet sufficiently investigated.—Ed.]

4. **Clove-tannin.**—The tannin of cloves is less acerb than ordinary tannin, and its compound with gelatine has less elasticity.

Chemical Characteristics.—Nitric acid reddens infusion of cloves. Tincture of sesquichloride of iron renders it blue. The oil of cloves also undergoes similar changes to the infusion. These facts deserve especial attention in relation to opium and morphia (see Opium) on account of the analo-

gous phenomena presented by morphia when acted on by nitric acid and sesquichloride of iron.1 Infusion and oil of allspice are similarly affected.

Physiological Effects.—Cloves have a very agreeable flavour and odour, and are devoid of the fiery taste and acridity which distinguish pepper and ginger: in other respects their effects agree with those of other spices. Though volatile oil is by far the most important of their active principles, yet the tannin, extractive, and resin, must contribute something to their operation.

Uses.—Cloves are principally used for culinary purposes, as flavouring ingredients. They are not employed in sufficient quantity to prove of much importance as condimentary stimulants, yet they are applicable as gastric excitants, in dyspeptic cases connected with relaxation of the alimentary canal. In medicine cloves are rarely employed alone, or as the basis or principal medicine, but usually as an addition to other medicines, the flavour of which they improve, or whose operation they correct. When, however, they are given alone, it is merely as a stomachic and carminative, to relieve nausea, vomiting, flatulence, or some allied stomach disorder. Distillers prepare a liqueur called *cloves*.

Administration.—In substance cloves may be taken in doses of 5 or 10 grains, or *ad libitum*.

1. **Infusum Caryophylli**, L. E. D.; *Infusion of Cloves; Clove Tea.* (Cloves, bruised, $\frac{3}{3}$ij. [\textit{iij.}, \textit{D.}]; Boiling [distilled, \textit{L.}] Water Oj. [\textit{xix.}]
Macerate for 2 hours [1 hour, \textit{D.}] in a vessel covered lightly, and strain [through calico, \textit{E.}]—Aromatic, stimulant, and stomachic. Employed in dyspepsia, flatulent colic, and gout; generally in combination with other medicines. Ammonia increases its efficacy.—Dose, f$\frac{3}{3}$ij. to f$\frac{3}{3}$ij.

2. **Oleum Caryophylli**, L. E.; *Oil of Cloves.* (Obtained by submitting cloves, with water, to repeated distillation).—No directions are given by the London College for the preparation of oil of cloves, which is placed among the articles of the *Materia Medica*. The Dublin College gives general directions for its preparation from the dried undeveloped flowers.

To extract the whole of the oil from cloves, they must be subjected to repeated cohobations. On an average they yield from 17 to 22 per cent. of volatile oil (including the heavy and light oils). By distillation with water, cloves yield two volatile oils—one lighter, the other heavier, than water. Mr. Whipple informs me, that by the ordinary modes of distillation the heavy oil comes over first. The oil of cloves of commerce is a mixture of these two oils. When carefully and recently prepared it is colourless or light-yellow, but by keeping becomes brownish-red. It has a hot, acrid taste, and the well-known odour of cloves, and is soluble in alcohol, ether, concentrated acetic acid, and the fixed oils. Its sp. gr. is probably variable, though always greater than that of water. Lewis found it to be 1.034. Bonastre2 says, that of the unrectified oil is 1.055, but by rectification part of the light oil is lost, and the sp. gr. is then 1.361. Ettling3 says its composition is.

1 *Journ. de Pharm.* xi. 539 and 566.
2 *Ann. de Chim. et Phys.* xxxv.
3 Poggendorff's *Annal.* xxxi. 526.
Carbon 74·6279, Hydrogen 8·1531, and Oxygen 17·2189. To separate it into the two oils he mixed it with potash ley, and distilled: a light oil passed over, while a compound of the heavy oil (clove acid) and potash remained in the retort, and, by distillation with phosphoric or sulphuric acid, gives out the heavy oil.

a. Light Oil of Cloves (Clove Hydro-Carbon).—Colourless. Sp. gr. 0·918. Incapable of combining with bases, but absorbing hydrochloric acid gas without yielding a crystalline compound. It consists of C\textsubscript{20} H\textsubscript{13} O\textsubscript{5}; hence it is isomeric with oil of turpentine.

b. Heavy Oil of Cloves (Clove Acid; Caryophylllic Acid; Eugenic Acid).—It is colourless when recently prepared, but becomes coloured by age. Its sp. gr., according to Bonastre, is 1·079. It combines with alkalis to form crystalline salts (alkaline caryophyllates or eugenates; clove-oil alkalis). If a salt of iron be added to one of these, it yields a blue, violet, or reddish compound (a ferruginous caryophyllate), varying somewhat according to the nature of the ferruginous salt used: thus the protosulphate of iron yields a lilac, the persulphate a red, which becomes violet and afterwards blue: while the sesquichloride gives a vinous tint, which turns to red (Bonastre). Nitric acid reddens caryophyllic acid.

The composition of caryophyllic acid is as follows:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>24</td>
<td>144</td>
<td>72·36</td>
<td>72·6327</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>15</td>
<td>15</td>
<td>7·54</td>
<td>7·4374</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5</td>
<td>40</td>
<td>20·10</td>
<td>19·9297</td>
</tr>
</tbody>
</table>

Clove Acid 1 199 100·00 99·9998 100·00

This statement does not agree with that of Dumas, who from his first analysis2 gave the formula C\textsubscript{20} H\textsubscript{13} O\textsubscript{5}; and from his second one2, C\textsubscript{20} H\textsubscript{12} O\textsubscript{5}. But various reasons, not necessary here to enumerate, lead me to believe that Ettling’s formula is the correct one, supported as it is by Boeckmann’s analysis and by Dumas’s statement, that the sp. gr. of the vapour of caryophyllic acid is 6·4.3

The oil of cloves is sometimes placed in the hollow of a carious tooth, to relieve toothache; but its more frequent medicinal use is as an addition to purgatives (e.g. Pilule colocynthidis, E.) to check nausea and griping.—The dose of it is from 2 to 6 drops. Distillers and soap-makers extensively use oil of cloves.

3. TINCTURA CARYOPHYLLI; Tincture of Cloves. (Cloves, 3j.; Rectified Spirit, 3iv. Macerate for seven days, and then filter).—Though not contained in any of the British pharmacopoeias, this is a very useful and elegant preparation, and has a place in the French Codex. A solution of the oil in spirit is less agreeable, and becomes milky on the addition of water.—Dose, m\texttimes. to f\textsuperscriptr{3}. It may be usefully employed as an addition to purgative, stomachic, and tonic mixtures.

1 Ann. de Chim. et Phys. liii. 164.
2 Pharm. Central-Blatt, Oct. 13, 1838: from Ann. de Pharm. xxvii. 151.
3 Ibid.; also Thomson’s Org. Chem. p. 1046.
255. EUGENIA PIMENTA, De Candolle, E. — THE COMMON ALLSPICE.

(Myrtus Pimenta, Linn. L. D.)

Sex. Syst. Icosandria, Monogynia.

(Pructus immaturos, L.—Unripe berries, E. D.)

History.—It is scarcely probable that the ancients should have been acquainted with *allspice*, which is a native of the West Indies, and therefore could not have been known to Europeans before the discovery of America. Yet Clusius¹ thought that it was the *garyophyllum* of Pliny;² an opinion, however, which, for the above-mentioned reason, can scarcely be correct.³

Botany. Gen. Char.—Tube of the calyx roundish; limb divided as far as the ovary, into four segments. Petals as many as the lobes. Stamens indefinite, free. Ovary 2- or 3-celled; cells containing many ovules. Berry nearly globose, crowned by the calyx; when ripe 1-, rarely 2-celled. Seeds one or two, somewhat rounded, large; embryo spuriously monocotyledonous; cotyledons very thick, combined into one mass; radicle scarcely distinct, very short (De Cand.)—Trees or shrubs.

Sp. Char. — Peduncles axillary and terminal, trichotomous-paniculate. Flowers 4-cleft, in the forks of the peduncle, nearly sessile, others paniculate. Leaves oblong or oval, pellucid-dotted, somewhat opaque, smooth. Branches terete; branchlets compressed; the younger ones, as well as the pedicels, pubescent (De Cand.)

Trunk about 30 feet high. Leaves about four inches long, on short foot-stalks. Flowers numerous. Sepals roundish. Petals reflected, greenish-white. Berry succulent, black or dark-purple when ripe; 2-seeded. Embryo roundish, with the cotyledons consolidated.⁴

Hab.—West Indies. It is cultivated in Jamaica in regular walks (Pimento walks).

Collection.—When the fruit has attained the full size, but is yet green, it is gathered and sun-dried on platforms and sheets. When nearly dry it is frequently winnowed. It is afterwards put in bags of 1 cwt. each, for the European market.⁵ Some planters kiln-dry it.

Description — Pimento or Jamaica pepper (pimenta seu pipper jamai-cense), commonly called *allspice* (because its flavour is considered to approach that of cinnamon, cloves, and nutmegs), is about the size of, or somewhat larger than, a peppercorn. It is round, brown, dull, roughish but not wrinkled, crowned with the segments of the calyx, and occasionally, though rarely, has a short pedicel. It consists of an external, somewhat hard but brittle shell, which is paler within, and encloses two dark brown cochlate

¹ Ecot. lib. i. cap. 17.
³ Sloane's Jamaica, ii. 77.
⁴ Condensed from Botanical Magazine, t. 1236.
⁵ Wright, Med. Plants of Jamaica; Brown, Nat. Hist. of Jamaica, 248.

seed. Allspice has an aromatic agreeable odour (intermediate between pepper and cloves), and a strong aromatic clove-like taste.

Ovate Pimento (Brasiliandischer oder Kron-Piment, Dierbach; Piment couronné ou Potire de Thevet, Guibourt).—This is the fruit of Myrtus pimentoides, Nees v. Esenbeck, called by De Candolle Myrtia pimentoides, a native of the West Indies. Except in shape, it strongly resembles the common allspice. It is ovate or oval, terminated superiorly by a large crown, formed by the 5-toothed limb of the calyx. It is usually 2-, more rarely 3- or 4-celled, each cell containing one seed. Guibourt has always found three, four, or six seeds in each fruit. In the only sample I have seen, and which came from St. Vincent's, there were in most of the fruits only two seeds.

COMMERCE.—Pimento is imported in bags, usually from the West Indies (almost entirely from Jamaica). In 1839, duty (9d. per lb.) was paid on 277,185 lbs.

COMPOSITION.—Pimento was analysed by Braconnot, and in 1825 by Bonastre.

<table>
<thead>
<tr>
<th>Bonastre's Analysis.</th>
<th>Braconnot's Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Husks.</td>
<td>Kernels.</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>10.0</td>
</tr>
<tr>
<td>Green oil</td>
<td>8.4</td>
</tr>
<tr>
<td>Solid fat oil</td>
<td>0.9</td>
</tr>
<tr>
<td>Astringent extract</td>
<td>11.4</td>
</tr>
<tr>
<td>Gummy extract</td>
<td>3.0</td>
</tr>
<tr>
<td>Colouring matter</td>
<td>4.0</td>
</tr>
<tr>
<td>Resinous matter</td>
<td>1.2</td>
</tr>
<tr>
<td>Uncrystallizable sugar</td>
<td>3.0</td>
</tr>
<tr>
<td>Malic or gallic acid</td>
<td>0.6</td>
</tr>
<tr>
<td>Lignin</td>
<td>50.0</td>
</tr>
<tr>
<td>Saline ashes</td>
<td>2.8</td>
</tr>
<tr>
<td>Water</td>
<td>3.5</td>
</tr>
<tr>
<td>Loss</td>
<td>1.6</td>
</tr>
<tr>
<td>Red matter, insoluble in water</td>
<td>8.8</td>
</tr>
<tr>
<td>Pellicular residue</td>
<td>16.0</td>
</tr>
<tr>
<td>Brown flocculi</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

1. **VOLATILE OIL.** (See p. 1761.)
2. **GREEN OIL (Resin?)**—This substance, which has an acid burning taste, contributes to the activity of pimento. Its odour is rancid, but somewhat clove-like. It dissolves readily in alcohol and ether, to which it communicates a green colour.
3. **PIMENTO TANNIN.**—Is soluble in alcohol, strikes a green colour with the persalts of iron, and precipitates emetic tartar.

Chemical Characteristics.—See Chemical Characteristics of cloves.

Physiological Effects.—Allspice possesses the general properties of the species already noticed. It holds an intermediate rank between pepper and cloves.

4. Prodr. iii. 243.
Uses.—Its principal employment is by the cook, for flavouring. It may be taken with advantage by those troubled with relaxed or atonic conditions of stomach. In medicine, its uses are similar to those of cloves; viz. to relieve flatulence, to cover the flavour of nauseous remedies, and to promote the operation of tonics and stomachics, and to prevent the gripping of purgatives.

Administration.—In substance, allspice may be taken in doses of from ten grains to a drachm or more.

1. Oleum Pimentæ, L. E. D.; Oil of Pimento; Oil of Alispice. (Obtained by submitting allspice, bruised, with water, to distillation).—Mr. Whipple informs me that from 8 cwt. of pimento he procured 41 lbs. 6 oz. of oil (heavy and light). This is nearly six per cent. He also informs me that the light oil comes over first,—the reverse being the case with oil of cloves. The oil of pimento of the shops is a mixture of these two oils. Except in odour, its properties are almost identical with those of oil of cloves. By distillation with caustic potash, the light oil is separated: the residue, mixed with sulphuric acid and submitted to distillation, gives out the heavy oil.

a. Light Oil of Pimento (Pimento-Hydro-Carbon).—Has not, to my knowledge, been previously examined. Its properties appear to be similar to those of the light oil of cloves. It floats on water and on liquor potassæ, and is slightly reddened by nitric acid. Potassium sinks in, and is scarcely if at all acted on by, it.

b. Heavy Oil of Pimento (Pimentic Acid).—Very similar to caryophyllacic acid. It forms with the alkalies, crystalline compounds (alkaline pimentates), which become blue or greenish on the addition of the tincture of chloride of iron (owing to the formation of a ferruginous pimentate). Nitric acid acts violently on and reddens it.

The medicinal uses of the oil of pimento are very limited. It is sometimes employed to relieve tooth-ache, to correct the operation of other medicines, as purgatives and tonics, and to prepare the spiritus and aqua pimentæ. The dose of it is from two to six drops.

2. Spiritus Pimentæ, L. E.; Spirit of Pimento; Spirit of Alispice. (Oil of Pimento, 5ij.; Proof Spirit, Cong. j.; L.)—The Dublin College has not now a Spiritus Pimentæ, but the Essentia Pimentæ is an analogous preparation made by mixing 13ix. of the oil with 3iix. of rectified spirit. The Edinburgh College directs half a pound of bruised pimento to be used, and to proceed as for spirit of caraway.—Carminative and stomachic. Used in dyspepsia and flatulent colic. Dose, ½j. to ½iv. In the shops, a spirituous solution of the oil is frequently substituted for the pharmacopœial preparation.

3. Aqua Pimentæ, L. E. D.; Pimento Water; Alispice Water. (Pimento, bruised, lb. j. [Rectified Spirit, 5iiij., E.]; Water, Cong. ij., L. Mix, and let a gallon distil. The Dublin College directs one fluidounce of Essence of Pimenta to be mixed with half a gallon of Distilled Water, and the mixture filtered through paper.)—Employed for its flavouring, carminative, and stomachic properties, as a vehicle for stimulant, tonic, and purgative
medicines. Dose, ½ to 1½ j. In the shops it is usually prepared with the oil, according to the formula of the Dublin College.

OTHER MEDICINAL MYRTACEÆ.

The substance called Botany Bay Kino is the astringent inspissated juice of Eucalyptus resinifera or Iron Bark, a native of Australia and Van Diemen's Land. This tree, we are told ¹, sometimes yields on incision sixty gallons of juice. Botany Bay kino is imported in boxes. That which I have met with came from Van Diemen's Island. It occurs in irregular odourless masses, many of which are in the form of tears, somewhat resembling those of cherry-tree gum in form, and as large as the tears of Senegal gum. The purer pieces are vitreous, almost black in the mass, but transparent, and of a beautiful ruby-red in small and thin fragments. Some of the pieces, however, are opaque and dull, from the intermixture of wood and other impurities. When chewed it sticks to the teeth, and has an astringent taste. Digested in cold water it swells, becomes soft and gelatinous (like red-currant jelly), and yields a red liquid which reddens litmus, and yields precipitates with lime water, gelatin, acetate of lead, sesquichloride of iron, and, if caustic potash or ammonia be previously added, with the chloride of calcium. Alcohol and emetic tartar occasionally no precipitate. Digested in rectified spirit, Botany Bay kino becomes gelatinous, as with water, and yields a similar red solution, from which water precipitates nothing, but which reddens litmus, and deposits a copious precipitate when potash, ammonia, or lime-water, is dropped in. From these and other experiments, I infer that Botany Bay kino consists principally of a peculiar substance (Eucalyptin) analogous somewhat to pectin and tannic acid. It has been used in diarrhoea ². Ainslie ³ says it is the only kind employed in India; but I suspect there is some error in this statement.

ORDER LIX. LYTHRACEÆ, Lindley.—THE LOOSE-STRIFE TRIBE.

SALICARIE, Jussieu.—LYTHRARIEÆ, De Candolle.

CHARACTERS.—Sepals definite in number, coherent beyond the middle. Calyx free, tubular or campanulate; lobes valvate, or distant in aestivation; the sinuses being sometimes lengthened into conical lobes or external teeth. Petals inserted on the upper part of the tube of the calyx, between the lobes, various in number, sometimes none, generally very caduceous. Stamens inserted into the tube of the calyx below the petals; equal, double, triple, or quadruple the number of petals, sometimes fewer. Anthers oval, bilocular, adnate. Ovary free; style filiform; stigma capitate. Capsule membranous, covered or surrounded by the calyx of 2 to 4 carpels; while young generally (always?) 2-celled by the slender margins of the carpels being inflexed; but when ripe 1-celled by the disappearance of the dissepimenta, either dehiscing longitudinally, or more rarely and irregularly with a circumscissile dehiscence. Placenta central, adnate to the dissepiment when present, or free, thick, either compressed-cylindrical or obscurely trigonal or tetragonal; the apex with some threads, couvyeurs of the seminal aura, continuous with the

² White, op. cit.
³ Mat. Indica.
base of the style. Seeds many, small, exalbuminous; embryo straight; radicle turned towards the hilum; cotyledons flat, foliaceous (De Candolle.)

Properties.—Variable. Except Lythrum Salicaria, which is astringent, the medical properties of few species are well known. Nesaea salicifolia is said to be diuretic, diaphoretic, and purgative.

256. LYTHERUM SALICARIA, Linn. — SPIKED PURPLE LOOSESTRIFE.

Sex. Syst. Dodecandria, Monogynia.

History.—As this plant is a native of the Grecian Archipelago, it must have been known to the ancients; but hitherto it has not been satisfactorily identified with any plant described by them.

Botany. Gen. Char.—Calyx cylindrical, striated, toothed at the apex; teeth 8 to 12, of which four to six are broader than the rest, and erect, and the remaining four to six alternate ones, subulate, often horn-shaped, sometimes not present, or very small. Petals 4 to 6, arising from the apex of the tube, alternate with the erect teeth: Stamens arising from the middle or base of the calyx, double or equal the number of the petals, or by abortion fewer. Style filiform; stigma capitate. Capsule oblong, covered by the calyx, 2-celled, many-seeded Placentae thick, adhering to the dissepiment. Herbs, or rarely undershrubs. Leaves entire. Flowers axillary, purple or white (De Cand.)

Sp. Char.—Leaves lanceolate, cordate at the base. Flowers spiked, almost sessile (De Cand.)

Stems 2 or 3 feet high, 4-sided. Spikes very long. Flowers purple. Petals oblong, cuneiform. Stamens usually 12, of which six are long and six short.

Hab.—Ditches and watery places of this and other countries of Europe, west of Asia, New Holland, and North America.

Description.—The herb (Herba Salicariae seu Lysimachiae purpureae) when dry, is inodorous, but has an herbaceous, somewhat astringent taste, and by chewing becomes very mucilaginous. Its infusion is darkened by the ferruginous salts.

Composition.—I am unacquainted with any analysis of this plant. Its obvious constituents are tannic acid, mucilage, chlorophyline, and woody fibre.

Physiological Effects.—Demulcent and astringent.

Uses.—Principally employed in diarrhoea and dysentery. In the former of these complaints it was recommended by Bang,1 De Haen,2 and others. In dysentery, it was spoken favourably of by Gardane3 and others.

Administration.—Dose of the powdered herb 5j. twice or thrice a day. A decoction of the root, prepared by boiling 5j. of the root in Oj. of boiling water, may be taken in doses of 15j. or 15j.

[This herb formerly found a place in the Materia Medica of the Dublin College. It is omitted in the last edition of the Pharmacopoeia.—Ed.]

2 Rat. Med. iii. 196; and iv. 250: quoted by Murray, App. Med.
3 Gazette de Sante', 1773, p. 65: quoted by Murray.
Order LX. GRANATÆ, Don.—The Pomegranate Tribe.

Characters.—Tube of the calyx turbinate; limb 5- or 7-cleft, coriaceous; lobes valvate by aestivation. Petals 5 or 7. Stamens indefinite; filaments free; anthers anteriorly 2-celled, dehiscing by a double chink. Style filiform; stigma capitate, pimpled. Fruit large, spherical, crowned with the somewhat tubular limb of the calyx, coated with the tube of the calyx, indeliscent, unequally divided into 2 chambers by a horizontal diaphragm; the upper one 5- or 9-celled, the lower one smaller, 3-celled; the dispersions of both membranous. Placenta of the upper chamber fleshy, spreading from the sides to the centre; those of the lower chamber irregular processes from its base. Seeds innumerable, mixed with a pellucid somewhat crystalline pulp, exalbuminous; embryo oblong; radicle short, straight; cotyledons foliaceous, spirally convoluted.—Trees or shrubs. Leaves deciduous, opposite, oblong, entire, without dots. Flowers scarlet (De Cand.)

Properties.—See Punica Granatum.

257. PUNICA GRANATUM, Linn. L. E. D.—The Common Pomegranate.

Sex. Syst. Icosandria, Monogynia.

(Fructus cortex et radicis cortex, L.—Root-bark, E.—Bark of the root, D.)

History.—The pomegranate is repeatedly referred to in the Bible. Homer also mentions it. The leaves, the flowers, and the fruit, were employed in medicine by the ancients.

Botany. Gen. Char. — Only one genus. (See the characters of the Order.)

Sp. Char.—Leaves lanceolate. Stem arborescent (De Cand.)

Fig. 356.

Small tree, with a brownish bark. Leaves on short stalks, smooth. Flowers terminal on the young branches. Calyx thick, fleshy, red. Petals much crumpled, membranous, rich scarlet. Stamina numerous, inserted on the calyx; anthers yellow. Ovary roundish; style simple; stigma globular. Fruit larger than an orange, with a thick coriaceous rind, and crowned by the teeth of the calyx; cells several, arranged in two strata, one upper, the other lower, separated by a transverse diaphragm; lower stratum of 3, upper one of from 5 to 9 cells. Some difficulty having been experienced in comprehending the structure of this anomalous fruit, Dr. Lindley has explained it thus: within the calyx are two rows of carpella, a lower and inner one, consisting of three or four carpella surrounding the axis, and placed in

1 Numbers, xiii. 23; Deut. viii. 8, &c.
2 Odys. vii. 120.
3 Dierbach, Arznei. d. Hippokr. 90; Dioscorides, lib. i. cap. 151-4; Pliny, Hist. Nat. xxiii. 57.
4 Nat. Syst. 2d edit. p. 44; and Introd. to Bot.
the bottom of the calyx; and an upper and outer one, consisting of from five to ten carpella, surrounding the lower, but adherent to the upper part of the tube of the calyx. The two strata or tiers of cells in the pomegranate are formed by the two rows or tiers of carpella; the upper and outer row being forced to the top of the fruit by the contraction of the tube of the calyx from which they arise. The transverse diaphragm is formed by the adhesion of the upper to the lower stratum of carpella; and the outer part of the rind of the pomegranate is formed by the calyx which contains the carpella.

Hab.—Northern Africa, from whence it has been introduced into Europe, where it is now naturalized. Asia (Bengal, China, Persia).

Description.—The flowers, called balaustine flowers (flores granati sec balausticu), are odourless, of a fine red colour, and slightly styptic taste. They communicate a reddish colour to the saliva. The *rind of the fruit* (cortex granati: malicorium), when dry, occurs in irregular arched, dry, brittle, odourless, very astringent, and slightly bitter fragments, which are brownish (more or less yellow or reddish), and paler within. The *seeds* (semina granati) are each surrounded by a thin vesicle filled with an acridulous styptic juice. The *root* (radix granati) is woody, knotty, hard, heavy, of a yellow colour and astringent taste. Its bark (cortex radicis granati) occurs in small fragments, of a yellowish- or ash-gray colour externally, yellow within, brittle, not fibrous; of an astringent, but not bitter taste. By its want of bitterness it may be distinguished from the bark of the box-tree (Buxus sempervirens), which is said to be sometimes substituted for it. Moistened with water, and rubbed on paper, it leaves a yellow stain, which becomes deep-blue by the contact of sulphate of iron.

Composition.—Reuss examined the watery extract of the rind of the fruit. The *bark of the root* has been analysed by Wackenroder; in 1824, by Mitouart; and, in 1831, by Latour de Trie.

Watery Extract of Pomegranate Rind.

<table>
<thead>
<tr>
<th>Resin</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>27.78</td>
</tr>
<tr>
<td>Oxidized tannin</td>
<td>10.19</td>
</tr>
<tr>
<td>Extractive</td>
<td>21.76</td>
</tr>
<tr>
<td>Gum</td>
<td>34.26</td>
</tr>
<tr>
<td>Loss</td>
<td>95.0</td>
</tr>
</tbody>
</table>

Extract of the Rind... 100.00

Bark of the Pomegranate Root.

<table>
<thead>
<tr>
<th>Wackenroder's Analysis</th>
<th>Latour de Trie's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raneid fat oil</td>
<td>2.46</td>
</tr>
<tr>
<td>Tannin</td>
<td>21.92</td>
</tr>
<tr>
<td>Starch with some mucilage of lime</td>
<td>26.09</td>
</tr>
<tr>
<td>Woody fibre with albumen</td>
<td>45.43</td>
</tr>
<tr>
<td>Loss</td>
<td>4.08</td>
</tr>
<tr>
<td>Dried Bark</td>
<td>100.00</td>
</tr>
<tr>
<td>Bark of the Root</td>
<td></td>
</tr>
</tbody>
</table>

3 Ibid.
4 *Journ. de Pharm.* x. 352.
5 Ibid. xvii. 508–601.
1. Mannite (Granadin).—The sweet substance which Latour de Trie considered to be peculiar, and called granadin, has been satisfactorily shown¹ to be mannite (see MANNA).

2. Tannic Acid.—On this the astringency of the fruit and root almost solely depends. It is this principle which enables the infusion, or decoction, of the rind and bark to produce precipitates (tannates) with a solution of gelatine, and with the ferruginous salts.

3. Resin.—Latour de Trie describes this as being without any remarkable odour and taste. It is soluble in water, slightly so in cold alcohol, and more so in hot alcohol, and in small quantity in ether.

Physiological Effects.—All parts of the plant (root-bark, rind of the fruit, juice surrounding the seeds, and flowers) possess astringency, owing principally to tannic acid, and in some slight degree to a minute quantity of gallic acid. The bark of the root, taken in small quantities, occasions no remarkable effects. In full doses, however, it causes nausea, vomiting, and purging, and occasionally giddiness and faintness.

Uses.—Rarely employed in medicine. The root-bark has been occasionally used as a vermifuge. Celsus, Dioscorides, Pliny, and other ancient writers, speak of its anthelmintic qualities. The Indians, also, were acquainted with them at a very early period. Of late years attention has been again drawn to this bark as a remedy for tape-worm, by the recommendations of Dr. Fleming,² Dr. Buchanan,³ Mr. Breton,⁴ Gomes,⁵ Deslandes, and others;⁶ but in this country it has almost been entirely superseded by oil of turpentine and kousso. The rind of the fruit has been employed on account of its astringency, in the form of decoction, as a gargle, in relaxed sore throat; as an injection, in leucorrhœa; and, internally, in diarrhoea, dysentery, and colliquative sweats. The powder of the rind may be administered as a tonic. The flowers are mild astringents, but are not employed in this country. The fruit may be eaten to allay thirst, and as a refreshing refrigerant and astrigent in febrile disorders, especially those called bilious. It contains an acidulous styptic juice, which is inclosed in a thin vesicle surrounding the seeds.

1. Decoctum Granati Radicis, L.; Decoction of Pomegranate Root.—This is prepared by boiling 3ij. of the fresh bruised bark in Oij. of water to Oj.; the dose is a wine-glassful every half hour till the whole is taken. It usually occasions slight sickness, but seldom fails to destroy the tape-worm. The patient should be prepared for the remedy by the use of a dose of castor oil and a strict regimen the day previously.

2. Decoctum Granati, L.; Decoction of the Fruit-bark of the Pomegranate. (Of the Bark of the Fruit, 3ij.; Distilled Water, Oiss. Boil to Oj. and strain.)

¹ Ibid. xxi. 169.
² Asiatic Researches, vol. xi.
⁶ Bayle, Bibl. de Thérap. i. 313.
Order LXI. Rosaceae, Jussieu.—The Rose Tribe.

Characters.—Calyx generally of 5 sepals, cohering at the base to form a tube; therefore 5-lobed, generally persistent, usually free, sometimes adherent to the ovary. Petals as many as the sepals, rarely by abortion none, inserted on the calyx, quincuncial in aestivation, generally regular. Stamens inserted with the petals, almost indefinite; filaments incurred in aestivation; anthers two-celled, dehiscing by a double chink. Carpels numerous, either solitary by abortion, or having the appearance of a single ovary, from their union, either together or with the tube of the calyx. Ovaries 1-celled; styles simple, dilated at the apex into stigmae of variable shape, usually arising from the side of the ovary, either distinct, or, more rarely, coherent. Seeds in each carpel usually one or two, seldom numerous: erect or inverse, exalbuminous (Hirtella and Neillia excepted). Embryo straight; cotyledons either foliaceous or fleshy. Herbs, shrubs, and trees. Leaves alternate, bistipulate at the base, simple or compound. Inflorescence various (De Cand.)

Properties.—The prevailing quality of Rosaceae is astringency. This is especially obvious in the root. The tribe Amygdaleae is distinguished from other rosaceous plants by the poisonous properties of the kernels and leaves, which yield hydrocyanic acid when distilled with water, and by the gummy exudation from the stems.

Tribe I. Amygdaleae.

Sex. Syst. Icosandria, Monogynia.

(Semen; Amygdala dulcis; Oleum ab alterntriusque nucleis expressum, L.—Var. α, Kernel: Bitter almond. Var. β and γ, Kernel: Sweet almond, E.—Amygdala dulces, D.)

History.—Almonds were well known to the ancients: they are mentioned in the earliest part of the Old Testament.1 Hippocrates employed both the sweet and bitter almonds, and their expressed oil, in medicine.2 Dioscorides3 describes the mode of expressing the oil.

Botany. Gen. Char.—Drupe pubescent, velvety; with a fibrous, juiceless cortex, which falls off irregularly; putamen (shell) pitted or smooth. Young leaves folded flat (conduplicate). Flowers somewhat sessile, solitary or in pairs, earlier than the leaves, arising from scaly buds. Fruit woolly (De Cand.)

Sp. Char.—Leaves oblong-lanceolate, serrulate. Flowers solitary. Calyx campanulate. Fruit ovoid-compressed, tomentose (De Cand.)

A small tree. Leaves on glandular footstalks, acuminate. Flowers moderately large, rose-red or white, nearly sessile, appearing before the leaves. Calyx reddish, campanulate, 5-cleft; the segments blunt. Petals 5, ovate, irregularly notched, rose-red. Stamens numerous (about 30), shorter than the petals, inserted into the mouth of the calyx. Ovarium woolly; style

1 Genesis, xlili. 11.
2 Opera, ed. Fasc. pp. 484, 669, and 413.
3 Lib. i. cap. 39.
simple; stigma round. Drupe ovoid, compressed, leathery, marked with a longitudinal furrow, where it opens when ripe; epicarp greenish-gray, tomentose; mesocarp (or sarcocarp) fibrous, cracking and dropping off; endocarp (putamen) woody or almost osseous, oblong or ovate, acute, marked with pits or furrows. Seed 1 (rarely 2) in each drupe.

De Candolle admits five varieties of this species:

a. amara. Bitter Almond.—Styles almost as long as the stamens, tomentose below. Seeds bitter. Flowers larger; petals white, roseate at the base. It varies with a hard and brittle putamen.

d. macrocarpa. Large fruited.—Leaves broader, acuminate, scarcely ash-coloured. Peduncles shorter, turgid. Fruit larger, umbilicated, acuminate at the apex. Putamen hard. Flowers white-roseate, large, appearing before the leaves. Petals broadly obovate, undulate. It varies—1st, with a lesser fruit called the Sultana Almond; 2ndly, with a very small fruit termed the Pistachio Almond.

e. persicoides. Peach Almond.—Leaves like those of the peach. Fruit oval, obtuse. Sarcocarp succulent. Putamen yellowish-black. Seeds sweet.—On the same branch the fruit is sometimes ovate, obtuse, and somewhat fleshy; and dry, ovate-compressed, and acuminate.

Hab.—Barbary and Syria. Cultivated in the southern parts of Europe.

Description.—Almonds in the shell (Amygdala cum putamine) consist of the seed, or kernel (amygdala), enclosed in the endocarp (putamen or shell), which may be hard or soft. The seed is of an oval shape, compressed, rounded at one end, and somewhat pointed at the other. The outer covering of the seed (epidermis seminalis, Bischoff) is glanduliferous, bitter, of a reddish-brown colour, and veined by the ramifications of the raphé. At the pointed extremity of the seed is a small perforation (foramen), and on one side of this, at the edge, is the rugged line (hilum) which constitutes, botanically, the base of the seed. The seed is connected, at the hilum, with the shell by the umbilical cord. The larger or round end of the almond is curiously enough termed its apex. That part of the internal seed-coat (endopleura, De Candolle) which corresponds to the blunt or rounded end of the almond, is dark-coloured, indicating the situation of the chalaza. By soaking almonds in warm water, the seed-coats (pellicle or skin) are easily removed. Blanched almonds (amygdale decorticate) consist of the embryo only, composed of the two large fleshy cotyledons, between which, at the pointed extremity of the seed, we observe the plumule, with the radicle pointing towards the foramen (see fig. 358.)

1. Sweet Almonds (Amygdala dulcis).—These are odourless, and have a bland, sweetish, agreeable taste. Three varieties are known in commerce:

1 Prodr. ii. 530.
1. Jordan almonds, which are the finest, come from Malaga. Of these there are two kinds; the one above an inch in length, flat, and with a clear brown cuticle, sweet, mucilaginous, and rather tough; the other more plump and pointed at one end, brittle, but equally sweet with the former.—2. Valentina almonds are about three-eighths of an inch broad, not quite an inch long, round at one end and obtusely pointed at the other; flat, of a dingy-brown colour, and dusty cuticle.—3. Barbary and Italian almonds resemble the latter, but are generally smaller, and less flattened. Rancid, worm-eaten, and broken almonds, should be rejected. Sweet almonds are rarely employed for pressing, on account of their greater cost, and the less value of their residual almond cake (placenta amygdala dulcis). Almond powder (farina amygdala) is the ground almond cake, and is employed as a soap for washing the hands, and as a lute.

2. Bitter Almonds (Amygdala amara).—These are brought chiefly from Mogadore. In external appearance they resemble the sweet almond, but are somewhat smaller. They are distinguished by their bitter flavour, and, when rubbed with a little water, remarkable odour. They are extensively used for pressing. Their cake (placenta amygdala amara) is distilled with water to yield the volatile oil of bitter almonds, and is afterwards employed to fatten pigs, and for other purposes.

Commerce.—The following table shows the quantity of almonds (bitter and sweet) on which duty was paid during 1838 and 1839:

<table>
<thead>
<tr>
<th>Duty per cul.</th>
<th>Quantity on which duty was paid.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In 1839</td>
</tr>
<tr>
<td>Jordan</td>
<td>40s.</td>
</tr>
<tr>
<td>Not Jordan</td>
<td>20s.</td>
</tr>
<tr>
<td>Bitter</td>
<td>4s.</td>
</tr>
</tbody>
</table>

Almonds are imported in barrels, serons, boxes, and bales.

Composition.—Sweet almonds were analysed by Proust; in 1817 by Boullay, and in 1825 by Payen and Henry fils.—Bitter almonds were analysed by Vogel.

Boullay's Analysis.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed oil</td>
<td>54-0</td>
</tr>
<tr>
<td>Emulsin</td>
<td>24-0</td>
</tr>
<tr>
<td>Liquid sugar</td>
<td>6-0</td>
</tr>
<tr>
<td>Gum</td>
<td>3-0</td>
</tr>
<tr>
<td>Seed-coats</td>
<td>5-0</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>4-0</td>
</tr>
<tr>
<td>Water</td>
<td>3-5</td>
</tr>
<tr>
<td>Acetic acid and loss</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Vogel's Analysis.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil and hydrocyanic acid</td>
<td>quantity undetermined.</td>
</tr>
<tr>
<td>Fixed oil</td>
<td>28-0</td>
</tr>
<tr>
<td>Emulsin</td>
<td>80-0</td>
</tr>
<tr>
<td>Liquid sugar</td>
<td>6-5</td>
</tr>
<tr>
<td>Gum</td>
<td>3-0</td>
</tr>
<tr>
<td>Seed-coats</td>
<td>5-5</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>5-0</td>
</tr>
<tr>
<td>Loss</td>
<td>19-0</td>
</tr>
</tbody>
</table>

Sweat Almonds. 100-0

Bitter Almonds. 100-0

1 See Busby’s Journal of a Recent Visit to the Principal Vineyards of Spain and France, p. 47, London, 1834.
2 Brande, Dict. of Pharm. 55.
3 Trade List.
5 Ibid. vi. 406.
6 Journ. de Chim. Méd. i. 436.
7 Gmelin, Handb. d. Chem. ii. 1268.
1. Fixed Oil of Almonds (See post, p. 1774).
2. Emulsin (Vegetable Albumen of Almonds.)—This remarkable constituent of almonds is white, and soluble in cold water; hence it is a constituent of almond emulsion. From its watery solution it is precipitated in thick white flocks by alcohol; these flocks dissolve in water, even if they have been previously dried. If the watery solution be heated to 212° F. the emulsin coagulates, and the liquor becomes thick, like starch mucilage. From ordinary vegetable albumen, emulsin is distinguished by its producing the decomposition of amygdalin, and yielding, among other products, the volatile oil of bitter almonds and hydrocyanic acid. When, however, emulsin has been coagulated by heat, it loses its power of acting on amygdalin. The composition of emulsin, according to Mr. Richardson, is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>24</td>
<td>48.81</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>23</td>
<td>7.79</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>4</td>
<td>18.99</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9</td>
<td>24.41</td>
</tr>
</tbody>
</table>

Boiled with haryla, emulsin evolves ammonia, and yields a barytic salt containing a peculiar acid, which has been termed emulsic acid. It is probable, therefore, that emulsin is an amide of emulsion acid (i.e. emulsate of ammonia, minus an atom of water). Robiquet regards the emulsin of Wöhler and Liebig as a very complex product.

3. Amygdalin.—A crystallizable substance found in the bitter, but not in the sweet almond. From four lbs. of bitter almonds Liebig obtained one ounce of pure amygdalin. It is white, odourless, has at first a sweet, then a bitter taste, is very soluble in boiling alcohol and water, but insoluble in ether. Crystallized out of an alcoholic solution it is in pearly scales, and is anhydrous. The crystals obtained from a watery solution are colourless, transparent, and prismatic, and contain six atoms of water of crystallization. The watery solution has a feebly bitter taste. Submitted to distillation with nitric acid, it yields hydrocyanic acid, oil of bitter almonds, formic acid, and some benzoic acid. Heated with an alkaline solution, it evolves ammonia, and yields an alkaline salt, which contains a peculiar acid called amygdalic acid, composed of C\textsubscript{39}H\textsubscript{26}O\textsubscript{24}+Aq.; hence, perhaps, amygdalin is an amide of amygdalic acid (i.e. an amygdalate of ammonia; minus an atom of water). By the action of a solution of emulsin on a solution of amygdalin, we obtain, among other products, hydrocyanic acid and the volatile oil of bitter almonds (see Volatile Oil of Bitter Almonds). The following is the composition of amygdalin, according to Wöhler and Liebig:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>40</td>
<td>52.516</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>27</td>
<td>5.908</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>3.064</td>
</tr>
<tr>
<td>Oxygen</td>
<td>22</td>
<td>38.512</td>
</tr>
</tbody>
</table>

Amygdalin... 1 457 100.000

In the crystallized state it consists of, 1 atom of Amygdalin=457, and 6 atoms of Water=54.

4. Volatile Oil of Bitter Almonds (see post, p. 1774).

Physiological Effects and Uses. a. Of Sweet Almonds.—Sweet almonds are nutritive and emollient; but on account of the quantity of oil which they contain, they are somewhat difficult of digestion, at least if taken in large
quantities, or by persons whose digestive powers are weak. When rancid they are still more apt to disorder the stomach. The husk or pellicle of the almond has been known to occasion nausea, uneasiness in the stomach and bowels, increased heat, oedematos swelling of the face, followed by urticaria. Dr. Winterbottom\(^1\) suffered twice in this way from the use of unblanched sweet almonds, but blanched almonds caused no inconvenience.

For dietetical purposes, almonds are employed as a dessert, for puddings, cakes, \&c. On account of the irritant qualities of the husk, almonds for the table should always be blanched. Blanched and roasted they have been used as a substitute for coffee.\(^2\) Medicinally they are used in the preparation of the confection, emulsion, and oil.

\(\beta\). Of Bitter Almonds.—Bitter almonds are more or less poisonous to all classes of animals. As in the cases of other poisonous vegetable substances, the larger herbivora are much less powerfully affected by them. Thus, three-quarters of a pound of bitter almonds, given to a horse, caused merely dulness and a small pulse.\(^3\) One drachm of bitter almonds has killed some of the smaller animals, as pigeons.\(^4\) Twenty seeds have killed a small robust dog.\(^5\)

The symptoms which they induce in animals, are, trembling, weakness, palsy, convulsions (often of the tetanic kind), and, finally, coma. If vomiting occur early, the animal in that way may escape.

In small doses bitter almonds sometimes act on man as irritants to the digestive organs, and occasion nausea, vomiting, and purging. Owing to idiosyncrasy, some individuals are remarkably affected by them. On the late Dr. Gregory they caused, "first, sickness, generally tremors, then vomiting, next a hot fit, with an eruption of urticaria, particularly on the upper part of the body. At the same time the face and head swelled very much, and there was a general feeling like intoxication. The symptoms lasted only a few hours. The rash did not alternately appear and disappear, as in common nettle-rash" (Christison). In large doses bitter almonds have caused serious, or even fatal consequences. Pierer\(^6\) mentions that three children having eaten some of these seeds, were attacked in a few minutes with nausea, vomiting, loss of consciousness and of speech, and convulsions. Mr. Kennedy\(^7\) has noticed the case of a stout labourer, who died after the use of a great quantity of bitter almonds. These, and other observations referred to by Wibmer,\(^8\) Coullon,\(^9\) and others, prove that the poisonous effects of the bitter almond are similar to those of hydrocyanic acid.

The emulsion of bitter almonds partakes of the properties of the seeds. Pouzaire (quoted by Wibmer) states that a child of between four and five years of age suffered colic, head affection, grinding of the teeth, trismus, insensibility, and death, from the use of a strong dose of this liquid.

The distilled water of bitter almonds (\textit{aqua amygdale amaræ}) pos-

5. Orfila, \textit{Toxicol. Gén.}
sesses poisonous properties, when either swallowed or applied externally.¹ Sömmering states that half an ounce of concentrated bitter almond-water killed a dog.²

Macaroons and Ratafia cakes, as well as Noyau, which owe their peculiar flavour to bitter almonds, act injuriously when taken in large quantities.³ The principal consumption of the bitter almond is for pressing, flavouring, and scenting. For flavouring, the seeds or their essential oil are used by the cook and confectioner.

By medical practitioners in this country, bitter almonds are rarely prescribed. They sometimes enter into the composition of the almond emulsion (see Mistura Amygdale, Ph. E. D.) but usually as a flavouring ingredient only. They are applicable, however, to all the uses of hydrocyanic acid; as pulmonary affections, gastrodynta, and hooping-cough; but the objection to their use is their varying and uncertain strength. Bergius⁴, and subsequently Frank, Hufeland⁵ and others, have successfully administered them against intermittent fever. They have also been used to expel tape-worm, and it is said, with good effect.⁶ Pitschaft⁷ prescribed bitter almond water to relieve painful menstruation. The emulsion has been employed as a wash to relieve irritation in various skin diseases; as herpes, prurigo, acne, impetigo, &c.

ADMINISTRATION.—Bitter almonds may be taken in substance or emulsion. Kranichfeld⁸ employed the powder of the bitter almond cake (farina amygdale amarae) in doses of 1 to 6 grs. As a substitute for the distilled water of bitter almonds (aqua amygdale amarae), which is of variable strength, Wöhler and Liebig⁹ recommend the following emulsion (emulsio amygdalæ cum amygdalinæ) on account of its uniform strength:—Sweet almonds, 3ij.; Water and Sugar sufficient to make f5j. of emulsion, in which, when strained, dissolve Amygdalin, grs. xvij. This quantity of amygdalin, when acted upon by the emulsion, yields one grain of anhydrous hydrocyanic acid, and 8 grains of volatile oil.—The dose of this emulsion is gtt. x. to f3j. Almond paste is sold in the shops for softening the skin and preventing chaps. Dr. Paris¹⁰ gives the following recipe for making it:—Bitter Almonds, blanched, 3iv.; the White of an Egg; Rose Water and Rectified Spirit, p. æ., as much as may be sufficient.

1. CONFECTION AMYGDALÆ, L.; Conserva Amygdalarum, E.; Almond Confection. (Sweet Almonds, 3vij.; Powder of Gum Arabic, 3j.; Sugar, 3iv. The almonds being first macerated in cold water, and their pellicles removed, rub them through a fine metallic sieve; then beat all the ingredients until thoroughly incorporated. The process of the two

¹ See Döltz's experiments, in Wibner, op. supra cit.
² Buchner, Torikolog.
³ See Virey, Journ. de Pharm. ii. 204, for the ill effects of the first of these.
⁴ Mat. Med. i. 433.
⁸ Dierbach, op. supra cit.
⁹ Journ. de Pharm. xxiii. 415.
¹⁰ Pharmacologia.
Colleges is essentially the same. The *London College* adds, that this confection can be preserved unaltered for a longer time, if the almonds, gum-arabic, and sugar, are separately powdered, and afterwards mixed. Then, whenever the confection is to be used, beat all the ingredients together until they are thoroughly incorporated).—Almond confection, prepared without water, is not more apt to spoil or become rancid than when the ingredients are separately powdered, and subsequently mixed; but if, in order to soften the mass, a little water be added, it then soon becomes mouldy or rancid, or both.¹ The only use of almond confection is in the preparation of the emulsion.

2. MISTURA AMYGDALÆ, L. E. D.; Lac Amygdalæ; Almond Emulsion; Almond Milk. (Almond Confection, ʒisser.; Distilled Water, Oj.) Gradually add the water to the confection, while rubbing, until they are mixed; then strain through linen, L. The *Edinburgh College* employs ʒjej. of the Confection to Ojj. of Water, and strains the mixture through linen or calico; or they direct it to be prepared by the following process: “Sweet Almonds, ʒj. and ʒjj.; Pure Sugar, ʒv.; Mucilage, ʃʃss.; Water, Ojj. Steep the almonds in hot water and peel them, and proceed as for the *Mistura Aeaecie*.”

—the *Dublin College* prepares it as follows: Sweet Almonds, ʃv.; Gum Arabic, in powder, ʒj.; Refined Sugar, ʃjj.; Distilled Water, ʃʃviiiij. Rub the almonds with the sugar and gum, adding gradually the water, then strain.)—Notwithstanding that the formula of the three Colleges are different, none of them precisely agree with that which is in common use. No one who wishes to procure good almond milk would prepare it with the confection, on account of the changes which this preparation suffers by being kept. Powdered gum arabic is, for ordinary purposes, a more convenient and ready ingredient than mucilage, and does not undergo any change by keeping. The following formula, which is similar to that of the *Dublin College*, yields a preparation identical with that of the *London College*: Sweet Almonds, ʒv.; Powdered Gum Arabic, ʒj.; White Sugar, ʃjj.; Water, ʃʃviss. Having blanched the almonds, beat them with the sugar and gum, the water being gradually added.—Almond milk agrees in many of its properties with animal milk. Thus it is white; when examined by the microscope it is seen to consist of myriads of oleaginous globules, suspended in water by the aid of an albuminous principle (emulsin) and sugar; and, lastly, it agrees with milk, in possessing nutritive and emollient qualities. It is used as a demulcent and emollient in pulmonary affections, to appease cough and allay irritation; and in inflammatory affections of the alimentary canal or of the urinary organs. It is an excellent vehicle for other remedies; as for the saline refrigerants (nitré, for example) in febrile cases, for expectorants and paregorics (squills, ipecacuanha, opiates, &c.) in pulmonary affections, for sudorifics (emetic tartar, for example) in febrile and inflammatory cases, for alkalies and their carbonates in affections of the urino-genital organs, and for hydrocyanic acid in gasterdynia and pulmonary disorders. Acids and alcohol (hence tinctures) coagulate the emulsin, and cause almond mixture to separate into a kind of curd and whey; a change which also takes place spontaneously.

¹ Braude, *Dict. of Pharm.*, 56.
when the mixture has been kept, and which is accompanied with the development of free acid. In cases where the hydrocyanic acid is admissible, the bitter almond may be used.—The dose of almond emulsion is \(\text{f} \frac{3}{4} \) or \(\text{f} \frac{3}{2} \)j., or ad libitum.

3. *OLEUM AMYGDALÆ*, L.; *Almond Oil*; *Oil of Sweet Almonds*. (Obtained by expression from either bitter or sweet almonds; usually from the former, on account of their cheapness, as well as of the greater value of their residual cake).—The average produce is from 48 to 52 lbs. from 1 cwt. of almonds. When recently expressed it is turbid, but by rest and filtration becomes quite transparent. It usually possesses a slightly yellow tinge, which becomes somewhat paler by exposure to solar light. It is inodorous, or nearly so, and has a purely oleaginous bland taste. It congeals less readily by cold, than olive oil. Braconnot states that at 14° F. it deposits 24 per cent. of margarine (margarate of glycerine) which fuses at 43° F. The residual oleic (oleate of glycerine) did not congeal at the greatest degree of cold. The accuracy of these statements has, however, been called in question. Its sp. gr. would appear to vary: Brandis found it 0·911, Brisson 0·917, Saussure 0·920, at 53° F. Sulphuric ether dissolves it. Six parts of boiling, or twenty-five parts of cold alcohol, are required to dissolve one part of this oil.

<table>
<thead>
<tr>
<th>Proximate Composition.</th>
<th>Ultimate Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saussure.</td>
</tr>
<tr>
<td>Oleine</td>
<td>Carbon 77·403</td>
</tr>
<tr>
<td>Margarine (Stearine of Braconnot)</td>
<td>Hydrogen 11·481</td>
</tr>
<tr>
<td>Almond Oil</td>
<td>Oxygen 10·628</td>
</tr>
<tr>
<td></td>
<td>Nitrogen [loss] 0·288</td>
</tr>
<tr>
<td></td>
<td>Almond Oil 100·00</td>
</tr>
</tbody>
</table>

The nitrogen mentioned in Saussure's analysis is probably an error.

Almond oil is said to be adulterated with teel oil.

It possesses the dietetical and medicinal properties of the other fixed oils. Its local action is emollient. Swallowed in moderate doses it is nutritive, but difficult of digestion. In large doses it acts as a mild laxative.

Almond oil may be employed for the same purposes as olive oil. Mixed with an equal volume of syrup of violets, or syrup of roses, it is given to new-born infants as a laxative. It is sometimes used with gum (in the form of mucilage), alkalis, or yolk of egg, to form an emulsion, which is used in the same cases as the *mistura amygdalæ*. To assist in allaying troublesome cough it is not unfrequently administered in the form of linctus, with confection of dog-rose, and syrup of poppies.

4. *OLEUM AMYGDALÆ AMARÆ*; *Oleum Amygdale amare destillatum*; *Oil of Bitter Almonds*; *Essential Oil of Almonds*. (Obtained by submitting bitter almond cake [left after the expression of the fixed oil from bitter almonds] to distillation with water, either alone, or more usually with salt. To increase the quantity of volatile oil, Geiger recommended the cake to be macerated in the water for 24 hours before distillation.)—The *theory* of this process is curious. Chemists formerly supposed that the volatile oil resided in the bitter almond, and that by distillation it was merely volatilized.
and subsequently condensed. But in opposition to this view may be urged the following facts.—

1. Neither bitter almonds, nor their residuary cake, yield any volatile oil by pressure, yet we know that the volatile oil is soluble in the fixed oil, and, therefore, when the latter was expressed it ought to contain traces of the volatile oil, if this existed in the bitter almonds.

2. They yield no oil when digested in alcohol or in ether, though the volatile oil is soluble in both of these liquids.

3. Alcohol extracts from bitter almond cake, sugar, resin, and amygdalin. When the latter substance has been removed, the cake is no longer capable of furnishing the volatile oil by distillation.

4. Ether extracts no amygdalin from bitter almond cake; and the cake left after digestion in ether yields the volatile oil by distillation with water.

These facts, then, prove that the volatile oil does not reside in the bitter almond, but is formed by the action of water on some of the constituents of these seeds. When bitter almonds are deprived of amygdalin, they are incapable of yielding the volatile oil: so that it is this principle which enables them to yield it. But amygdalin, with water only, produces no oil: hence the presence of some other substance is necessary. Wöhler and Liebig¹ have shewn that this other substance is emulsin (albumen), and that, by the mutual reaction of amygdalin, emulsin, and water, we obtain the volatile oil of bitter almonds and hydrocyanic acid. But it appears that sugar, and some other substance (probably a compound of formic acid and altered emulsin), are simultaneously developed. These ingredients are, probably, all yielded by the amygdalin, the operation of emulsin on which has been compared to that of yeast on sugar and water. It will be seen by the following table (drawn up by Wöhler and Liebig), that amygdalin contains the elements of hydrocyanic acid, volatile oil of bitter almonds, sugar, formic acid, and water:

<table>
<thead>
<tr>
<th>Atoms of</th>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Nitrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 atom of hydrocyanic acid</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2 atoms volatile oil of almonds</td>
<td>28</td>
<td>12</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1 atom of sugar</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2 atoms of formic acid</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7 atoms of water</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1 atom of Amygdalin</td>
<td>40</td>
<td>27</td>
<td>1</td>
<td>22</td>
</tr>
</tbody>
</table>

The essential oil of bitter almonds of the shops possesses the following properties. It is highly poisonous, has a golden-yellow colour (by rectification it may be rendered temporarily colourless), an agreeable odour (usually compared to that of hydrocyanic acid, but which, in fact, bears but little resemblance to it), and an acrid, bitter, taste. It is combustible, and burns with a white flame. Its sp. gr., though always greater than that of water, probably varies somewhat. I find that a sample, which had been prepared for about eight months, had the sp. gr. of 1.0836. It is soluble in alcohol and ether. Oil of vitriol forms with it a magnificent crimson-red thick liquid, which, on the addition of water, yields a yellow emulsion.

¹ Journ. de Pharm. xxiii.
[Some recent observations by Mr. Redwood\(^1\) shew that the sp. gr. of this oil varies greatly according to the temperature at which it is obtained; he examined specimens of sp. gr. 1052·4 to as high as 1082·2. This variation has sometimes been attributed to the presence of spirit added for adulteration; but no spirit could be detected. The oils of lighter sp. gr. appeared to contain the purest hydruret of benzule; while, from the reaction of strong sulphuric acid, it would appear that benzoine is present in considerable proportion in the heavier specimens.—Ed.]

Oil of bitter almonds, as found in commerce, is a mixture or compound of hydruret of benzule, hydrocyanic acid, a little benzoic acid, benzoine, benzimide, and probably other substances.

\(1\) Pharm. Journ. vol. xi. p. 486.

\(2\) Quoted by Dr. Christison, Treat. on Poisons.

\(3\) Turner's Chemistry, 7th edit. p. 785.

\(a\). **Hydruret of Benzule.**—This is obtained by forming the oil into a thin paste with hydrate of lime, chloride of iron, and water, and redistilling. It is a limpid colourless oil, whose sp. gr. is 1·043, and whose odour and taste are scarcely different from those of the ordinary oil. Robiquet found it innocuous, but Vogel, and more recently Liebig, declare that it still retains its poisonous properties. In some earlier experiments which I made on this subject I found it to be highly poisonous, though I could not detect an atom of hydrocyanic acid in it. After the sample had been kept a few months, however, I readily detected the acid in it by the potash and iron test. By a second and third rectification I completely deprived it of all traces of the acid; and I then found that four drops of it, given to a small rabbit, had no more effect than the same quantity of any other volatile oil: that is, the animal appeared dull for a few minutes, and the respiration was quickened. Hydruret of benzule is composed of C\(^{14}\)H\(^{4}\)O\(^2\). Certain changes which it undergoes are best explained by assuming that this oil is a compound of the base of benzoic acid and hydrogen. To this base, whose composition is C\(^{14}\)H\(^{4}\)O\(^2\), the name of Benzule or Benzoyl Bz, has been given; so that the oil is the hydreur of benzule, C\(^{14}\)H\(^{4}\)O\(^2\)+H or BzH, and its proximate and ultimate composition is as follows:

<table>
<thead>
<tr>
<th>Proximate Composition.</th>
<th>Ultimate Composition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzule 1 105</td>
<td>Carbon 14 84 79:24</td>
</tr>
<tr>
<td>Hydrogen 1 1</td>
<td>Hydrogen 6 6 5:66</td>
</tr>
<tr>
<td></td>
<td>Oxygen 2 16 15:10</td>
</tr>
<tr>
<td>Hydruret of Benzule 1 106</td>
<td></td>
</tr>
</tbody>
</table>

By exposure to the air it absorbs 2 eq. oxygen, and is converted into hydrated benzoic acid, C\(^{14}\)H\(^{4}\)O\(^2\)+Aq. or BzO\(_2\)HO.

\(\beta\). **Hydrocyanic Acid.**—The presence of hydrocyanic acid in the essential oil of bitter almonds may be detected by the usual tests, especially by potash and a salt of iron. The quantity of this acid is differently stated by different authorities, and is, probably, not uniform. Schrader\(^2\) got, from an old sample, 8·5 per cent., and from a new sample, 10·75; but Göppert obtained, from another specimen, so much as 14·33 per cent. Water in which the oil has been washed gives evidence of the presence of hydrocyanic acid by the potash and iron test before referred to.

\(\gamma\). **Benzoic Acid, BzO.**—This is formed by the action of the oxygen of the atmosphere on hydruret of benzule, as above mentioned. It is more readily produced in the pure hydruret than in raw oil of bitter almonds.

\(\delta\). **Benzoine; Camphor of Oil of Bitter Almonds.**—Liebig\(^3\) states that this is a constituent of oil of bitter almonds. It is a crystalline substance usually obtained by the action of alkalies on the oil. It cannot be procured from hydruret of benzule (with which it is isomeric) unless hydrocyanic acid be present. It is soluble in boiling alcohol. Oil
of vitriol also dissolves it with a violet-blue colour; if the solution be heated it becomes brown, green, and at last black, with disengagement of sulphurous acid.

e. Benzamide.—This separates from oil of bitter almonds under certain circumstances. Its formula is $\text{C}_6\text{H}_4\text{NO}_2$ or BzAd. It is soluble in alcohol. Nordhausen sulphuric acid dissolves it, assuming a deep indigo colour: if moisture be present the colour is at first emerald green. By the action of potash and a little alcohol it evolves ammonia and forms benzoate of potash.

A crystalline matter is frequently deposited by oil of bitter almonds, when it has been kept for some time. Exposure to the air, by which the oil is enabled to absorb oxygen, and the removal of hydrocyanic acid from the oil, facilitate the deposition. In 1822, Grischow and Bahlmann,¹ and, in 1823, Stange,² declared the crystals to be those of benzoic acid; a statement which was confirmed, in 1830, by Robiquet and Bontron.³ I have met with three kinds of crystalline deposit, differing essentially from each other and from benzoic acid.

1st. One of these is characterised by the emerald-green colour which it produces when dropped into oil of vitriol. In a few minutes, however, the green changes to red. This deposit is orange-yellow, soluble in boiling water, alcohol, and ether; when the alcoholic or ethereal solutions cool, numerous white, light, pearly crystalline plates (resembling crystalline benzoic acid) are deposited. If these white crystals be dropped into oil of vitriol, they also become emerald-green, but very slightly so: the mother liquor is rendered much more intensely green by oil of vitriol. Boiled with caustic potash they give out ammonia. By keeping for two years in a stoppered bottle, both the raw and purified crystals lost the property of becoming green by oil of vitriol: they now became red on the addition of this liquid; and the crystals, on being redissolved in alcohol and recrystallized, were scarcely coloured on the addition of oil of vitriol.

From raw oil of bitter almonds washed with solution of potash I have obtained, at the end of twenty-four hours, crystals which, like the above, became green on the addition of oil of vitriol.

2nd. A second crystalline deposit is characterized by the cherry-red colour which it assumes when dropped into oil of vitriol, and by its not evolving ammonia when boiled with caustic potash. Its appearance resembles solid oil of anise. When dissolved in boiling alcohol and recrystallized, it yields silky prismatic crystals somewhat similar to those of nitrate of ammonia. At the end of two years it had almost lost its quality of being reddened by oil of vitriol; but when boiled with this liquor it gave out a crystalline sublimate. Heated with solution of potash it evolved faint traces of ammonia.

3rd. The third⁴ kind of deposit I did not receive until after it had been digested in alcohol. A short notice of it has been given by Dr. Lettsom.⁵ The crystals are small, acicular, and lemon-yellow; they dissolve in oil of vitriol, forming a yellow or orange coloured solution. They are insoluble in water and alcohol. When heated they fuse, but, unlike the two preceding deposits, do not sublime. They do not evolve ammonia when heated with a solution of caustic potash. At the end of two years these crystals were unchanged. In all the cases in which they are found the oil had been put aside contaminated with water.

The volatile oil of bitter almonds is a most potent poison, acting as rapidly as the ordinary hydrocyanic acid of the shops, and giving rise to similar symptoms. A single drop has killed a cat in five minutes.⁶ Sir B. Brodie,

² Buchner's Repert. xiv. 329; xvi. 82.
⁴ For specimens of this, as well as of the first kind of deposit, I am indebted to Mr. Whipple.
⁶ Brodie, Phil. Trans. 1811, p. 178.
happening to touch his tongue with a probe which had been dipped in the oil, suffered, almost instantaneously, an indescribable sensation at the pit of the stomach, feebleness of the limbs, and loss of power over the muscles. These effects, however, were quite transient. Several cases of poisoning with it are recorded. The best detailed is that related by Mertzdorff (quoted by Dr. Christison):—“A hypochondriacal gentleman, 48 years old, swallowed two drachms of the essential oil. A few minutes afterwards, his servant, whom he sent for, found him lying in bed, with his features spasmodically contracted, his eyes fixed, staring, and turned upward, and his chest heaving convulsively and hurriedly. A physician, who entered the room twenty minutes after the draught had been taken, found him quite insensible, the pupils immoveable, the breathing stertorous and slow, the pulse feeble, and only thirty in a minute, and the breathing exhaling strongly the odour of bitter almonds. Death ensued ten minutes afterwards.” Another case of poisoning with this oil occurred a few years since in Aldersgate Street:—A lady, intending to take beech-nut oil, for worms, swallowed (by mistake) oil of bitter almonds, sold to her by a druggist, who supposed she inquired for peach-nut oil. Recovery has occurred, in one case, after about half an ounce (?) of the oil had been swallowed.1

[Mitscherlich2 has experimented on the effects of this oil on dogs and rabbits; he found it poisonous even when quite free from hydrocyanic acid. He found also, as stated by Wöhler and Frerichs, that it is oxydized in the system when given in small quantity, and is converted into hippuric acid in the urine. In large doses, however, it escapes unchanged into the urine.—Ed.]

In this country, essential oil of bitter almonds is not employed in medicine. It is applicable in the same cases that hydrocyanic acid is employed in. But it must not be forgotten that, though its strength is somewhat variable, it is in general four times the strength of officinal hydrocyanic acid. The dose of it is a quarter of a drop to a drop and a half in an emulsion. It is extensively employed for flavouring by the cook and confectioner; and by the perfumer for scenting toilet-soap, and for other purposes.

Essence of Bitter Almonds; Almond Flavour.—This term is sometimes applied to the essential oil, and sometimes to a solution of the oil in rectified spirit. Two fluidrachms of the oil and six fluidrachms of rectified spirit form an useful essence for flavouring and scenting. [It is a dangerous preparation, as it still holds hydrocyanic acid dissolved. Half an ounce of it has been known to destroy the life of an adult.—Ed.]

259. PERSICA VULGARIS, Miller.—THE PEACH.

Amygdalus Persica, Linn.

Sex. Syst. Icosandria, Monogynia.

[Although no longer to be found in the British Pharmacopoeias, we have retained the author’s remarks upon this fruit.—Ed.]

The Peach:—Botany; Composition; Physiological Effects. 1779

History.—Both Dioscorides¹ and Pliny² speak of the peach: the former terms it περσικὸν μῆλον; the latter malum persicum.

Botany. Gen. Char.—The same as Amygdalus, except that the drupe is very fleshy. Epicarp either velvety or quite smooth. Putamen (stone.) extremely rugose, with furrows (De Cand.)

Sp. Char.—Fruit tomentose (De Cand.)
A small tree. Leaves lanceolate, serrate or crenate, with or without glands. Flowers roseate, large or small.³ Both flowers and kernels exhal the bitter almond odour.

Two varieties of the peach are usually made. These are admitted by De Candolle:

a. Melters or Free-stones.—Flesh separating from the stones.

b. Cling-stones or Pavies.—Flesh adherent to the stone.

The Nectarine (Persica levis, De Cand.) is distinguished from the Peach by its smooth fruit. This trivial distinction leads many botanists to regard these two fruits as varieties of the same species.

Hab.—Native of Persia. Cultivated in gardens. Flowers in April or May.

Description.—Peach leaves (folia persicæ) have the peculiar odour and taste of the bitter almond. The kernels (semina persicæ) closely resemble the latter, both in appearance and properties, but are smaller. The flowers (flores persicæ) lose the greater part of their odour by drying.

Composition.—The leaves have not been analysed. They yield, by distillation, a volatile oil (oleum folii persicæ), which is yellow, heavier than water, and contains hydrocyanic acid.⁴ After eight years a crystalline substance was found on the water.⁵ The non-ligneous extremities of the twigs of the peach-tree yielded Gauthier⁶ 1·92 per cent. of very volatile oil, which was heavier than water. Berard⁷ analysed the juice of the peach, both in the ripe and unripe states: the constituents were, colouring matter, sugar, gum, vegetable fibre, albumen, malic acid, lime, and water.

Physiological Effects.—The highly palatable flesh of the peach is nutritious (on account of its sugar, gum, &c.), and slightly refrigerant (from the malic acid which it contains). Taken in moderate quantities it is wholesome, but if eaten too freely it is apt to disorder the bowels. The kernels, the blossoms, the leaves, and the bark, possess poisonous properties. The flowers, as well as the leaves, in the form of infusion, have been used to

¹ Lib. i. cap. 164.
³ See Loudon, Encycl. of Gardening.
⁴ Gmelin, Handb. d. Chem. ii. 400.
⁵ Brugnatelli, Ann. Chem. xvi. 96.
⁶ Journ. de Pharm.
⁷ Thomson, Org. Chem. 890.
purge and destroy intestinal worms, especially in children;¹ but their employment has sometimes been attended with fatal results. Bertrand² says, that a child, eighteen months old, experienced convulsions, vomiting, and bloody diarrhoea, from the use of a strong decoction of the flowers; and Coullon³ states, that an elderly gentleman, having partaken of a salad of the flowers, was seized with giddiness, violent purging, convulsions and stupor, and died in three days. The irritation of the alimentary canal, manifested by vomiting and purging, and the slow death, distinguish the operation of peach-flowers from that of hydrocyanic acid. The same author⁴ also states, that the peach-bark proved injurious to a cock, and caused difficulty of breathing, and purging.

Uses.—The fruit, both fresh and preserved, is employed as a dessert. Its use is objectionable in gouty persons, and in those whose bowels are easily disordered. When stewed with sugar, it may be given as a mild laxative to convalescents. The kernels may be used as the bitter almond. The blossoms are scarcely ever administered in this country; but they have been recommended as a vermifuge. The leaves are sometimes employed by the cook and liqueur-maker, for flavouring. They have also been used as a substitute for China-tea.⁵ They have been recommended as a vermifuge, and more recently to allay irritation of the bladder and urethra.⁶

Administration.—The dose of peach-blossoms is half an ounce of the fresh, or a drachm of the dried, flowers, infused in water.⁷ The dose of the infusion of peach-leaves (prepared by digesting 3ss. of the dried leaves in Oj. of boiling water) is f3ss. three times a-day.

260. PRUNUS DOMESTICA, Linn. L. E. D. — THE PLUM TREE.

Sex. Syst. Icosandria, Monogynia.

(Fructus praeparatus, L.—Dried fruit, E.—Fructus siccatus, D.)

History.—Dioscorides⁸ calls this tree the κόκκυμηλέα, while the fruit he terms κοκκύμηλαν.

Botany. Gen. Char.—Drupe ovate or oblong, fleshy, quite smooth, covered with a pruinose powder. Putamen (stone) compressed, acute on both sides, somewhat furrowed at the edges, otherwise smooth. Young

¹ Costet et Willemet: quoted by Murray, App. Med. iii. 245.
³ Christison, Treatise on Poisons, p. 726.
⁴ Wibmer, op. supra cit.
⁵ Murray, App. Med.
⁷ Murray, op. supra cit.
⁸ Lib. i. cap. 174.
leaves convolute. Pedicels umbellato-fasciculate, 1-flowered, evolved before or after the leaves (De Cand.)

Gardeners cultivate several hundred varieties.¹ De Candolle admits the following varieties:

- a. Armenioides, including the Mirabelle Plum.
- b. Claudia, including the Green Gage.
- c. Myrobalana, including the Myrobalan Plum.
- d. Damascena, including the Damask Plum.
- e. Turonensis, including the Orleans Plum.
- f. Juliana, yields the Official Prune.
- g. Catharina, including the St. Catharine Plum.
- h. Aubertiana, including the Magnum Bonum or Mogul Plum.
- i. Prunealina, including the Damson.

Hab.—South of Europe. Cultivated in gardens and orchards.

Description.—The dried fruits of the Prunus domestica are called prunes (fructus siccati pruni; drupe siccata pruni). In warm countries they are dried on hurdles by solar heat; but in colder climates artificial heat is employed. In France both methods are adopted; the fruit being exposed to the heat of an oven and to that of the sun, on alternate days. Table prunes are prepared from the larger kinds of plum—as the Saint Catharine and the Reine-Claude (Green Gage): Medicinal prunes from the Saint Julien (P. domestica, var. z Juliana). The former have an agreeable, very sweet taste; the latter are somewhat austere. They are principally imported from Bourdeaux. The part employed in medicine is the pulp (pulpa pruni).

Composition.—John² analysed the Mirabelle Plum, and Berard the Reine-Claude (Green Gage), both in the ripe and unripe states.³ The constituents of the ripe fruit, according to the last-mentioned chemist, are, sugar 11.61, gum 4.85, albumen 0.98, malic acid 1.10, vegetable fibre 1.21, lime a trace, water 80.24, [loss 0.06].—Pectin is also a constituent of these fruits.

Physiological Effects.—Fresh ripe plums, taken in moderate quantities, are wholesome and nutritive; but in large quantities they readily disorder the bowels. The immature fruit still more easily excites ill effects. The medicinal prune is a mild laxative.

Uses.—The finer kind of plums are employed at the table as a delicious dessert: the inferior qualities are used in pies, tarts, conserves, and sweetmeats. The larger prunes are employed at the table as a dessert; the medicinal prunes are employed as an agreeable and mild laxative for children, and during convalescence from febrile and inflammatory disorders. They are sometimes added to cathartic decoctions or infusions (as infusion of senna), to improve the flavour, and promote the purgative effect. They enter into the composition of the confection of senna.

¹ Don (Syst. of Gard. ii. 499) mentions 270 varieties.
² Gmelin, Handb. d. Chem. ii. 1269.
³ Thomson, Org. Chem. 890.
261. CERASUS LAURO-CERASUS, Loisel.—THE COMMON OR CHERRY-LAUREL.

Prunus Lauro-cerasus, Linn. D. E.

Sex. Syst. Icosandra, Monogynia.

(Leaves, E.—Folia, D.)

History.—Belonius terms this plant the Cerasus trapezuntina. It was introduced into Europe, from Trebizonde, in 1576.

Botany. Gen. Char.—Drupe globose or umbilicate at the base, fleshy, quite smooth, not covered with a pruinose powder. Nucleus (stone) somewhat globose, smooth.—Young leaves conduplicate. Pedicels 1-flowered or ramose (De Cand.)

Sp. Char.—Racemes shorter than the leaves. Leaves ovate-lanceolate, remotely serrate, with two or four glands beneath. Fruit ovate, acute (De Cand.)

An evergreen under shrub. Smooth in every part. Leaves short-stalked, coriaceous, shining. Petals roundish, spreading white. Fruit black, the size of a small cherry.

Hab.—Trebizonde. Common in gardens everywhere.

Description.—Cherry-laurel leaves (folia lauro-cerasi) have scarcely any odour until bruised, when they give out the characteristic or bitter almond odour of the plant. Their taste is very bitter, aromatic, and slightly astringent. By drying they lose their odour, but retain their flavour. Their watery infusion is rendered green by the sesquichloride of iron.

Composition.—I am unacquainted with any complete analysis of cherry-laurel leaves. They were imperfectly examined in 1797 by L. J. Spandaw de Cellié. In 1802, Sehrader discovered hydrocyanic acid in the volatile oil obtained from them. The recent researches into the origin of the volatile oil of the bitter almond (see ante), render it probable that the volatile oil of the cherry-laurel does not pre-exist in the leaves. The supposed constituents of cherry-laurel leaves are amygdalin (probably, according to Wöhler and Liebig, though they failed to procure it), resin (Spandaw), myricin (the shining appearance of the leaves is, perhaps, owing to this), chlorophylle or green colouring matter, extractive, tannic acid, ligneous fibre, and water.

Volatile Oil of the Cherry-Laurel (Oleum Lauro-cerasi).—By distillation with water, cherry-laurel leaves yield a volatile oil and a distilled water (aqua lauro-cerasi). As the oil, like the volatile oil of bitter almonds, contains both hydrocyanic acid and hydruret of benzole, it is natural to suppose that the two oils are produced in a similar manner. And though they did not succeed in procuring amygdalin, MM. Wöhler and Liebig think its presence in cherry-laurel leaves highly probable; but what substance effects its decomposition has not yet been ascertained.

1 Sprengel, Hist. réi herb. i. 377.
3 Ibid. S. 151.
4 Journ. de Pharm. xxiii. 411.
Cherry Laurel:—Physiological Effects; Uses. 1783

Cherry-laurel oil is of a pale yellow colour, and heavier than water. It attracts oxygen from the air, and deposits benzoic acid. Oil of vitriol colours it red. It contains hydrocyanic acid, which may be detected by an alkali and a ferruginous salt. The quantity, according to Schrader, is 7-66 per cent.; but Göppert declares it to be 2-75 per cent.1 It appears, therefore, to be a weaker poison than the oil of bitter almonds, with which, according to Robiquet,2 it agrees in all its chemical properties.

Physiological Effects.—Most parts of the plant, but more especially the leaves and seeds, possess poisonous properties.

a. On Vegetables.—The distilled water of the cherry-laurel destroys plants, like hydrocyanic acid. Göppert asserts, that its poisonous operation does not depend on the small quantity of this acid which it contains, but on some poisonous quality peculiar to it; for its activity is greater than that of water containing the same quantity of hydrocyanic acid.3

β. On Animals.—The effects of cherry-laurel water on animals have been examined by a considerable number of observers.4 Of these it will be sufficient to mention the names of Madden,5 Brown Langrish,6 Fontana,7 and Orfila.8 It appears, says Dr. Christison, that whether cherry-laurel water is introduced into the stomach or into the anus, or into the cellular tissue, or directly into the vein, it occasions giddiness, palsy, insensibility, convulsions, coma, and speedy death; that the tetanic state brought on by the pure acid is not always so distinctly caused by cherry-laurel water; and that tetanus is most frequently induced by medium doses.9 Cherry-laurel oil acts on animals as a powerful poison in the dose of a few drops; the symptoms which it excites being similar, if, indeed, they be not identical, with those induced by the volatile oil of bitter almonds.

γ. On Man.—Liqueurs, sweetmeats, creams and puddings, flavoured with the cherry-laurel, have oftentimes acted injuriously, and even proved fatal. Where death occurred, the symptoms were similar to those caused by hydrocyanic acid; viz. painful sensation at the stomach, sudden insensibility, and death within a few minutes. Convulsions, however, have not been frequent. In the case referred to by Dr. Madden,10 in which brandy, mixed with a fourth part of cherry-laurel water, proved fatal, there was no vomiting, purging, or convulsions. But in the instances mentioned by Fodéré,11 the individuals expired in convulsions. The effects of medicinal doses of cherry-laurel water are stated to be similar to those of small doses of hydrocyanic acid.

Uses.—Cherry-laurel leaves are not unfrequently employed by the cook for flavouring. Though the distilled water of the cherry-laurel is contained in the Edinburgh and Dublin Pharmacopœias, yet it is rarely employed in medicine in this country. It is applicable to all the cases for which hydro-

2 Journ. de Pharm. viii. 304.
5 Phil. Trans. for 1731.
6 Phys. Exp. upon Brutes, &c. 1746.
7 Treatise on the Venom of the Viper, &c. 1787.
8 Toxicol. Gén.
9 Christison, op. cit. p. 723.
10 Phil. Trans. for 1731.
11 Orfila, Toxicol. Gén.
cyanic acid has been used. It has been used as a sedative narcotic in tic-example

AQUA LAURO-CERASI, E. D. ; Water of Cherry Laurel ; Laurel Water. (Fresh Leaves of the Common Laurel, lbj. ; Water, Oiiss. Upon the leaves, chopped, and crushed in a mortar, macerate the water for 24 hours, and then draw over a pint of liquid by distillation; using Liebig's condenser, and chloride of zinc bath. Filter the product through paper, and preserve it in a well-stopped bottle, D. The compound spirit of lavender is added as a colouring ingredient, by the Edinburgh College, to prevent the preparation being mistaken for common water. In other respects the process is essentially the same as in the Dublin Pharmacopoeia.)—Dose f3ss. to f3j. The strength, and, therefore, the dose, are, however, liable to considerable variation. Fouquier¹ has, in some cases, given twelve ounces during the day, without any evident effect.

262. ACIDM HYDROCYANICUM DILUTUM, L. E. D.—

DILUTED HYDROCYANIC OR PRUSSIC ACID.

(Acidum Hydrocyanicum, E.)

[The pharmaceutical history of this acid was placed by the author in the first volume of the former edition of this work. The alteration of the plan in the present edition, by which the Mineral Materia Medica has been entirely confined to the first volume, has led to the omission of Hydrocyanic Acid. We have selected this place for the insertion of this article, as being more appropriate than any other part of the volume which yet remains for completion.—Ed.]

History.—The substance called Prussian or Berlin blue (Cæruleum Borussicum seu Berolinense) was accidentally discovered by Diesbach at the commencement of the 18th century, and various conjectures were soon offered regarding its nature. In 1746, Dr. Brown Langrish published some experiments made with laurel water in order to investigate its effects on animals.² In 1752, Macquer announced that Prussian blue was a compound of oxide of iron, and some colouring principle which he could not isolate; and in 1772, Guyton Morveau concluded that this principle was of an acid nature. Scheele, in 1782, removed some of the mystery connected with Prussian blue, by obtaining hydrous prussic acid from it. In 1787 Berthollet ascertained this acid to be a compound of carbon, nitrogen, and hydrogen. In 1800 and 1802, Bohn and Schrader discovered it in laurel-water. Borda, Brugnatelli, and Rasori, first employed the acid in medicine, from 1801 to 1806. In 1815, Gay-Lussac obtained the acid in its pure anhydrous state, and explained its composition.³

² Physical Experiments upon Brutes. Lond. 1746.
³ The chemical history of hydrocyanic acid is fully detailed in Thomson's System of Inorganic Chemistry, vol. ii. 7th edition. The medical history of it is contained in Dr. Granville's Hist. and Pract. Treatise on this acid, 2d ed. 1820.
SYNONYMS AND ETYMOLOGY.—It has been denominated Prussian (Acidum Borussicum), Zootic (Acidum Zooticum), or Hydrocyanic Acid: the first name indicates the substance (Prussian blue) from which it was obtained, the second refers to its animal origin, and the third indicates its constituents, hydrogen and cyanogen (so called from κῦνας, blue; and γεννᾶω, to produce; because it is one of the constituents of Prussian blue).

NATURAL HISTORY.—Hydrocyanic acid is a product peculiar to the organised kingdom. It may be readily procured from many vegetables, more especially those belonging to the sub-orders Amygdalae and Pomeae: as from Bitter Almonds, Apple-pips, the Kernels of Peaches, Apricots, Cherries, Plums, and Damsons; the Flowers of the Peach, Cherry-laurel, and Bird-cherry; the Bark of the latter, and the Root of the Mountain Ash. It is said to have been also obtained from plants of other families, as from Rhamnus Frangula and Ergot of Rye. In some of the vegetables now referred to, hydrocyanic acid does not exist ready formed, but is a product of the process by which it is obtained. This has been fully proved in the case of the bitter almond, and is inferred in other instances.

This acid is rarely, if ever, found in animals. One of its constituents (cyanogen) has, however, been detected, in combination with iron (forming Prussian blue), in the urine, the menstrual fluid, and the sweat: and with sulphur and potassium in the saliva. The greenish-blue discharge of some ulcers probably depends on the presence of Prussian blue. In one case I detected the presence of iron in this discharge. During the decomposition of animal matters by heat, cyanogen is generated: as when blood and carbonate of potash are calcined in an iron pot. It has also been stated, that when cheese is exposed to the action of water and the sun, it disengages ammonia, and if treated, in this state, by alcohol, yields traces of hydrocyanic acid.

PREPARATION.—The processes for procuring this acid are very numerous. I shall only notice the most important of those which yield the dilute acid employed for medicinal purposes.

a. By the action of diluted Sulphuric Acid on Ferrocyanide of Potassium.—This is the process directed by the London, Edinburgh, and Dublin Colleges:

The London College orders of “Ferrocyanide of Potassium, 3ij.; Sulphuric Acid, 3vij.; Distilled Water, Oiss. Mix the acid with four fluidounces of the water, and to these, when cooled and put into a glass retort, add the ferrocyanide of potassium, first dissolved in half a pint of water. Pour eight fluidounces of the water into a cooled receiver; then, having adapted the retort, let six fluidounces of acid, distilled with a gentle heat in a sand bath, pass into this water. Lastly, add six more fluidounces of distilled water, or as much as may be sufficient, that 12-59 grains of nitrate of silver, dissolved in distilled water, may be accurately saturated by 100 grains of this acid.” The resulting product should be twenty ounces.

The Edinburgh College orders of “Ferrocyanide of Potassium, 3ij.; Sulphuric Acid, 3vij.; Water, 3xvij. Dissolve the salt in eleven fluidounces of the water, and put the

1 Is the formation of cyanogen dependent on the oxidation of gelatine? Persoy states, that when gelatine is submitted to an oxidizing agent it is susceptible of being transformed into hydrocyanic acid, ammonia, and carbonic acid, and a small quantity of one of the fat, volatile, and odoriferous acids, the existence of which was established by Chevreul (Brit. and For. Med. Rev. vol. xii. p. 532).
solution into a matrass: add the acid, previously diluted with five fluidounces of the water, and allowed to cool: connect the matrass with a proper refrigero-tary: distil with a gentle heat, by means of a sand-bath or naked gas flame, till fourteen fluidounces pass over, or till the residuum begins to froth up. Dilute the product with distilled water till it measures sixteen fluidounces."

The Dublin College directs of "Ferrocyanide of Potassium, 3ij.; Oil of Vitriol of commerce, f3j.; and Water, 3xij. Dissolve the salt in eight ounces of the water, and dilute the oil of vitriol with the remaining four ounces. While both solutions are cold introduce them successively into a retort or matrass containing several slips of platinum foil, and connected in the usual manner with a Liebig's condenser: and with the aid of a gentle heat let eight ounces be distilled over. Finally, dilute the product with eight ounces of distilled water, or so that the volume of the diluted acid shall be sixteen fluid ounces. The specific gravity of this acid is "997."

On the large scale, the distillation is conducted in a stoneware still, with a worm refrigerator of the same material. If it be performed in a [tubulated] retort, as directed in the London Pharmacopoeia, an adopter should be employed. When small quantities are to be operated on, we may conveniently employ two Florence flasks (one as the receiver, the other as the distilling vessel), connected by a glass tube curved twice at right angles. The receiver should be kept very cool, ice or snow being used if it can be procured; and the heat employed in distilling should be very moderate. The distilled liquor frequently contains a little sulphuric acid, and, by standing, deposits a small portion of Prussian blue. A second distillation, cautiously conducted, will often separate the sulphuric acid; but I have seen Prussian blue formed and deposited after the hydrocyanic acid has been carefully distilled three times.

The theory of the process, founded on the experiments of the late Mr. Everitt, is as follows: Six equivalents or 294 parts of oil of vitriol \(\text{SO}_3 + \text{Aq.}\) react on two equivalents or 426 parts of crystallized ferrocyanide of potassium (composed of four equivalents of cyanide of potassium, two of cyanide of iron, and six of water), and produce three equivalents or 384 parts of the bisulphate of potash, three equivalents or 81 parts of hydrocyanic acid, one equivalent or 174 parts of a new salt (which I shall term the bisferrocyanide of potassium), and nine equivalents or 81 parts of water.

1 [Ferrocyanide of Potassium, L. E. D., \(\text{K}_2\text{Cfy} + 3\text{HO} = 185'47.\) This salt is one of the articles of Materia Medica in the Pharmacopoeias of the three Colleges. Its use is for the preparation of hydrocyanic acid according to the formula above given. It crystallizes in quadrangular tables of a bright yellow colour. It loses at 212°, 12'8 per cent. of water, or three equivalents, becoming a white anhydrous salt. At a red heat it is decomposed into the carburet of iron and cyanide of potassium, and if the incineration take place under a free access of oxygen, the cyanide becomes cyanate of potash. The ferrocyanide of potassium is soluble in four parts of cold, and in two parts of boiling water. It is insoluble in alcohol, and is precipitated in crystalline flakes by this menstruum from its concentrated aqueous solution. Alcohol thus forms a convenient means of separating this salt from the cyanide of potassium (KCy).

This salt is easily procured, and is not subject to adulteration. It is known by the yellow colour of its solution, by its giving, with a persalt of iron (provided the liquid have no alkaline reaction), a rich blue precipitate (Prussian blue); with a salt of copper a deep reddish brown coloured precipitate, and with a salt of lead a white precipitate. If the powdered crystals of ferrocyanide of potassium be warmed with diluted sulphuric acid, hydrocyanic acid is evolved, known by its odour, and by the tests above mentioned. As this salt is an article of Materia Medica, and its description was not given by the author in the section on Potassium and its compounds in the first volume, we have inserted this short notice of it here. It is now the chief source from which hydrocyanic acid is obtained.—Ed.]

The bisulphate and the new salt remain in the retort, while the hydrocyanic acid with some water distil over. In the London Pharmacopoeia an additional quantity of water is employed to assist the condensation of the acid.

The salt here called biferrocyanide of potassium is termed, by the late Mr. Everitt, the yellow salt. I have prepared it with the greatest care, but have always found it to be white. Gay-Lussac also says it is white. By exposure to the air it becomes blue.

β. *By the action of Hydrochloric Acid on Cyanide of Silver.*—This process, proposed by Mr. Everitt, yields an acid of uniform strength, and may be followed when the acid is required for immediate use. The proportions directed by Mr. Everitt are 40 grs. of cyanide, 7 fluidrachms and 20 minims of water, and 40 minims of dilute hydrochloric acid (sp. gr. 1.129). This gentleman says, that practitioners could obtain an ounce of the acid, prepared by this process, for one shilling, while the manufacturer could obtain 50 per cent. profit by it.

The theory of the process is as follows:—By the mutual reaction of one equivalent or 134 parts of cyanide silver and one equivalent or 37 parts of hydrochloric acid, there are obtained one equivalent or 144 parts of chloride of silver, and one equivalent or 27 parts of hydrocyanic acid.

\[
\begin{align*}
\text{MATERIALS.} & \quad \text{COMPOSITION.} & \quad \text{PRODUCTS.} \\
\text{1 eq. Cyanide Silver} & \quad \{\text{1 eq. Cyanogen} \times 26\} & \quad \{\text{1 eq. Hydrocyanic Acid} \times 27\} \\
\text{1 eq. Hydrochloric Acid} & \quad \{\text{1 eq. Hydrogen} \times 1\} & \quad \{\text{1 eq. Chloride Silver} \times 144\} \\
\hline
\text{171} & \quad \text{171} & \quad \text{171}
\end{align*}
\]

Or, \(\text{AgCy + HCl = HCy + AgCl} \).

γ. *By the action of Hydrochloric Acid on Bicyanide of Mercury.*—At Apothecaries' Hall hydrocyanic acid was formerly prepared from one part of bicyanide of mercury, one part hydrochloric acid (sp. gr. 1.15), and six parts of water. The mixture was distilled until six parts had passed over. The acid thus obtained had a sp. gr. 0.995, and its standard strength was such, that two fluidrachms of it dissolved 14 grains of the red oxide of mercury, thereby indicating a strength of about 2.9 per cent of real acid.

The most convenient method of procuring concentrated or anhydrous hydrocyanic acid, is by the action of strong liquid hydrochloric acid on bicyanide.

of mercury. The vapour should be passed over carbonate of lime, to deprive it of hydrochloric acid; and over chloride of calcium, to remove the water. The receiver should be immersed in a freezing mixture, consisting of ice and chloride of sodium. The theory of the process is as follows:—Two equivalents or 74 parts of hydrochloric acid react on one equivalent or 274 parts of the bichloride of mercury, and form one equivalent or 274 parts of the bichloride of mercury, which remain in the retort, and two equivalents or 54 parts of hydrocyanic acid, which distil over (HCl + HgCy = HCy + HgCl).

5. By the action of Tartaric Acid on Cyanide of Potassium.—This process was proposed by Dr. Clarke, and adopted by Mr. Laming. The formula of the latter is the following:—22 grains of the cyanide of potassium are to be dissolved in 6 fluidrachms of distilled water, and to this solution are to be added 50 grains of crystallised tartaric acid, dissolved in 3 fluidrachms of rectified spirit. One fluidrachm of the decanted liquor contains one grain of pure hydrocyanic acid.

The objections to this process (which, however, has several advantages) are the trouble and expense of procuring pure cyanide of potassium, and the liability of the salt to undergo spontaneous decomposition.

Properties. a. Of Anhydrous Hydrocyanic Acid.—[The acid may be obtained anhydrous by passing a current of dry sulphuretted hydrogen gas over finely powdered cyanide of mercury contained in a glass tube. The vapour of the acid should be condensed by conducting it into a Liebig's condenser charged with ice-cold water. The decomposition is represented by the following equation, HgCy + HS = HCy + HgS.—Ed.] Anhydrous hydrocyanic acid is a solid at 0° F. (some state at 5° F.), having then the appearance of crystallised nitrate of ammonia; it readily melts, forming a limpid colourless liquid, with an intense and peculiar odour; its taste is at first cool, then hot; at 45° its sp. gr. is 0.7058, and at 64° it is 0.6969. In this state it is exceedingly volatile: a drop placed on paper freezes by its own evaporation. It unites with water and alcohol in every proportion. At 79° or 80° F. it boils, forming hydrocyanic acid vapour, which is combustible; and when mixed with oxygen and ignited, it explodes. Two volumes of the vapour require two and a half volumes of oxygen gas for their complete combustion. The products are two volumes of carbonic acid gas, one volume of nitrogen, and one volume of aqueous vapour, HCy + O² = HO + N + 2CO².

Anhydrous hydrocyanic acid undergoes speedy decomposition.¹ Dr. Christison says he has kept it unchanged for a fortnight in ice-cold water. When diluted with water, or mixed with a diluted mineral acid, its tendency to decomposition is diminished.

b. Of Diluted Hydrocyanic Acid.—Diluted or medicinal hydrocyanic acid is a colourless, transparent liquid, having the taste and smell of the strong acid, but in a lesser degree. Heated in a tube it gives off a combustible vapour.

¹ [The change which ensues under the influence of light appears to be the formation of a brownish black substance (not examined) and sesquicarbonate of ammonia. A small quantity of a mineral acid, diluted, is well known to prevent the change; but a concentrated mineral acid rapidly converts hydrocyanic acid into ammonia and formic acid, if the elements of water be present: HCy + 3HO = NH³ + C²H, O².—Ed.]
Composition.—The ultimate constituents of pure hydrocyanic acid are Carbon, Nitrogen, and Hydrogen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
<td>44:4</td>
<td>44:45</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>51:9</td>
<td>51:85</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>3:7</td>
<td>3:70</td>
</tr>
<tr>
<td>Hydrocyanic Acid</td>
<td>1</td>
<td>27</td>
<td>100:0</td>
<td>100:00</td>
</tr>
</tbody>
</table>

But it is more usual to regard this acid as a compound of hydrogen and cyanogen, the latter substance being a bicarburet of nitrogen. On this view the composition will be as follows:—\(\text{C}_2\text{N}_2\text{H} \) or \(\text{CyH} \).

Strength of the Diluted Acid.—In the London Pharmacopoeia, hydrocyanic acid is directed to be prepared of such a strength that 100 grains of it will exactly precipitate 12.59 grains of nitrate of silver dissolved in water:—the precipitate, which is cyanide of silver, should weigh when quite dry 10 grains. Five parts of this precipitate correspond to one of real acid. Hence the diluted acid \(\text{Ph. L.} \) consists of—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanogen</td>
<td>1</td>
<td>26</td>
<td>96:3</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>1</td>
<td>3:7</td>
</tr>
<tr>
<td>Hydrocyanic Acid</td>
<td>1</td>
<td>27</td>
<td>100:0</td>
</tr>
</tbody>
</table>

The Acidum Hydrocyanicum \(\text{Ph. Ed.} \) consists of "Hydrocyanic Acid diluted with about thirty parts of water." Hence its per-centalge composition is as follows:—

| Real hydrocyanic acid | 2:0 |
| Water | 98:0 |

Diluted Hydrocyanic Acid (\(\text{Ph. L.} \)) 100:0

[This preparation has nearly twice the strength of the London acid. According to Mr. Squire, 100 minims, or 91 grains, should entirely precipitate 22 grains of nitrate of silver: it has therefore nearly a strength of 3.98 per cent. Dr. Christison assigns 3.3 per cent. as its ordinary strength.—Ed.]

The Edinburgh College gives the following directions for ascertaining the strength of the acid:—

"Fifty minims [of the acid] diluted with one fluidounce of distilled water, agitated with 390 minims of solution of Nitrate of Silver [\(\text{Ph. Ed.} \)], and allowed to settle, will again give a precipitate with 40 minims more of the test; but a further addition of the test, after agitation and rest, has no effect. The precipitate entirely disappears in boiling nitric acid."

[The Acidum Hydrocyanicum Dilutum \(\text{Ph. Dub.} \), as now made, contains,
according to Mr. Squire, rather more than 2 per cent. of real acid. The strength of the acid has not been fixed by this College.—Ed.]

This discrepancy in the strength of the acid ordered in the British pharmacopoeias is greatly to be regretted. Most of the acid met with in the shops of London chemists is stated by the label to be of "Scheele’s strength." But as Scheele’s process gave an acid of variable strength, this statement is by no means definite. A manufacturer of large quantities of the acid informs me he sells, under the name of Scheele’s acid, a diluted hydrocyanic acid, which contains 4 per cent. real acid.

Purity.—Diluted hydrocyanic acid should be perfectly colourless. Decomposed acid is frequently, but not invariably, coloured. It should be vaporizable by heat: this character shows the absence of fixed impurities. The presence of metallic matter is recognised by hydrosulphuric acid, which has no effect on the pure acid. If the acid strongly redden litmus, it must contain some other acid, most probably the sulphuric or hydrochloric. The presence of any foreign acid is easily determined by the hydrgyro-iodocyandie of potassium. This salt is formed by adding a concentrated solution of bicyanide of mercury to a solution of iodide of potassium; a precipitate of white or pearly crystalline plates of the salt is immediately produced. If a small portion of the crystals be placed in diluted hydrocyanic acid, no change is observed unless some foreign acid be present: in the latter event the red biniiodide of mercury immediately makes its appearance. For this test we are indebted to Dr. Geoghegan. Sulphuric acid may be detected by a solution of the salts of barium. "Solution of nitrate of baryta occasions no precipitate" in the pure acid (Ph. Ed.); but if sulphuric acid be present, it occasions a white precipitate (sulphate of baryta), insoluble in nitric acid. Hydrochloric acid is recognised by nitrate of silver, which forms therewith white chloride of silver insoluble in boiling nitric acid, whereas the white cyanide of silver is soluble in nitric acid at a boiling temperature. I would observe, that the presence of either of these acids is no further objectionable than that it creates a difficulty in the determination of the strength of the hydrocyanic acid: while on the other hand, it confines the advantage of rendering the hydrocyanic acid much less liable to decomposition. The acid prepared from ferrocyanide of potassium will keep for years (Dr. Christison has had some unchanged for two years and a half, though it was exposed to daylight), owing, it is supposed, to the presence of some sulphuric acid. Mr. Barry adds a little hydrochloric acid to all his medicinal hydrocyanic acid, in order to preserve it. As air and light hasten, though they are not essential to, the decomposition of the acid, they should be carefully excluded.

Characteristics.—The following are the best tests for hydrocyanic acid:—

1 Dublin Pharmacopia, 1850.
2 Scheele prepared this acid by boiling together Prussian blue, peroxide of mercury, and water. Bicyanide of mercury was obtained in solution. Iron filings and sulphuric acid were then added, and the products of the reaction were hydrocyanic acid, metallic mercury, and sulphate of iron. The liquor was then submitted to distillation.—The strength of the acid product varied with the degree of purity of the Prussian blue.
3 Dublin Journal, Nov. 1835.
1. **The odour.**—The peculiar odour of hydrocyanic acid is well known. It must not be confounded with the odour of the volatile oil of bitter almonds. Orfila says, that this is the most delicate characteristic of the acid, since it is very marked when the liquid tests give very slight indications only. But I have not found this to be invariably the case: it depends much on the nature of the mixture containing the acid.

2. **Formation of Prussian blue (Ferrosesquicyanide of iron).**—Add sufficient caustic potash to the suspected acid to saturate it; then a solution of some proto- and sesqui-salt of iron: the common sulphate of iron of the shops, or the tincture of the chloride, answers very well, since both these preparations usually contain the two (proto- and sesqui-) salts of iron. A precipitate is thus obtained, which is liable to considerable variation in its colour, depending on the quantity of potash or of the ferruginous salt employed; it may be yellowish brown, or greenish, or bluish. Then add dilute sulphuric or hydrochloric acid, when Prussian blue (ferrosesquicyanide of iron) will immediately make its appearance, if hydrocyanic acid were present.

The formation of Prussian blue is thus accounted for. When potash is added to hydrocyanic acid, water and cyanide of potassium are generated. By the reaction of this salt on a proto-salt of iron the proto-cyanide of iron is produced, while with a sesqui-salt of iron it forms sesquicyanide of iron. The two ferruginous cyanides, by their union, constitute the ferrosesqui-cyanide or Prussian blue. The acid added removes the surplus oxide of iron.

[This test will detect hydrocyanic acid when it is mixed with common salt or other chlorides which interfere with the reaction of nitrate of silver. It is on the whole a delicate test when properly employed; but a frequent cause of failure in its application is the addition of too much potash, or of the iron salt. The Prussian blue formed is decomposed by an excess of potash; and if the quantity of iron be too large, the liquid, when the surplus oxide of iron is dissolved by an acid, will acquire a yellow colour, and give a greenish tint to the small quantity of Prussian blue formed at the expense of the hydrocyanic acid. This experiment may be performed in a white saucer. Put a drop of solution of potash in the centre of the saucer, and invert it over another saucer of the same size containing the hydrocyanic acid. After two or three minutes (or five minutes if the acid be much diluted), remove the upper saucer, and drop on the potash one drop of a solution of green sulphate of iron. Agitate and expose to the air for a few seconds. Add one or two drops of diluted sulphuric acid to dissolve the surplus oxide of iron, and if prussic acid was present, a slight trace of Prussian blue will remain in the liquid.—Ed.]

3. **Nitrate of Silver.**—This is a delicate test of the presence of hydrocyanic acid. It causes a white precipitate of cyanide of silver, which is soluble in boiling concentrated nitric acid. By this latter character cyanide is distinguished from chloride of silver. If carefully dried cyanide of silver be heated in a small glass tube, it evolves cyanogen gas, known by its combustibility and the colour (violet or bluish red) of its flame.

[A watch-glass moistened with nitrate of silver, and inverted over a vessel containing hydrocyanic acid, will enable us to detect the presence of a very minute quantity of the acid. The spot of nitrate of silver becomes speedily
opaque and white, from the production of cyanide by the action of the vapour of the acid.

4. The Sulphur Test.—A few years since Liebig made the discovery that a mixture of hydrocyanic acid and hydrosulphate of ammonia, when warmed, underwent decomposition, and sulphocyanate of ammonia resulted. The application of a per-salt of iron, by producing a deep blood-red colour in a liquid containing even a minute trace of sulphocyanate, thus enables us to detect the presence of prussic acid indirectly.

When hydrocyanic acid is procured in a free state as a liquid, the Prussian blue and silver tests are sufficient to determine its presence unequivocally; but when the acid is in small quantity, and mixed with solids or fluids partially decomposed, then a modification of this test will enable us to detect a quantity of the poison which, from its minuteness, and from the absence of the usual odour, might otherwise escape notice.

Place the solid or liquid, suspected to contain the poison, in a glass vessel, to the top of which a large watch-glass can be pretty accurately adjusted. The poisoned liquid or solid should fill the glass vessel to within half an inch of the top. If the quantity be small, then another watch-glass, of equal size to that taken, may be employed.

Place two drops of a solution of hydrosulphate of ammonia, containing an excess of sulphur, in the centre of the upper glass, and inverted accurately over the vessel containing the poisoned liquid. In three or four minutes the upper glass may be removed, and the moistened spot gently dried over a spirit lamp or on a sand-bath. A white film is left when the quantity of acid is small: this may be a film of sulphur resulting from the evaporation of the hydrosulphate of ammonia, or a film of sulphocyanate of ammonia formed by a reaction of the vapour of hydrocyanic acid on the hydrosulphate. In the latter case the film has frequently a crystalline character. The film may be moistened with a drop of water, and a drop of per-sulphate or per-chloride of iron allowed to fall on it. If prussic acid was present in the suspected solid or liquid, a blood-red coloured liquid appears (sulphocyanate of iron), and this red colour is discharged by the addition of one or two drops of a solution of corrosive sublimate.

If there were no prussic acid present, the film will be sulphur, and the solution of per-salt of iron will produce no effect. If any undecomposed hydrosulphate remain on the glass (a fact generally known by the liquid having a yellow colour), then the per-salt of iron will produce a black precipitate (sulphuret of iron). In this case the evaporation has not been carried far enough.

Except in liquids or solids which have undergone decomposition, and from which sulphuretted hydrogen is evolved, the nitrate of silver, applied as already described (p. 1791), to receive and absorb the vapour, may be usefully employed as a preliminary or trial test.

[The sulphur test, as applied to the vapour of hydrocyanic acid, is the most delicate test for this poison which has been hitherto discovered.—Ed.]

Detection of this Acid in Cases of Poisoning.—As hydrocyanic acid is a substance which readily undergoes decomposition, it is not likely to be met with in bodies which have been interred for many days. It has, however, been recognised in one case, seven days after death, notwithstanding that the
trunk had not been buried, but had been lying in a drain; and in other cases for still longer periods. In recent cases the acid is readily distinguished by its odour, with which, in some instances, the whole body is impregnated. The liquid tests for this acid, already mentioned, will sometimes detect the poison in the filtered contents of the stomach; but the foreign matters present may, occasionally, prevent their characteristic action. The best mode of proceeding in that case, is, to introduce them into a tubulated retort, to add some sulphuric acid to neutralise any ammonia which might be generated by the process of putrefaction, and to distil to one-half by means of a vapour or water bath; then apply the tests already mentioned to the distilled liquid. The addition of sulphuric acid is not necessary unless the liquid be strongly alkaline.

It has been suggested, that hydrocyanic acid may be formed during the process of distillation by the decomposition of animal matters; but, as Dr. Christison has justly observed, the objection appears only to rest on conjecture, or presumption at farthest. [Further, the objection is untenable when the poison can be detected by its vapour prior to distillation.—En.] It is to be recollected, that unsound cheese has, under certain circumstances, been found to contain this acid, as already mentioned. It is not improbable that it may be found in many animal substances during their spontaneous decomposition. It is said to have been detected in ergot of rye.

Physiological Effects. a. On Vegetables. — Hydrocyanic acid is a poison to plants. The stamina of Berberis vulgaris and the leaves of Mimosa pudica lose their irritability when the stems bearing them are immersed in the diluted acid. Seeds lose the power of germination by immersion in this acid. In those parts of lactescent plants which are poisoned by it, the milky juice does not flow from the cells or vessels in which it is contained. By chemical means it has been shown that the acid becomes absorbed. Ammonia has, in some cases, appeared to favour the recovery of plants which had been exposed to the vapour of the acid.

3. On Animals generally.— Hydrocyanic acid is an energetic poison to animals. Experiments have been made with it on the following:—Mammalia, Aves, Reptilia, Amphibia, Pisces, Gasteropoda, Annelida, Crustacea, Insecta, and Infusoria. The general effects are very similar on all classes, and consist essentially of loss of sensation and voluntary motion, with convulsive movements. Mr. Gray, however, states that some of the larvae of the common Musca having been put into hydrocyanic acid, remained uninjured after two or three days' exposure. The cold-blooded animals are more slowly affected by hydrocyanic acid than the hot-blooded ones. Dr. Christison states that 25 grs. of the strong acid, applied to the mouth, killed a rabbit within ten seconds. I once caused the almost instantaneous death of a rabbit by applying its nose to a receiver filled with the vapour of the pure

1 Chevallier, Ann. d'Hygiène Publiqu. ix. 337.
2 Macaire, Biblioth. Universelle, xxxi. 244.
3 De Candolle, Physiol. Végét. p. 1337.
4 Macaire, op. cit.
5 Coullon, quoted by Wibmer, Wirkung d. Arznei. 3 Bd. p. 110.
6 Atheneum for 1837, p. 671.
acid: the animal died without the least struggle. If a drop of the pure acid be placed on the throat of a dog, or applied to the eye, death takes place in a few seconds. Inhaling the vapour decidedly produces death more quickly than any other mode of using the acid. If the pure acid be applied to the eye of a dog, it causes opacity and whiteness of the cornea, and a copious flow of tears. In a very short time it gives rise to constitutional symptoms.

7. On Man. aa. In small or medicinal doses.—Small doses of hydrocyanic acid sometimes relieve certain morbid conditions (as of the stomach), without producing any remarkable alteration in the condition of the general system. If the dose be cautiously increased, and its operation carefully watched, the following effects are usually observed:—a bitter but peculiar taste; increased secretion of saliva; irritation in the throat; frequently nausea; disordered and laborious respiration (sometimes quick, at others slow and deep); pain in the head, giddiness, obscured vision, and sleepiness. The vascular system is in some cases not obviously, but in others much, affected, though not uniformly; its action being sometimes quickened, at others reduced in frequency. In some instances faintness is experienced. Drs. Macleod and Granville have noticed salivation and ulceration of the mouth during its medicinal use.

89. In poisonous doses: convulsions and insensibility (epilepsy?): if death occur, it takes place slowly.—Immediately after swallowing the acid, a remarkably bitter taste, sometimes described as hot, is experienced; this is soon followed by a sensation of faintness and giddiness, with salivation, and is succeeded by tetanic convulsions and insensibility; the respiration is difficult and spasmodic; the odour of hydrocyanic acid may be recognised in the breath; the pupils are usually dilated, though sometimes contracted; the pulse is small or imperceptible. When recovery takes place it is usually very rapid, and the whole period of suffering seldom exceeds half an hour. However, exceptions to this exist, in which the symptoms have been prolonged for several hours.

The following case, related by Dr. Geoghegan, is an interesting illustration of these effects:—A gentleman, aged 21, having been for some time subject to an uneasiness in the stomach, not actually amounting to gastrodynia, after having tried many remedies in vain, was induced to have recourse to hydrocyanic acid. He commenced with one minum of the Dublin Pharmacopoeia gr. 0:998; this dose he repeated twelve times the first day, without any perceptible effect. On the following day he took half a drachm, with the same result. The third day his dose was a drachm, which he repeated the fourth day. On the fifth day he took a drachm and a half; still no effect of any kind. On the sixth day he increased his dose to two drachms. In about two minutes after taking this quantity, he experienced a sensation of extreme bitterness in the mouth, and having walked a few paces, was affected with great confusion, headache, and loud ringing in his ears. He now with difficulty retraced his steps, and leaning forward on a table, became insensible and fell backwards. In this state he remained altogether between three and four minutes, during which time he was violently convulsed. Two drachms of the spiritus ammonis aromaticus were diluted with a little water, and applied as quickly as possible to the mouth, but as the teeth were clenched it could not be swallowed. The solid sesqui-carbonate of ammonia was then applied assiduously to the nostrils; its beneficial effects were soon apparent, and he was shortly able to swallow a little fluid. Sensibility now speedily returned, and vomiting supervened, from which he experienced great relief;

and at the expiration of half an hour he was quite well, with the exception of pain and a feeling of distension in the head, which continued for the remainder of the day. After he had become insensible, and while leaning on the table, his thighs became rigid, and were drawn up on the abdomen; and as he was about falling, he was caught and placed on the ground. The upper extremities were then observed to be also rigid, and on drawing them from the side they forcibly reverted to their former position; the eyes were shut, the teeth clenched, and the muscles of the face violently convulsed. It is deserving of notice that the old complaint was completely removed by this extraordinary dose.

77. In poisonous doses: death rapid with or without convulsions.—In these cases death is so rapid that, in the human subject, the symptoms have scarcely been observed. They are probably similar to those noticed in animals,—viz. imperceptible pulse, breathing not obvious; or there may be two or three deep, hurried inspirations, insensibility, and death. Convulsions may or may not be present.

The presence or absence of convulsions, as connected with the time within which death occurs in these cases, is sometimes a matter of great moment. Some years ago the life of a prisoner almost turned on this point. The following is an outline of the case:—An apothecary's maid servant, at Leicester, was found one morning dead in bed. The body lay in a composed posture—the arms crossed over the trunk, and the bed-clothes pulled smoothly up to the chin. At her right side lay a phial, from which about five draams of the medicinal hydrocyanic acid had been taken, and which was corked and wrapped in paper. It was suspected that she took the acid to occasion miscarriage, and that the apprentice was accessory to its administration; in consequence of which he was put on his trial. The important question for the consideration of the medical witnesses was,—Could the deceased, after having drunk the poison, have had time to cork the phial, wrap it up, and adjust the bed-clothes, before insensibility came on? It was supposed that if the death were of that slow description to allow of these acts of volition, convulsions would have occurred, and the bed-clothes would have been found disordered. On the other hand, those cases in which no convulsions occur usually terminate too quickly to allow of the above acts. The medical witnesses in the above case were not agreed in opinion: the majority thought it was impossible that the deceased could have had the power of corking the bottle. The jury, however, very properly found the prisoner not guilty.

There are two points of inquiry connected with the action of this acid, which are interesting, more particularly in a medico-legal point of view—namely, the time at which the poison begins to operate, and the period in which it proves fatal. No absolute answer can be given to either of these questions, since the strength and quantity of the acid exhibited, and peculiarities (not known or understood) affect the result. Very strong acid, in large doses, begins to operate very speedily, especially if its vapour be inhaled. The diluted acid, on the other hand, sometimes does not produce any obvious effect for several minutes, and death may not occur for nearly half an hour. Of seven epileptic patients killed in one of the Parisian hospitals by hydrocyanic acid, some did not die for forty-five minutes. But I have not found the same quantity of the same acid kill different animals of the same species in the same period of time.

Morbid Appearances.—The post-mortem appearances in cases of poisoning by this acid are the following:—Glistening and staring expression

1 More fully developed in Dr. Christison's Treatise on Poisons, and in the Medical Gazette, vol. viii. pp. 577 and 797.
2 Annales d’Hygiène Publ. et de Méd. Lég. t. ii.
of the eyes, but which, however, is not a constant phenomenon, since it was not observed in the seven Parisian epileptics: nor is it peculiar to this poison, for the same is observed after death by carbonic acid, and in other cases (Christison): the odour of the acid is oftentimes very obvious in the blood, brain, chest, or stomach: the venous system is usually gorged with blood, while the arteries are empty: the blood is, in many cases, fluid, dark, or bluish black, and viscid or oily: the vessels of the brain and spinal marrow are frequently gorged with blood; and the cerebral ventricles sometimes contain a serous or sanguineous liquor: the lungs are, in some instances, natural—in others, turgid with blood: the internal lining of the stomach is sometimes red.

It has been stated by Magendie, that, after death by the strong acid, the muscles are not sensible to the galvanic influence. But this condition is very rarely present; indeed I have never observed it in animals killed by this acid; though Dr. Christison has occasionally found it. I have examined a considerable number of animals (principally rabbits) destroyed by hydrocyanic acid, and have always found the muscles to be powerfully affected by the galvanic influence: nor have I once met with a single case in which the heart had ceased to beat when the chest had been laid open immediately after death.

Modus Operandi.—There are several interesting subjects of inquiry connected with the operation of hydrocyanic acid, which, as they are principally theoretical, I shall briefly notice under this head.

a. Local action.—Dr. Christison says that Robiquet’s fingers became affected with numbness, which lasted several days, in consequence of their exposure for some time to the vapour of this acid.1 This effect would appear to depend on the local action of the poison on the nerves,—a mode of operation which we are constrained likewise to admit in the case of some other narcotics.2 The alleviation of gastrodynia by hydrocyanic acid depends probably on this benumbing effect. Some of the local effects produced by hydrocyanic acid are those of an irritant: such are, the acrid impression made by the vapour on the nose and mouth, the ptyalism, the vomiting and purging, and the redness of the mucous membrane of the stomach.

b. Absorption.—That hydrocyanic acid becomes absorbed is proved by its having been detected by Krimer (quoted by Dr. Christison, p. 15), in the blood of animals poisoned with it, and by the odour of it exhaled from various parts of the body. The exhalation by the breath of the odour of the acid may sometimes enable us to recognise the presence of the poison in the system.3

c. Are the remote effects of this acid caused by its absorption?—In many cases the operation of hydrocyanic acid on the system is so rapid, and death so speedily follows the application of the poison, that doubt has been entertained of its action being dependent on its absorption. The principal arguments which have been adduced in favour of the agency of absorption are the following:—First, that the acid produces no remote effects when

1 Treatise on Poisons, 3d edit. p. 698.
2 Müller's Physiology, by Baly, vol. i. p. 630.
applied either to the nerves or brain: secondly, that applied to the tongue or stomach it operates as an energetic poison, although the nerves of these parts were previously divided: thirdly, that if the acid be applied to a part where circulation is arrested, the operation of the poison is prevented: fourthly, the activity of the acid is in proportion to the absorbing powers of the part with which it is placed in contact: fifthly, a sufficient time always elapses between its application to the body and the first symptom of its action, to admit of its operation by absorption.

8. Organs affected.—The parts specifically affected by this acid are the brain and true spinal system. The pain in the head, the insensibility, and the coma, are evidence of the cerebral affection; while the tetanic convulsions depend on the disorder of the true spinal system. Marx mentions the following experiment performed by Wedemeyer and which shows the independent action of the acid on the spinal narrow:—The spinal cord of a dog was divided between the last dorsal and first lumbar vertebra, so that the hind legs were completely paralysed and insensible to mechanical irritants: hydrocyanic acid was then introduced into one of the hind legs;—in one minute symptoms of poisoning commenced; the hind as well as the fore legs were violently convulsed, and in twelve minutes the animal was dead. The affection of the respiratory and circulatory system produced by hydrocyanic acid is probably only secondary: that is, the result of the influence of this agent over those parts of the nervous system from which the respiratory organs and heart derive their nervous power. The insensibility caused by hydrocyanic acid occurs too rapidly, in many cases, to be the result of asphyxia caused by paralysis of the muscles of respiration.

9. Condition of the brain and spinal marrow induced by this acid.—The precise pathological condition of the brain and spinal cord of an animal under the influence of hydrocyanic acid, cannot be positively determined, and it is, therefore, a matter of conjecture. Whatever it may be, it is probably identical with that which occurs during an epileptic paroxysm, and with that produced by loss of blood: for the essential symptoms (insensibility and convulsion occurring suddenly) are the same in all three states,—and ammonia has been found to relieve them. Dr. Marshall Hall has shown that the convulsions from hemorrhage are spinal. Dr. Holst, Professor of Materia Medica in the University of Christiania, Norway, told me of a case of epilepsy which had been under his care, and in which it was observed that the pulse in one arm was always imperceptible during the paroxysm. On a post-mortem examination it was discovered that an anomalous distribution of the arteries existed, so that this arm was supplied with blood by the vertebral arteries, which derived it through the basilar artery, from the carotids. The cessation of the pulse during the paroxysm proved that the circulation through these vessels was temporarily interrupted. Does any similar interruption occur in poisoning by hydrocyanic acid?

7. Cause of death.—In most cases the immediate cause of death is

1 Die Lehre von d. Giften, 1er Bd. 2te Abt. S. 1 u. 4.
2 Versuche üher das Nervensystem, S. 241, Vers. 7.
3 Lect. on the Nerv. Syst. p. 139.
obstruction of respiration. In some instances it is stoppage of the heart's action. There are cases, however, in which the death is too immediate to be produced by obstructed respiration, while, on opening the chest, the heart is found still beating: this I have observed in experiments on rabbits with strong hydrocyanic acid.

\(\gamma \). Cumulative effects.—Hydrocyanic acid is not usually regarded as a cumulative poison; but a case mentioned by Dr. Baumgärtner (quoted by Dr. Christison), as well as some other circumstances, seem to favour the reverse opinion.

Uses.—We are indebted to the Italians (Borda, Brugnatelli, and Rasori) for the introduction of hydrocyanic acid into the Materia Medica. It was first employed by them at the commencement of the present century; namely, from 1801 to 1806.

\(\alpha \). Internal.—By the founders of the theory of contrastimulus this acid was regarded as a powerful asthenic or contrastimulant, and, therefore, as peculiarly useful in all diseases dependent on, or connected with, excitement. Hence it was employed in inflammatory affections. But subsequent experience has fully shown that in these cases it possesses little or no remedial power. In this country, the reputation of hydrocyanic acid as a medicinal agent is chiefly founded on its effects in alleviating certain painful (neuralgic) and spasmodic stomach complaints. It appears from Dr. Granville's statements, that laurel water (which contains this acid) was used in these affections by Hufeland, Haller, Thuessen, Swediaur, and Sprengel, between the years 1780 and 1796. But the first person who actually recommends hydrocyanic acid for them is Sprengel, in 1814. In 1819, Dr. A. T. Thomson detailed a case which led him to infer that this acid would be an important agent in the treatment of dyspeptic affections. But the profession are principally indebted to Dr. Elliotson for a full investigation of its powers in these complaints.

Every practitioner is familiar with a stomach complaint in which pain of a spasmodic character is the leading symptom, but which is not essentially accompanied by pyrexia, as in gastritis—by tendency to faint, as in cardialgia—by indigestion, as in dyspepsia, nor by loss of appetite; though one or more of these conditions may attend it. By some nosologists (as Sauvages and Sagar) it has been regarded as a distinct disease, and has been termed gastrodynia. It is not unfrequently accompanied by vomiting and precordial tenderness, which, however, cannot be regarded as indicative of inflammation, for various reasons; one of which is the alleviation of it often obtained by the use of stimulants and antispasmodics. What may be the precise pathological condition of this malady I know not. Dr. Barlow thinks the primary disease to be irritation or excitement of the mucous membrane of the stomach, whereby a redundant, dense, membranous, and

1. See Dr. Christison's Treatise.
2. Granville, Treatise on Hydrocyanic Acid, 2d edit. 1820.
4. Pharmacologia.
6. Cyclopaedia of Practical Medicine, art. Gastrodynia.
opaque mucus is secreted, which accumulates and oppresses the stomach. The pain he supposes to arise from a contractile effort of the stomach to detach and expel the offending matter: but the immediate and permanent relief sometimes obtained by the use of hydrocyanic acid is, I conceive, almost fatal to this hypothesis. Some time since I prescribed the acid for a lady who had suffered for months with gastrodynia, and who was persuaded, from her sensations, that she had some organic disease. The remedy acted in the most surprising manner: in a few hours, to the astonishment of herself and friends, she was apparently quite well, and has since had no return of her complaint. It can hardly be imagined that irritation of stomach can be rapidly removed by a substance which is itself an irritant. For my own part, I conceive the affection to be, essentially, a disordered condition of the nerves supplying the stomach, or of the nervous centres from whence those nerves are derived: in other words, it is a gastric neuralgia. It is frequently, but not invariably, accompanied by the irritation of stomach alluded to by Dr. Barlow. But be the proximate cause of the disease what it may, the beneficial effects of the hydrocyanic acid, in some instances of it, are most astonishing; while in others it totally fails. In all the cases in which I have tried it, I have obtained either perfect success or complete failure: I have met with no cases of partial relief. It not only allays pain, but relieves vomiting; and in the latter cases, frequently when all other remedies fail. Dr. Elliotson mentions the following as the stomach affections relieved by it:—

1st, those in which pain at the stomach was the leading symptom: 2ndly, those in which the gastrodynia was accompanied by a discharge of fluid, constituting what is called pyrosis, or the water-brash: 3dly, when the excessive irritability of the stomach produces vomiting; and 4thly, those disorders of the stomach which, in some of their symptoms, resemble affections of the heart. The late Dr. Prout found it useful in gastrodynia connected with colica pictorum.

I have also found it useful in a painful affection of the bowels analogous to that of the stomach, and which, therefore, might with propriety be termed enterodynia. The most remarkable case of this kind which I have met with was that of a gentleman, a relative of one of my pupils. He had suffered, for several months, excruciating pain in the bowels, commencing daily about two o'clock, and only ceasing at night. It was apparently a consequence of an ague. He had been under the care of several country practitioners, and had tried a number of remedies (including opium and disulphate of quina) without the least benefit. I advised the employment of the hydrocyanic acid, and accordingly five minims were administered at the commencement of a paroxysm. The remedy acted like a charm: all the unpleasant symptoms immediately disappeared. Several doses of the acid were given before the period of the succeeding paroxysm, but the disease never returned; and after employing the acid for a few days longer, he went back to the country completely cured.

I have seen hydrocyanic acid used with great success to allay vomiting and purging in severe forms of the ordinary English cholera, when opium has completely failed. In Asiatic or malignant cholera it has occasionally appeared to be serviceable. I have found it successful in checking the diarrhoea of phthisical subjects, when logwood, chalk, and opium had failed.
As a remedy for affections of the pulmonary organs, hydrocyanic acid was at one time in great repute. It was said to be capable of curing slight inflammation of the lungs, without the necessity of bloodletting; of suspending or curing incipient phthisis, while in confirmed cases it smoothed the approach of death; of curing hooping-cough, and of removing all the symptoms of spasmodic asthma. Experience has shown the fallacy of most of these statements. I have employed hydrocyanic acid in a considerable number of cases of phthisis, and have occasionally fancied that it relieved the cough and night-sweats; but these effects were only temporary. Cases of genuine spasmodic asthma are rare; but in two instances in which I have seen the acid employed no relief was obtained. In allaying cough (especially the kind called spasmodic) I have, on several occasions, found it useful; but it has so frequently disappointed my expectations, that I now rarely employ it in any pulmonary diseases. I have never observed any ill effects from its use in these cases, though others assert they have. Dr. Roe ascribes to this acid the power of curing simple hooping-cough; that is, convulsive cough unaccompanied by inflammatory symptoms. He gives it in conjunction with ipecacuanha and tartarized antimony. In two or three days after the use of these remedies, the violence of the paroxysms, he says, is perceptibly diminished, and their duration shortened. To a girl of ten years of age he gave a minim and a half of the acid every quarter of an hour, for twelve hours. I have not found this practice so successful as Dr. Roe’s reports would lead us to expect.

This acid has been employed in affections of the nervous system. Cases of hysteria, epilepsy, chorea, and tetanus, have been published, in which this remedy has been found beneficial. I have seen it employed in the three first of these affections, but without any evident relief. It has been repeatedly used in hydrophobia, at the London Hospital, but without success. A most interesting case of its employment in this malady has been published in the *Lancet* (for May 10th, 1839). Under its use the hydrophobic symptoms subsided, and typhus fever supervened, of which the patient, after some days, died. Dr. Hall proposes that in addition to the use of this acid, tracheotomy, as suggested by Mr. Mayo, should be tried. Hydrocyanic acid has been administered as an anodyne in several painful affections; namely, cancer, tic-douloureux, rheumatism, &c.; but, with a few exceptions, it has not been found serviceable. As an anthelmintic it has been extolled by Brera; but the following fact, mentioned by Dr. Elliotson, will, I imagine, show its true value:—“I have frequently employed it perseveringly without expelling one worm, when a dose of calomel has instantly brought away hundreds.”

β. External.—The local employment of the acid has not been attended with very great success. In chronic skin diseases, especially impetigo, prurigo, and psoriasis, the acid has been recommended by Dr. A. T. Thomson to allay pain and irritation. Schneider, of Dusseldorf, has employed one drachm

1 See Dr. Granville’s *Treatise*, before referred to; and also Magendie’s *Recherches sur l’Emploi de l’Acide Prussique*, 1819.
3 *Leer. on the Nerv. Syst.* p. 155.
and a half of hydrocyanic acid, six ounces of spirit, and as much rose water, in scaly diseases attended with severe itching, especially in eruptions upon the genital organs. On several occasions I have tried hydrocyanic washes in prurigo, but without obtaining any relief. Dr. Elliotson says he has found it efficacious in sores behind the ears, and in seabs of the face; and adds, to an irritable face it is very soothing, if employed before and after shaving. In cancer of the uterws, lotions containing this acid have been employed to allay the pain, by Frisch, of Nyborg. Osiander has also employed, in the same disease, cherry-laurel water, the active principle of which is this acid. In gonorrhoea, injections containing hydrocyanic acid have been employed with benefit. Schlegel has tried also the cherry-laurel water with the same result. Lastly, the diluted acid has been proposed as an effectual mode of destroying vermin.

Administration.—The best mode of exhibiting this acid internally is in the form of mixture. I generally give from three to five minims of the diluted acid, *Ph. L.*, three or four times a day, in about an ounce of some mild vehicle (simple water answers very well). Gum or syrup, and some flavouring ingredients (as orange-flower water, which is used on the continent), may be added. Some persons give it in almond emulsion. In some cases of irritable stomach this is objectionable.

As a wash, two fluidrachms of the diluted acid of the shops may be employed, mixed with half a pint of distilled (or rose) water, as a lotion, in skin diseases. Frequently about half an ounce of rectified spirit is added; and Dr. A. T. Thomson recommends, in addition to this, sixteen grains of acetate of lead. The external use of this acid, in all cases (more especially if there be sores) requires great caution. Its effects on the nervous system and on the pulse must be carefully watched. In some cases it causes giddiness and faintness; and Mr. Plumbe says, in two instances it produced intermission of the pulse.

[Dose.—This necessarily varies with the kind of acid employed. The dose of the acid of the London College may be taken at from two to seven minims; of the Edinburgh College, from one to four minims; and of the Dublin College, from one to five minims.—Ed.]

Antidotes.—The most important agents in the treatment of poisoning by hydrocyanic acid, as well as by the substances which contain it (viz. the cherry-laurel, bitter almonds, the volatile oil of these substances, &c.), are chlorine, ammonia, cold affusion, and artificial respiration.

a. Chlorine is the most powerful of these. It was first proposed by Riauz in 1832. It has been subsequently strongly recommended by Buchner, Simeon, and Orfila. It should be applied both internally and externally, if possible. If chlorine water be at hand, this should be given in doses of one or two tea-spoonfuls properly diluted with water. In the absence of this, weak solutions of the chloride [hypochlorite] of lime, or the chloride [hypochlorite] of soda, may be administered. Nitro-hydrochloric acid, largely diluted, might be given where none of the above agents could be procured. The patient should be allowed to inhale, very cautiously, air impregnated with chlorine gas (developed by the action of dilute hydrochloric acid on chloride of lime). Enemata containing chlorine water, or a solution of chloride of lime, should also be employed.
b. Ammonia.—The spirit of sal ammoniac was proposed by Mead\(^1\) as an antidote for laurel water. In 1822, ammonia was recommended by Mr. J. Murray as an antidote for hydrocyanic acid; and its value has been admitted by Buchner, Orfila, Dupuy, and Herbst: but it is certainly inferior to chlorine, and, therefore, should be used only in the absence of this. If the patient should be able to swallow, the liquor ammoniac, diluted with eight or ten parts of water, should be exhibited, and the vapour of ammonia or its carbonate inhaled: the latter practice is most important, and should not be omitted. Orfila says that ammonia is of no use when introduced into the stomach, but that the inhalation of the vapour will sometimes preserve life. Great caution is requisite in the employment of it. In the absence of ammonia the inhalation of the vapour of burnt feathers might be employed. Ammonia cannot be useful, as an antidote, by its chemical properties merely, since hydrocyanate of ammonia is a powerful poison.

γ. Cold Affusion has been strongly recommended by Herbst,\(^2\) and is admitted by Orfila to be a valuable remedy. Herbst says that its efficacy is almost certain when it is employed before the convulsive stage of poisoning is over, and that it is often successful even in the stage of insensibility and paralysis. [This statement has been confirmed by the results of experiments on animals.—Ed.]

δ. Artificial Respiration ought never to be omitted. Of its efficacy I am convinced from repeated experiments on animals. I once recovered a rabbit by this means only, after the convulsions had ceased, and the animal was apparently dead. It is an operation easily effected, and will be found a powerful assistant to chlorine or ammonia, by enabling it to get into the lungs when natural respiration is suspended. To produce respiration, make powerful pressure with both hands on the anterior surface of the chest, the diaphragm being at the same time pushed upward by an assistant. Inspiration is effected by the removal of the pressure, and the consequent resiliency of the ribs.

Other remedies (as turpentine, and the mixed hydrated oxides of iron) have been recommended, but they will not bear comparison with those now mentioned. Blood-letting has been advised, in vigorous subjects, when respiration has been established, and the skin is livid.\(^3\)

Tribe II. DRIADÆ.

263. GEUM URBANUM, Linn.—COMMON AVENS. HERB BENNET.

Sex. Syst. Icosandria, Polygynia.

History.—Pliny\(^4\) speaks of the medicinal properties of Geum.

Botany. Gen. Char.—Tube of the **calyx** concave; limb 5-cleft, exter-

nally 5-bracteolate. Petals 5. Stamens numerous. Carpels juiceless, tailed, disposed in a head. Style, after flowering, articulate or barbed. Seed ascending.—Herbs. Leaves variously pinnatisect (De Cand.)

Sp. Char.—Stem erect, branched, hairy. Leaves radical quinate-pinnatisect; caulinar ones ternate-palmatisect, with ovate broadly toothed crenate-lobes; upper ones 1-lobed, ovate. Stipules somewhat orbicular, large. Petals obovate, as long as the calyx. Capillary head spherical. Ovaries hairy, numerous. Styles smooth, with somewhat hairy appendices (De Cand.)

Root of many brown fibres. Stem 1 or 2 feet high. Leaves grass-green, veiny, hairy. Flowers terminal, solitary. Petals bright-yellow.

Hab.—Indigenous. Growing in woods, hedges, and dry shady places.

Description.—The root (radix caryophyllata, seu gei urbani, vel sanamundae) consists of a rootstalk of from one to three inches long, from which issue a considerable number of cylindrical fibres. Externally it is brownish; internally, reddish. When recent, its odour is aromatic and clove-like; but this is greatly diminished by drying. Its taste is aromatic, astrin- gent, and bitterish. It should be gathered in the spring.

Composition.—The root has been the subject of repeated chemical experiment. Thus it was examined by Muehlenstedt,1 Anjou,2 Bouillon-Lagrange,3 Melandri and Moretti,4 and Trommsdorff.5 The latter chemist found the constituents of the dried root to be as follows:—volatile oil 0.039, resin 4, tannin soluble in alcohol and water 10, tannin insoluble in alcohol and ether, with traces of chlorides, 31, gum 15.8, bassorin 9.2, ligneous fibre 30 [excess 0.039].

Physiological Effects.—Aromatic, tonic, and astrigent.

Uses.—Scarcely employed as a medicine in this country. [The root was formerly introduced into the Materia Medica of the Dublin College. In the last edition of the Pharmacopoeia it is not mentioned.—Ed.] It has been used in chronic diarrhoea and dysentery, leucorrhœa, chronic hemorrhages, and intermittents. It is put into ale, to communicate an agreeable clove-like flavour, and to prevent the liquor turning sour. Infused in wine it has been used as a stomachic.

Administration.—Dose 3ss. to 5j., in powder or decoction, three or four times a day.

264. POTENTILLA TORMENTILLO, Sibthorpy, L.—COMMON TORMENTIL, OR SEPTFOIL.

Tormeutilla officinalis, Smith, D.—Tormeutilla erecta, Linn.

Sex Syst. Icosandria, Polygynia.

(Rhizoma, L.)

History.—Sprengel6 considers this plant to be the πεντάφυλλον of

1 Murray, App. Med. iii. 123.
2 Ibid.
3 Auv. de Chim. iv. 287.
4 Bull. de Pharm. ii. 368.
5 Pfaff, Mat. Med. vi. 255.
6 Hist. Rei Herb. i. 48, 93, and 176.
Hippocrates, Theophrastus, and Dioscorides. But Sibthorp\(^1\) considers the latter plant to have been the *Potentilla reptans*.

Botany. Gen. Char.—Tube of the calyx concave; limb 4- or 5-cleft, externally 4- or 5-bracteolate. Petals 4 or 5. Stamens numerous. Carpels numerous. Style lateral. Receptacle procumbent, persistent, juiceless, capitate. Seed appended.—Herbs or under-shrubs. Leaves compound. Stipules adnate to the petioles. Flowers white, yellow, rarely red (De Cand.)

Sp. Char.—Multiform, hairy. Root tuberous. Stem ascending, dichotomous. Leaves ternate-palmatisect, the caulinar ones sessile; lobes obovate-wedge-shaped, more or less deeply toothed. Stipules 0- or 3-toothed. Flowers axillary, solitary, with long peduncles. Bracts palmate-incised. Segments of the calyx lanceolate-linear, as long as the corolla. Carpels rugose. Receptacles villose (De Cand.)

Stems weak, slender, often procumbent, branched. Leaves dark-green, somewhat hairy, especially the veins. Flowers bright-yellow.

Hab.—Indigenous; growing on barren pastures, heaths, and bushy places.

Description.—The root (*radix tormentilla*) is large, compared with the size of the plant. Its external form is very irregular; sometimes it is more or less cylindrical, at others tuberculated and knobby. Its colour externally is dark red-brown, internally flesh-red or brownish. Its taste is astringent. Its watery infusion is coloured blackish-green (*tannate of iron*) by the sesquichloride of iron. A solution of gelatine causes a precipitate (*tannate of gelatine*) in it. By iodine, starch is detected in the root.

Composition.—Neumann\(^2\) and Pfaff\(^3\) submitted tormentilla root to a chemical investigation. Meissner\(^4\) made an analysis of it, and found the constituents to be as follows:—volatile oil a trace, *tannin* 17.4, colouring matter 18.05, *ditto* altered 2.57, resin 0.42, *cerin* 0.51, *myricin* 0.20, *gummy extractive* 4.32, *gum* (pectin?) 28.20, extractive 7.70, woody fibre 15.0, and water 6.45 (excess 0.82).

Physiological Effects.—Astringent and tonic.

Uses.—Employed in chronic diarrhoea and dysentery, passive hemorrhages, and intermittents. The decoction is also used as an astringent wash and injection; as in flabby ulcers, and leucorrhoea. In the dysenteries of cattle it is reputed efficacious. In the Feroe and Orkney islands it is used to tan leather; in Lapland as a red dye.

Administration.—Dose 5 ss. to 3 j., in powder or decoction, three or four times a day.

**Decoction* Tormentilla, L. ** Decoction of *Tormentilla*. (Tormentil, bruised, 3 j.; Distilled Water, Oiss. Boil down to a pint, and strain).—Astringent and tonic. Used internally in chronic diarrhoea.—Dose, f3 j. to f3 j. Sometimes employed as an injection in leucorrhoea.

TRIBE III. ROSEÆ.

265. ROSA CANINA, Linn. L. E—COMMON DOG-ROSE.

Sex. Syst. Icosandria, Polygynia.

(Fructus recens, L.—Hip of R. canina, and of several allied species, deprived of the carpels, E.—Fructus, D.)

History.—The κυρόποσον, or Dog-Rose of Hippocrates,1 is, perhaps, Rosa canina, Linn., which, according to Sibthorp,2 is a native of Greece. Pliny3 speaks of Rosa sylvestris, which he says is called cynorrhodon (i. e. Dog-rose); but as he describes the sponge as growing on it, he probably referred to Rosa rubiginosa (Sweet Briar, or Eglantine), on which it is more frequently found than on any other species.

Botany. Gen. Char.—Apex of the tube of the calyx contracted, the limb 5-parted; segments during aestivation somewhat spirally imbricated at the apex, often pinnatisect. Petals 5. Stamina numerous. Carpels many, inserted on the calyx, subsequently baccate, inclosed within the calyx, dry, indeliscent, somewhat crustaceous, bearing the style on the inner side. Styles exserted from the narrowed tube of the calyx, free or aggregated into a columnar style. Seed in an akenium, solitary, exalbuminous, inverted; embryo straight: cotyledons flat.—Shrubs or small trees. Leaves pinnate, with an odd one; leaflets serrate. Stipules adnate to the petiole (De Cand.)

Sp. Char.—Prickles uniform, hooked. Leaves naked or slightly hairy; their disk eglandulose. Calyx-segments fully pinnate, deciduous. Styles not united. Shoots assurgent (Hooker).

The British roses answering to these characters are subdivided by Hooker (British Flora) as follows:—

b. R. sarmentacea Woods, Smith; R. canina, Curtis. Leaflets naked, carinate; serratures compound.
c. R. surculosa Woods; R canina β, Smith. Leaflets naked, flat; serratures simple.
d. R. dumetorum Woods, Smith. Leaflets more or less hairy, flat.
e. R. Fosteri, Smith; R. collina, Woods. Leaflets more or less hairy, not flat.

De Candolle4 admits no less than nineteen varieties of R. canina, Linn.

Ramification variable in denseness. Shoots more or less arched or erect, according to the vigour of the plant. Prickles not very numerous, hooked in various degrees, and compressed; their base considerably dilated. Leaflets variable in width; their serratures, although scarcely compound, except in β, are mostly irregular in size. Bracts variable in size. Peduncle and calyx-tube commonly naked; their setæ, when present, feeble, and not numerous; calyx-segments free from glands, or more or less copiously fringed with

1 Opera, p. 587, ed. Fæs.
2 Prod. Fl. Graec. i. 349.
3 Hist. Nat. lib. xxv. cap. 6, ed. Valp.
4 Prod. ii. 613.
VEGETABLES.—NAT. ORD. ROSACEÆ.

them. Styles hairy. Fruit coral-red, or more scarlet [usually oblong, elliptical or ovate, rarely somewhat globose], soft and pulpy when ripe, with a pleasant somewhat acid taste (Hooker).

Hab.—Indigenous. Thickets, hedges, &c.; very common. Flowers in June and July. Perennial.

Description.—The fruit used in medicine under the name of the hip or hep (fructus roseæ caninæ seu f. cynosbati), is oval, composed externally of the persistent calyx, whose sides have become thick, fleshy, beautifully red, shining; and internally, of numerous, hard, hairy akenia (commonly called seeds, but which, in fact, are the carpels, or real fruits), containing each an exalbuminous seed. The pulp or fleshy matter of the persistent calyx is sweet, acidulous, and pleasant to the taste, especially when mellowed by the frost. The hairs surrounding the akenia act as mechanical irritants, like the hairs of the pods of the cowage, and when swallowed are apt to occasion gastric uneasiness, vomiting, and pruritus about the anus.

Composition.—According to Bilz,¹ 100 parts of the dried ripe fruit, deprived of akenia and hairs, consist of the following substances:—volatile oil a trace, fatty oil 0·065, myricin of the scale 0·05, soft resin of the pulp 1·419, reddish-yellow hard resin 0·463, tannin 0·260, uncrystallizable sugar 30·6, gum 25·0, epidermis 4·552, medullary fibre 14·0, citric acid 2·95, malic acid 7·776, citrates, malates, mineral salts, water (and loss) 12·865.

Physiological Effects and Uses.—The pulp is nutritive, and slightly refrigerant and astringent. It is only employed in medicine in the preparation of a conserve.

CONFECTIO ROSÆ CANINÆ, L.; Conserva Roseæ Fructus, E.; Conserva Cynosbati; Conserve of Dog-Rose; Conserve of Hips. (Dog-Rose, lb. j.; Sugar, powdered, 5xx. Beat up the rose with the sugar added by degrees until they become one mass, L.—Take any convenient quantity of Hips, carefully deprived of their carpels; beat them to a fine pulp, adding, gradually, thrice their weight of white sugar, E.)—In the preparation of this conserve the akenia or carpels (commonly termed seeds), with their hairs, must be carefully separated, on account of the irritation they are apt to occasion (see above).—It is probable that the fruit of several varieties (or species ?) are employed indiscriminately in the preparation of this conserve. The observation of Sir J. E. Smith deserves notice, that the fruits, casually gathered late in autumn, present a great diversity of flavour.² This conserve, being saccharine and acidulous, is nutritive and refrigerant. It is usually employed as a convenient and agreeable vehicle for other remedies; as for a pill-basis, or for the making of electuaries or linctuses. A very agreeable pectoral linctus containing almond oil, and, sometimes, syrup of poppies, is made with this conserve, acidulated with dilute sulphuric acid. A drawback to the use of this conserve is its tendency to candy or concrete by keeping.

¹ Gmelin, Handb. d. Chem. ii. 1270.
² Eng. Fl. ii. 395.
266. **ROSA GALlica, Linn. L. E. D. — FRENCH OR RED ROSE.**

Ser. Syst. Icosandria, Polygynia.

History.—Perhaps our red rose may be the *Rosa Milesia* of Pliny, 1 the colour of which, he says, was very warm *[ardentissimus]*, and whose petals did not exceed twelve in number. The *Rosa Trachinia*, he adds, stands next to this, but is less red.

Botany. *Gen. Char.*—See *Rosa canina.*

Sp. Char.—Prickles unequal. Stipules narrow, straggling at the point. Leaflets 5 to 7, coriaceous, rigid, ovate or lanceolate, deflexed. Flower-bud ovate-globose. Sepals spreading during flowering. Fruit somewhat globose, very coriaceous. Calyxes and peduncles more or less very finely glandulose-hispid, somewhat viscosous (De Cand.)

A small shrub. Very variable in form.—De Candolle 2 admits twelve distinct varieties. Mr. G. Don 3 enumerates more than two hundred sorts cultivated by gardeners. And we are told 4 that the Dutch cultivators have more than five hundred varieties. The variety cultivated at Miticham, where it is called the Damask Rose, appears to me to be *R. gallica* var. 5 officinalis, De Candolle.

Hab.—South of Europe. Common in gardens. For medicinal purposes cultivated at Miticham.

Description.—The dried petals of the unexpanded flowers, deprived of their white claws or heels (ungues), constitute the red-rose leaves (flores rose rubre) of the shops. The flower-buds are brought to market when about the size of a large nutmeg. The calyx and claws being cut off, the petals are speedily dried. At Miticham this is effected in a stove. Slow desiccation impairs both their astringency and colour. The petals of the buds are much more astringent than of the full-blown flowers; hence they are preferred for medicinal use. When dried they are sifted to remove the stamens, and insects. 2,000 flowers yield about 100 lbs. of fresh, or 10 lbs. of dried petals. The dried petals have a velvety appearance: their colour is purplish-red; their odour, which is principally developed during desiccation, is agreeable; their taste is bitterish and astringent. As they lose their fine colour when exposed to light and air, and are apt to become mouldly or worm-eaten, they should be carefully preserved in bottles or earisters.

Composition.—The petals were analysed by Cartier, 5 who found the following substances:—volatile oil, colouring matter, tannin, gallic acid, fatty matter, albumen, soluble potash salts, calcareous insoluble salts, silica, and oxide of iron.

2 *Prodr. ii. 603.*
3 *System of Gardening.*
4 *Journ. de Pharm. xii. 443.*
5 *Ibid. vii.*
1. Astringent Matter (tannic and gallic acids.)—The presence of astringent matter is shown by the very dark colour (tannate and gallate of iron) produced in an infusion of red roses by the ferruginous salts, and by the slight precipitate (tannate of gelatine) caused on the addition of a solution of gelatine.

2. Colouring Matter.—Has not yet been isolated. A watery infusion of red rose leaves has a pale yellowish-red colour; the alcoholic tincture is also pale-coloured. On the addition of sulphuric acid an intense bright red colour is produced (sulphate of the colouring matter). Alkalies communicate a greenish tint to the watery infusion (probably by neutralizing the free acid, to which, with the colouring matter, the red tint is owing). Sulphurous acid destroys the colour of the infusion of roses (sulphite of colouring matter?); but on the addition of sulphuric acid the intense bright red (sulphate of dito) is produced, with an evolution of sulphurous acid gas. Dr. Clarke and others had supposed that the red colour was owing to iron; but both Gay-Lussac and Cartier found more iron in white than in red roses. Thus 1000 grains of the white rose yielded the latter chemist 99 grains of ashes containing 12.4 of iron; while the like quantity of the red rose yielded 50 grains of ashes, in which were only four grains of oxide of iron.

Physiological Effects and Uses.—Red rose leaves are mild astringents and tonics; but their power is exceedingly slight, and scarcely deserves notice. By the Arabian physicians, Avicenna and Mesue, as well as by more recent writers, Riverius, Krüger, and others, conserve of roses was esteemed a valuable remedy in phthisis. At the present time red rose leaves are principally used for their colour and flavour. They yield several officinal preparations, which are valuable as forming elegant vehicles for the exhibition of other more active medicines. The full-blown flowers are said to be as laxative as those of R. centifolia. “Poterius relates, that he found a drachm of powdered red roses occasion three or four stools, and this not in a few instances, but constantly, in an extensive practice for several years.”

1. Infusum Roseæ Compositum, L.; Infusum Roseæ, E.; Infusum Roseæ acidum, D.; Infusion of Roses. (Petals of the Red or Gallic Rose, dried, 3ijj. [3ij. D.]; Diluted Sulphuric Acid, f3iss.; Sugar [pure, E., 5ij.], 3vj.; Boiling Water [distilled, L.], Oiss. Pour the Water upon the Rose petals previously pulled asunder; then mix in the Acid. Macerate for two hours [one hour, D.], and strain the liquor; lastly, add the sugar to it, L. Infuse the petals for one hour in the water, in a covered vessel, strain, and add the acid. The product should measure about eight ounces, D.—The Edinburgh College infuses the petals in the water for four hours, in a vessel of glass or porcelain, not glazed with lead; then adds the acid, strains through linen or calico, and dissolves the sugar in the strained liquor.)—The lengthened maceration of six, or even four hours, is unnecessary. An hour, as recommended by the Dublin College, or perhaps even half an hour, is quite sufficient. Infusion of roses is a mild, but very agreeable, refrigerant and astringent, and is a very pleasant drink in febrile disorders, hemorrhages, diarrhoea, and colliquative sweats. It forms a very elegant vehicle for other medicines; as for saline purgatives (especially sulphate of magnesia, the unpleasant taste of which it serves greatly to cover), for disulphate of quina (which is dissolved in the water by the free sulphuric acid, which also serves to prevent the tannic acid of the roses precipitating the quina), the mineral acids, bitter tinctures and

1 Murray, App. Med. iii. 168.
2 Lewis, Nat. Med.
3 Mr. Squire says that sulphuric acid does not dissolve the tannate of quina, but that nitric acid does.
infusions, alum, &c. It serves as a very useful gargle; for which purpose acids, nitre, alum, or tincture of capsicum, are usually conjoined. Of course the alkalis and the earths, as well as their carbonates, are incompatible with it; they neutralise the acid, and change the colour of the preparation to green or brownish green. Sulphate of iron communicates a deep olive colour, and after some hours causes a precipitate. The sulphuric acid of the infusion of roses decomposes and destroys the activity of the acetate of lead, by forming sulphate of lead. It is a common practice, however, though of course among ignorant practitioners only, to administer, in hemorrhages, a pill composed of acetate of lead and opium, and at the same time infusion of roses (2) The dose of infusion of roses is f\textfrac{3}{3} to f\textfrac{3}{3}j. Each f\textfrac{3}{3}j. contains mivss. of dilute sulphuric acid, which are nearly equivalent to three-sevenths of a minim of strong sulphuric acid.

2. Confection Rose, L. D.; Conserve Rose, E.; Conserve of Red Roses. (Petals of the Red Rose, lb. 1.; Sugar, lb. iij. Beat the rose petals in a stone mortar; then, the sugar being added, beat them again until they are thoroughly incorporated, L.—Beat the petals of the Rosa gallica to a pulp, gradually adding thrice their weight of white sugar, E.—Dried petals of the Gallic Rose, 3j.; Rose Water, f\textfrac{3}{3}j.; Refined Sugar, 3ij. Macerate the petals in the rose water for two hours, add the sugar gradually, and beat them into a uniform mass. Or, take of fresh petals of the Gallic Rose, three ounces; Refined Sugar, eight ounces: rub the petals in a mortar, then add the sugar gradually, and beat them together until they are intimately mixed, D.—The Dublin confection contains the largest quantity of rose leaves, and the London the least.)—This preparation is slightly astringent. It was formerly much esteemed in phthisis. Its principal use now is as a vehicle for the exhibition of other medicines. Thus it is a common pill-basis for calomel, disulphate of quina, &c. Pilula hydrargyri are prepared with it. Alone, or conjoined with the confection of dog rose, it forms the basis of some elegant pectoral linctuses or electuaries, containing almond oil, diluted sulphuric acid, or syrup of poppies. Over the confection of dog rose it has the advantage of having no tendency to candy. Furthermore, it does not ferment or become mouldy.—Dose, 5j. to 5ij. or more.

3. Mel Rose, L. E.; Honey of Roses. (Dried Red Rose, 3iv.; Boiling Distilled Water, 3xxiv.; Honey, lb. v. Macerate the rose petals, first separated, in 3xxvij. of the water, for two hours; then lightly press with the hand and strain; what remains macerate again for a little time in the rest of the water, and pour off the liquor; to this add the half of the first infusion, and set aside the other half; then to the honey add the mixed liquors, and evaporate in a water-bath, so that the solution which was set aside being added, it may become of a proper consistency, L.—The Edin-

[Experience shows, however, that the alternation of doses of such pills and mixture every few hours is an effective mode of treating many forms of hemorrhage, especially hemoptyisis.—Eo.]
burgh College directs the same weight of the petals of the rose and of honey. The petals are to be infused in the water for six hours, then strained and squeezed, mixed with the honey, and the liquid evaporated.)—Ed.]—A mildly astringent and very agreeable preparation, principally employed in the diseases of children. It is used sometimes alone as a mild detergent in slight aphtous affections, or inflammatory conditions of the mouth and throat; or as an agreeable vehicle for the exhibition of other more powerful medicines. It is occasionally added to detergent or astringent gargles.—Dose, for children, 5i.

[4. SYRUPUS ROSÆ GALLICE, E. D.; Syrup of Roses. (Dried Red Rose petals, 5ij.; Boiling Water, Oj.; Pure Sugar, 5xx. Proceed as for the syrup of damask rose, E.—Take of petals of the Gallic Rose, dried, 5ij.; Boiling Distilled Water, Oj.; Refined Sugar, in powder, as much as is sufficient. Boil the petals in the water in a glass or porcelain vessel, until their colour is completely extracted; strain by expression, and let the decoction stand until the sediment subsides; then, having decanted the supernatant liquor, add to it twice its weight of sugar, and dissolve with the aid of steam or water heat, D.)]—This syrup, though very slightly astringent, is principally valuable for its red colour; on account of which it is sometimes added to mixtures and electuaries (as the Electuarium Catechu, E.)

267. ROSA CENTIFOLIA, Linn. L. E. D.—THE HUNDRED-LEAVED OR CABBAGE ROSE.
Ser. Syst. Ieosandra, Polygynia.
(Petalum recens; Petala, L.—Petals; Volatile oil of the petals, E.)

History.—Theophrastus¹ speaks of a Rosa centifolia (Ῥόδον ἰκατοφύλλια) which grew abundantly about Philippi. Herodotus² mentions a rose growing naturally in Macedonia, and which had sixty leaves, and more than ordinary fragrance. This perhaps was R. centifolia. Pliny³ also notices the R. centifolia.

Botany. Gen. Char.—See Rosa canina.

Sp. Char.—Prickles nearly straight, scarcely dilated at the base. Leaflets 5 to 7, ovate, glandular and flaccid at the margin, hairy beneath. Flower-bud ovate, short. Sepals during flowering, spreading, not deflexed. Fruit ovate, somewhat pulpy. Calyxes and peduncles glandulose-hispid, rigid, fragrant (De Cand.)

De Candolle admits seventeen distinct varieties. In gardens are found above eighty sorts. One of the best known of them is the Moss Rose (R. Muscosa). At Mitcham, the sort cultivated for medicinal purposes, under the name of the Provins or Cabbage Rose, appears to me to agree

¹ Hist. Plant. vi. 6.
² Uronia, cxxxviii.
Cabbage Rose:—Composition; Physiological Effects; Uses. 1811

with the var. a vulgaris* foliacea of De Candolle. Its leaflets are oval or rounded-oval. The larger prickles slightly falcate.

Hab.—Asia. Cultivated at Mitcham, and other places, for medicinal purposes.

Description.—The petals of the hundred-leaved rose (floraes rose centifolia seu pallide) are commonly termed in the shops Provins or Cabbage-rose leaves. They should be gathered when the flowers are full blown, and before the petals begin to fall. Their odour is strongest when they are of a fine pale red, and before they begin to fade. When freed from the calyx cups and stamens, they are to be dried in the air. Unlike the petals of R. gallica, desiccation diminishes their fragrance. Their odour is said to be singularly exalted by iodine.¹ Their taste is sweetish, though somewhat acidulous and bitter. To preserve rose leaves, they are frequently pickled or salted (florae sali) like elder flowers.

Composition.—I am unacquainted with any analysis of the petals of the Rosa centifolia. The following, however, may be regarded as the ascertained constituents:—volatile oil, gallic (and tannic?) acid, colouring matter, a saccharine matter (sweet extractive of Pfaff), woody fibre, mineral salts, and oxide of iron.

1. Volatile Oil (see page 1812).
2. Laxative Principle (Sweet Extractive of Pfaff).—The nature of the laxative principle of the hundred-leaved rose has scarcely been examined. Pfaff² declares it to be sweet extractive.

Physiological Effects and Uses.—The petals are mildly laxative, and are employed, on this account, in the form of syrup (see Syrupus Rosa).

On account of its delightful fragrancy, this rose is in common use for nosegays and scent-bags, and is employed for the distillation of rose water. Its odorous emanations, however, are not always innocuous; but on some persons have acted as a poison,³ causing symptoms which, for the most part, are those indicating a disordered condition of the cerebro-spinal system—such as headache, fainting, and hysterical symptoms; and occasionally giving rise to local irritation, manifested by sneezing and inflammation of the eyes.

2. Aqua rose, L. E.D.; Rose Water. (Petals of Rosa centifolia, lb. x.; [Rectified Spirit, f3iij. E.].] Water, Cong. ij. Let a gallon distil.—¹ The petals should be preferred when fresh; but it also answers well to use those

¹ Chercheau, Journ. de Pharm. xii. 442.
which have been preserved, by beating them with twice their weight of chloride of sodium," E.) The Dublin College directs the Rose Water to be prepared by agitating mxx. of essential oil of Roses with Cong. ss. of distilled water, and filtering through paper.—Rose water is prepared both from fresh and pickled rose leaves, but of course the former are preferable. During its distillation a solid volatile oil comes over with it, and floats on the water in the receiver. To prevent the water becoming sour, it should be preserved in well-corked bottles, kept in cool places. Spirit of wine ought not to be mixed with it, for if a sufficient quantity be added to preserve the water, it renders it unfit for some medicinal purposes. Rose water is employed, on account of its odour only, as an addition to lotions and collyria.

3. OLEUM ROSÆ, E.; Attar or Otto of Roses.—Obtained in the East, by distilling roses with water. The attar concretes and floats on the distilled water when cold. In Northern India, rose water and attar are distilled from *R. damascena.* The precise species of rose used at Ghazepoor, in Hindostan, where the attar is extensively distilled, as well as at Shiraz, in Persia, has not been satisfactorily ascertained. At the latter place a rose with white flowers is said to be used. Is it *R. moschata?* In the manufacture of rose water in England, from *R. centifolia,* a crystalline volatile oil with the odour of the attar is frequently obtained (*English attar of roses*). Polier says, that to procure something less than three drachms of attar from 100 lbs. of rose leaves, in India, the season must be very favourable, and the operation carefully performed. Jackson states, that from one lace of roses it is generally calculated that 180 grains, or one tola of attar, can be procured. Heber says, 20,000 roses yield attar equal in weight to that of a rupee. According to Donald Monro the attar is procured without distillation, merely by macerating the petals in water. But Trommsdorff tried the method, and failed to procure any oil. [It is, however, certain that, in India, attar is occasionally obtained by exposing the rose-leaves in water to the sun, when the oil floats out. Landerer states also, that he has been informed by a person who was some years engaged in the manufacture, that attar is obtained at Damascus, and other parts of Asia Minor, by dry distillation of the rose at the temperature of a salt-water bath.—Ed.]

Attar of roses is imported from Constantinople and Smyrna. The duty on it is 1s. 4d. per lb. In 1838, 973 lbs.; in 1839, 745 lbs. paid duty.

At temperatures below 80° F. attar of roses is a crystalline solid. It is usually almost colourless; but Polier says, colour is no criterion of its goodness, quality, or country. Undiluted, its odour is somewhat too powerful.

4. * Narrative,* i. 266.
to be agreeable; but, when properly diffused through the air or some liquid, it is most delicious. It is combustible, and its vapour with oxygen forms an explosive mixture. It fuses at between 84° F. and 86° F. Its sp. gr. at 90° F. is 0·832; water at 60° F. being 1·0. At 57° F. 1000 parts of alcohol (sp. gr. 0·806) dissolve 7 parts, and at 72° F. 33 parts of attar.

Attar of roses has been analysed by Saussure and Blanchet, but their results do not accord.

<table>
<thead>
<tr>
<th>Blanchet's Analysis</th>
<th>Saussure's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atoms.</td>
</tr>
<tr>
<td>Carbon</td>
<td>23</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>23</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
</tr>
<tr>
<td>Attar of Roses</td>
<td>1</td>
</tr>
</tbody>
</table>

Sandal-wood oil, oil of rhodium, some of the fixed oils, and spermaceti, have been said to be occasionally employed for adulterating attar of roses; but as far as my observation extends, the attar found in the shops of London is very pure.

Attar of roses consists of two volatile oils; one solid, the other liquid, at ordinary temperatures, in the proportion of about one part of the first to two parts of the second. To separate them the attar is to be frozen and compressed between folds of blotting paper, which absorbs the liquid and leaves the solid oil; or they may be separated by alcohol (of sp. gr. 0·8), which dissolves the liquid, but takes up scarcely any thing of the solid oil.

a. Solid Oil of Roses (Rose Camphor; Stearoptène of Oil of Roses).—Occurs in crystal-\nline plates, fusible at about 95° F. It is composed, according to Saussure, of carbon 86·743, and hydrogen 14·889; or an equal number of atoms of carbon and hydrogen. Blanchet states its composition to be, carbon 85·86, hydrogen 14·46 [The solid portion is insoluble in alcohol, but may be purified by solution in ether. In constitution it is isomeric with oil of turpentine, being represented by CH or some multiple of it.—Ed.]

b. Liquid Oil of Roses (Eloptène of Oil of Roses).—This oil has not been accurately examined. From Saussure's analysis of the ordinary attar and of its stearoptène, it would appear to contain oxygen and nitrogen, in addition to carbon and hydrogen. By calculation the proportions appear to be, carbon 80·56, hydrogen 12·42, oxygen 3·92, nitrogen 1·3. The presence of nitrogen has not been confirmed by the researches of other chemists.

Attar of roses is employed for scenting only. In the shops various perfumes are sold which owe their odour to the attar. Thus oil for the hair, sold as huile antique rouge à la rose, is merely olive oil coloured by alkanet, and scented with the attar. Milk of roses also contains the attar. Several compound scents owe a portion of their fragrance to this oil; as lavender water. The Edinburgh College has very properly, as I conceive, introduced this oil into the Pharmacopoeia; for, as medicines frequently require to be perfumed, I cannot conceive why the most delicious perfume should be excluded from the Materia Medica. It may be employed as an addition to ungues and spirit washes.

Tribe IV. POMACEÆ.

268. CYDONIA VULGARIS, Persoon, L. E.—THE COMMON QUINCE.

Pyrus Cydonia, Linn.

Sex. Syst. Icosandria, Pentagynia.

(Semen, L.)

History.—Hippocrates¹ employed the quince-apple (κυδώνια) as an astringent in diarrhoea. The Romans called this fruit malum cotoneum.²

Sp. Char.—Leaves ovate, obtuse at the base, quite entire; their lower surface, as well as the calyx, tomentose (De Cand.)—A small, much-branched, usually crooked tree. Petals pale rose-colour or white. Pome varying in shape, yellow, covered with a thin cottony down, very austere, but having a peculiar fragrance.

De Candolle admits three varieties:—

c. Oblonga. Oblong or Pear Quince.—Leaves oval or oblong. Cultivated and wild.

Hab.—South of Europe. Cultivated in gardens. Flowers in May and June.

Description.—Quince seeds (semina cydoniae) are ovate-acute, flat on one side, convex on the other, and of a reddish-brown colour. The most external coat (epidermis seminalis, Bischoff’) is composed of very fine cells, in which is lodged a large quantity of mucilage. When, therefore, these seeds are thrown into water, the mucilage swells up, distends, and ultimately bursts the tender cells.

Composition.—No analysis of either fruit or seeds has been made. The fleshy pulp of the fruit contains an astringent matter, malic acid, sugar, pectine or vegetable jelly, a nitrogenous matter, probably volatile oil, water, and vegetable fibre. The seeds contain colouring matter, tannic acid, a large quantity of a peculiar gummy matter in their outer coat, probably amygdalin (as Stockmann obtained hydrocyanic acid from the seeds by distillation), emulsin, starch, fixed oil, and woody fibre.

Cydonin (Peculiar Gum of Quince Seed; Bassorin; Mucus; Quince Mucilage).—One part of quince seed forms, with forty parts of water, a thick mucilage, which produces,

¹ Opera, 497, ed. Fæs.
³ See Bischoff, Handb. d. bot. Termin. tab. xlii. fig. 1859.
with the following salts, gelatinous coagula or precipitates; acetate and diacetate of lead, protochloride of tin, nitrate of mercury, and sesquichloride of iron. Rectified spirit produces at first scarcely any effect; after some time partial coagulation is effected. Oil of vitriol communicates a pinkish tint, and causes the separation of a frothy coagulum, which floats on the mixture. Silicate of potash, infusion of nutgalls, and oxalate of ammonia, produce no change in the mucilage. Quince mucilage, usually termed bassorin, appears to me to be a peculiar substance: hence I propose to call it cydonin. It is distinguished from arabine (see Gum Arabic) by the effect on it of alcohol, silicate of potash, sulphuric acid, and oxalate of ammonia; from bassorin and cerasin (see below) by its solubility in water, both hot and cold; from tragacanthin (see Gum Tragacanth) by the effect of sulphate of iron, oxalate of ammonia, and alcohol; from carrageenin by the effect of silicate of potash and acetate of lead.

Physiological Effects. — The fruit is not eatable in its raw state. Stewed in pies or tarts, along with apples, it is much esteemed. The expressed juice (succus cydoniae) is said to be cooling and astringent. An excellent marmalade (mira cydonie) and syrup are prepared from the quince by the confectioner. The mucilage of quince seed is nutritive, demulcent, and emollient. The whole seeds, if taken in sufficient quantity, and well masticated, would, perhaps, act like bitter almonds, as they are said to yield hydrocyanic acid.

Uses. — Quince seeds are employed in medicine only on account of the mucilage which they yield.

Decoctum Cydonii, L.; Mucilage of Quince Seed. (Quince Seeds, 3ij.; Distilled Water, Oj. Boil with a gentle heat for ten minutes, and strain). — Never used internally. Employed externally as an emollient and sheathing application to cracked lips and nipples; to the inflamed conjunctiva; to the skin when affected with erysipelas; and to painful hemorrhoidal tumours. Hair-dressers use it, as a cement, for dressing the hair in braids.

Other Medicinal Rosaceae.

1. The Kosso, Kousso, or Brayera anthelmintica.

History. — Kosso has been used in Abyssinia as an anthelmintic for more than two centuries; for Leutholf (Ludolfi, Historia Ethipica, lib. i., cap. ix., sect. 31, 1681) says that "N. Godinung" praises another tree as being very efficacious against lumbrici, which are produced by the use of raw meat. But the Abyssinians purge themselves every month with the fruit of this tree, and thus," he says, "destroy these worms." Now there can be little doubt, I conceive, but that this passage refers to the kosso.

Bruce, in his Travels to Discover the Source of the Nile, from 1768 to 1773 (vol. v. p. 73), published at London in 1790, mentions this medicine, which he calls kusso, and proposes to name the tree Banksia Abyssinica, after Sir Joseph Banks, the then President of the Royal Society. But the younger Linnaeus, in the Supplementum Plantarum, pub-

1 For some experiments on mucilage of quince seed, see Bostock, in Nicholson's Journal vol. xviii. p. 31.
2 [From a paper by Dr. Pereira, published in the Pharmaceutical Journal, July 1850, vol. x. p. 15.—Ed.]
3 "De Abyssinorum robus, lib. i. cap. 2, Svo. Lyon, 1615."
lished at Brunswick in 1781, had already appropriated the name of *Bankzia* to a New Holland genus of proteaceous plants, and he has been followed by all succeeding botanists; so that it is obvious that Bruce’s proposed botanical name for the *kosso* cannot be adopted.

Bruce gave a very good popular account of *kosso*, accompanied by what he justly terms “a true and exact” figure of the plant. I have compared his figures with a specimen of the plant collected in Abyssinia by Schimper, and contained in the herbarium of my friend Mr. N. B. Ward, and with the commercial flowers, and find that they are fair representations of the plant.

Bruce states that the Abyssinians evacuate once a month “a large quantity of worms; these are not the tape-worm, or those that trouble children, but they are the sort of worm called ascarides.” This statement agrees with that of Godinuus just quoted; but it does not accord with the observations of other travellers, who tell us that the worms with which the Abyssinians are troubled, and for which they employ the *kosso*, is the tape-worm. The accuracy of this latter statement has been proved by Dr. Hodgkin (Medical Times, October 26th, 1844, p. 74) who gave oil of turpentine to an Abyssinian in the service of Dr. Beke, and thereby expelled a *Taenia solium*—the same kind of tape-worm which prevails in England, and which is understood to prevail at the Cape of Good Hope.

In the *Encyclopédie Méthodique* (Botanique, Suppl. tom. ii. p. 423, 1811), Lamarek has described the *Cusso d’Abyssinie*, which he named after Dr. C. G. Hagen, a professor at Königsberg, the *Hagania Abyssinica*. He says the tree was discovered by Brown—but I presume that this is a typographical error, and that for “Brown” should be read “Bruce;” for the figures of the plant given by Lamarek (pl. 311) are obviously copied from those of Bruce, though he does not refer to this distinguished traveller as his authority.

It is remarkable that Lamarek’s proposed generic name (*Hagania*) has been applied by the late Professor Eichweller (Systema Lichenum, 1824) to a proposed genus of lichens usually included in that of Parmelia; and by Mönch (Methodus, 1794) to a caryophyllaceous plant now regarded as a species of Gypsophila. Wildenow (*Species Plantarum*, and Sprengel (*Syst. Veget.* ii. 220, 1825) have each adopted Lamarek’s name (*Hagania Abyssinica*) for *kosso*.

Dr. Brayer, a French physician, who resided for a considerable time at Constantinople, and who had witnessed the valuable antihelmintic properties of *kosso*, and had himself successfully employed this remedy, sent, on his return to Paris, in 1823, some fragments of the male flowers to the late celebrated Prussian botanist, Kunth, who ascertained that the plant which yielded them formed a new genus, near to, but distinct from, that of Agrimonia.1 To this genus Kunth gave the name of *Brayera*, after the physician who sent him the flowers, and the species he called *B. anehelantium*. This generic name has been adopted in the systematic works both of De Candolle (*Prodromus*, vol. ii. p. 588) and Endlintersection (*Genera Plantarum*, 6395). Kunth does not appear to have been aware either of Bruce’s notice of *kosso*, or that Lamarek had previously given to this genus the name of *Hagania*, otherwise, doubtless, he would have referred to them, and have adopted this designation. Dr. Brayer published a little pamphlet (*Notice Sur une Nouvelle Plante de la Famille des Rosacées*, Paris, 1823, 8 pages) on this medicine, but which I have not been able to get a sight of; the reply to my inquiries for it at Paris being that it was out of print. According to the information furnished by Dr. Brayer, it appears that *kosso* is carried by the caravans to Egypt, and from thence finds its way to Constantinople.2

The identity of the genera *Hagania* and *Brayera* was first recognised by Fresenius (*Museum Senkenbergianum*, vol. ii. p. 163, 1837).

In 1839, Buchner (*Repertorium*, 2te Reihe, Bd. xviii. S. 367) gave a notice of three

1 In the first volume, p. 470, of the *Mémoires de l’Académie Royale de Medicine*, it is erroneously stated that *kosso* is the *Agrimonia orientalis* of Tournefort, who saw it in Abyssinia. Now, in the first place, Tournefort never was in Abyssinia; and secondly, the *A. orientalis* (*A. regens*, Linn.) is a creeping herb, whereas the *kosso* is a large tree!

2 In the *Journ. de Pharmacie*, t. ix. p. 160, 1823, is an *Extrait du Bulletin de la Société Philomatique*, 1822, containing a notice of Dr. Brayer’s observations respecting *kosso*, and of Kunth’s determination of the plant.
Abysinnian remedies which he had received from Engelmann. One of these was the kosso (called koso), which was stated to be the flowers of the Bracera [Brayera] anthelmintica. In 1840, Wittstein (Buehner’s Repertorium, 2te Reihe, Bd. xxi. p. 24) published an analysis of kosso, which he calls Bracera anthelmintica.

Riecke’s Die neuen Arznei mittel, published in 1840, contains a notice of the Brayera anthelmintica by Dr. Plieninger, who obtained his information respecting it from some missionaries returned from Abyssinia; and the same notice includes some botanical and pharmacological account of this medicine by Dr. Kurr.

In 1841, Dr. Aubert, who had spent some time in Abyssinia, read a Mémoire sur les Substances Anthelmintiques usitées en Abyssinie, before the Académie Royale de Médecine, Paris, and which was published in the Memoirs of the Academy for that year. His account of the anthelmintic virtues of the kosso confirms the statements of preceding writers. A very interesting Report on his memoir was drawn up by Mérat, and published in the Bulletin de l’Académie Royale de Médecine, tom. vi. p. 492, 1840-41.

M. Rochet d’Hericourt, in his Second Voyage sur les Deux Rives de la Mer Rouge dans le Pays des Adjuts et le Royaume de Chou, published at Paris in 1846, gives a very brief notice of the kosso, with a lithograph of the flowers and leaves. This traveller is the present holder of the entire European stock (about 1400 lbs.) of kosso.

Dr. R. Quentin-Dillon and A. Petit, the naturalists of the French Expedition to Abyssinia in the years 1838-43, collected the kosso; of which a botanical description has been published by A. Richard, in the Tentamen Florae Abyssinico, which forms the fourth volume of the Voyage en Abyssinie, edited by M. Th. Lefebvre. The forty-eighth plate of the “Botanique” of this “Voyage” contains an excellent figure of the plant, with dissections of the flower.

Native Names.—My friend Dr. Beke, the well-known Abyssinian traveller, has given the following note respecting the native names for this remedy:—“The tree, of the flowers of which you have a sample, is called in the Amharic language kossa,1 in that of Tigre, hhobbé,2 in the Gaft language it is styled kossis, and in the Gonga, koso,3 in the Agau of Waag, sika; in that of Agau-mider, shine; and in Falasha, sakikana; whilst in Galla, its name is bëti. In the countries further to the south, it has other names,4 which, however, I have not collected in my vocabularies of the languages of those countries. But it is best known in Abyssinia and Europe by its Amharic designation, kosso.” Dr. Beke further observes, that “the tape-worm, for which the kosso flowers are a remedy, is known in the languages of Amhara and Tigre by the same names respectively as the medicina itself, viz., kosa and hhobbé. So, too, in the Gaft and Gonga, in which respectively both are called kossish and koso. In the Waag-Agau, likewise, the name sika is the same for both; but in the dialect of Agau-mider the worm is called turo, and, in the Falasha, saka; whilst in the Galla, it is minik.”

Botany.—The first accurate botanical description of the flowers of kosso was given by Kunth, whose account has been adopted in De Candolle’s Prodromus. Kunth, however, was acquainted with the male flowers only. The most recent systematic notice of the genus Brayera is that of Endlicher, which I shall adopt.

Brayera, Kunth.

1 This word is variously spelt by different writers, eussa, cosso, consso, coso, koso, kosso, and kossed. Dr. Aubert says it should be pronounced (in French) cousso.

2 According to Dr. Plieninger, who obtained his information from the Abyssinian missionaries, the Tigre name is kepak. Wittstein writes it habi.

3 Written cosso by some persons.

4 “Dr. Brayer gives cots or cabots, as vernacular names: according to Dr. Aubert (Bullet. de l’Acad. Royale) these names are erroneous.”
Calyx, with the tube bitractolate at the base, turbinate; throat constricted internally by a membranous ring; limb 10-partite; the segments in two series, the five outer ones much larger, oblong-lanceolate, obtuse, reticulate-veined, stellately patent, the five inner ones alternate, smaller, spatulate. *Petals* 5, inserted in the throat of the calyx, small, linear. *Stamens* from 15 to 20, inserted along with the petals. *Filaments* free, unequal in length. *Anthers* bilocular, dehiscing longitudinally. *Carpella* 2, placed at the bottom of the calyx, free, unilocular, containing one or two pendulous ovules. *Styles* terminal, exserted from the throat of the calyx, thickened upwards. *Stigmas* subpeltate-dilated, crenato-oblong.

Brayera anthelmintica, Kunth, l. c.; DC. l. c.; A. Richard, *Tentamen Florae Abyssinicae*; *Hagenia, Abyssinica*, Lamarck, l. c.; *Cusso, Bankesia Abyssinica*, Bruce, l. c.

Fig. 360.

A. Flowering branch.
B. Bunch of female flowers.
C. Flower seen laterally.
D. Female flower.
a, b, c, d, e, the five outer segments of the calyx.
The only species.

An Abyssinian tree, twenty feet high. Branches round, rusty, tomentose-villosa, marked by the annular cicatrizes of the fallen leaves. Leaves crowded, alternate, interruptedly imparipinnate and sheathing at the base. Leaflets oblong, or elliptical lanceolate, acute, serrate, villose at the margin and on the nerves of the under surface. Stipules adnate to the petiole, which is dilated at the base and amplexicaul. Flowers dioecious, small, greenish, and becoming purple; repeatedly dichotomous; the pedicels with an ovate bract at the base.

The so-called male flowers may be regarded as hermaphrodite flowers, inasmuch as the carpels are well developed. The female flowers are somewhat different in their structure. The outer segments of the calyx are much more developed than in the female flowers, and are four or five times larger than those of the inner row, and are placed somewhat below them; the petals are entirely wanting; the stamens are rudimentary and sterile.

The ripe fruits are unknown.

The tree grows in Tigre, Agame, and Shoa; it is cultivated everywhere.

Dr. Beke writes that the tree is "found throughout the entire table land of North-eastern Abyssinia, but appears to require an elevation of upwards of six thousand (perhaps of seven thousand) feet for its growth. Where I found it most luxuriant was in the vicinity of the source of the river Abai (Bruce's Nile), at an elevation of close upon nine thousand feet. Tigre, the northern portion of Abyssinia, being, on the whole, of lower elevation than the rest of that country, the tree is only found there in a few places."

Bruce describes the flowers as being of a greenish colour, tinged with purple; and, when fully blown, of a deep red or purple. The petals, he says, are white.

Preparation.—Mr. Johnston states that the kosso is gathered for medicinal purposes before the seeds are quite ripe, whilst still a number of florets remain unchanged. The bunches are suspended in the sun to dry, and if not required for immediate use, are deposited in a jar.

Pharmacography.—I have seen only one package of kosso (flores brayere antehmitica); this was kindly opened in my presence by M. Simond, of the firm of Caylits, Simond, and Co., the agents of M. Rochet d'Hericourt. It was a deal-box, containing about 30 lbs. of the dried flowers, wrapped up in a large skin of red leather. On removing the lid of the box and untying the leather package, the fragrant or balsamic odour of the dried flowers was very powerful. It appeared to me to be somewhat similar to the combined odour of tea, hops, and senna-leaves. The flowers had apparently undergone no preparation beyond that of desiccation. The bunches of flowers were perfect and unbroken, though of course compressed. The general colour of the dried mass was greenish-yellow; but when the flowers were more closely examined, the edges of the petals were seen to have a reddish or purplish colour.

The taste of the dried flowers is at first not very marked, but after a few minutes a feeble senna-like, acrid, unpleasant taste becomes perceptible. By soaking the dried flowers in water they may be unfolded sufficiently to determine their botanical characters, which have been already described. When submitted to microscopic examination the hairs are perceived to be simple lymphatic hairs, tapering at the distal extremity.

In Abyssinia, two sorts of kosso are distinguished, viz., 1st, the red kosso produced by the female-flowers; 2dly, the male flowers, known as kosso-esels. In commerce, the two sorts are always mixed together.

Adulteration.—Considering the enormous price (about £1. 15s. per ounce) at which kosso has hitherto been sold in Paris, and the very limited quantity originally supplied by M. Rochet d'Hericourt, it cannot be surprising that the article should be extensively adulterated. Indeed, I have been assured on credible authority, that the powder now selling as "kosso" is, in fact, the powder of pomegranate bark; and that legal proceedings have been commenced in Paris to put a stop to the fraud, which is well calculated to injure the reputation of the genuine Abyssinian remedy.

I have no doubt that the microscope would readily detect the substitution; but the surest way of obtaining the genuine article is to purchase the dried flowers in the entire state, not in the form of powder.

Chemistry.—The flowers of the Brayera (i.e. kosso) have been analysed by Wittstein (ante cit.) and by Martin (Journ. de Chimie Méd. t. vi. 2nde sér., p. 579, 1840). The following are the results obtained:—

Wittstein's Analysis.

<table>
<thead>
<tr>
<th>Fatty oil</th>
<th>Chlorophyll</th>
<th>Wax</th>
<th>Bitter acrid resin</th>
<th>Tasteless resin</th>
<th>Sugar</th>
<th>Gum</th>
<th>Tannin striking a green colour with iron</th>
<th>Tannin striking a blue colour with iron</th>
<th>Vegetable fibre</th>
<th>Ashes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Starch.
Saccharine matter.
Vegetable extractive matter.
Green very odorous resin.
Crystalline substance called kwoseine.

The ashes consist of potash, magnesia, lime, oxide of iron, sulphuric and phosphoric acids, chlorine, and silica.

With regard to the two kinds of tannin, Wittstein observes that, as far as he knows, this is the first instance recorded of a plant containing simultaneously two kinds of tannin, striking, the one a blue, the other a green colour with the salts of iron.

Although it is not improbable that the anthelmintic property of kosso may in part depend on tannin (since the pomegranate bark, which contains this principle in abundance, is, like kosso, also an anthelmintic), yet what may be termed the peculiar property of the kosso probably resides chiefly in the bitter acrid resin. This is soluble in alcohol and in ether, and appears to be a neutral body, manifesting neither distinct alkaline nor acid properties.

The crystalline principle to which Martin has given the barbarous name of kwoseine (from kwoso, the supposed name for kosso), is described as consisting of white silky crystals, having a styptic taste, and as being soluble in alcohol and sulphuric ether. They are said to redden litmus paper, and to dissolve, without undergoing decomposition, in sulphuric, nitric, and muriatic acids.

By boiling the dried plant in water a fragrant odour is evolved. No doubt this as well as the odour of the dried plant itself depends on the presence of a volatile oil, of which, however, no mention is made in Wittstein's analysis, the oil being present in too small a quantity to admit of its collection when small quantities of the flowers are operated on.

It is not improbable that the anthelmintic properties may in part depend on this oil, for Schirmer states, that in Abyssinia the plant is considered to have lost its anthelmintic powers in the third year after its collection. In Europe, however, it retains its powers for a longer period (on account of the cooler climate?); for the flowers which have been used for all the recent experiments have been collected more than four years, and we are told in the shop-bill of a Parisian pharmacist, that they may be kept for an indefinite period!

An infusion of a decoction of kosso strikes a dark green olive tint with a solution of the sesquichloride of iron.

Medicinal Properties.—Neither botanical characters, sensible qualities, nor chemical composition, would have induced us to suspect that kosso possesses the valuable anthelmintic properties which experience has shown that it does.

The general and prevailing quality of the Rosaceæ is astrigency, dependent on the presence of tannic and gallic acids. This is observed in the flowers (e. g. rose petals), as well as in other parts of the plants. In this quality kosso agrees with its congeneres. But it can scarcely be on this that its vermifuge property solely depends; otherwise rose petals, or any other equally powerful astrigent, would be as effective in expelling worms as these Abyssinian flowers. But in Rosaceæ, as in many other families of the vegetable kingdom, anomalies exist—and to this head we must for the present be content to refer kosso.

Our confidence in the anthelmintic properties of kosso, rests, then, on experience
only; and the evidence on this point is very strong. All modern travellers in Abyssinia are agreed on the great success of the remedy on the natives of that country; and the experience of physicians in France, England, Germany, and Switzerland, confirms the favourable reports made by those who have seen the kosso used in its native country.

In Paris it has been employed with great success by Chomel and Sandras (Ann. de Thérap. pour 1847), as well as by numerous other distinguished physicians. In London our experience of it is much more limited; but the successful results of its use in King's College Hospital, in the hands of Drs. Budd and Todd, (Lancet, March 16th, April 20th, and May 25th, 1850), and of Dr. Gull (Lancet, May 25th), in Guy's Hospital, confirm the favourable reports of its efficacy which had reached this country from abroad.

The physiological effects of kosso are not in general very great. Sometimes it excites a slight sensation of heat, nausea, or even vomiting, creates thirst, and frequently, perhaps usually, a gentle action on the bowels. But the latter is commonly so slight, that in a considerable number of cases it is necessary to follow its administration by a mild purgative. It is obvious, therefore, that the efficacy of kosso as an anthelmintic does not depend on its purgative or evacuant influence, but on its poisonous or toxie action on the worm; in fact, it is a true vermicide. In one case, that of a woman in France, it brought away ten worms, of which one only manifested evidences of vitality, and that for a few minutes only.

Kosso appears to be an effective anthelmintic in both kinds of tape-worm, viz. the Tenna solium, and Bothriocephalus latus. In most of the reported successful cases, the Tenna solium was the parasite expelled; but in one of Chomel's cases, the worm which was evacuated was the Bothriocephalus latus, and I am informed that kosso has proved most effectual in Switzerland, where, as is well known, the Bothriocephalus is the prevailing tape-worm.

The dealers in kosso assert that one dose will, in every case, effect the radical cure of tape-worm. But this must be obviously an error. Even supposing that it invariably destroys all the worms in the alimentary canal at the time of its exhibition, it can in no way prevent their recurrence, provided the patient retains his predisposition (which there is no reason to suppose is affected by the kosso), and is subjected to the same influence. It certainly does not radically cure the Abyssinians, since, as several writers tell us, they resort to this remedy monthly. Schimper, the Governor of Adoa, says it does not completely expel the tænia, or at least rarely does so. But, he adds, that possibly in Europeans, in whom the verminous disposition is not so pronounced as in the Abyssinians, it may perhaps act in a more complete manner. In the Abyssinians this verminous disposition is innate, and is dependent, he adds, on the regimen which they adopt.

Hitheerto the great drawback to the use of kosso has been the difficulty of procuring the remedy, and its enormous cost. At the time when it could be purchased in Paris its price was £1. 12s. per oz., or 17s. 6d. per dose. M. Roehet d'Hericourt, the sole holder of the medicine at the present time, refuses to sell any quantity less than his entire stock, at the rate of one guinea per ounce! His nephew tells me that his uncle possesses 1400 lbs. of it, which, at one guinea per ounce, will cost 22,400 guineas!!! The impossibility of effecting a sale on such terms will, I doubt not, ultimately compel the holder to reduce his demands to something approaching to reason. It does not appear that the remedy is very costly in Abyssinia. Schimper, writing from Adoa, in Abyssinia, says that it is found in commerce at a very low price. At Yangaro (commonly called Zingaro) the sovereign has the exclusive use of it, his subjects being prohibited from employing it; but in other parts free trade in kosso is permitted. Considering the frequency and rapidity of our communications with Egypt (to which place, according to Dr. Brayer, kosso is conveyed by caravans) no difficulty I apprehend will be experienced in obtaining an abundant supply of it. Its present price is a virtual prohibition of its use.

The flavour, though not very strong, is by no means agreeable; and is sufficiently powerful in some patients to create disgust and excite vomiting. In one case, under M. Chomel (Ann. de Thérap. pour 1847), the whole of the remedy was rejected by vomiting.

No ill effects have resulted from its use in this country; nor have I met with any statement of its injurious action, except in Mr. Johnston's Travels in Southern Abyssinia (vol. ii. p. 272, 1844), where it is stated that its "operation is speedy and effectual; and to judge by the prostration of strength it occasioned in my servants when they employed this medicine, it must be dreadfully severe. I can answer for this, that it occasions frequent miscarriages, often fatal to the mother, and even men have been
known, after a large dose, to have died the same day from its consequences. I am, therefore, surprised at the noise this remedy has occasioned the last few years in Europe, as if it promised to be a valuable addition to our Materia Medica. This, I conceive, can never be, for no civilised stomach could bear the bulk of the drug necessary to produce its effects. Even in Abyssinia it is but barely tolerated, and let another remedy equally efficacious for dislodging tape-worm be introduced into that country, and the use of kosso will be soon abandoned. In fact, several other vegetable productions are now employed to escape the punishment of a dose of this violent cathartic."

Administration.—Both Bruce (op. ante cit.) and Schimper (Bourchardat, *Annuaire de Thérapeute, pour 1849*, p. 257) tell us that the Abyssinians take a handful of the dried flowers as a dose. In Paris the dose has varied from four to six drachms. In general, however, half an ounce (troy weight) is considered a dose for an adult.

For different ages the doses are thus adjusted:—

- Adults .. 1 dose = 240 grs. (half-ounce)
- Children of from 7 to 12 years ½ of a dose = 160 grs.
- " 3 to 7 " ⅓ of a dose = 120 grs.
- " not exceeding 3 " ⅔ of a dose = 80 grs.

The kosso should be taken in the morning fasting. The only preparation necessary is, that the last meal of the previous evening should be slight. The evacuation of the bowels by a mild purgative or a lavement is also desirable.

The mode of administering the remedy is as follows:—The powdered flowers are to be mixed with luke-warm water (for an adult about ten ounces), and allowed to infuse for a quarter of an hour. A little lemon-juice is then to be swallowed, and, the infusion being stirred up, the whole is taken, liquid and powder, at two or three draughts, at short intervals, being washed down by cold water and lemon juice. To promote the operation, tea (without sugar or milk, may be taken. In three or four hours, if the remedy has not operated, a dose of castor oil or a saline purgative should be administered.

2. **Cherry Tree Gum.**—From the stems of the Cherry (*Cerasus avium*), Plum (*Prunus domestica*), and some other rosaceous trees, there exudes a mucilaginous liquor, which concretes into tears, forming the gummi nostras, cherry-tree gum (*gummi cerasi*), plum-tree gum (*gummi pruni*). It may be employed in medicine as a substitute for tragacanth gum. It consists of two gummy principles: one called arabinæ (see *gum Arabic*), soluble in cold water; the other termed *prunin* or cerasin, insoluble in cold, but soluble in hot water.

3. **Alchemilla arvensis**, Field Ladies’ Mantle, or Parsley Piert, is a small, indigenous, herbaceous plant, with green flowers. It belongs to *Tetrandria*, *Monogynia*, in the sexual system. It is astrigent (owing to tannic acid), and, perhaps, slightly mucilaginous. It was formerly eaten raw or pickled, and thought serviceable in cases of gravel or stone: hence it was called break-stone. Prout regards it as a diuretic, and as producing, in particular states of the system, a large secretion of lithic acid. A strong infusion of it, taken frequently, sometimes gives great relief, he says, in the less severe cases of the phosphatic or earthy deposit, where the source of irritation is chiefly confined to the urinary organs, and where the constitution is sound, and the strength not remarkably reduced.

4. **Bedeguar.**—On various species of *Rosa*, perhaps most frequently on *R. rubiginosa*, the Sweet Briar or Eglantine, is found a remarkable gall, called the Sweet Briar Sponge (*Bedeguar seu Fungus Rosarum*).

1 *Inq. into the Nat. and Treat. of Diabetes*, &c. 2d ed. pp. 149 and 185.
Pliny terms it, in one place, a little ball (pilula), in another a sponglet (spongiola). It is produced by the puncture of several insect species; viz. *Cynips Rosae* and *Brandtii* (both of which are elaborately described by Ratzeburg) and a species of *Mesoleptus*. Other species (as those of *Diglolepis* and *Pteromalus*) are also found in these galls; but they are probably parasites, and not the true inhabitants. The Bedeguar is usually rounded, but of variable size, sometimes being an inch, or an inch and a half or more in diameter. Externally it looks shaggy, or like a ball of moss, being covered with moss-like branching fibres, which are at first green, but become afterwards purple and red. The nuclens is composed principally of cellular tissue, with woody fibre; and where the fibres are attached, bundles of spiral vessels are observed. Internally there are numerous shells, in each of which is the larva of an insect: if opened about August or September, maggots (larvae) are usually found. It is inodorous, or nearly so; its taste is slightly astringent, and it colours the saliva brownish. It has not been analysed, but is suspected to contain tannic and gallic acids. Dried and powdered, it was formerly given in doses of from ten to forty grains, as a diuretic and lithotrptic. More recently it has been recommended as an anthelmintic, and as a remedy against toothache. Pliny says, the ashes mixed with honey were used as a liniment for baldness. In another place he speaks of the fungus being mixed with bear's-grease, for the same purpose.

Order LXII. Leguminosæ, Jussieu. — The Bean Tribe.

Fabaceæ, Lindley.

Characters.—Calyx of 5 (rarely of 4) sepals, more or less united at the base, and, therefore, 5-toothed, 5-cleft, or 5-partite; sepals unequal, in some cases almost equally coherent, in others concreted into 2 lips; the upper consisting of 2 sepals which are either free at the apex or united; the lower of 3 sepals generally distinct at the apex. Petals 5, or, by abortion, 4, 3, 2, 1, or none; generally unequal, inserted usually into the base of the calyx, rarely on the torus; in general variously imbricated, rarely valved, almost always free, sometimes united into a gamopetalous corolla. [In the sub-order *Papilionaceæ*, the petals form a butterfly-shaped or papilionaceous corolla, composed of a large upper petal, called vexillum or standard, two lateral ones, termed alæ or wings, and an inferior keel-shaped one denominated carina or keel, and which is, in fact, composed of two petals adherent by their margin. Stamen inserted with the petals, generally double the number of the latter, rarely triple or quadruple or fewer; altogether free, or the filaments variously connected, being monadelphous, with the tube entire or cleft above, or diadelphous 9 and 1, or 5 and 5, very rarely triadelphous: anthers two-celled. Carpel generally 1, the others being abortive; or 2 to 5. Ovary oblong or ovate, sessile or stipitate, free, or, very rarely adnate by the stipe to the calyx. Style 1, filiform, arising from the upper suture: stigma terminal or lateral. Legumes 2-valved, membranous, coriaceous, rarely fleshy or drupaceous, dehiscent or indehiscent, 1-celled; or by the folding in of one of the sutures, longitudinally 2-celled; or by isthmi or articulations, transversely many-celled. Seeds 2, or many.
or by abortion (?) solitary, affixed to the upper suture, inserted alternately into each valve, frequently oval or reniform; funiculus various, rarely expanded into an arillus; testa smooth, frequently very much so, and stony; endopleura often tumid, simulating albumen. Embryo sometimes straight [rectembrio], or curved [curvembrio], the radicle being infixed on the commissure of the lobes (homotropal or pleurorhizous); in either case the radicle directed towards the hilum; cotyledons foliaceous or fleshy; the first exert, the latter germinating within the spermoderm, under ground.—Trees, shrubs, or herbs, with alternate, bistipulate, simple, or variously-compounded leaves. — (Condensed from De Candolle, with additions within the square brackets).

Properties. — Exceedingly variable. Similar organs of different, though often closely-allied, species are frequently found to elaborate most dissimilar principles; and, of course, the dietetical, medicinal, or poisonous properties vary in a corresponding manner. — For details, consult Dierbach, Abhandl. üb. d. Arzneikräfte der Pflanzen; and De Candolle, Essai sur les Propri. Méd.

Sub-order I. Papilionaceæ.

269. MYROSPERMUM (Myroxylon), Species incertæ (Peruiferum), De Cand., E.-THE QUINQUINO.

Myroxylon peruiferum, Linn.

Sex. Syst. Decandria, Monogynia.

(Balsamum ex inciso trunco fusum, L.—Fluid balsamic exudation, E.—Balsamum, D.)

History.—The balsam of Peru was first mentioned by Nicholas Monardes under the name of balsamum.1 No accurate notions of the tree yielding it were entertained until 1781, when Mutis sent some branches of it to the younger Linnaeus.2 Ruiz3 afterwards described it.

Botany. Gen. Char.—Calyx campanulate, 5-toothed, persistent. Petals 5, the upper one largest. Stamens 10, free. Ovary stipitate, oblong, membranous, with 2 to 6 ovules; style towards the apex, filiform, lateral. Legume, with stalk naked at the base but winged superiorly, samaroidal [legumen samaroidæum, De Cand.], indehiscent, 1-celled, 1- or 2-seeded,

1 Clusius, Exot. 303.
2 Murray, App. Med. vi. 111.
3 Lambert, Illustr. of the Genus Cinchona, p. 92.
laterally pointletted by the style. *Seed* besmeared with balsamic juice: *cotyledons* thick, plane (De Cand.)

Sp. Char.—*Leaves* coriaceous, persistent, smooth as well as the *branches.* Wing of the *legume* very thick, not veined. *Style* deciduous (De Cand.)

Hab.—Peru, New Grenada, Columbia, and Mexico. Grows in low, warm; and sunny situations.—Flowers from August to October.

Collection.—Monardes\(^1\) says, that there are two modes of procuring the balsam; viz. incision into the bark of the tree, and coction of the branches and trunk in water. The first method yields a *white liquid balsam,* the second a *blackish red liquid.* Ruiz\(^2\) states, that the white liquid balsam is preserved for years in bottles, in the fluid state; but when deposited in mats or calabashes, which is commonly done in Carthagena, and in the mountains of Tolu, it, after some time, condenses, and hardens into resin, and is then denominated *dry white balsam,* or *balsam of Tolu;* while the extract made by boiling the bark in water is blackish, remains liquid, and is known by the name of *black Peruvian balsam.* There is, however, obviously some confusion in this statement; and several reasons have led pharmacologists to doubt whether the black balsam of the shops is obtained by coction. Ruiz does not speak from his own observation, but on the authority of Valmont de Bomare. Lastly, Hernandez\(^3\) says, the balsam obtained by incision is yellowish-black (*e* *fulvo in nigrum*). Professor Guibourt has received, from M. Bazire, balsam of Peru, which he obtained in great abundance on the coast of Son Sonaté, called the Balsam Coast, in the state of San-Salvador (the republic of Guatimala) by incisions in the stem of a *Myrospermum,* whose fruit is very different to that of *M. Toluiferum.*\(^4\) Th. Martius\(^5\) suggests, that the black balsam of Peru is procured by a kind of *destillatio per descensum;* but the absence of pyrogenous products in the balsam seems to me to be opposed to this opinion.

[M. Victor le Nouvel, who has been engaged in collecting this balsam since 1836, gives the following as the process used by the Indians to obtain it:—An incision is made into the tree of about two or three inches broad, and three to four inches long. They raise the bark from the wood, and apply cotton rags to it; a fire being lighted round the tree to liquify the balsam. Fresh incisions are made higher and higher up the tree, till the cotton rags are quite saturated. It takes from ten to twelve days to effect this. The rags are next boiled; and when the liquor is cold, the balsam collects below. Peruvian balsam always contains a good deal of water, sometimes as much as 60 per cent.\(^6\)—Ed.]

Commerce.—Balsam of Peru is imported in pear-shaped earthenware pots

4 *Hist. des Drog.* ii. 3\(^{me}\) éd. 590.
5 *Pharmacogn.*
pots and in tin canisters, from Valparaiso, Islay, Lima, Truxillo, Callao, Iquique, and Belize. The duty (1s. per lb.) paid on it during six years was as follows:—

<table>
<thead>
<tr>
<th>Year</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>1893</td>
</tr>
<tr>
<td>1835</td>
<td>243</td>
</tr>
<tr>
<td>1836</td>
<td>1880</td>
</tr>
<tr>
<td>1837</td>
<td>1381</td>
</tr>
<tr>
<td>1838</td>
<td>1798</td>
</tr>
<tr>
<td>1839</td>
<td>825</td>
</tr>
</tbody>
</table>

Description.—Balsam of Peru (balzamum peruvianum) called also black or liquid balsam of Peru (balzamum peruvianum nigrum) is a transparent deep reddish-brown or black liquid, which has the consistence of treacle, a powerful but agreeable odour, somewhat similar to that of vanilla and benzoin, and which is increased by dropping the balsam on a red-hot coal, and a warm, acrid, bitter taste. It is inflammable, and burns with a fuliginous flame. It is soluble in alcohol; the solution, however, is not clear, but lets fall after some time a deposit. To boiling water it yields its acid, usually stated to be the benzoic, but, according to Frémy and others, it appears to be the cinnamonic acid. Its sp. gr. is 1·150 to 1·160.

I have received from Professor Guibourt another balsamic substance under the name of balsam of Peru in cocoa-nut shells (baume du Pérou en cocos). The shell has the size and shape of a small lemon. The contained balsam is of a deep brown, colour, and has an odour very similar to that of balsam of Tolu. Guibourt says, "it appears to be formed of two kinds of matter: one more fluid, another more solid, grumous, and as it were crystalline. Its taste is mild and sweetish. It has a strong agreeable odour, between that of Tolu and soft liquidambar, but distinct from both."

The white balsam of Peru (balzamum peruvianum album) of Martinus, and other pharmacologists, is said, by Guibourt, to be the solid balsam of liquidambar already described.

Adulteration.—Balsam of Peru is said to be subject to adulteration; and the formulae given by Gray for making as well as for reducing (i.e. adulterating) it, lend support to this opinion. The demand for the balsam being small, the supply quite equal to or even exceeding the demand, and the price being moderate, are circumstances which appear to remove all motive for adulteration, which I do not think is at present practised in this country. The characters to be attended to in judging of its genuineness are, the purity of its odour, its complete solubility in, or miscibility with, alcohol (by which the absence of fixed oil is shewn), and its undergoing no diminution of volume when mixed with water (by which the absence of alcohol is proved). A sign of its purity is, that 1000 parts of it should saturate 75 parts of pure crystallized carbonate of potash.

Composition.—Balsam of Peru has been elaborately investigated by several chemists, and the results obtained are somewhat curious. In 1806 it was examined by Lichtenberg. Stoltze, in 1825, published an analysis of it.

1. *Trade List.*
3. *Suppl. to the Pharm.*
Richter, Plantamour, and Frémy have since examined the nature of its constituents.

Stolze's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown slightly soluble resin</td>
<td>2.4</td>
</tr>
<tr>
<td>Brown resin</td>
<td>20.7</td>
</tr>
<tr>
<td>Oil of balsam of Peru [cinnameine]</td>
<td>69.0</td>
</tr>
<tr>
<td>Benzoic [cinnamonic] acid</td>
<td>6.4</td>
</tr>
<tr>
<td>Extractive</td>
<td>0.6</td>
</tr>
<tr>
<td>Loss and moisture</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Balsam of Peru: 100.0

Frémy's Analysis.

1. An oily matter [cinnameine], frequently containing, in solution, a crystalline substance (metacinnameine; hydruret of cinnamyl).
2. Cinnamonic acid.
3. One or more resins (hydrates of cinnameine).

Balsam of Peru.

1. Oil of Balsam of Peru: Cinnameine of Frémy.—If an alcoholic solution of potash be added to an alcoholic solution of balsam of Peru, a compound of resin and potash (resinate of potash) is precipitated, while cinnamonate of potash and cinnameine are left in solution. On the addition of water the latter separates, and floats on the surface. It is to be purified by solution in petroleum. Cinnameine is a reddish-brown, acid, odourless, oily fluid, heavier than water, soluble in alcohol and ether, insoluble in water, and inflammable. Its composition, according to Frémy, is (taking the average of five experiments), carbon 79.0, hydrogen 6.26, oxygen 14.74. His formula for it, which, however, scarcely accords with this statement, is \(\text{C}_{32}\text{H}_{26}\text{O}_{8} \) [\(\text{C}_{14}\text{H}_{18}\text{O}_{3} \), Liebig]. Caustic potash effects a change on it analogous to saponification, and converts it into two equivalents of cinnamonic acid (equal to \(\text{C}_{11}\text{H}_{14}\text{O}_{6} \)) and a light oily fluid, which Frémy calls peruvine, whose composition is, carbon 79.6, hydrogen 9.3, oxygen 11.1, or \(\text{C}_{18}\text{H}_{22}\text{O}_{7} \) [\(\text{C}_{8}\text{H}_{18}\text{O}_{4} \), Liebig]. Cinnameine frequently (but not invariably) contains in solution a crystalline substance, termed metacinnameine, whose composition is, carbon 81.9, hydrogen 6.0, oxygen 12.1; its formula being \(\text{C}_{18}\text{H}_{22}\text{O}_{7} \), so that it is isomeric with hydruret of cinnamyl. Richter asserts that oil of balsam of Peru is composed of two distinct oils—one, called myroespermine, which is soluble in alcohol; the other, termed myroxiline, insoluble in alcohol. What relation these oils bear to cinnameine and peruvine has not yet been made out.

2. Cinnamonic Acid; Cinnamic Acid.—This constituent has usually been mistaken for benzoic acid. It is obviously formed in the balsam by the oxidation of the hydruret of cinnamyl, just as hydruret of benzole is transformed into benzoic acid. In those balsams of Peru which contain no metacinnameine, this principle has been entirely converted into cinnamonic acid.

3. Resin of Balsam of Peru; Hydrate of Cinnameine.—The quantity of resin in balsam of Peru augments daily. It is formed by the union of cinnameine with the elements of water; for its composition is, carbon 71.82, hydrogen 6.78, oxygen 21.40; or \(\text{C}_{34}\text{H}_{20}\text{O}_{12} \). So that this resin consists of one equivalent cinnameine, and four equivalents of water. It is not, however, formed at once, but it gradually undergoes different degrees of viscosity. Soft resin differs from the hard only in its elements of water. Sulphuric acid converts cinnameine into resin.

Such are the general results of Frémy's analysis; but the correctness of some of them may be fairly called in question. His formulæ do not always agree with his experimental results (see cinnameine). Plantamour denies the accuracy of several of Frémy's statements.

Physiological Effects.—Stimulant, slightly tonic, expectorant, detergent, and epulotic. Its action is similar to other balsamic substances, and is closely allied to that of storax and benzoin. Topically it operates as a stimulant and mild acrid; and when applied to foul indolent ulcers, often
VEGETABLES.—Nat. Ord. Leguminosæ.

cleanses them, and promotes their cicatrization. Taken internally, in full doses, it creates thirst, and quickens the pulse. Its stimulant influence is directed to the secreting organs, especially the bronchial mucous membrane. It is devoid of the powerful influence over the urinary organs possessed by copaiva and the turpentines, and its tonic powers are not equal to those of myrrh.

Uses.—Its supposed efficacy in curing external ulcers and healing wounds has led to its use in internal diseases, formerly apprehended to depend on ulceration, as in pulmonary affections supposed to be, or which really were, phthisis. But the observations of Dr. Fothergill1 in part led to the discontinuance of the indiscriminate use of balsams and other heating substances in these cases. Yet it proves serviceable in some old asthmatic cases, chronic pulmonary catarrhs, winter coughs, &c. It seems to be principally adapted to old-standing chronic affections of the mucous membranes (especially the bronchial mucous membrane), particularly in persons of a cold and torpid habit. Its stimulant influence is calculated only to aggravate acute cases.

Many other uses of balsam of Peru are now obsolete: as its employment in lead colic, as recommended by Sydenham; in gonorrhœa and leucorrhœa by Hoffman;2 in convulsions from repressed perspiration by Kirkland;3 and externally and internally in traumatic tetanus by Dr. Kollock.4 It is said to be now and then used in chronic rheumatism. The beneficial effects ascribed by Trousseau and Pidoux to the balsams in chronic laryngitis have been before referred to.

As a topical remedy, balsam of Peru is occasionally employed. It is applied either alone, or in the form of ointment, to indolent ill-conditioned ulcers; it cleanses them, promotes healthy granulation, and assists cicatrization. I have used it in some obstinate ulcerations about the nose. Dr. Ainslie5 speaks very highly of its powers of arresting the progress of phlegmonic and phagedenic affections, so common and destructive in India. He recommends lint, soaked in the balsam, to be applied night and morning. In offensive discharges from the ear, it is now and then dropped in after syringing. It is a constituent of some lip-salves. It was formerly esteemed as a vulnerary against wounds of the tendons and nerves. It is used by perfumers for scenting, and in the manufacture of fumigating pastiles.

Administration.—Dose, f3ss. to f3j. It may be taken on sugar, or made into pills with some absorbent powder, or diffused through water by means of sugar, honey, gum, or yolk of egg.

3 Treat. on Childbed Fever, p. 31, 1774.
4 Thacher's Dispensatory.
5 Mat. Ind. i. 65 and 406.
270. **MYROSPERMUM TOLUIFERUM, Richard, E.—THE BALSAM OF TOLU-TREE.**

Toluifera Balsamum, Miller, D.

Sec. Syst. Decandria, Monogynia.

(Concrete balsamic exudation, *L.*—Balsamum ex inciso trunco fusum concretum, *D.*)

History.—The earliest notice of balsam of Tolu is that of Monardes.¹ He tells us that the balsam had been recently imported.

Botany. Gen. Char.—See *Myrosporum peruiferum.*

Sp. Char.—Branches and leaves smooth. Leaflets oblong, acuminate, equilateral, rounded at the base (De Cand.)

The tree which yields the balsam of Tolu was formerly called *Toluifera Balsamum.* But Richard having carefully investigated the characters of the genus *Toluifera,* found that, with the exception of those of the fruit, which Miller had imperfectly described, they were identical with those of the genus now called *Myrosporum*; and as Ruiz states that the balsams of Peru and Tolu are both obtained from one tree, the *Myrosporum peruiferum* has been adopted by several writers, and by the London College, as the source of both balsams.

Richard² found specimens of the trees yielding these balsams in Humboldt's herbarium; and though he at first mistook them for the same species, he has subsequently recognised them to be different. He therefore made a distinct species of the tree yielding the balsam of Tolu, and it is now called *Myrosporum toluiferum.* It differs from *M. peruiferum* in its having thin, membranous, obovate leaflets, which are lengthened and acuminated at their summits. Moreover, the terminal leaflet is larger than the lateral ones.

Hab.—Mountains of Tolu, Turbaco, and on the banks of the Magdalena, between Garapatas and Monpox.

Production.—Balsam of Tolu is procured by making incisions into the bark of the tree, and receiving the liquid balsam in vessels made of a black wax. It is afterwards transferred into proper vessels. It only exudes from the tree during the heat of the day.³

Commerce.—Balsam of Tolu is sometimes brought direct from Carthagena, Santa Martha, and Savanilla; more commonly, however, it comes by way of New York or Jamaica. It is usually imported in cylindrical tin canisters; now and then in earthen pots or jars; still more rarely in small calabashes.

Description.—Balsam of Tolu (*balsamum tolutanum vel de Tolu*), when first brought over, is generally soft and tenacious, but by age becomes hard and brittle, somewhat similar to resin, and has a granular or somewhat crystalline appearance. Formerly it was imported in this hardened state, but is now usually met with in the soft state. It is transparent, has a reddish or yellowish-brown colour, a most fragrant odour, though less powerful than that of storax or Peruvian balsam, and a pleasant sweetish taste. It softens under the teeth; when heated, it readily melts, takes fire, and burns with an agreeable odour. It is very soluble in alcohol and ether, and gives out

¹ Clusius, *Exot.* 304.
³ Monardes, *op. cit.* 304.
its acid to water. The soft balsam contains more oil but less acid than
the dry balsam, the acid and the resin being formed at the expense of the
oil. Balsam of Tolu hardens or resinifies with much more facility than balsam
of Peru.

Balsam of Tolu in calabashes (balsamum tolatanum in cucurbitis
parris, Dale) occurs in calabashes (the fruit of Crescentia Cujete, according
to Sloane\(^1\)) about the size of an orange; the large aperture by which the
balsam has been introduced being closed with the rachis of the fruit of
Zea Mays.

Composition.—According to Frémy,\(^2\) the composition of balsam of Tolu
is similar to that of balsam of Peru, its constituents being cinnaméline, cin-
namonic acid, and resin. They differ, according to the same chemist,
from those of balsam of Peru by the greater facility with which they become
resinified.

Resin of Balsam of Tolu.—Is essentially the same as that of balsam of Peru, and,
like it, also forms a fine red colour with sulphuric acid; but it is less fusible than the resin
of the last-mentioned balsam. It consists of carbon 70·8, hydrogen 6·1, and oxygen 23·1; so
that it contains a larger proportion of the elements of water.

Physiological Effects and Uses.—The effects of balsam of Tolu are
similar to those of balsam of Peru, and the other balsamic substances. It is
employed as a stimulating expectorant in chronic bronchial affections, unac-
compaied with inflammatory action. It is, however, more frequently used
as an agreeable flavouring adjunct to pectoral mixtures. The vapour of the
ethereal solution of the balsam has been inhaled in chronic affections with
benefit. Tolu lozenges form a popular and pleasant remedy for appeasing
troublesome cough. The balsam is sometimes employed by confectioners to
flavour sweetmeats, as marmalade. It is also used in perfumery; and is a
constituent of some fumigating pastiles already described.

Administration.—The dose of the balsam is from grs. x. to 5ss. It may
be taken in the form of an emulsion, made with gum or sugar. It is a con-
stituent of the compound tincture of benzoin, L. D., before described.

1. Tinctura Tolutana, L. E. D.; Tincture of Tolu. (Balsam of Tolu,
3ij. [3iiss. in coarse powder, E.]; Rectified Spirit, Oij. [Oj. D.]. Digest
[with a gentle heat, E. D.] until the balsam is dissolved, and filter, L. [Let
it stand until the sediment subsides, then decant the clear tincture, D.].—A
stimulating expectorant, principally used as a flavouring adjunct to other
pectorals. Its use is, of course, objectionable in inflammatory cases. Dose,
f5ss. to f5ij. When mixed with water the resin is precipitated: hence it
should be rubbed with mucilage, or some viscid liquor, before adding the
water, to keep the resinous precipitate in suspension.

2. Syrupus Tolutanus, L. E. D.; Syrup of Tolu; Balsamic Syrup.
(Balsam of Tolu, 5x.; Boiling Distilled Water, Oj.; Sugar, lb. iiss. Boil
the balsam in the water for half an hour in a vessel lightly covered, fre-
quently stirring, and strain the cooked liquor; then add the Sugar, and dissolve

\(^1\) Hist. Nat. Jamaica, ii. 174.
it, L.—Simple Syrup, lbs. ij.; Tincture of Tolu, 3ij. When the syrup has been recently prepared, and has not altogether cooled, add the tincture of Tolu by degrees, agitating briskly, E.—Balsam of Tolu, 3ij.; Distilled Water, Oj.; Refined Sugar, in powder, as much as is sufficient. Boil the balsam in the water for half an hour, in a lightly covered vessel, occasionally stirring, and strain the liquor when cold; then, having added to it twice its weight of sugar, dissolve with the aid of a steam or water heat, D.)—Employed as an agreeable flavouring adjunct to pectoral mixtures.—Dose, f3j. to f5iv.

271. CYTISUS SCOPARIUS, Decand. L. E.—COMMON BROOM.

Spartium scoparium, Linn. D.

Sex. Syst. Diadelphia, Decandria.

Caeum recens et exsiccatum, L.—Tops, E.—Caeumina, D.

History.—It is uncertain who first mentioned this plant. The σπάρτιον of Dioscorides1 is Spartium junceum or Spanish Broom.2 The Genista of Pliny3 was probably the same plant, though the Roman historian was himself doubtful whether this plant was identical with that of the Greeks. Sprengel4 considers that Theophrastus was undoubtedly acquainted with Common Broom.

Botany. Gen. Char.—Calyx 2-lipped; the upper lip generally entire, the lower one somewhat 3-toothed. Vexillum ovate, large; keel very obtuse, enclosing the stamens and pistils. Stamens monadelphous. Legume plano-compressed, many-seeded, without glands.—Shrubs. Leaves trifoliolate (De Cand.)

Sp. Char.—Branches angular, smoothish. Leaves trifoliolate, stalked. Tops simple. Leaflets oblong. Flowers axillary, stalked, solitary. Legumes hairy at the margin (De Cand.)

A shrub, 3 to 6 feet high. Branches long, straight, and green. Leaves deciduous; upper ones generally simple. Flowers large, bright yellow; keel broad; vexillum and ale much spreading. Legumes large, dark-brown, containing 15 or 16 seeds.

Hab.—Indigenous; growing on dry hills and bushy places. Flowers in June.

Description. — Broom-tops (scoparium; cacumina scoparii) have a bitter, nauseous taste, and, if fresh, a remarkable odour when bruised.

Composition.—The flowers of broom contain, according to Cadet de Gas sicourt,5 concrete volatile oil, fatty matter, wax, chlorophylle, yellow colouring matter, tannin, a sweet substance, mucilage, osmazome, albumen, and woody fibre. The ashes amounted to 5.75 per cent., and contained 29 per cent. of carbonate of potash, besides chloride of potassium,

1 Lib. iv. cap. 158.
2 Smith, Prodr. Pl. Græc. ii. 53.
4 Hist. Rei Herb. i. 80.
5 Journ. de Pharm. x. 448.
sulphate of potash, chloride of calcium, nitrate, phosphate, and sulphate of lime, carbonates of lime, magnesia, and iron, and silica.—*Salt of broom*, or *sal geniste*, is obtained by burning the whole plant. It contains a large portion of carbonate of potash. Hill¹ says, that a pound of the green twigs, with the leaves and flowers, yields a drachm and a half of this salt.

[Dr. Stenhouse has separated, as he believes, the diuretic principle of the broom, and has tried its effects upon dogs and rabbits. When quite pure it is a yellow substance, and crystallizes in needles. This chemist found that the narcotic principle of broom is a volatile base, represented by the formula C₁₅H₁₃N. It is not quite so poisonous as conia or nicotine, but it produced in small doses a species of violent intoxication, followed by a profound slumber, from which the animal cannot be roused for a long time without great difficulty. To this base he gives the name of *Spartiine*.

The term *Scoparine* is applied by Dr. Stenhouse to a green gelatinous matter, which is formed in a concentrated watery extract of broom, after it has stood for one or two days in a cold place. Scoparine has no taste, and does not appear to be at all poisonous or injurious. The dose of scoparine required to produce a decidedly diuretic effect is five grains, repeated three times at intervals of three hours. *Spartiine* and its salts have an intensely bitter taste. The carbazotate cannot be distinguished from carbazotate of potash.—Ed.]

Physiological Effects.

a. *On Animals generally.*—In some parts of Europe broom is employed as winter food for sheep; and Withering says that it prevents the disease called rot, and is salutary in dropsy, to which sheep are liable. According to Loudon, it is apt to produce disease of the urinary organs, to prevent which a plentiful use of water is recommended.

b. *On Man.*—In large doses broom-tops are an emetic and purgative. In small doses they are diuretic and mildly laxative. As a diuretic they have been celebrated by Mead and Cullen.—"Though very little in use," says Dr. Cullen² "I have inserted this in my catalogue from my own experience of it. I found it first in use among our common people; but I have since prescribed it to some of my patients in the manner following:—I order half an ounce of fresh broom-tops to be boiled in a pound of water till one-half of this is consumed; and of this decoction I give two table-spoonfuls every hour, till it operates by stool and urine; and by repeating this exhibition every day, some dropsies have been cured." Having very frequently employed broom in dropsies, I can add my testimony to its powerful effects as a diuretic. I cannot call to mind a single case in which it has failed to act on the kidneys. In some cases it produced a most marked and beneficial effect on the dropsical effusion. According to my experience, it is more certain than any other diuretic in dropsies. Dr. Pearson³ terms broom a *tonico-diuretic*; and says it improves the appetite, and invigorates the whole system.

Uses.—It has been principally or solely employed in dropsies, and, as already mentioned, sometimes with great benefit. Of course its chance

¹ *Hist. of the Nat. Med.* 397.
² *Mat. Med.*
³ *Observ. on Broom-seed,* 1835.
of cure depends on the nature of the cause of the dropsical effusion. In acute inflammatory cases, as well as in diseased kidney, its use might be objectionable. It is said also not to be adapted to thoracic dropsy, especially when combined with pulmonary congestion, or any degree of inflammatory affection of the chest.

Administration.—Broom-tops are usually given in the form of infusion or decoction. The seeds, which keep much better than the tops, and on that account have an advantage over the latter, may be used in the form of powder, in doses of grs. x. to grs. xv. in mint water or cold ginger tea; or in the form of tincture (see Spartium junceum). To promote the operation of broom, diluents should be freely used.

DECOCTUM SCOPARI COMpositum, L.; Decoction Scopari, E. D.; Decoction of Broom. (Broom-tops, Juniper Berries, Dandelion Root, of each 3ss.; Distilled Water, Oiss. Boil down to a pint, and strain, L.—Broom-tops, and Juniper-tops, of each 3ss.; Bitartrate of Potash, 3iuss.; Water, Oiss. Boil them down together to a pint, and then strain, E.—Broom-tops dried, 3ss.; Water, Oss. Boil for ten minutes in a covered vessel, and strain. The product should measure about 3viij., D.)—Diuretic and laxative.—Dose fij. to fijj.

272. GLYCyrRhiza GLABRA, Linno. L. E. D.—COMMON LIQUORICE.

Sex. Syst. Diadelphia, Decandria.

(Radix recens et exsiccata, L.—Root; Extract of the root, E.—Radix, D.)

History.—The γλυκύρχης of Hippocrates, and that of Dioscorides,1 are doubtless identical; the latter is supposed by Sprengel2 and others to be our Glycyrrhiza glabra; by Diebach3 to be G. glandulifera, but by Dr. Sibthorp4 it is said to be the G. echinata, which is now termed in Greece γλυκύρχης. Glycyrrhiza glabra is called, in the Pharmacopœia Grœca, γλυκύρχης.

Botany. Gen. Char.—Calyx naked, tubular, 5-cleft, 2-lipped; with the two upper lobes united more than the others. Vexillum ovate-lanceolate, straight; keel 2-parted or 2-petalous, straight, acute. Stamens diadelphous. Style filiform. Legume ovate or oblong, compressed, 1-celled, 1- to 4-seeded.—Perennial herbs with extremely sweet roots. Leaves unequally pinnated. Racemes axillary. Flowers blue, violet, or white (De Cand.)

Sp. Char.—Leaflets ovate, slightly retuse, viscid beneath. Stipules 0. Spikes pedunculated [i. e. racemes], shorter than the leaves. Flowers distant. Legumes smooth, 3- or 4-seeded (De Cand.)

Stem erect, smooth, 4 or 5 feet high. Leaflets yellowish-green. Flowers papilionaceous, bluish or purplish.

1 Lib. iii. cap. 7.
2 Hist. Rei Herb. i.
3 Arzaciu, d. Hippokrates.
VEGETABLES.—Nat. Ord. Leguminosae.

Hab.—South of Europe. Cultivated at Mitcham in Surrey, and at other places, for medicinal use.

Description.—The underground stem is denominated liquorice-root (radix glycyrrhiza seu liquiritiae vel liquorice) or stick liquorice. It is in long cylindrical pieces, about the thickness of the finger. Externally it is grayish brown, internally yellow. Its odour is rather sickly and earthy; its taste remarkably sweet.

Commerce.—Liquorice root (G. glabra) was analyzed by Robiquet in 1809.1 Trommsdorff2 analyzed the root of G. echinata. The constituents of the fresh root of G. glabra are, according to Robiquet, glycyrrhizin, starch, asparagin, resinous oil, albumen, woody fibre, and salts (phosphate and malate of lime and magnesia).

1. Glycyrrhizin (Glycison or Liquorice Sugar.)—Belongs to the uncrystallizable sugars which are not susceptible of vinous fermentation. It is characterised by its affinity for acids, with which it unites to form compounds which are very slightly soluble only in water. It is yellow and transparent, and has the sweet taste of the root. It is soluble in both water and alcohol. Acids precipitate it from its solution. It combines also with bases, as well as with salts. It causes precipitates with many metallic solutions.

2. Resinous Oil.—To this constituent, liquorice root owes the slight degree of acidity which it possesses.

Physiological Effects.—Liquorice root and its extract are emollient, demulcent, and nutritive.

Uses.—Employed as an emollient and demulcent in catarrhal affections of the mucous membranes. It is also used as a flavouring adjunct to other medicines. Its powder is employed in the preparation of pills, either to give them a proper consistence, or to prevent their adhesion.

Administration.—For medicinal use the root should be decorticated, as the epidermis possesses a slight degree of acridity.

1. Extractum Glycyrrhizae, L. E. D.; Extract of Liquorice. (Of recent liquorice-root bruised, lb. iiss; boiling Distilled Water, Cong. ij.; macerate 24 hours, then boil to a gallon, and strain the liquor while hot; lastly evaporate to a proper consistence, L.)—(Liquorice-root in thin slices, dried and reduced to coarse powder, lb. j.; Distilled water, Oij.; proceed as for extract of Gentian, D.)—(Cut liquorice-root into small chips, dry it thoroughly with a gentle heat, reduce it to a moderately fine powder, and proceed as for extract of Gentian, E.)—Extract of liquorice is extensively imported under the name of liquorice juice, or, according to the countries from where it is brought, Spanish or Italian juice. Solazzi juice is most esteemed. The Spanish extract is prepared in Catalonia from G. glabra; while the Italian extract is obtained in Calabria from G. echinata.3 In 1839 there were imported 4059 cwt. of foreign extract of liquorice, the duty on which is £3. 15s. per cwt. It comes in cylindrical or flattened rolls of five or six inches long, and about one inch in diameter, and enveloped in bay leaves. When pure it is black and dry, with a glossy fracture

1 Ann. de Chim. lxii. 143.
3 Fée, Cours d'Hist. Nat. ii. 24.
and a sweetish taste; and is completely soluble in water. As met with in commerce, however, it is rarely pure. Neumann\(^1\) obtained 460 parts of watery extract from 480 of Spanish liquorice. It contains the soluble principles of the root, with some copper scraped off the boiler by the spatula employed to stir the extract during its preparation. Fée says, that four ounces of this extract yield two drachms and a half of metallic copper; but there must be some great mistake in this statement. If the foreign extract be dissolved in water, and the solution filtered and inspissated, we obtain refined liquorice. But I am informed that the pipe refined liquorice of the shops is a very adulterated article. The Pontefract lozenges are made of refined liquorice, and are much esteemed. Another preparation has been recently introduced under the name of quintessence of liquorice. Extract of liquorice is dissolved slowly in the mouth, to appease tickling cough. It is a very agreeable flavouring adjunct to other medicines. As it easily becomes soft by warmth it does not answer well as a pill-basis.

2. TROCHISCI GLYCRRHIZÆ, E.; Liquorice Lozenges. (Extract of Liquorice; Gum Arabic, of each 3vi.; Pure Sugar, lb. i. Dissolve them in a sufficiency of boiling water; and then concentrate the solution over the vapour-bath to a proper consistence for making lozenges.)—Employed in tickling cough and irritation of the fauces.

273. ASTRAGALUS, De Candolle.—MILK VETCH.

\(A. \text{ verus}, \text{ Olivier, } L.-A. \text{ gummifer, and probably } A. \text{ verus, and other species, } E.-A. \text{ gummifer (Labilladiere), D.} \)

Sex Syst. Diadelphia, Decandria.

(Succus e cortice exudatus ac induratus, L.—Gummy exudation, E. D.)

History.—Dr. Sibthorp\(^2\) states that the τραγύκανθα of Dioscorides\(^3\) is the Astragalus aristatus, which in the Peloponnesus is still called τραγύκανθα, and whose gum is annually sent to Italy.

Botany. Gen. Char.—Calyx 5-toothed. Corolla with an obtuse keel. Stamens diadelphous. Legume 2-celled, or half 2-celled, by the lower [dorsal] suture being turned inwards.—Herbs or shrubs (De Cand.)

Species 1. A. \text{ verus}, L. E.—Fowers axillary, in clusters of 2 to 5 sessile. Calyx tomentose, obtusely 5-toothed. Leaflets 8 to 9 pairs, linear, hispid (De Cand.)—A small shrub. Branches covered with imbricated scales and spines, the remains of former petioles. Flowers yellow, papilionaceous. Persia. According to Olivier the Tragacanth of Asia Minor, Armenia, and Northern Persia, forming the greater part of that of Europe, is yielded by this species.

\(^1\) Works, by Lewis, p. 425.
\(^2\) Prod. Pl. Grec. ii. 90.
\(^3\) Lib. iii. cap. 28.
2. A. Gummifer, D.—Flowers 3 to 5 axillary, sessile. Calyx 5-cleft, together with the legumes woolly. Leaflets 4 to 6 pairs, oblong-linear, smooth (De Cand.)—Lebanon. According to Labillardière this species yields Tragacanth (De Cand.) Dr. Lindley¹ received this plant from Mr. Brant, English Consul at Erzeroum, as the tragacanth plant of Koor-distan, which yields the white or best kind of tragacanth.

3. A. creticus.—Flowers axillary, sessile, clustered. Calyx 5-partite, with feathery, setaceous lobes rather longer than the corolla. Leaflets 5 to 8 pairs, oblong, acute, tomentose (De Cand.)—Mount Ida, in Crete, where it yields Tragacanth, according to Tournefort.

4. A. strobiliferus, Lindley.—Flowers capitate in an ovate, sessile, axillary strobile.—Bracts imbricated, pointletted, tomentose. Calyx feathery, 5-cleft. Segments of the Corolla equal. Leaflets 3-paired, woolly, oval, awned at the apex, narrow at the base (Lindley).—Koordistan.—This plant was sent by Mr. Brant as the "shrub from which the red or inferior species of gum tragacanth is produced."²

Production.—Tragacanth is a natural exudation from the stem of the before-mentioned plants. The cause of the exudation of this as of other gums is thus explained by De Candolle.³ The gummy matter resides in the bark and albumen; it is the nutritive juice of the plant; and its escape, therefore, is analogous to hemorrhage in animals: hence plants in which it spontaneously occurs are always in a sickly state. The mechanical cause of the expulsion of this juice is dependent on the unequal hygrometric properties of the different parts of the stem. The wood absorbs more moisture from the air than the bark, and hence it swells more. In consequence of its enlargement, it distends the bark, which, by the internal pressure of the wood, gives way, and the gummy matter escapes. This explanation is quite in conformity with facts mentioned by Labillardière,—that tragacanth flows only in abundance during the night, and a little after sunrise. A cloudy night, or a heavy dew, is, he thinks, necessary for its production; for the shepherds of Lebanon only go in search of this substance when the mountain has been covered during the night with thick clouds.

Description.—Tragacanth (gummi tragacantha) is frequently called in the shops gum dragon.—It is white, yellowish, or yellowish-brown, hard, tough, odorless, tasteless, swelling considerably in water, and forming a thick, tenacious mucilage. Two kinds of it are known.

1. Flaky Tragacanth: Smyrna Tragacanth (Martius): Tragacanth of the Astragalus verus?—This is the tragacanth usually found in English commerce. It occurs in moderately large, broad, thin pieces, marked with arched or concentric elevations.

¹ Botanical Register, May 1840.
² Ibid. Miscellaneous Notices, p. 38.
³ Phys. Vég. t. i.
2. Vermiform Tragacanth: Morea Tragacanth (Martius): Tragacanth of the Astragalus creticus?—This variety is rarely met with in this country, but is common on the continent. It occurs in small, twisted, filiform, spiral pieces. There is more starch in it than in the first variety.

Commerce.—Tragacanth is imported in cases and chests from Smyrna and other ports of the Levant. In 1836, duty (6s. per cwt.) was paid on 87 cwts.

Composition.—The ultimate analysis of tragacanth has been made by Hermann and by Guerin-Varry.

<table>
<thead>
<tr>
<th>Hermann’s Analysis</th>
<th>Guerin-Varry’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>10</td>
</tr>
<tr>
<td>Oxygen</td>
<td>10</td>
</tr>
<tr>
<td>Tragacanth gum</td>
<td>1</td>
</tr>
</tbody>
</table>

In 1805, Vauquelin\(^2\) made an examination of the proximate constituents of tragacanth. In 1815, Bucholz\(^2\), and in 1831 Guerin-Varry\(^4\), published proximate analyses of this gum.

<table>
<thead>
<tr>
<th>Bucholz’s Analysis</th>
<th>Guerin-Varry’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common gum</td>
<td></td>
</tr>
<tr>
<td>Bassorin</td>
<td>57</td>
</tr>
<tr>
<td>Gum Tragacanth</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gum Tragacanth</td>
<td>100·00</td>
</tr>
</tbody>
</table>

1. Tragacanthin.—Adragantin; Soluble gum or Arabis of Tragacanth.—The soluble gum of tragacanth is usually regarded as similar to gum Arabic, and hence it is called arabin; but is distinguished by silicate of potash and perchloride of iron producing no change in it, and by a peculiar appearance of the precipitate produced with alcohol (the precipitate is flocculent, and collects in a simple opaque and mucous mass.)—In common with arabin, it produces precipitates with diacetate of lead, protochloride of tin, and protonitrate of mercury. Oxalate of ammonia detects it in a calcareous salt.

2. Bassorin. Insoluble gum of Tragacanth.—The insoluble part of gum tragacanth is similar to that of gum Bassora, and hence it is called Bassorin. It swells up in water.

3. Starch.—Starch globules may be detected in the bassorin (when swollen up by water) both by the microscope and by iodine.

According to Guibourt\(^2\) tragacanth contains neither arabin nor bassorin, but is essentially formed by an organised gelatiniform matter, very different to gum Arabic both in its physical and its chemical properties, and which swells and divides in water, so as in part to pass through a filter. The insoluble part of tragacanth is, according to the same authority, a mixture of starch and lignin, which has nothing in common with bassorin. De Candolle suggests that the insolubility and swelling of tragacanth in water may arise from the gummy matter being contained in cells.

Physiological Effects.—Like other gums, tragacanth is emollient, demulcent, and nutritive; but difficult of digestion.

VEGETABLES.—Nat. Ord. Leguminosæ.

Uses.—Tragacanth, in powder, is used rather as a vehicle for active and heavy medicines (as calomel), than on account of its own proper effects. It is occasionally, however, taken as a sheathing or demulcent agent in irritation of the mucous membranes.

Administration.—Dose of the powder, ½ss. to ½ij.

1. Pulvis Tragacanthæ Compositus, L. E. ; Compound Powder of Tragacanth. (Tragacanth, bruised; Gum Arabic, bruised; Starch, of each, ½ss.; Pure Sugar, ¼ij. Rub the Starch and Sugar together to powder, then having added the Tragacanth and Gum Arabic, mix them together.)—Employed as a vehicle for the exhibition of active and heavy powders to children.—Dose for an adult, ½ss. to ½j.

2. Mucilago Tragacantæ, E..—(Tragacanth, ¼ij.; Boiling Water, 1/3ix. “Macerate for twenty-four hours, then triturate to dissolve the gum, and express through linen or calico,” E.—Employed in making pills and lozenges; also to suspend heavy powders, as the metallic oxides, in water. It has also been recommended as an application to burns.

274. Mucuna Pruriens, De Candolle, L. E.—Common Cowhage, or Cow-itch.

Sex. Syst. Diadelphia, Decandria.

(Fructus pubes, L.—Hairs from the pod, E.—The hairy down of the pod, D.)

History.—One of the earliest writers who mention this plant is Ray.¹ It was long confounded with the M. prurita, Hooker.

Botany. Gen. Char.—Calyx campanulate, 2-lipped; the lower lip trifid, with acute segments, the middle one the longest; the upper lip broader, entire, obtuse. Vexillum ascending, shorter than the alæ and keel; alæ oblong, as long as the keel; keel oblong, straight, acute. Stamens diadelphous; anthers 10, of which 5 are oblong-linear and 5 ovate, hirsute. Legume oblong, knotted, 2-valved, with cellular partitions. Seeds roundish, surrounded by a circularly linear hilum.—Twining herbs or shrubs. Leaves pinnately trifoliate. Racemes axillary. Legumes usually hispid and stinging, by the innumerable very brittle hairs which readily penetrate the skin (De Cand.)

Sp. Char.—Flowers in racemes. Legumes stinging, with somewhat keeled valves. Leaflets hairy beneath, acuminate; the middle one rhomboidal, the lateral ones dilated externally (De Cand.)—Root perennial. Stem herbaceous. Flowers with a disagreeable alliaceous odour; vexillum flesh-coloured; alæ purple or violet; keel greenish-white.

Hab.—West Indies.

Mucuna prurita, Hooker.²—A native of the East Indies; has been usually con-

¹ Hist. Plant. i. 887.
² Bot. Miscell. ii. 348.
founded with the American _M. pruriens_; but is distinguished by its smaller leaves, its more obtuse (not acuminated) leaflets, the middle one being more truly rhomboidal; its flowers more constantly in threes, and by its legumes being greatly broader, compressed, free from any raised line on the back of the valve; whilst in the American _M. pruriens_ the pods are much narrower, terete, and keeled on the valves.

Description.—*Cowhage* or *Cow-itch* (*siliqua hirsuta*) is the legume of the Mucuna pruriens (*legumen mucune, stizolobii, vel dolichos pruriens*). It is of a brownish colour, is shaped like the letter \mathcal{J}, about four or five inches long, contains from four to six seeds, and is clothed with strong, brown, bristly, stinging hairs (*pubes leguminis; setae siliquae hirsute*), which, examined by the microscope, appear like porcupines' quills, but are slightly notched or serrated towards the point.

Composition.—The hairs contain tannic acid.\(^1\)

Physiological Effects.—A decoction of the root or of the legumes is said to be diuretic, and was formerly used in dropsy.\(^2\) The setae applied to the skin produce intolerable itching, and, in some persons, pain, redness, swelling, and even an eruption. These effects, which are increased by rubbing, but diminished by the application of oil, are referrible to the mechanical properties of the setae.

Uses.—The setae have been celebrated for their anthelmintic properties. Their action is supposed to be mechanical; that is, they are supposed to pierce and torment intestinal worms, and thereby to oblige them to let go their hold. In support of this explanation, Mr. Chamberlaine\(^3\) tells us he sprinkled some of the hairs in a calabash full of very large round worms (*Ascaris lumbricoides*), and that in a little time the animals began to writhe and twist about, evincing thereby extreme torture. On examining them with a magnifying glass, the hairs were found sticking loosely in various parts of their bodies. Their usual want of action on the internal coat of the intestines is ascribed to the mucous secretion which defends the subjacent membrane from injury. In one case diarrhoea followed the use of a very large dose of the electuary, and in another instance enteritis came on, after taking this preparation once; but it is not certain that these were consequences of the operation of the hairs\(^4\).

Cowhage has been principally celebrated for expelling the large round worm (*Ascaris lumbricoides*), and the small thread-worm (*A. vermicularis*). It has not proved equally serviceable against the tape-worm (*Teneja solium*).

Administration.—The best mode of exhibiting the setae is in treacle, syrup, or honey. The quantity of hairs should be sufficient to give the syrup, or treacle, the consistence of honey, or of an electuary; and of this mixture a tea-spoonful may be given to children, and a table-spoonful to adults: this dose should be taken twice a day—namely, at going to bed, and in the morning an hour before breakfast. Chamberlaine says it usually operates more effectually where a gentle emetic has been premised. After continuing the electuary for three or four days, a brisk purgative of jalap, or senna, should be taken, which will in general bring away the worms.

\(^1\) Martinus, *Pharmacogn.*
\(^3\) *Pract. Treat. on Stizolobium, or Cowhage*, p. 57, 9th edit. 1804.
\(^4\) Chamberlaine, *op. cit.* p. 65.
275. PTEROCARPUS SANTALINUS, Linn. L. E.—THREE-
LEAVED PTEROCARPUS.

Sex. Syst. Diadelphia, Decandria.
(Lignum, L.—Wood, E.)

History. — Avicenna\(^1\) mentions red sandal wood (sandalus rubens). García\(^2\) thinks the term sandal is a corruption of chandama, the name by which the wood is known in Timor.

Botany. Gen. Char.—Sepals 5, cohering to form a 5-toothed calyx. Petals 5, forming a papilionaceous corolla. Stamens 10; the filaments variously combined. Legume indehiscent, irregular, somewhat orbicular, surrounded by a wing, often varicose, 1-seeded. Cotyledons thick, incurved; radicle somewhat inflexed at the base of the embryo.—Unarmed trees or shrubs. Leaves unequally pinnated (De Cand.)

Sp. Char.—Arboreous. Leaflets 3 (rarely 4 or 5?), roundish, retuse, glabrous. Racemes axillary, simple or branched. Petals long-clawed, all waved or curled on the margins. Stamens combined into a sheath, split down to the base on the upper side, and half way down on the lower. Legume long-stalked, surrounded by a broad, membranous wing, obtuse at the base, 1- or rarely 2-seeded (Wight and Arnott).

A lofty tree. Flowers yellow, with red veins.

Hab.—Mountains of Coromandel and Ceylon.

Description. — Red Sandal or red Sander's wood (lignum santali rubri; lignum santaliniun rubrum) is imported in roundish or somewhat angular billets, which are blackish externally, but of a blood-red internally. It is compact, heavy, of a fibrous texture, but is capable of taking a fine polish; almost tasteless, and inodorous, except when rubbed, when it emits a feeble smell. It scarcely communicates colour to water. Alcohol, as well as alkaline solutions, readily extract the colouring matter. The alkaline solution is violet-red, and forms a precipitate (santalin) on the addition of acids. The alcoholic solution produces precipitates with several metallic solutions: thus, violet with solutions of lead, scarlet with corrosive sublimate, and deep violet with sulphate of iron.

Composition.—Red sandal wood was analysed by Pelletier,\(^3\) who found in it a peculiar colouring matter, which he called santalin (about 16·75 per cent.), extractive, gallic acid, and woody fibre.

Santalin is dark red, with a resinous appearance; almost insoluble in water, but soluble in alcohol, alkaline solutions, ether, acetic acid, and slightly so in some of the volatile oils (as the oils of lavender and rosemary). The effects produced on its alcoholic and alkaline solutions by salts, &c. are similar to those above mentioned on the tincture of the wood. The composition of santalin is, carbon 75·03, hydrogen 6·37, oxygen 18·6; or C\(^{16}\)H\(^{16}\)O\(^{3}\).

Uses.—It is employed in medicine as a colouring agent. (See Tinctura Lavandulae composita.)

\(^1\) Canon. lib. ii. tract ii. cap. 656.
\(^2\) Clusius, Exot. 173.
\(^3\) Journ. Phys. lxxix. 268.

Sex. Syst. Diadelphia, Decandria.

(Succus ex inciso corticis fusus, soli induratus, L.—Kino Indicum; Concrete exudation of this and other undetermined genera and species, E.—Kino [planta yielding it unnamed], D.

History.—In 1757 Dr. Fothergill\(^1\) described an astringent gum, which he supposed (though on very loose evidence) to have been brought from the river Gambia; and hence he termed it Gummi rubrum astringens gambiense. In 1774 it was introduced into the Edinburgh Pharmacopoeia as Gummi kino; and in 1787 into the London Pharmacopoeia as Resina kino. It was described under this designation in the 3d edition of Lewis’s Exp. Hist. of the Mat. Med., by Dr. Aikin, in 1784. In 1794 Schenck\(^2\) published an inaugural dissertation on it. I have not been able to ascertain why it was called kino; nor can the precise nature of the substance referred to be now ascertained. Several years since I accidentally found, in the warehouse of an old drug firm in London, a substance marked Gummi rubrum astringens, which I was told had formerly fetched a very high price. It has subsequently proved to be Butea gum. I was at first inclined to believe that it was the original astringent gum of Fothergill, and it has been described by Professor Guibourt\(^3\) as gomme astringente de Gombie. But a more attentive perusal of Dr. Fothergill’s paper has led me to doubt their identity (see Butea gum). It is somewhat remarkable, however, that the Hindu name for Butea gum is kuemi or kuenee, from which the European term kino may probably be derived.

Botany. Gen. Char.—See Pterocarpus santalinus.

Hab.—Malabar.

Extraction of the Juice of Pterocarpus erinaceus.—“When an incision is made” in the trunk and branches of the tree, “the juice flows out, at first of an extremely pale-red colour, and in a very liquid state; but it soon coagulates, becoming of a deep blood-red hue, and so remarkably brittle, that its collection is attended with some difficulty.”\(^4\)

Commerce of Kino.—Two substances are met with in English commerce under the name of kino,—one called Botany Bay Kino, which is the inspissated juice of the Eucalyptus resinifera (before described), the other, apparently an extract, imported from Bombay and Tellicherry, and which may be termed East Indian Kino. The latter is presumed to be the substance referred to in the British pharmacopoeias, as it is always regarded in commerce as genuine gum kino. It is imported in boxes, chiefly from Bombay or Tellicherry.

\(^1\) Med. Obs. and Jour. i. 358, 4th edit. 1776.
\(^2\) Coll. Diss. med. Marburg, t. v.
\(^3\) Hist. des Drogs. i. 428, 3me édit.
In my museum I have several other substances, apparently extracts, which I have received as kino, mostly from Professor Guibourt, who has described several of them in his Hist. des Drog. ii. 428. One of these is, perhaps, Jamaica kino. A second I received as Colombian kino. A third I believe to be foreign extract of rhutany. I have never met with them in English commerce, and therefore think it needless to describe them.

DESCRIPTION.—East Indian kino (kino indicum seu ostindicum), sometimes called Amboyina kino (kino amboïnense), and usually known in the shops as gum kino (kino, Ph. L. E. D.), occurs in small, angular, glistening fragments, the larger of which appear almost black, the smaller being reddish. When entire they are opaque, but in thin laminae are transparent and ruby-red. They are brittle between the fingers, soften in the mouth, stick to the teeth, and colour the saliva red. They are inodorous, but have a very astringent taste. Both water and alcohol acquire, by digestion on kino, a deep red colour. The aqueous decoction becomes turbid on cooling. The mineral acids and solutions of gelatine, emetic tartar, acetate of lead, sesquichloride of iron, and nitrate of silver, produce precipitates with the watery infusion.

In the former edition of this work the tree yielding East Indian kino was said to be unascertained; but that it was probably a native of the Malabar coast, for all the importations of East Indian kino which I had traced were from Bombay or Tellicherry. An experienced East India broker had assured me it was the produce of the Malabar coast. As Pterocarpus eriaceus is not known to grow in India, there is no ground for ascribing East Indian kino to that species. The London College have now made kino the produce of Pterocarpus marsupium, which Dr. Roxburgh¹ says yields an astringent inspissated juice exceedingly like Butea gum. I am indebted to Mr. Edward Solly for a sample of extract of Pterocarpus marsupium, which he received from Dr. Gibson. It is a dark red, tenacious, acidulous, moderately astringent substance. It differs, therefore, from the gummy resin which Dr. Roxburgh describes as being the product of this tree. This accurate naturalist describes it as being very brittle, and having a strong, but simply astringent taste; characters which apply to East Indian kino.

COMPOSITION.—East Indian kino was analyzed by Vauquelin², who found its constituents to be as follows:—tannin and peculiar extractive 75, red gum 24, insoluble matter 1. A. W. Buchner³ has subsequently shown that catechine is a constituent of kino. To this substance, which has been before noticed, kino owes its power of communicating a green colour to the salts of iron.

PHYSIOLOGICAL EFFECTS.—Astringent. Less effective, and less readily dissolved in the alimentary juices, than catechin, to which in its operation it is closely allied.

USES.—Employed in medicine as an astringent only; principally in obstinate chronic diarrhoea. In this disease it is usually given in combination with chalk, and frequently with opium. In pyrosis the compound powder of kino (i.e. opium and kino) has been found serviceable. Dr. Pemberton⁴

¹ *Fl. Ind. iii. 235.*
³ *Pharm. Central-Blatt, für 1833, S. 629 and 652.*
⁴ *Diseases of the Abdom. Viscera.*
ascrives to kino a power of restraining the discharge of the mucous glands of the intestinal canal when they are secreting too much, and of contracting vessels already too much relaxed, without exerting any such power over the glands and vessels when they are acting naturally. It has been administered as an astringent in *leucorrhoea* and *sanguineous exhalations*, and as a tonic in *intermittents*. As a topical astringent it has been applied to flabby ulcers, and used as a gargle, injection, and wash.

Administratation. — The dose of the powder is grs. x. to 3ss.

1. **Tinctura Kino**, L. E.; *Tincture of Kino*. (Kino, bruised, ʒiiiss.; Rectified Spirit, Oij. Digest for seven days, and strain. "This tincture cannot be conveniently prepared by the process of percolation," E.) — Astringent. Used in diarrhoea and hemorrhages, generally as an adjunct to the chalk mixture. Dose, f3ij. to f5ij. — It is said that by keeping this tincture has in some instances become gelatinous, and lost its astringency. Where this occurred probably the *Botany Bay kino* (inspissated juice of the *Eucalyptus resinifera*) had been employed.

2. **Pulvis Kino Compositus**, L.; *Compound Powder of Kino*. (Kino, ʒxv.; Cinnamon, ʒss.; Dried Opium, ʒj. Rub them separately to a very fine powder; then mix them.) — Twenty grains of this powder contain one grain of opium. This powder is employed as an astringent in chronic diarrhoea and pyrosis. The dose of it is grs. v. to ṣj.

Sub-order II. Mimoseæ.

277. Acacia, De Candolle.—**Various Species Yielding Gum, E.**

Acacia species varie, L. — *Acacia* varek et A. vera, D.

Sex. Syst. Polygamia, Monoeccia.

(Gummi, L. D.—Gum, E.)

History. — The Shittah tree¹, whose wood is mentioned in several parts of the Old Testament², is supposed to have been an *Acacia*. By some it has been thought to have been the *A. vera*,³ by others the *A. horrida*.⁴ Hippocrates speaks of the *Acacia*,⁵ which he sometimes calls the *Egyptian Acacia*,⁶ at other times the *White Acacia*.⁷ He is usually supposed to refer to *Acacia vera*; but Dierbœc⁸ is of opinion that *A. Senegal* is meant; which, he observes, is distinguished by its white bark, white wood, and white

¹ Isaiah, xli. 19.
² As Exod. xxv. 5.
⁴ Picture Bible.
⁵ *Acacia* or *Thorn*, p. 568, ed. Fæs.
⁶ *A. aegyptiaca*, p. 671.
⁷ *A. levkē*, p. 632.
⁸ Aristeim. d. Hippok.
flowers, and therefore the term white could apply to it only. Furthermore, the white fragrant ointment¹ was probably prepared from the flowers of the A. Senegal, and not of A. vera, whose flowers would yield a yellow ointment, and have not such an agreeable odour as those of the former species. Hippocrates² also mentions gum (κόμπι), which he used in medicine. Delile³ considers the Ἀκακία δέσφας (Thirsty Thorn) of Theophrastus⁴ to be Acacia Seyal, which Pliny⁵ calls Spina sitiens.

Botany. Gen. Char.—Flowers polygamous. Calyx 4- to 5-toothed. Petals 4 to 5, either free or cohering to form a 4- to 5-cleft corolla. Stamens varying in number, 10 to 200. Legume continuous, juiceless, 2-valved.—Shrubs or trees. Thorns stipular, scattered, or none. Flowers yellow, white, or rarely red, capitate or spiked (De Cand.)

Species. 1. A. vera, Willdenow, L. D.; Mimosa nilotica, Linn.; Egyptian Thorn.—Spines in pairs. Branches and leaves smooth. Pinnae 2 pairs; leaflets 8 to 10 pairs, oblong-linear; with a gland between the pinnae. Flowers in globose heads; heads about two together, stalked, axillary. Legume moniliform, (De Cand.)—Middling-sized tree. Flower-heads bright yellow.—A native of Arabia, and of Africa from Senegal to Egypt. Its fruit, termed Egyptian and Senegal bablah (bablah d’Egypte et du Sénégal, Guibourt), has been employed in tanning and dyeing. The succus acacie vera is the inspissated juice of the unripe fruit, and was formerly used as an astringent. Acacia vera yields gum Arabic, and also a portion of the gum Senegal.

2. A. arabica, Willd. D.; Acacia nilotica, Delile; Mimosa arabica, Roxburgh.—Spines in pairs. Branches and petioles pubescent. Pinnae 4 to 6 pairs; leaflets 10 to 20 pairs, oblong-linear, with a gland beneath the inferior and often between the last pinnae. Flowers in globose, stalked, axillary, subterminal heads. Legume moniliform (De Cand.)—A small tree. Flower-heads yellow.—Considered by Ehrenberg to be a variety of the preceding species.—A Native of Senegal, Egypt, Arabia, and India.—Its fruit, termed Indian bablah (bablah de l’Inde, Guibourt), is used for tanning and dyeing, Probably yields part of the gum Arabic and East Indian gum.

3. A. karoo, Hayne, Nees and Ebermaier.—Cape of Good Hope. Said to yield Cape gum.

4. A. Gummifera, Willdenow.—Arabia; Africa, near Mogadore. Said by Forskål⁶ to yield a gum, which is collected by the Arabs. Probably furnishes, in part at least, Barbary gum.

¹ Μήρον λευκή αἰγυπτίων, p. 265.
² Pages 667 and 686.
³ Flore d’Egypte, p. 286, fol.
⁶ Fl. Ägypt. Arab. cxxiv.
5. A. Seyal, Delile.—Egypt and Senegambia. Yields a gum which forms part of gum Senegal. The tears are white, hard, vitreous, and vermiform.

6. A. tortilis, Forskål, Nees and Ebermaier.—Arabia. Its gum is collected by the Bedouins of the desert.

7. A. Ehrenbergii, Hayne, Nees and Ebermaier.—Arabia. Its gum is collected by the Bedouins of the desert.

8. A. Senegal, Willdenow; A Verek, Adanson.—Arabia and Africa, from Senegal to the Cape of Good Hope. Abundant in the forest of Sahel, near Senegal. Yields gum Senegal in vermiform, ovoidal, or spheroidal tears, which are wrinkled externally, but are transparent internally.

Production of Gum.—The gum of the Acacia trees flows, in the liquid state, from the trunk and branches, and hardens by exposure to the air. It usually exudes spontaneously (see some remarks on the cause of the exudation of gum, ante, p. 1836). In some instances, however, the discharge is facilitated by incisions. In Barbary the largest quantity of gum is procured during the hot and parching months of July and August. “The more sickly the tree appears, the more gum it yields; and the hotter the weather, the more prolific it is. A wet winter and a cool or mild summer are unfavourable to the production of gum.”

In Senegal the gum begins to flow when the tree first opens its flowers; and it continues during the rainy season till the month of December, when it is collected for the first time. Another collection of the gum is made in the month of March, from incisions in the bark, which the extreme dryness of the air at that time is said to render necessary.

Commerce.—Acacia gum is the produce of Africa principally, and of Asia. It is imported from the Levant and other parts of the Mediterranean, from Barbary, Senegal, the East Indies, and the Cape. It comes over in chests, casks, skins, serons, and bags. The duty on it is 6s. per cwt. The following are the quantities on which duty was paid in 1839:

<table>
<thead>
<tr>
<th>Description</th>
<th>Carts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gum from the East Indies</td>
<td>7,869</td>
</tr>
<tr>
<td>Senegal gum</td>
<td>24,698</td>
</tr>
<tr>
<td>Other sorts of gum</td>
<td>7,759</td>
</tr>
<tr>
<td>Total</td>
<td>40,326</td>
</tr>
</tbody>
</table>

Description.—Acacia gum (gummi acacie) occurs in variable-sized tears, which are inodorous, more or less coloured, have a slightly sweetish taste, and a greater or less degree of transparency. Ehrenberg asserts that the characters of gum of the same species of plant are liable to considerable variation. Thus the same tree may yield a transparent or an opaque,—a light or a dark coloured, gum. The following are the most important varieties of Acacia gum:

1 Jackson, _Account of the Empire of Morocco_, p. 137, 3d edit.
2 Adanson, _Mém. de l'Acad. des Sc. de Paris_, p. 8, 1773.
4 _Trade List._
1. **Turky or Arabic Gum** (Gummi turceicum seu arabicum; Gummi Mimose verum, Martius; Gomme arabique vraie, Guibourt.)—This is imported from Leghorn, Malta, Trieste, Gibraltar, Smyrna, Alexandria, Beyrout, Constantinople, &c. It is the produce of *Acacia vera*, and probably of other species, especially *A. arabica*. It occurs in rounded tears, or amorphous or angular pieces, varying in size from a pea to that of a walnut, or even larger than this; some of the pieces being transparent, others more or less opaque, from innumerable cracks extending through them. It has a glassy lustre, is white, yellow, or wine-yellow, and has no odour, or, if any, an acid one. Its specific gravity varies from 1·316 to 1·482. It may be readily broken into small fragments. It is entirely soluble in water, the solution having the property of reddening litmus, and being feebly opalescent. The latter property is said, by Guerin, to be owing to a small quantity of insoluble nitrogenous matter present. The white pieces constitute the *gummi elecutum* of our druggists. On the continent they are called *gum Turic* (gomme Turique), from Tor, the name of a seaport of Arabia, near the isthmus of Suez: while the red pieces are sometimes said to constitute the *gum Gedda* (gomme Jedda, or Gedda), so called after another port. Gum Gedda is occasionally imported into this country unmixed with other kinds of gum. In all the entries of it which I have been able trace, it came from Alexandria in barrels.

2. **Barbary or Morocco Gum** (Gummi Barbaricum).—This is imported from Mogadore and Mazagan. In 1830, there were imported from Tripoli, Barbary, and Morocco, 2063 cwts. of gum. Barbary gum is probably the produce of *Acacia gummifera*. Jackson says, it is obtained from a high thorny tree, called Attaleh. The best kind is procured from the trees of Morocco, Ras-el-wed, in the province of Suse, and Bled-hummer, in the province of Abda:—the second qualities are the produce of Shedma, Duguella, and other provinces. I have two varieties of Barbary gum: one (the *Gomme de Barbarie* of Guibourt) is in roundish or irregular tears, mixed with many impurities, imperfectly transparent, and of a dull yellowish colour, with a faint tint of green.—It is imperfectly soluble in water, and has some analogy to Senegal gum. The other kind (called *Mogadore gum*) is in small, angular, broken, mostly yellow, pieces, which resemble fragments of Turkey gum.

3. **Gum Senegal** (Gummi Senegalense).—This gum is imported from St. Louis, St. Mary’s, the river Gambia, Senegal, and Bathurst. In 1839, duty (6s. per cwt.) was paid on 24,698 cwt. Gum Senegal is probably obtained from several species of *Acacia*; but especially *A. Senegal*, *A. vera*, *A. Seyol*, and *A. Adansonii*, are said to produce it in part. It occurs in larger tears than those of Turkey or Arabic gum. On breaking them we frequently find large air-cavities in their centres. Occasionally we meet with whitish pieces, but for the most part they are yellow, reddish yellow, or brownish red. More difficulty is experienced in breaking or pulverizing this gum than gum Arabic, and its fracture is more conchoidal. The taste of this gum is similar to that of the last.

1 *Parliamentary Return.*
Guibourt distinguishes two varieties of this gum, one of which he terms Gomme du Bas du Fleuve, or gum Senegal, properly so called; the other the Gomme du Haut du Fleuve, or Gomme de Galam. The first is probably the produce of Acacia Senegal, while the second is procured from A. vera. There is but little difference between them: yet gum Galam has a greater resemblance to Turkey gum than Senegal gum has; the pieces are more broken, and therefore more brilliant, than those of gum Senegal, properly so called. Those pieces of gum which have on some part of them a yellowish opaque skin or pellicle constitute the Gomme pelliclée of Guibourt. The Marrons de Gomme, or Gomme lignirode, of the same pharmacologist, is also found in the Senegal gum of commerce: it consists of yellowish or dark brownish pieces, which are difficult to break, opaque and rough. Treated with water it is partially dissolved, leaving, says Guibourt, a residue of gnawed wood (bois rongé). Guibourt states, that in most of the marrons he has found a large ovoid cell, which had been the habitation of the larvae of some insect; whence he concludes that this substance is the work of an insect.

4. East India Gum (Gummi indicum ostindicum).—This variety is imported principally from Bombay. In 1839, duty (6s. per cwt.) was paid on 7,869 cwts. It is probably the produce of various species. Many pieces agree in their physical and chemical characters with Turkey and Arabic gum, and are probably the produce of Acacia arabica, or some allied species (yellow E. I. Gum). Others, however, are larger, red or brown, and more difficult to pulverize than Turkey or Arabic gum (brown E. I. gum). Are these the produce of Feronia Elephantum?

I have received from Bombay three varieties of gum: one marked Macella best gum Arabic, very similar to gum Galam; a second, marked Mocha and Barbary gum, in large reddish coloured, rough tears; and a third, denominated Surat inferior gum Arabic, in smaller dark-coloured tears.

5. Cape Gum (Gummi Capense).—This is imported from the Cape of Good Hope. In 1829 there was exported from the Cape 16,943 lbs. and two cases of gum. In 1830 the quantity imported into the United Kingdom was only 1 cwt. 3 qrs. 14 lbs.; but since then the importation has greatly increased. Mr. Burchell says, Cape gum is obtained from a species of Acacia (which he has figured in vol. i. pp. 189 and 325) closely resembling A. vera, and which he calls A. capensis (A. Karoo, Hayne?). It is most abundant on the banks of the Gariep, and between the Cape and the Gariep. Notwithstanding that he asserts the quality of Cape gum is in no way inferior to that of A. vera, it is considered by our dealers as a very inferior kind. It is pale yellow; and its appearance resembles Mogadore gum (see p. 1846), or small fragments of Turkey gum. It is collected by the Caffres. Gum has also been imported from Australia and South America. A sample

1 McCulloch, Diet. of Com.
2 Parliamentary Return.
of South Australian gum, which the author examined, had more the appearance of Cherry tree gum (cerasin) than of Gum Acacia.

Besides the preceding gums, there are several others described by continental pharmacologists, but which are almost unknown in English commerce. Such are the following:—

a. Gum Bassora; Gummi Toridonnense.—This gum occurs in variable-sized pieces, which are whitish or yellowish, and opaque. When put into water it swells up, but dissolves only in part. The insoluble portion has been called bassorin. Its origin is unknown. Virey thinks that it is produced by a Mesembryanthemum; Desvaux and Damart, by a Cactus.

β. Gum Kutteera.—Considered by Guibourt as identical with the preceding; but the sample given me by Professor Royle is very distinct. It has considerable resemblance to the flaky tragacanth (p. 1836), for which it has been attempted to be substituted. It is, probably, the produce of Sterculia urens, a plant belonging to the family Byttneriaceae.γ. Under the name of Hog Gum I have met with, in commerce, an unsaleable gum, which greatly resembles a sample sent me by Professor Guibourt, as gomme pseudo-adraganthe, or gomme de Sassa. It is in reddish yellow, somewhat transparent masses, many of which are twisted like a snail’s shell or an ammonite. Some of these are eight or nine inches in diameter. It is yielded by the Maronecha Coccinea, a guttiferous plant.

Adulteration.—The inferior and cheaper kinds of gum (as the Barbary, East Indian, and Senegal gums) are not unfrequently substituted for the Turkey or Arabic gum, especially in the form of powder. Flour (or starch) is sometimes mixed with powdered gum; the adulteration is readily recognized by the blue colour produced on the addition of a solution of iodine to the cold mucilage of suspected gum.

Composition.—Several ultimate analyses of gum have been made. The most important are those of Berzelius, Prout, Guerin, and Mulder.

<table>
<thead>
<tr>
<th>Gum Arabic</th>
<th>Gum Senegal</th>
<th>Soluble part of Gum Bassora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berzelius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>41·906</td>
<td>41·4</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>6·788</td>
<td>6·23</td>
</tr>
<tr>
<td>Oxygen</td>
<td>51·806</td>
<td>50·07</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>a trace</td>
<td>0·01</td>
</tr>
<tr>
<td>Total</td>
<td>100·000</td>
<td>100·00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>41·4</td>
<td>45·10</td>
<td>43·59</td>
<td>44·92</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>6·5</td>
<td>6·10</td>
<td>6·23</td>
<td>6·09</td>
</tr>
<tr>
<td>Oxygen</td>
<td>52·1</td>
<td>48·80</td>
<td>50·07</td>
<td>48·99</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0·0</td>
<td>0·0</td>
<td>0·11</td>
<td>0·00</td>
</tr>
<tr>
<td>Total</td>
<td>100·00</td>
<td>100·00</td>
<td>100·00</td>
<td></td>
</tr>
</tbody>
</table>

The formula $\text{C}_{13}\text{H}_{13}\text{O}_{12}$ agrees with the analyses of Berzelius and Prout. Mulder gives, as the formula for gum Arabic, $\text{C}_{12}\text{H}_{10}\text{O}_{10}$. Liebig gives $\text{C}_{12}\text{H}_{11}\text{O}_{11}$. According to the first formula the atomic weight will be $=186$; according to the second $=162$; and the third $=171$.

The proximate analysis of gum has been made by Guerin:—

2. Roxburgh, Fl. Indica, iii. 146.
3. See his Hist. des Drog. ii. 447, 8me édit.
5. Phil. Trans. for 1827.
Physiological Effects; Physiological Effects. 1849

<table>
<thead>
<tr>
<th>Soluble gum (Arabia)</th>
<th>Gum Arabic</th>
<th>Gum Senegal</th>
<th>Gum Bassora</th>
</tr>
</thead>
<tbody>
<tr>
<td>79:40</td>
<td>81:10</td>
<td>11:20</td>
<td></td>
</tr>
<tr>
<td>Insoluble gum (Bassorin)</td>
<td>0:00</td>
<td>0:00</td>
<td>61:31</td>
</tr>
<tr>
<td>Water</td>
<td>17:60</td>
<td>16:10</td>
<td>21:89</td>
</tr>
<tr>
<td>Ashes</td>
<td>3:00</td>
<td>2:80</td>
<td>5:60</td>
</tr>
<tr>
<td>Total</td>
<td>100:00</td>
<td>100:00</td>
<td>100:00</td>
</tr>
</tbody>
</table>

1. Soluble Gum or Arab.;—Is a colourless, inodorous, insipid, uncrystallisable solid, soluble in both hot and cold water, but insoluble in alcohol, ether, and oils. It combines with alkalies. Sulphuric acid converts it into a saccharine substance. 100 parts of arabin treated with 400 parts of nitric acid yielded Guerin 10:88 of mucic acid, with a little oxalic acid. From cerasin or prunin, it is distinguished by its solubility in cold water. The characters by which it is distinguished from tragacanthin, carrageenin, and cydonin, have been already pointed out. According to Guerin, arabin consists of carbon 43:81, hydrogen 6:20, oxygen 49:85, and nitrogen 0:14.

2. Insoluble Gum or Bassorin.—Is distinguished by its insolubility in water, both hot and cold. It absorbs water, and swells up. It is insoluble in alcohol. 100 parts treated by 1000 of nitric acid furnished 22:01 of mucic acid, with a little oxalic acid. It consists, according to Guerin, of carbon 37:28, hydrogen 55:87, oxygen 6:85.

3. Salts.—The ashes of gums Arabic and Senegal consist of carbonates of potash and lime, with minute portions of chloride of potassium, oxide of iron, aluminium, silica, and magnesia. The carbonate of lime is formed by the decomposition of the malate of lime contained in the gum, while the carbonate of potash results from the decomposition of acetate of potash.

Chemical Characteristics.—Gum Arabic is soluble both in hot and cold water, forming mucilage. Its fresh solution has an acid reaction, probably from some vegetable, and alcohol added in excess precipitates the gum from it. Diacetate of lead causes a white precipitate (gummate of lead) with the solution, but a solution of pure Acacia gum is not precipitated by neutral acetate of lead. A solution of silicate of potash (prepared by fusing three parts of carbonate of potash with one part of silver sand) causes a white flaky precipitate. Oxalate of ammonia gives a white precipitate (oxalate of lime). When a concentrated solution of neutral sesquichloride of iron is dropped into strong solution of gum, and the mixture stirred, the whole becomes, in a few minutes, a brown semi-transparent jelly. Nitrate of mercury produces a precipitate with a solution of gum.

Physiological Effects. a. On Animals generally.—The effects of injecting solutions of gum into the veins of animals (horses and dogs) have been examined by Viborg, Scheele, and Hertwich. From their experiments it appears that small quantities only can be thrown into the circulation with impunity. From half a drachm to one or two drachms of gum, dissolved in one or two ounces of water, disorder the respiration and circulation of horses; while five or six drachms of gum give rise to an affection of the nervous system, manifested by stupor and paralysis, or convulsions. Some of these effects (namely those on the pulmonary and vascular system) may arise from the non-miscibility of mucilage with the blood, and its consequent mechanical influence in obstructing the capillary circulation of the lungs.

b. On Man.—Regnardot injected three drachms of gum, dissolved in

three ounces of water, into the veins of a man aged twenty years. In half an hour the patient was very chilly; his pulse was small and quick, and he had three liquid stools. The chilliness was succeeded by great heat, and after fifteen hours an eruption appeared on the skin.

The local action of a solution of gum is that of an emollient, and (by its sheathing properties) demulcent. It is not known to possess any action over remote parts, though some have supposed it to have the power of diminishing irritation in the urinary organs.

Uses.—Gum is employed in medicine as an emollient and demulcent, but more frequently as a vehicle for the exhibition of other medicines. It is sometimes slowly dissolved in the mouth, to allay troublesome cough, and to diminish irritation of the fauces, by diluting the acid secretions, and sheathing the parts from the action of the atmosphere. In inflammatory affections of the intestinal tube, as well as of the respiratory and urinary organs, gum is used as an emollient and demulcent. As a sheathing substance, a solution of gum may be employed in acid poisoning; but of course its efficacy is mechanical merely. Powdered gum is occasionally applied to check hemorrhage from leech bites. As a vehicle for the exhibition of other medicines, it is employed in the form either of powder or mucilage. The former is used to give bulk to active and heavy powders; as calomel, emetic tartar, &c., and in the preparation of lozenges. The latter is employed to suspend insoluble powders (as oxide of zinc and musk,) in water, or to diffuse oily and resinous substances through aqueous fluids,\(^1\) and to give form and tenacity to pills. Furthermore, the adhesive qualities of mucilage render it exceedingly useful for various other pharmaceutical purposes, although it is now generally superseded by dextrine.

Administration.—The dose of powdered gum is from 3ss. to 3j., or ad libitum.

1. Mucilago, E.; Mucilago Acacie, D.; Mucilage. — (Acacia, powdered, 3ix.; Cold Water, Oj. The gum to be dissolved without heat, but with occasional stirring, and the solution to be strained through linen or calico.—The Dublin College employs 3iv. of coarsely-powdered Gum to 13vij. of Water. Dissolve the gum in the water with occasional stirring; then strain through flannel.—By keeping, mucilage, or solution of gum, readily becomes sour by the development of acetic acid. The pharmaceutical uses of mucilage have been above referred to. To render different substances miscible with aqueous vehicles, different proportions of mucilage are required. "Oils will require about three-fourths of their weight, balsams and spermaceti equal parts, resins two parts, and musk five times its weight."\(^2\)

2. Mistura Acacle, L. E.; Acacia Mixture.—The mixture of acacia of the London College is similar to the mucilage of the other two Colleges. The formula is as follows:—Acacia, powdered, 3x.; Distilled Water, boiling, Oj. Rub the acacia with the water, gradually poured in until it is dissolved. Hot water is not necessary for this preparation; and in the author’s opinion

\(^2\) Montgomery, Obsere. on the Dubl. Pharm.
it has a tendency to acidify the gum, and render the solution somewhat acid.
The Edinburgh College gives the following formula for the acacia mixture,
which is a compound preparation, and not merely a solution of gum in
water:—Mucilage, $\frac{1}{3}$ j.; Sweet Almonds, $\frac{3}{5}$ x.; Pure Sugar, $\frac{3}{5}$ v.; Water,
Oij. Steep the almonds in hot water, and peel them; beat them to a
smooth pulp in an earthenware or marble mortar, first with the sugar, and
then with the mucilage; add the water gradually, stirring constantly; then
strain through linen or calico.—Demulcent and emollient. Applicable to
the same purposes as Mistura Amygdalae, already mentioned.—Dose, $\frac{1}{3}$j.
to $\frac{1}{5}$ j.

3. TROCHISCI ACACIAE, E.; Gum Lozenges.—(Gum Arabic, $\frac{5}{4}$ iv.; Starch,
$\frac{3}{5}$ j.; Pure Sugar, lb. j. Mix and pulverize them, and make them into a
proper mass with rose-water for forming lozenges.)—An agreeable pectoral.
Employed to allay the tickling in the throat which provokes coughing.

278. ACACIA CATECHU, Willdenow, L. E. D.—THE CATECHU
ACACIA.

Mimoso Catechu, Linn.

Sex. Syst. Polygania, Monocæia.

(Ligni exterioris extractum, L.—Extract of the Wood, E.—Extractum ex ligno, D.)

History.—It is somewhat uncertain who first described Catechu. Garcias
ab Orto1 was of opinion that it was the Λύκων Ιρίδων of Dioscorides;2
but Dr. Royle,3 in a very elaborate and learned paper on this subject, has
apparently proved that the preparation referred to by the latter author is the pro-
duce of Berberis Lycium, Royle.

Botany.—Gen. Char. —See Acacia (p. 1844).

Sp. Char.—Arboreous. Branches armed with stipulary thorns, or occa-
sionally unarmed. Young shoots, petioles, and peduncles, more or less
pubescent. Leaves bipinnate; pinnae 10 to 30 pairs; leaflets 30 to 50
pairs; petiole sometimes armed on the under side with a row of prickles,
with one large gland below the lowest pair of pinnae, and between the ex-
treme 1 to 6 pairs. Spikes axillary, 1 to 4 together, shorter than the
Legumes flat, thin, straight, linear, glabrous, 4- to 8-seeded (Wight and
Arnott). Tree from 15 to 20 feet high. Bark brown and scabrous. Wood
hard and heavy; the interior (dura men) brown, dark red, or blackish;
the exterior (alburnum) white, one or two inches thick. Flowers whitish
or pale yellow.

Hab. —Various parts of the East Indies; now common in Jamaica.

Manufacture of Catechu.—The manufacture of Catechu from the
Acacia Catechu, as practised in Canara and Behar, has been described by

1 _Classis Exot._ lib. i. cap. 10, p. 163.
2 Lib. i. cap. 132.
3 _Linn._ _Trans._ vol. xvii. p. 83.
Mr. Kerr and Dr. F. Buchanan Hamilton, while Dr. Royle has explained the process followed in Northern India. According to the last-mentioned gentleman, "the Kutt manufacturers move to different parts of the country in different seasons, erect temporary huts in the jungles, and selecting trees fit for their purpose, cut the inner wood into small chips. These they put into small earthen pots, which are arranged in a double row along a fire-place built of mud (choola); water is then poured in until the whole are covered: after a considerable portion has boiled away, the clear liquor is strained into one of the neighbouring pots, and a fresh supply of material is put into the first, and the operation repeated until the extract in the general receiver is of sufficient consistency to be poured into clay monlds, which, in the Kherree Pass and Doon, where I have seen the process, are generally of a quadrangular form. This Catechu is usually of a pale-red colour, and is considered there to be of the best quality. By the manufacturers it is conveyed to Saharunpore and Moradabad, whence it follows the course of commerce down the Ganges, and meets that from Nepal, so that both may be exported from Calcutta."

Description—The term Catechu (from cate a tree, and chu juice) is applied to various astringent extracts (sixteen of which I have in my collection) imported from India and the neighbouring countries. A few years ago the terms Catechu, Terra japonica, and Cutch, were employed synonymously; they are now, however, for the most part, used in trade somewhat distinctively, though not uniformly in the same sense. In the *Edinburgh Pharmacopoeia* catechu is correctly stated to be the "extract of the wood of Acacia Catechu, of the kernels of Areca Catechu, and of the leaves of Uncaria Gambir; probably, too, from other plants. The following may be taken as a classification of the varieties of catechu commonly met with:

1. **Gambir Catechu; Catechu from Uncaria Gambir.**—The method of preparing Gambir, and the properties of the different commercial varieties of this extract, have been already described (see p. 1683). I may further observe, however, that the origin of these varieties of catechu I consider to be satisfactorily made out. They are imported under the name of Gambir from Singapore (where the Uncaria Gambir is cultivated, and an extract prepared from it); they agree with the published descriptions of gambir; and lastly, I find them to be identical with the gambir brought by Mr. Bennett from Singapore, and deposited in the Museum of the Medico-Botanical Society. [In the *London Pharmacopoeia* the Gambir catechu is described as an extract of the leaf of Uncaria Gambir.—Ed.]

2. **Betel-nut Catechu; Catechu of the Areca Catechu.**—The mode of preparing Betel-nut Catechu, as described by Heyne, has been already stated. Two kinds of astringent extract are said by him to be prepared from these seeds: one called Kassu, which is black, and mixed with paddy-husks; the other termed Coury, which is yellowish-brown, has an earthy fracture, and is free from the admixture of foreign bodies. I have

2 *Journey from Madras through Mysore, Canara, and Malabar*, vol. iii. p. 177, 1807.
3 *Illust. p. 182.*
been able to identify Kassu among the extracts of commerce; but have not satisfactorily made out Coury.

KASSU; Dark-brown Catechu in circular flat cakes; Colombo or Ceylon Catechu or Cutch (Cachou brun, orbiculaire et plat, Guibourt). Imported from Ceylon. Cakes round, flat, covered on one side with paddy husks (glumes of rice), from two to three inches in diameter, scarcely one inch thick, and weighing from two to three ounces. Internally they are dark, blackish brown and shiny, exactly resembling Pegu Catechu. Examined by the microscope it is found to contain numerous large crystals. Common. Quality excellent.—A decoction of this catechu becomes turbid on cooling, and frequently produces a blue colour with a solution of iodine, owing to the presence of the rice starch.

That this extract is Kassu, and is obtained from Areca Catechu, is proved by two facts:

a. It agrees with the Kassu of Heyne in its dark colour, and in being intermixed with paddy husks.

β. It is imported from Ceylon, in which island catechu is obtained from Areca Catechu. For this information I am indebted to a letter (in my possession) addressed by Mr. Lear, acting superintendent of the Botanic Garden in Ceylon, to my late friend Mr. F. Saner, assistant-surgeon in Her Majesty's 61st regiment, then stationed at Colombo. The letter is dated November 17, 1838, and contains the following passage: “Of kino and gambir I am quite unacquainted, and also of the trees which produce them. I should be glad [of] any information on the subject. An extract from Areca Catechu (specimens of which I will procure you) has been supposed to be the Tern Japonica of the shops; but it is generally supposed to be produced from Acacia Catechu, a plant not in Ceylon.”

3. Cutch; Catechu of the Acacia Catechu.—It is probable that a considerable number of the astringent extracts brought from India as catechu are the produce of the Acacia Catechu. Hitherto, however, a small number only have been positively identified.

α. Pale, dull Catechu in square Cakes; Cachou terne et parallélipipède, Guibourt. Cachou en manière d'écorce d'arbre, A. Jussieu. This perhaps is the Bengal Catechu of Davy.

It occurs in square cakes, usually about two inches long, two inches broad, and one in thickness. Usually these cakes are irregularly broken, so that it is difficult to trace their angular character. They are heavier than water. Externally their colour is dark brown or blackish; internally we observe darker and lighter layers, disposed in a schistose manner, like the bark of a tree. The darker layers are brown and somewhat shiny, the lighter ones are dull reddish white. Examined by the microscope it is found to consist principally of small crystals. A decoction of one part of this catechu and twelve parts of water lets fall, on cooling, a copious whitish precipitate of catechine. I find this kind of catechu to be identical with the specimens brought by Dr. Royle from India, and which he saw prepared from Acacia Catechu. Moreover it probably is the kind, the manufacture of which Mr. Kerr described; for he says it is in square pieces, the finest being whitish. So that it is manufactured in Bahar, as well as in the more northern parts of India.

β. Dark shiny Pegu massive Catechu; Pew Catechu; Cutch; Cachou en masse, Cachou lucide, Cachou du Butea frondosa, Guibourt. It is imported from Pegu in large masses, weighing sometimes a cwt. each. These masses are made up of layers composed of prismatic pieces, each from six to ten inches long, and two or three inches broad and deep. Each piece is enveloped in the leaves of Nauclea Brunnonis, a native of Tavoy, Wallich. Cat. (not of Butea frondosa, as formerly supposed). When fractured, these pieces present a dark blackish-brown shiny surface, free from all impurities; some of the pieces, however, having a more reddish tint than the others. Their taste is bitter and astringent. Fée states, though I know not on what authority, that this variety contains 57 per cent of tannic acid. Pegu catechu is largely employed, I am informed, for dyeing. The greater part of that brought
to this country is exported for continental use. According to Herbert de Jäger the catechu of Pegu is obtained from the Acacia Catechu; and he adds, that it is celebrated throughout India.

γ. Dark Catechu in balls.—I have two varieties of dark-coloured catechu in balls:—

αα. Enveloped in leaves.—This agrees in its appearance with the Pegu Catechu above mentioned, and like the latter is enveloped in leaves, apparently of the Nauclea Brunonis. The balls are round and about the size of small oranges (Pegu Catech in balls?).

ββ. Covered with Paddy Husks.—Balls more or less flattened, not exceeding the size of a small orange, and covered with paddy husks (glumes of rice). In other respects identical with the preceding. It agrees with the kind referred to by Dr. B. Hamilton, as being procured from Acacia Catechu. When the extract, he says, has acquired the thickness of tar, it is allowed to harden for two days, so that it will not run. "Some husks of rice are then spread on the ground, and the inspissated juice is formed into balls about the size of oranges, which are placed on the husks or on leaves."

4. Catechu of unknown origin.—The origin of the larger proportion of the catechus which I have met with, I have not been able to ascertain.

α. Brown Catechu in conical masses from Siam.—This variety has recently been imported from Siam in bags. It is in masses shaped like a betel-nut, or rather that of a mullar or truncated olive, each weighing about a pound and a half. The flattened base is marked with the impression of the leaf of Nauclea Brunonis. Internally this catechu is shiny and liver-coloured, strongly resembling hepatic aloe. In its other qualities it agrees with Pegu Catechu.

β. Catechu in flat cakes.—Under the name of Catch I have received a catechu in flat cakes like the Colombo Catechu, but unmixed with rice glumes. The cakes have a rusty appearance externally.

γ. Black mucilaginous Catechu; Cachou noir et mucilagineux, Guibourt.—In parallelopipeds of eighteen lines on the side, and an inch high. Internally black and shiny, somewhat similar to extract of liquorice. Quality bad.

δ. Dark-brown siliceous Catechu in flattened, circular, or quadrangular cakes; Cachou brun siliceux, Guibourt. Formerly called by druggists Terra Japonica. Perhaps the Bombay Catechu of Sir H. Davy. It is in round or flattened masses, varying in weight from two or three ounces to several pounds; externally it is of a dull dark-brown or rusty-colour, internally being shiny and blackish brown. It is very heavy, and contains a large quantity of fine sand. Guibourt says, 100 parts of this catechu yielded 25 parts of earthy matter. But some of the specimens contain a much smaller proportion of earthy matter. Quality bad.

e. Dull reddish Catechu in balls; Cachou en boules, terne et rougeâtre, Guibourt.—In the collection of the Medico Botanical Society of London, it is marked American Catechu. Balls flattened, weighing three or four ounces, covered on one side with glumes of rice. Its fracture is dull, reddish, wavy, and often marbled. Quality good.

ζ. Pale or Whitish Catechu in irregular lumps; Cachou blanc, Guibourt.—I received this from Bombay, under the name of Katha suffusa (i. e. pale or white catechu). It is in lumps, which vary in size from that of a walnut to that of a small apple. The general form is rounded or oval, and somewhat flattened, the surface being very uneven, and of a dark or blackish brown colour. Internally this variety is dull, and of a very pale colour. Guibourt says, it is almost white; but it has a pale-yellowish or brownish-red tint. Its taste is bitter, astringent, and sweetish, with a smoky flavour. Hence, perhaps, the dark colour externally is derived from the masses being dried, or exposed to the smoke of a fire.

Composition.—Two kinds of Catechu were analysed by Sir H. Davy. In 1833, Buchner discovered in catechu a peculiar substance which has been denominated Catechine.
Catechu Agacia:—Chemical Characteristics; Uses.

Davy's Analyses.

<table>
<thead>
<tr>
<th></th>
<th>Bombay.</th>
<th>Bengal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taunnic acid</td>
<td>54.5</td>
<td>48.5</td>
</tr>
<tr>
<td>Peculiar extractive</td>
<td>34.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Mucilage</td>
<td>6.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Insoluble matter (chiefly sand and lime)</td>
<td>5.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Catechu ... 100.0

1. Catechine.—This has been already noticed (see Uncaria Gambir).

2. Tannic Acid.—The general properties of this acid have also been described. It is this substance which renders catechu so valuable to the tanner. The peculiarities of the tannic acid of catechu have been studied by Berzelius, but in consequence of the subsequent discovery of catechuic acid they require re-examination. The tannic acid of catechu is easily soluble in water and alcohol, but very slightly so in ether. The aqueous solution becomes coloured by exposure to the air. Its combinations with acids are very soluble. Alkalies do not precipitate it.

Chemical Characteristics.—The brown, filtered decoction of catechu reddens litmus, yields a blackish-green colour and precipitate (catechuate and tannate of iron) with the ferruginous salts, and a brownish-white one with acetate of lead. A solution of gelatine renders the cooled decoction turbid (tannate of gelatine). Alkalies deepen the colour of the decoction, but cause no precipitate. Sulphuric acid renders the decoction slightly turbid. The filtered decoction of several kinds of catechu (especially pale catechu in broken square cakes) deposits, on cooling, catechine. The decoction of dark-brown catechu, in circular flat cakes, when cold becomes blue (iodide of starch) on the addition of a solution of iodine.

Purity.—The Edinburgh College states that “the finest qualities [of catechu] yield to sulphuric ether 53, and the lowest qualities 28 per cent. of tannic acid dried at 280°.” This proceeding, however, is not to be relied on as a test of the astringency of catechu, which can only be determined in the usual way by gelatine. This College errs in supposing that the ethereal extract is necessarily either wholly or in great part tannic acid; for catechuic acid, which constitutes a large portion of some kinds of catechu, is soluble in ether.

Physiological Effects.—Catechu produces the local and general effects of the astringents already described. When of good quality it is more powerful than kino. In its operation it is closely allied to rhatany root (Krameria triandra).

Uses.—Employed as an astringent in the following cases:—

1. In affections of the mouth and throat.—In various affections of the mouth and throat I have frequently employed catechu, and found it a convenient and efficacious astringent. Thus, in relaxed uvula, and in that slight chronic inflammatory affection of the throat usually denominated the relaxed sore throat, and which is especially observed in delicate females, catechu, chewed or sucked, is a most useful remedy. The pure kinds of catechu should be selected, especially avoiding those that are gritty. Catechu in the form of lozenges may be also employed. The pale kinds of catechu (as gambir, before described,) are usually sweeter and more agreeable than

1 Traité de Chim. t. v. 588.
the dark varieties. To public speakers or singers it is supposed to be useful; it prevents or diminishes hoarseness consequent on a too frequent use of the vocal organs. In slight ulcerations of the mouth also it is useful.

2. As a stomachic in dyspeptic complaints.—I have known catechu chewed with advantage in dyspeptic complaints. It should be used just before taking food: it promotes the appetite, and assists digestion.

3. As an alvine astringent it may be employed in old-standing diarrhoeas and dysenteries, when there are no inflammatory symptoms present. It is often conjoined with the chalk mixture, and not unusually with opiates.

4. As an astringent in hemorrhages of an atonic character. A scruple of catechu, with grs. xij. of confection of opium, and a sufficient quantity of aromatic confection to make a bolus, was a favourite prescription of Dr. Babington, sen. in immoderate flow of the menses.¹

5. In lead colic it was recommended by Grashius.²

6. In mucous discharges, as gleets, fluor albus, or chronic old-standing cystirrhœa.

7. As a topical application to ulcers.—"An ointment composed of 3iv. of catechu, 5ix. of alum, 3iv. of white resin, and 23x. of olive oil, with a sufficient quantity of water, is in great repute in India as an application to ulcers."³

Administration.—Dose, grs. x. to 3j. It may be administered in the form of bolus, or of mixture with sugar and gum Arabic. For gradual solution in the mouth, I have found a lump of the purer kinds of commercial catechu more agreeable than catechu lozenges.

1. INFUSUM CATECHU COMPOSITUM, L. D.; Infusum Catechu, E.; Infusion of Catechu. Catechu, powdered, 3vj. [in coarse powder 5iij. D.]; Cinnamon, bruised, 3j. [3ss. D.]; [Syrup, f3ij. E.]; Boiling [distilled, L.]; Water, Oj. [f3xvij. E. 3ix. D.]. Macerate the Catechu and Cinnamon in the Water, in a lightly covered vessel, for an hour [half an hour, D. Two hours, E.], then strain [through linen or calico, and add the syrup, E.].—Astringent. Adapted to diarrhoea. Dose, f5j. or f3ij. three or four times a day. Frequently given in conjunction with opiates. Sometimes used in the form of enema.

2. TINCTURA CATECHU COMPOSITA, L.; Tinctura Catechu, E. D.; Tincture of Catechu. (Powdered Catechu, in coarse powder, E. D.); 3iiss. [3iv. D.]; Cinnamon, bruised [in fine powder, E.], 3iiss. [3ij. D.]; Proof Spirit, Oij. Macerate for [seven, L. E., fourteen D.] days, and strain [and strongly express the residuum; filter the liquors, E.]. "This tincture may be also prepared by the process of percolation, the mixed powders being put into the percolator without being previously moistened with the spirit," E.—Astringent. Usually employed as an adjunct to chalk mixture in chronic diarrhoeas and dysentery; or occasionally to Port wine, with some aromatic (nutmeg or cinnamon).—Dose, f3j. to f5j.

¹ Ainslie, Mat. Ind. i. 590.
² De Colica Pictorum, Amsterd. 1752.
³ Thomson, London Dispens.
3. **ELECTUARIUM CATECHU, E.**; *Confectio Catechu compositum*, D. (Catechu, ʒiv.; Kino, ʒiv.; Cinnamon, ʒj.; Nutmeg, ʒj. E.; Opium, diffused in a little Sherry, ʒiss.; Syrup of Red Roses, boiled to the consistence of honey, Oiss. Pulverize the solids; mix the Opium and Syrup, then the powders, and beat them thoroughly into a uniform mss).—Astringent. Employed in chronic diarrhoea, dysentery, and hemorrhages. Dose, ʒj. to ʒjj. The *Dublin College* orders the Electuary, now called Confection, to be made by adding five fluid ounces of simple syrup to five ounces of compound powder of Catechu. The syrup is gradually added to the powder, and the ingredients are well mixed.

4. **PULVIS CATECHU COMPOSITUS, D.** (Take of Catechu, Kino, of each, ʒjj.; Cinnamon, Nutmeg, of each, ʒss. Reduce each to powder, mix and pass through a fine sieve. When prepared the powder should be kept in well-stopped bottles.)—The chief use of this compound is for the preparation of the confection above described.

279. ANDIRA INERMIS, Kuath.—THE CABBAGE-BARK TREE.

Geoffroya inermis, Swartz.

Sex. Syst. Diadelphia, Decandria.

History.—The medicinal properties of the bark of this tree were first pointed out by Mr. Duguid.¹ The first botanical description of the tree was published by Dr. Wright.²

Botany. Gen. Char.—*Calyx* turbinate-campanulate, 5-toothed; teeth almost equal, acute, erect. *Corolla* papilionaceous; the vexillum roundish, emarginate, larger than the keel. *Stamens* diadelphous (9 and 1). *Ovary* containing 3 ovules. *Legume* stalked, somewhat orbicular, rather hard, 1-celled, 1-seeded; when ripe divisible into two valves, according to Swartz (De Cand.).

Sp. Char.—*Leaflets* 13 to 15, ovate-lanceolate, acute, smooth on both sides. *Flowers* paniculate, with very short pedicels. *Calyx* urceolate, ferruginous-pubescent (De Cand.).

Tree of considerable height. Leaves pinnate. Flowers reddish-lilac.

Hab.—West Indies.

Description.—Cabbage bark or Worm bark (*cortex andire inermis, seu Geoffroya jamaicensis*) occurs in long, thick, fibrous pieces, having a brownish-ash colour, a resinous fracture, a disagreeable smell, and a sweetish, mucilaginous, bitter taste.

Surinam bark (*cortex Geoffroya Surinamensis*) is the bark of *Andira retusa*, var. B. *Surinamensis*, De Candolle. Huttenschmidt³ found in it a white crystalline substance,
which he called Surinamin. Surinam bark has been used as a vermilifuge, but I am totally unacquainted with it.

COMPOSITION.—Cabbage-bark was analysed in 1824 by Huttenschmidt, who found in it the following substances:—Jamaicina, yellow colouring matter, gum, much starch, wax, brown resin, a small quantity of mouldy matter, a nitrogenous substance soluble in carbonate of soda, oxalate of lime, and woody fibre.—The ashes contained carbonate, phosphate, and sulphate of potash, chloride of potassium, carbonate and phosphate of lime, with magnesia, silica, and oxide of iron.

Jamaicina is a brownish-yellow, crystalline, fusible, very bitter substance, composed of carbon, hydrogen, nitrogen, and oxygen. It is soluble in water and alcohol, and possesses alkaline properties. Its watery solution forms, with tincture of nutgalls, a yellow precipitate. Two grains of the acetate of jamaicina given to pigeons and sparrows, caused restlessness and trembling, and in half an hour violent purging.

Physiological Effects.—Cathartic, emetic, and narcotic. In doses of thirty or forty grains the powder of this bark purges briskly, like ja'ap. In larger quantities it causes vomiting, fever, and delirium. Fatal accidents are said to have resulted from its imprudent use.

Uses.—Formerly employed as an anthelmintic, especially against the large round worm (Ascaris lumbricoides), but its use is now obsolete.

[A formula for a decoction of this bark was given in the old Dublin Pharmacopoeia, under the name of Decoctum Geoffroye. It is now, however, erased both from the Materia Medica and the pharmaceutical preparations. According to the plan which we have hitherto pursued, we have allowed the author's description of the Cabbage-bark tree to remain.—Ed.]

ADMINISTRATION.—Dose of the powder, 3j. to 5ss. As an anthelmintic the bark has been given in the form of decoction.

280. HÆMATOXYLON CAMPECHIANUM, L. E. D.—THE COMMON LOGWOOD.

Sez. Syst. Decandria, Monogynia.

(Lignum, L. D.—Wood, E.)

History.—Monardes calls the wood of this plant lignum ad renum affectiones et urinae incommoda. Hernandez terms the wood lignum nephriticum; and describes the plant under the name of coaith.

Botany. Gen. Char. — Sepals 5, united at the base into a somewhat persistent tube; the lobes deciduous, oblong-obtuse. Petals 5, scarcely longer than the sepals. Stamens 10; filaments hairy at the base; anthers without glands. Style capillary. Legume compressed, flat, lanceolate,
acuminate at both ends, 1-celled, 2-seeded; the sutures indehiscent; the valves bursting in the middle longitudinally. **Seeds** transversely oblong; **cotyledons** 2-lobed.—**Tree**, with branches unarmed or spinous below the leaves. **Flowers** racemose, hermaphrodite (De Cand.)

Sp. Char.—The only species.

Tree 40 or 50 feet high. **Leaves** pinnate or somewhat bipinnate by the conversion of the lowest pair of leaflets into two pair of pinnae; **leaflet** obovate or obcordate. **Flowers** yellow.

Hab.—Campeachy. Introduced into Jamaica, where it now grows in great abundance, wild.

Commerce.—The stems of the Logwood-trees are cut into logs or junks of about three feet long, the bark and white sap (alburnum) of which are chipped off, and the red part or heart (duramen) sent to England. It is imported from Campeachy, Honduras, and Jamaica. In 1839 duty (8s. if from British possessions, 4s. 6d. if from other places) was paid on 15,867 tons.

Description.—Logwood (*lignum haematoxyli* seu *campechianum*), as imported, consists only of the heartwood or duramen. The logs are externally of a dark colour; internally they are red. The wood is dense, has a sp. gr. of 1.057; admits of a fine polish, has a sweetish taste and a pleasant odour. Large crystals of haematin are sometimes found in the wood.

Composition.—Logwood was analysed in 1811 by Chevreul, who found its constituents to be volatile oil, haematin, fatty or resinous matter, brown substance containing tannin, glutinous matter, acetic acid, woody fibre, various salts (phosphate, sulphate, and acetate of lime, acetate of potash, and chloride of potassium) and the oxides of aluminum, silicon, manganese, and iron.

Hæmatin or Haematoxylin is a red crystalline substance, of a slightly bitter, acid, and astringent taste. It is soluble in alcohol and ether, and slightly so in water. Acids render the solution yellowish or red; alkalis give it a purple or violet colour. Alum causes a violet precipitate, and several metallic solutions (as of tin and lead) a blue one. Gelatine produces a flocculent reddish precipitate.

Chemical Characteristics.—The decoction of logwood is deep red. Acids render it paler and brighter coloured. The alkalis give it a purplish or violet-blue colour. Acetate of lead causes a blue, alum a violet, precipitate. The salts of iron make it dark violet-blue. Gelatine forms a reddish precipitate with it.

Physiological Effects.—Logwood is a mild astringent (see the effects of Astringents). It does not constipate nor so readily disorder the digestive organs as some other astringents, and hence its use may be continued for a longer period. Its colouring matter becomes absorbed, and may be detected in the urine. Dr. Percival states, that under the use of extract of logwood

2 *Trade List.*
5 *Works*, vol. iv. p. 386.
the urine of a female suddenly acquired a purplish-red colour, which was deepened by the sulphate of iron. After some hours the secretion returned to its natural colour. The stools sometimes acquire a purplish-red colour from the use of logwood.

[Dr. J. M. Barry, of Totnes, Devon, has communicated to the author the particulars of a case, which shews that the use of logwood in chronic diarrhoea may be attended with the unpleasant effect of inducing phlebitis. In this case the diarrhoea was of several years' standing: it had resisted all the usual remedies, but yielded to the exhibition of a few doses of a decoction of logwood. The arrest of the diarrhoea was almost immediately followed by phlebitis, affecting in a very marked manner the veins of one of the lower extremities. It was removed by active antiphlogistic treatment. The diarrhoea occurred, and the logwood was again prescribed, and the same effects ensued: the diarrhoea was checked, and the venous inflammation reappeared. In Dr. Copland's Dictionary, under the head of "Neuralgic Affections," p. 885, another case is mentioned in the following terms:—"A gentleman from the country very recently came under my care for chronic diarrhoea of seven years' continuance. He had experienced two attacks of phlebitis of the femoral veins, consequent upon having taken the extract of logwood, this medicine having restrained but not arrested the diarrhoea." These facts will shew that some caution must be used in the medicinal employment of logwood.—Ed.]

Uses.—In medicine logwood is employed as an astringent in old diarrhoeas and dysenteries, in hemorrhages (from the uterus, lungs, and bowels), and leucorrhoea. It is well adapted to the diarrhoeas of children. Dr. Percival employed it to restrain profuse sweating in phthisis.

1. DECOCTUM HÆMATOXYLI, L. E. D.; Decoction of Logwood. (Logwood in chips, 5x. [5j. D. E.]; Water, Oiss. [Oj. E.; Oss. D.]; Cinnamon in powder, 5j. E. Boil down to a pint and strain, L. Boil the logwood in the water down to ten fluidounces, adding the cinnamon towards the end, and strain, E. Boil for ten minutes in a covered vessel, and strain. The product should measure about eight ounces, D.)—Employed as an astringent in diarrhoea.—Dose, for adults, 13j. to 13ij.; for children, 13jj. to 13ss.

2. EXTRACTUM HÆMATOXYLI, L. E.; Extract of Logwood. (Cut Logwood [in chips, E.] lbs. iiss. [lb. j. E.]; Boiling [distilled, L.] Water, Cong. ij. [a gallon, E.] Macerate for twenty-four hours, then boil down to a gallon [Oiv. E.], and strain the liquor while hot; lastly, evaporate, in the vapour-bath, to a proper consistence, E.)—The London College directs that the extract should be prepared in the same manner in which it has been ordered concerning extract of liquorice. "For preparing this extract the logwood should not be powdered, but rasped, and it should be so far evaporated as to become brittle and pulverulent when cold. One cwt. of the wood yields about twenty lbs. of extract."—Astringent. Employed in old diarrhoeas, dysenteries, &c. Dose, grs. x. to 5ss. By keeping, extract of logwood becomes exceedingly hard, and pills made of it are said to have

1 Brande, Man. of Pharm.
passed through the bowels undissolved. It is employed, I am informed, to colour snuff.

281. TAMARINDUS INDICA, Linn. L. E. D.—THE COMMON TAMARIND TREE.

Sex. Syst. Monadelphia, Triandria.

(Fluctus pulpa, L. D.—Pulp of the pods, E.)

History.—The tamarind does not appear to have been known to the ancient Greeks; at least no mention is made of it in their writings. We are indebted for its introduction to the Arabians, who probably derived their knowledge of it from the Hindus. Mesue, Avicenna, and Serapion, are the earliest writers who mention it. It is said to have derived its name from Tamar (which, in Arabic, signifies dates), and Indus, in reference to its Indian origin.

Botany. Gen. Char.—Calyx tubular at the base; limb bilabiate, reflexed; upper lip 3-partite; lower broad, 2-toothed. Petals 3, alternating with the segments of the upper lip of the calyx; two of them ovate, the middle one cucullate. Stamens 9 or 10; seven very short and sterile, the others (two or three) longer, monadelphous, bearing anthers. Style subulate. Legume stalked, linear, more or less curved, slightly compressed, 1-celled, 3- to 12-seeded, the sarcocarp pulpy. Seeds compressed, bluntly 4-angled, obliquely truncated at the hilum.—Trees. Leaves abruptly pinnated; leaflets many pair. Flowers racemose (Wright and Arnott).

Sp. Char.—The only species. Tree, 30 to 40 feet high. Branches spreading. Leaves alternate; leaflets 12 to 15 pair, small, oblong, obtuse, entire, smooth. Petals deciduous, yellow, veined with red.

There are two varieties, which are considered by Gaertner, Roxburgh, and De Candolle, as distinct species. The only difference between them is in the pod.

a. Orientalis; T. indica, De Candolle; East Indian Tamarind.—Legume elongated, six or more times longer than broad, 6- to 12-seeded.

b. Occidentalis; T. occidentalis, De Candolle; West Indian Tamarind. — Legume abbreviated, scarcely three times longer than broad, 1- to 4-seeded.

Hab.—East and West Indies.

Preservation of the Fruit.—The usual mode of preserving tamarinds in the West Indies is, to remove the shell or epicarp from the ripe fruit, and to place layers of the shelled fruit in a cask, and pour boiling water over them. But Dr. Wright1 says, a better method is, to put alternate layers of tamarinds and powdered sugar in a stone jar. The drier and dark-coloured East Indian tamarinds are said to be preserved without sugar.

Description.—Tamarinds are imported both raw and preserved. Tamarind pods are from three to six inches long, more or less curved. Composed of a dry, brittle, brown, external shell (epicarp), within which is the acidulous, sweet, reddish-brown pulp (sarcocarp) penetrated by strong fibres. Still

1 Med. Plants of Jamaica.
more internal is a thin membranous coat (endocarp) inclosing the oval brown seeds. *Preserved tamarinds (tamarindi conditi)* consist of the same parts, the shell (epicarp) excepted. The pulp (pulpa tamarindi) is the officinal part.

Composition.—Tamarind pulp was analysed, in 1790, by Vauquelin, who obtained the following products:—Citric acid 9·40, tartaric acid 1·55, malic acid 0·45, bitartrate of potash 3·25, sugar 12·5, gum 4·7, vegetable jelly (pectin) 6·25, parenchyma 34·35, and water 27·55.

Physiological Effects.—Tamarind pulp allays thirst, is nutritive and refrigerant, and, in full doses, laxative. From this combination of refrigerant and laxative properties it is commonly denominated a *cooling laxative*.

Uses.—Tamarinds are adapted for febrile and inflammatory cases; in the former it is often taken with the double purpose of operating as a refrigerant and acting gently on the bowels. An infusion of tamarinds forms a very pleasant, cooling drink, as does also tamarind whey. Tamarinds are a constituent of several mild purgative preparations. They are frequently given in conjunction with senna (as in the *confection of senna*, Ph. D.) It is said, though I know not with what truth, that the addition of tamarinds to senna and resinous cathartics diminishes the operation of the latter.

Administration.—The dose of tamarinds is from \(\frac{5}{3} \) to \(\frac{3}{3} \) or more. *Tamarind whey (serum lactis tamarindatum)* is prepared by boiling \(\frac{3}{3} \) of tamarind pulp with Oij. of milk.

TAMARINDUS PREPARATUS, L. (Tamarind, lb. j.; Water, as much as may be necessary to cover the tamarind. Macerate by a gentle heat for four hours, and express the pulp first through a coarse sieve then through a fine sieve; lastly, evaporate to the consistence of a confection.)

282. CASSIA OFFICINALIS, Linn. L. (Senna officinalis, Roxb.)—

Senna.

Cassia lanceolata; C. obovata, De Cand.—Cassia acutifolia; C. elongata, D. E.

Ser. Syst. De Candria, Monogynia.

(Folium, L.—Leaves, D. E.)

History.—The early history of this purgative is somewhat obscure, but it was probably in use some centuries before any mention of it is made in the works of pharmacological writers. Among the Arabians I may quote Mesue, Serapion, and Avicenna, who notice senna (sene), but they refer to the fruit, and not to the leaves. Mesue, in speaking of the decoction of senna, quotes Galen, and from this, as well as from other circumstances, it has been imagined that Dioscorides and Galen, and probably even Theophrastus, were acquainted with senna; but their known writings do not warrant this opinion, and hence the quotation is presumed to be erroneous. The earliest

1 *Ann. de Chim.* v. 92.
Greek writer in whose works senna is mentioned, is Actuarius; but he, like the Arabsians, referred to the fruit.

BOTANY. **Gen. Char.**—Sepals 5, scarcely united at the base, more or less unequal. Petals 5, unequal. Stamens 10, free, unequal; the three lower ones longer, the four middle ones short and straight, the three upper ones with abortive anthers. Anthers dehiscing at the apex. Ovary stalked, frequently arched. Legume various. —Trees, shrubs, or herbs. Leaves simply and abruptly pinnate. Petioles frequently glanduliferous. Leaflets opposite.

Species.—Some confusion still exists as to the species yielding the senna leaves of commerce. Linnæus made but one species, which he termed *Cassia Senna*, and considered the acute and obtuse-leaved plants as mere varieties. The usually-accurate Woodville has published a plate representing the leaflets of the acute-leaved Cassia, and the fruit of the blunt-leaved species. The following perhaps are distinct species, but their specific characters are not in all cases accurately ascertained. The London College has adopted the specific name officinalis in conjunction with obovata, and distinguishes the Alexandrian from the Indian senna, by the acute ovate or mucronate obovate leaves of the former, and the lanceolate leaves of the latter.

1. **C. obovata, Colladon;** 2 C. Senna var. β., Linn.; C. obtusa, Roxb.; 3 *Senna* belledy (Wild Senna), Egyptians and Nubians; Séné de la Thébaïde, Cassia Sena, *Nectoux.*—Leaflets 6 to 7 pairs, obovate, obtuse; petiole glandless. Legumes plano-compressed, curved, tumid by the crests on the middle of each valve (De Cand.)—Perennial herb, 1 or 2 feet high. Leaves smooth; leaflets mucronate, unequal at the base. Stipules lanceolate, linear, spreading. Flowers yellow in racemes. Legumes oblong, falcate, smooth, rounded at each end, with an equally interrupted ridge along the middle of each valve.—Egypt (Bassâ-Tine at the entrance of the valley of Egaremont, two leagues from Cairo; Karnak; Thebes; on the eastern bank of the Nile opposite Hermouthis; Esneh; Edfou; Daraou; Assouan); Nubia; Desert of Suez; Syria; India. Cultivated in Italy, Spain, Jamaica, &c.—Its leaflets form *Aleppo, Senegal,* and *Italie Senna,* and one of the constituents of Alexandrian Senna.

Nees and Ebermaier follow Hayne in admitting two species of blunt senna, viz. *C. obovata,* Hayne, with obovate, very shortly pointed leaflets, and *C. obtusata,* Hayne, with more remote, obovate, truncated-emarginate leaflets. I think, with Th. Martius, that the latter are merely older leaflets than the former.

2. **C. acutifolia, D., Delile.**—Stem suffruticose. Leaves pinnate; petiole glandless; leaflets 5 to 7 pairs, lanceolate, acute. Legumes flat, elliptical, naked on both sides, somewhat bent on the upper margin (Delile).

1 Med. Bot. iii. 446.
2 Hist. des Casses, 92.
3 Fl. Ind. ii. 344.
4 Pl. i.
6 Pharmacogn.
7 Fl. Egypt. Pl. 27, fig. 1.
—An undershrub, about two feet high. Leaves when young slightly silky or pubescent. Flowers yellow, in axillary racemes, at the top of the branches. Petals obvate. Legumes somewhat swollen by the seeds. Seeds 6 or 7 in each legume.—Egypt, in the valleys of the desert to the south and east of Assouan.—Collected by the Arabs, and sold by them to merchants who convey it to Cairo.

3. **C. elongata**, D., *Lemnaire-Lisancourt*; ¹ Fée; ² C. lanceolata, Royle. ³ Perhaps identical with the preceding species. Dr. Royle's specimens were raised from seeds picked out of *Mecca Senna*. Dr. Lindley thus describes the plant. "An annual, but, with care, it may be made to live through the year, and to assume a suffruteose habit. Stem erect, smooth. Leaves narrow, equal pinnated; leaflets 4 to 8 pairs, lanceolate, nearly sessile, slightly mucronulate, smooth above, rather downy beneath, with the veins turning inwards, and forming a flexuose intramarginal line; petioles without glands; stipules softly spinose, semi hastate, spreading, minute. Racemes axillary and terminal, erect, stalked, rather longer than the leaves; pedicels without bracts. Sepals linear, obtuse. Petals bright yellow. Of the stamens the five lowest sterile and small, the two next large, curved, and perfect, the three uppermost minute and gland-like. Ovary linear, downy, falcate, with a smooth recurved style. Legumes pendulous oblong, membranous, about an inch and half long, and five-eighths broad, quite straight, tapering abruptly to the base, and rounded at the apex, deep-brown, many-seeded."—Grows in India, but probably only naturalized.—Yields Tinnevelly and Mecca Senna.

4. **C. ethiopica**, Guibourt; ⁴ C. ovata, Mérat; ⁵ Séné de Nubie, C. lanceolata, Nectoux; ⁶ C. Senna, Stevenson and Churchill. ⁷—Leaves of 3 to 5 pair of leaflets; petioles with a gland at their base, and another between each pair of leaflets; leaflets oval-lanceolate, pubescent. Legumes flat, smooth, not reniform, rounded, naked on both sides, containing from 3 to 5 seeds.—About 18 inches high. Leaflets from 7 to 9 lines long, and from 3 to 4 broad, consequently less elongated and less acute than those of the two preceding species. Legumes from 11 to 15 lines long, of a pale or fawn colour.—Nubia, Fezzan, to the south of Tripoli, and probably to Ethiopia. Yields Tripoli Senna. I think I have detected the leaflets in Alexandrian Senna.

5. **C. lanceolata**, Forskål; ⁸ Lindley. ⁹—Dr. Lindley, who met with this species in a collection of Arabian plants made by Dr. S. Fischer, says, "the leaflets are in four or five pairs, never more; oblong, and either acute or obtuse, not at all ovate or lanceolate, and perfectly free from downiness even when young; the petioles have constantly a small round brown gland, a little above the base. The pods are erect, oblong, tapering to the

¹ *Journ. de Pharm.* vii. 345.
³ *Illustr.* t. 37.
⁴ *Hist. des Drog.* 3d ed. ii. 319.
⁵ *Dict. de Mat. Méd.* vi. 311.
⁶ *Voy. dans la Haute Egypte*, t. ii.
⁸ *Fl. Egypt. Arab.* 55.
base, obtuse, rigid, mucronate, rather falcate, especially when young, at which time they are sparingly covered with coarse scattered hairs."—This species is therefore distinct from both C. acutifolia, Delile, and C. elongata, Lamart. Forskål says it grows about Surtud, Mor, and Abuarish; and that it is the true Mecca Senna.

6. C. MARIHANDICA, Linn.—Leaflets 8 to 9 pairs, ovate-oblong, mucronate, equal, with an ovate gland at the base of the petiole. Racemes axillary, many-flowered, shorter than the leaves. Legumes compressed, linear, hispid, subsequently smoothish (De Cand.)—From three to six feet high. Flowers golden yellow.—United States; common in all parts south of New York.—Yields the American Senna.

Commerce.—Senna is imported from the Mediterranean (either directly from Egypt, or at second hand from Italy), and from the East Indies (Madras and Bombay), usually in bales. The duty is 6d. per lb. The quantities on which duty was paid during two years was as follows:

<table>
<thead>
<tr>
<th>Source</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the East Indies</td>
<td>72,576 lbs.</td>
</tr>
<tr>
<td>From other places</td>
<td>69,538 "</td>
</tr>
<tr>
<td>Total imported</td>
<td>142,114 "</td>
</tr>
</tbody>
</table>

Description.—Senna (*folia senna*) has a peculiar, agreeable, tea-like odour, and a nauseous, bitter taste. Its colour should be bright and fresh. If largely mixed with extraneous matter, if it be much broken or very dusty, it should be rejected. Boiling water extracts about a third of its weight. Proof spirit yields a brown—alcohol or ether a green tincture.

1. **Alexandrian Senna**; *Senna Alexandrina*; *Folia Senna Alexandrina.*—Called by the French Séné de la Palthe (i.e. Tribute Senna) because it is obliged to be sold to the Egyptian government, who resell it to Europeans. It is imported in bales from Alexandria and other Mediterranean ports. It consists of the leaflets of two or more species of *Cassia* (*C. acutifolia, C. obovata*), and, I think, sometimes *C. ethiopica* mixed always with the leaves of *Cynanchum Argel*, and sometimes with those of *Tephrosia Apollinea*. The flowers and fruits of these plants are usually present in greater or less quantity. Alexandrian senna is collected in Nubia and Upper Egypt, and is conveyed down the Nile to the great depot at Boulik.

For the following particulars I am indebted to the writings of Delile, Rouillure, Nectoux, and Burckhardt. Senna is collected by the Arabs of the tribe of Abaddeh. They make two crops annually,—the most productive one is that after the rain in August and September; the second takes place about the middle of March. When cut the plants are spread out on the rocks, and dried in the sun (Nectoux).

Assouan is the first entrepôt for senna. It receives all that is gathered in the neighbourhood. Esneh is another entrepôt. It receives the acute-leaved senna from Abyssinia, Nubia, and Sennaar, from whence it arrives by the caravans which convey negroes to Egypt, and blunt-leaved senna, gathered in Upper Egypt (Rouillure). Daraou, between Assouan and Esneh, is also an entrepôt; but the great depot is at Boulik, the port of Cairo. Here the monopoly of senna was farmed out by Mahommed Ali to Rosetti, an Italian, for about £3,500 per annum (Burckhardt). The senna arrives at Boulik from Assouan, not only by the Nile, but also by the way of Cosseeir, the Red Sea, and Suez.

1 *Mém. sur l'Égypte*, iii. 315, 1799; and *Fl. Égypt*.
3 *Phil. Mag.* xv. 55; and *Voyage dans la Haute Égypte*, 1808.
As, however, the latter is a more expensive route, it is not so frequently followed (Nectoux). Lastly, some senna is carried to Boulak by the caravans from Mount Sinai. The following are said by Rouillure to be the quantities brought from these places:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>From Assouan</td>
<td>7000 to 8000</td>
<td>500 to 600</td>
<td>800</td>
<td>2000 to 2400</td>
</tr>
<tr>
<td>From Esneh</td>
<td></td>
<td></td>
<td>1200 to 1500</td>
<td></td>
</tr>
<tr>
<td>From Suez and Mount Sinai</td>
<td></td>
<td>2000 to 2400</td>
<td>2000</td>
<td>2000 to 2400</td>
</tr>
</tbody>
</table>

So that the total amount of all kinds is, according to this statement, 13,500 to 15,300 quintals.

The mixture of the different leaves takes place at the entrepôts. Nectoux mentions those of Kênêh, Esneh, Daraou, Assouan, where it is effected. Rouillure says that at Boulak, 500 parts of acute leaves are mixed with 300 of obtuse leaves, and 200 of Argel leaves.

From Boulak the senna is sent to Alexandria, and from thence is shipped to Europe.

Alexandrian senna has a greyish-green colour, an odour which somewhat resembles that of tea, and a viscid taste. It presents a broken appearance,
and on examination is found to consist of the leaves, flowers, and fruits of the above-mentioned plants mixed with various extraneous matters (as seeds, date-stones, rabbit-dung, stones, &c.) The latter are in great part separated by hand-picking, sifting, &c., before the senna is fitted for use. It then constitutes picked Alexandrian senna (folia senna Alexandrinae electae).

a. Cassia leaflets, flowers, and legumes.—The leaflets of cassia are readily distinguished from those of other genera found in senna, by being unequal-sided; that is, by two sides of the leaflet being unequal in size, shape, or length, and by the veins or nerves of their under surface being very conspicuous. The acute-leaved are very readily distinguished from the blunt-leaved species, by their shape. The dried flowers of Cassia may be easily detected; they are dull yellow. I have not been able to make out their species. The legumes of the obovate and acute-leaved Cassia are also found; they are distinguished by the botanical characters before described.

b. Argel leaves, flowers, and fruit (Cynanchum).—The Argel plants are collected by the Arabs, in the valleys of the Desert to the east and south of Assouan (Delile). The leaves found in Alexandrian senna are distinguished from the senna leaflets by their being equal-sided,—by the absence, or imperfect development of their lateral nerves,—by their paler colour, thicker and more coriaceous texture,—by a yellowish exudation frequently found on them,—and generally, though not invariably, by their greater length. Under the name of heavy senna I have met with argel leaves, which were sold at a higher price than ordinary senna. These leaves were left in the fanning process, by which the real senna leaves were separated. By careful picking the flowers may be detected; they are white, and in small corymbs. In some recently-imported bales, argel flowers constituted nearly a fourth part. The fruit, as found in Alexandrian senna, seldom exceeds in size that of a good-sized orange-pip. It is an ovoid follicle, tapering superiority, brown, shrivelled, and contains several seeds.

c. Tephrosia leaflets and legumes.—The Tephrosia Apollinea (Galega Apollinea, Delile, pl. 53) grows in cultivated fields near the Nile, at Hermonthis, at Edfou, and in the Elephantine Islands, opposite Assouan. The leaflets have a silky or silvery aspect; they are obovate-oblong, somewhat cuneiform, emarginate, equal-sided, tapering towards the base; lateral veins parallel, regular, and oblique to the midrib. These leaflets are usually found loaded longitudinally, and are very apt to be overlooked. The legume is from an inch to an inch and a half long, not exceeding two lines broad, linear, slightly ensiform, and consists six or seven brownish seeds.

2. Tripoli Senna; Senna Tripolitana; Folia Senna Tripolitanae.—It is carried to Tripoli in caravans, which go from Fezzan. In general appearance it resembles Alexandrian senna; but the leaflets are more broken, smaller, less acute than the acute-leaved Alexandrian senna, thinner, greener, and of a less herbaceous odour. They are the produce of C. Æthiopica, usually unmixed with any other species. But I have a sample which contains also the leaflets of C. obovata and argel leaves.

Tunis senna agrees with that of Tripoli.

3. Aleppo Senna.—Consists of the leaflets of C. obovata.

4. Senegal Senna; Senna Senegalensis.—Is a blunt-leaved senna, having a rougher and more glaucous appearance than the leaflets of C. obovata. Some years since a small bale of it was sent by the French Ministre de la Marine to M. Henry for examination. I am indebted to the kindness of Professor Guibourt for a sample of it.

5. Smyrna Senna.—Very similar to Tripoli senna, but some of the leaflets resemble the acute-leaved Alexandrian senna.

1 Journ. de Pharm. xiv. 70.
6. **Mecca Senna; Senna Meccensis; Inferior or Second East Indian Senna; Séné Moku, Guibourt; Séné de la Pique, or Pike Senna; Senna Mukke, Royle.**—Imported into England from India. It is the produce of Arabia, and finds its way into the interior of India by the ports of Surat and Bombay. Dr. Royle was informed that it was grown somewhere in the Agra and Muttra district, but was never able to prove the fact. ¹ It occurs in long narrow leaflets, of from an inch to an inch and a half long, narrower than those of Tinnevelly senna, and of a yellowish colour; some of the leaflets being brownish, or even blackish. This change of colour is probably the result of the action of a moist atmosphere. Legumes are occasionally intermixed; they are from 1½ to 3 inches long, and from 7 to 8 lines broad; slightly curved, greenish in their circumference, blackish in their centre, with a smooth surface. Recently this senna in good condition has been imported from Turkey in casks. It appears to be fresh and fine, and approximates to Tinnevelly senna in colour; but contains stalks and dust with a few stones.

7. **Tinnevelly Senna; Finest East Indian Senna; Séné de l'Inde, Guibourt.**—Cultivated at Tinnevelly, in the southern part of India, by Mr. G. Hughes. It is a very fine unmixed senna, which is extensively employed, and fetches a good price. It consists of large, thin unbroken leaflets, of a fine green colour, from 1 to 2 inches, or more, long, and sometimes half an inch broad at their widest part. When exposed to a damp atmosphere they are apt to change colour, and to become yellow or even blackish.

8. **American Senna; Senna Americana.**—Is the produce of Cassia Marilandica, but never reaches this country as an article of commerce. That which I have received was prepared by the Shakers of the United States, and has been compressed into an oblong cake. The leaflets are oblong, lanceolate, from 1½ to 2 inches long, and from ½ to ½ an inch broad, thin, pliable, and of a pale green colour. They have a feeble odour and a nauseous taste, like the other sennas.

Adulteration.—Senna is not, to the best of my belief, adulterated in this country. The leaflets of Colutea arborescens or Bladder Senna have, on the continent, been occasionally intermixed. They are elliptical, regular, and obtuse. Their regularity at the base would at once distinguish them from the leaflets of Cassia obovata.

Argel leaves, mixed with a few leaflets of C. acutifolia, I have known to be recently sold as picked or heavy senna at a higher price. It was done rather from ignorance than fraud.

¹ *Illustr.* 187.
A serious adulteration has been sometimes practised on the continent, by the substitution of the leaves of Coriaria myrtifolia for those of senna. They are ovate-lanceolate, grayish-green with a bluish tinge, 3-nerved, with a strongly-marked midrib; the two lateral nerves disappear towards the summit of the leaves. Chemically, these leaves are distinguished by their infusion yielding, with gelatine, a whitish precipitate (tannate of gelatine); and, with sulphate of iron, a very abundant blue precipitate (tannate of iron). Furthermore, it forms precipitates with bicloride of mercury, emetic tartar, and chloride of barium. [The true Senna leaf is unsymmetrical on the two sides, while in the leaf of Coriaria the two sides are equal and symmetrical.—Ed.]

COMPOSITION.—Three analyses of senna have been made; viz. one in 1797, by Bouillon La Grange; a second by Braconnot; and a third, in 1821, by Lassaigne and Fenuelle:

<table>
<thead>
<tr>
<th>Senna Leaves</th>
<th>Senna Pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braconnot.</td>
<td>Lassaigne and Fenuelle.</td>
</tr>
<tr>
<td>Bitter matter of senna 53.7</td>
<td>Cathartin.</td>
</tr>
<tr>
<td>Reddish-brown gum 31.9</td>
<td>Yellow colouring matter.</td>
</tr>
<tr>
<td>Matter similar to animal mucus, precipitable by acids 6.2</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Acetate of lime 8.7</td>
<td>Fixed oil.</td>
</tr>
<tr>
<td>Malate (or some other vegetable salt) of lime 3.7</td>
<td>Albumen.</td>
</tr>
<tr>
<td>Acetate of potash...</td>
<td>Mucus.</td>
</tr>
<tr>
<td>Chloride of sodium } ... traces</td>
<td>Malic acid.</td>
</tr>
<tr>
<td>Watery extract of Alexandrian Senna } 10.2</td>
<td>Malate and tartrate of lime.</td>
</tr>
</tbody>
</table>

Alexandrian Senna.

1. **ODOROUS PRINCIPLE; VOLATILE OIL OF SENNA.**—Obtained by submitting the leaves, with water, to distillation. It has a nauseous odour and taste. The distilled water of senna, which contains some oil in solution, acts as a mild purgative only.

2. **CATHARTINE; PURGATIVE PRINCIPLE OF SENNA.**—Yellowish red, uncrystallizable, with a peculiar odour, and a bitter, nauseous taste; very soluble both in water and alcohol, but insoluble in ether; it attracts water from the air. Its aqueous solution is precipitated by infusion of galls and diacetate of lead. The sesquisulphate of iron and alkalies deepen the colour of the infusion: chlorine decolorizes it: iodine, acetate of lead, gelatine, and emetic tartar, cause no precipitates with it. It appears to consist of carbon, hydrogen, and oxygen only. Three grains caused nausea, griping, and purging.

CHEMICAL CHARACTERISTICS.—By boiling senna in water,—by the exposure of infusion of senna to the air,—as well as by the action of the mineral acids and of chlorine on the infusion,—a precipitate is procured. Bouillon La Grange regarded this as a species of resin, formed by the union of oxygen with a peculiar kind of extractive found in senna. This extractive, he says,
is inert, but becomes active when converted into resin; and hence, the cold infusion, according to this chemist, causes colic, but rarely purges. The carbonated alkalies, lime water, nitrate of silver, the acetates of lead, sulphate of iron, &c. form precipitates with the infusion of senna.

Physiological Effects.

a. On Animals.—In doses of five or six ounces it purges horses. Courten\(^1\) threw an infusion into the veins of a dog; it quickened the respiration, and caused vomiting. The animal appeared weak, was dull, and had no inclination to eat.

b. On Man.—Regnandot\(^2\) injected half a spoonful of weak lukewarm infusion of senna into the left median vein of a young man affected with an herpetic eruption. The only effect produced was a slight temporary headache. Some days afterwards a spoonful was injected: in half an hour violent shivering and vomiting came on, which were followed by heat and purging. The febrile symptoms continued for several hours. Taken by the stomach senna acts as a sure and safe purgative. Its ill effects are nausea, griping, flatulence, and, at first, depression, afterwards excitement of the pulse. It appears to stimulate the abdominal and pelvic vessels, thereby having a tendency to promote the hemorrhoidal and menstrual discharges. It is one of the mildest of the drastic purgatives. Unlike scammony, gamboge, jalap, and most other drastics, it does not rank among poisons, even when given in large doses. It is distinguished from the saline purgatives by its stronger and more irritant operation, by the heat, gripings, and increased frequency of pulse, which attend its purgative action. From rhubarb it differs in being more powerful and irritant in its operation, in being nearly or quite devoid of any tonic operation. It acts more speedily and powerfully than aloes, and in a less marked manner on the large intestines. In its operation it appears to rank between jalap and aloes. The petioles and stalks possess similar properties to the leaflets. Formerly the griping quality of senna was ascribed to the stalks, but both Bergius\(^3\) and Schwilgué\(^4\) have proved the error of this notion. The legumes are much milder in their operation than the leaflets.

Good East Indian senna is almost, if not quite, as active as the Alexandrian. Mr. Twining,\(^5\) after extensively trying it, declared it equal to the best he had ever seen. The obovate senna appears to be milder than the acute-leaved. The Senegal senna, before referred to, was found to possess less activity than ordinary senna. Part of the acrid and griping qualities of Alexandrian senna are referable to the argel leaves, which, according to the observations of Rouillure, Delile, Nectoux, and Pugnet (quoted by Delile), possess greater activity than the true senna leaves. Rouillure says they purge and gripe, and are used by the Arabs of Upper Egypt without the addition of senna. These effects might be expected from the known properties of Asclepiadaceae (before referred to). “American senna is an efficient and safe cathartic, closely resembling the imported senna in its

2. Ibid. op. *supra* cit.
action, and capable of being substituted for it in all cases in which the latter is employed.”

If infusion of senna be given to the nurse, the suckling infant becomes purged,—a satisfactory proof that the cathartic principle of senna becomes absorbed, and is thrown out of the system by the excretories. Furthermore, as purging results from the injection of infusion of senna into the veins, this cathartic would appear to exercise a specific influence over the bowels, independent of its local action on these when it is swallowed.

Uses.—Senna is well adapted for those cases which require an active and certain purgative, with a moderate stimulus to the abdominal and pelvic viscera. Thus, in constipation and inactivity of the alimentary canal, requiring the continued or frequent use of purgatives; in worms; in determination of blood to the head, and many other cases which readily suggest themselves, senna answers very well. The circumstances contraindicating its use are,—an inflammatory condition of the alimentary canal, a tendency to hemorrhoids or menorrhagia, threatening abortion, and prolapsus of the uterus and rectum. The objections to its use are,—the large dose required, the nauseous and disgusting flavour, the tendency to griping, and the irritant and stimulant operation. Thus, in inflammation of the mucous membrane of the bowels, the irritant action of senna makes it an objectionable purgative; while its tendency to increase the frequency of the pulse renders it less fit for exhibition in febrile disorder than the saline purgatives. It is a very safe purgative, and may be given to children, females, and elderly persons, with great security. Though it is not the most appropriate purgative to be employed after delivery, and operations about the abdomen or pelvis (as hernia and lithotomy), yet I have repeatedly seen it used, and rarely with any unpleasant consequences.

Administration.—Powder of senna may be given in doses of from 5ss. to 5ij. for adults. There are two objections to its use,—the great bulk of the necessary dose, and the uncertainty of its operation, arising from its liability to decompose by keeping. To cover the unpleasant flavour of senna, Dr. Paris recommends the addition of Bohea (black) tea: coffee has been advised by others. Aromatics (especially coriander and ginger) are frequently added to prevent griping, and to improve the flavour.

1. Infusum Sennæ, E.; Infusum Sennæ compositum, L. D.; Infusion of Senna; Senna Tea.—(Senna leaves, 5xx. [5ss. E., 3ss. D.]; Ginger, bruised, 3iv. [3ss. D.]; Boiling [distilled, L.] Water, Oj. Macerate for an hour in a vessel lightly covered, and strain [through linen or calico, E.].—An ordinarily used purgative, employed frequently in the maladies of children as well as of adults. A saline purgative (sulphate of magnesia or of soda, or potash-tartrate of soda, or tartrate of potash) is usually given in conjunction with it; manna and tincture of senna being frequently added. A compound of this kind is called the black draught.—The dose of infusion of senna is from f3ij. to f3iv. for adults. [In order to preserve this infusion

1 United States Dispensatory.
2 Pharmacologia.
in warm weather, Mr. Squire recommends the addition of one grain of nitrate of potash to each ounce.—Ed.]

2. **INFUSUM SENNE COMPOSITUM, E. ; Compound Infusion of Senna.—**

(Senna, 3j.; Tamarinds, 3j.; Coriander, bruised, 3j.; Muscovado Brown Sugar, 3ss.; Boiling Water, 3jvii.) Infuse for four hours, with occasional stirring, in a covered vessel, not glazed with lead; and then strain through linen or calico. This infusion may be likewise made with twice or thrice the prescribed quantity of senna.)—A vessel not glazed with lead is directed, lest the acid of the tamarinds should dissolve the metal of the glazing, and thereby give a noxious impregnation. This cathartic somewhat resembles Sydenham's *potio cathartica lenitiva*. The unpleasant flavour of the senna is agreeably covered by the tamarinds and sugar. This preparation is cathartic and refrigerant. It is employed as a cathartic in febrile disorders.

Dose, f3j. to f5jiv.

3. **ENEMA CATHARTICUM, E. D. ; Cathartic Enema.—** (Olive Oil, 3j.; Sulphate of Magnesia, 3ss.; Sugar, 3j.; Senna, 3ss.; Boiling Water, f5xvi.) Infuse the senna for an hour in the water, then dissolve the salt and sugar; add the oil, and mix them by agitation, E.—*The Dublin College* employs of Olive Oil, f3j.; Sulphate of Magnesia, 3j.; Muiclage of Barley, f5xvi. Dissolve the sulphate of magnesia in the mucilage; add the oil, and mix.——Employed as a laxative. It is a constituent of the fetid clyster.

4. **TINCTURA SENNE COMPOSITA, L. E. D. ; Tincture of Senna ; Elixir Salutis.—** (Senna leaves, 3iiiiss.; Caraway seeds, bruised, 3iiiss.; Cardamoms, bruised, 3j.; Raisins [stoned], 3v.; Proof Spirit, Oij. Macerate for seven days, and then press and strain, L.—Senna, 3iv.; Caraway seeds, bruised; Cardamom seeds, bruised, of each 3ss.; Proof Spirit, Oij. Macerate for fourteen days, strain, express, and filter, D.—Sugar, 3iiiss.; Coriander, bruised, 3j.; Jalap, in moderately-fine powder, 3vj.; Senna, 3iv.; Caraway, bruised; Cardamom seeds, bruised, of each 3v.; Raisins, bruised, 3iv.; Proof Spirit, Oij. Digest for seven days, strain the liquor, express strongly the liquor, and filter the liquids. This tincture may be more conveniently and expeditiously prepared by percolation, as directed for the compound tincture of cardamom. If Alexandrian Senna be used for this preparation, it must be freed from Cynanchum [Argel] leaves by picking, E.)—Carminative, cordial, stomachic, and purgative. Usually employed as an adjunct to the infusion of senna. If given alone as a purgative, the dose should be f3ss. to f3j. It is useful in costiveness attended with flatulence.

5. **SYRUPUS SENNE, L. E. ; Syrup of Senna.—** (Senna, 3iiiiss.; Fennel (seed,) bruised, 3x.; Manna, 3ijj.; Treacle, lbs. iij.; Boiling distilled Water, Oij. Macerate the senna and fennel in the water, with a gentle heat, for six hours. Mix the manna and treacle with the strained liquor; then boil down to a proper consistence, L.—Senna, 3iv.; Boiling Water, Oij. and f5iv.; Treacle, 3xlviij. Infuse the senna in the water for twelve hours; strain, and express strongly through calico, so as to obtain a pint and two fluidounces at least of liquid. Concentrate the treacle in the vapour-bath as far as possible, or till a little taken out upon a rod becomes nearly concrete on cooling; and,
while the liquor is still hot, add the infusion, stirring carefully, and removing the vessel from the vapour-bath as soon as the mixture is complete. If Alexandrian Senna be used for this preparation, it must be carefully freed of Cynanchum [Argel] leaves by picking it, E.)—Cathartic. Given to children in doses of f3ij. to f3vij.

6. CONFECTION SENNAE, L. D.; Electuarium Senna, E.; Electuarium Lenitivum; Confection of Senna; Lenitive Electuary.—(Senna, 3viij.; Figs, lb. j.; Prepared Tamarinds; Prepared Cassia; Prepared Prunes, of each lb. ss.; Coriander, 3iv.; Fresh Liquorice, bruised, 3ij.; Sugar, lb. iiss.; Distilled Water, Oij). Rub the senna with the coriander, and by a sieve separate ten ounces of the mixed powder; then boil down the water, with the figs and liquorice added, to half, then express and strain. Evaporate the strained liquor in a water bath, until of the whole, twenty-four fluidounces remain; then the sugar being added, let a syrup be made. Lastly, gradually rub the pulps with the syrup, and having thrown in the sifted powder, mix them all, L.—The Edinburgh College omits the Tamarind and Cassia pulps, but employs lb. j. of Prune pulp, and Oijf of Water. —The Dublin College directs Senna leaves, in a very fine powder, 3ij.; Coriander, in fine powder, 3ij.; Oil of Caraway, 5ss.; Pulp of Prunes, 3v.; Pulp of Tamarinds, 3ij.; Brown Sugar, 3vij.; Water, f3ij. Dissolve the sugar in the water, and beat the pulps with the syrup to a uniform consistence; having stirred in the powders and oil of caraway, mix all well together, and heat the mass thoroughly in a water bath for ten minutes.)—The preparation of this compound being troublesome and expensive, and sophistications of it not being readily detectable, it is rarely prepared, in commerce, as directed by the London and Edinburgh Colleges. Jalap is frequently substituted, partially or wholly, for the senna and cassia pulp. Dr. Paris mentions walnut liquor as a colouring ingredient in use; and adds, that a considerable quantity of this confection is made in Staffordshire, in which unsound and spoilt apples enter as a principal ingredient. When properly prepared, it is a pleasant, mild, and very effectual purgative, and is frequently employed by pregnant women, persons afflicted with hemorrhoids or diseases of the rectum. When given alone in a full dose it is apt to gripe.—Dose, 3j. to 5vij. It is frequently employed as a vehicle for the exhibition of other cathartics; for example, bitartrate of potash.

283. CASSIA FISTULA, Linn. L. E. D.—THE PUDDING-PIPE TREE, OR PURGING CASSIA.

Cathartocarpus Fistula, Persoon.

Sex. Syst. Decandria, Monogynia.

(Fructus, L.—Pulp of the pods, E.)

History.—The earliest writers in whose works we find the fruit of Cassia Fistula mentioned, are the Arabians, Mesue, Serapion, and Avicenna. The
first Greek writer who notices it is Actuarius, who terms it κασσια μέλανα, or black cassia.¹

Botany. Gen. Char.—See Cassia (p. 1866).

Sp. Char.—Leaflets 4 to 6 pairs, ovate, somewhat acuminate, smooth; petioles glandless. Racemes lax, without bracts. Legumes terete, straight, somewhat obtuse, smooth (De Cand.)

Tree from 20 to 30 feet high. Leaves alternate, pinnate, from 12 to 18 inches long; leaflets from 2 to 6 inches long, and from 1 and a half to 3 inches broad. Stipules minute. Racemes 1 to 2 feet long. Flowers large, bright-yellow, fragrant, on long footstalks. Legume cylindrical, ligneous, 1 or 2 feet long, externally blackish-brown; with three longitudinal bands or seams extending the whole length, two of which by their contiguity appear to form a single one, the third being on the opposite side of the legume; internally divided into numerous cells by thin transverse partitions or phragmata, formed by the distension of the placenta, and therefore called spurious dissepiments. Seed 1 in each cell, surrounded by a soft blackish pulp, which appears to be a secretion of the endocarp or inner coat of the pod.

Hab.—East Indies, Egypt. Introduced into the West Indies.

Description.—The pods of Cassia Fistula (cassia fistula; legumen cassiae fistulae) are imported from the East Indies (Madras and Ceylon), from the West Indies (Barbadoes), and from South America (Carthagena and Savanilla). Their botanical description has been above given. Their pulp (pulpa cassiae fistulae; pulpa leguminis cassiae fistulae) is reddish-black, with a sweetish taste. By exposure to the air it becomes acid, in consequence of undergoing the acetous fermentation. Those pods yield the most pulp which are heavy, and do not rattle when shaken.

Small American Cassia Fistula; Petite Cassie d'Amérique, Guibourt.—Pods twelve to eighteen inches long, and six lines in diameter, pointed at the extremities. Pericarp thinner than the ordinary Cassia fistula. Pulp reddish-brown, acerb, astringent, sweet. Is this pod the fruit of Caltharlocarpus bacillarius, a native of the Caribean Islands, depicted in Jacquin’s Fragn. Bot. Tab. 85? The pulp of Cassia brasiliiana has been employed in America. The pods are from 18 to 24 inches long, ligneous, and rough, with very prominent sutures.

Composition.—Vauquelin² and N. E. Henry³ have analysed Cassia pulp.

<table>
<thead>
<tr>
<th></th>
<th>Common or African.</th>
<th>American.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericarp</td>
<td>3:5:15</td>
<td></td>
</tr>
<tr>
<td>Phragmata</td>
<td>7:03</td>
<td></td>
</tr>
<tr>
<td>Seeds</td>
<td>13:28</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td>14:85</td>
<td></td>
</tr>
<tr>
<td>Gum</td>
<td>1:56</td>
<td></td>
</tr>
<tr>
<td>Extractive</td>
<td>0:51</td>
<td></td>
</tr>
<tr>
<td>Vegetable jelly</td>
<td>0:13</td>
<td></td>
</tr>
<tr>
<td>Glutinous matter</td>
<td>0:79</td>
<td></td>
</tr>
<tr>
<td>Woody fibre</td>
<td>2:35</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>21:35</td>
<td></td>
</tr>
<tr>
<td>Cassia pods</td>
<td>97:00</td>
<td></td>
</tr>
</tbody>
</table>

¹ Lib. v.
Physiological Effects.—Cassia pulp in small doses is a mild laxative; in large doses a purgative; but it is apt to occasion nausea, flatulence, and griping. Manna is said singularly to exalt the purgative effect of Cassia pulp.1 Thus Valisméri states, that twelve drachms of this pulp are about equivalent in purgative strength to four ounces of manna; but that if we give eight drachms of Cassia pulp, in combination with four drachms of manna, we obtain double the effect! But the correctness of such a statement is not supported by any evidence yet adduced.

Uses.—It is rarely or never given alone; but the cases for which it is well adapted are febrile and inflammatory affections. On account of its pleasant taste it would be a convenient purgative for children.

Administration.—Dose, for an adult, of the pulp, as a mild laxative, 3j. to 5j.; as a purgative, 5j. to 6j.

1. **CASSIA PREPARATA, L.** (Cassia broken lengthwise, lb. j.; Distilled water sufficient to cover the Cassia. Macerate for six hours, occasionally stirring; strain the softened pulp through a hair sieve, and evaporate to the consistence of a confection by a water bath.—Ed.)

2. **CONFECTION CASSIA, L.; Confection of Cassia.** (Prepared Cassia, lb. ss.; Manna, 5j.; Prepared Tamarind Pulp, 3j.; Syrup of Rose, 5j. Bruise the Manna, then dissolve it in the Syrup; afterwards mix in the Cassia and Tamarind pulps, and evaporate the moisture until a proper consistence is attained).—Laxative. Occasionally used for children, as a vehicle for some more active substance.—Dose 5j. to 5j. for adults.

284. COPAIFERA MULTIJUGA, Hayne, L. —VARIOUS SPECIES, D. E.

Copaifera multijuga et aliae species, De Cand.—Copaifera officinalis, Linu.

Sex. Syst. Decандria, Monogynia.

(Oleo-resina, L. D.—Fluid resinous exudation, E.)

History.—The first notice of Copaiva balsam, as well as of the tree yielding it, was given by Piso.2 Hayne3 is of opinion that the *Copaifera bijuga* is the species observed by Piso.

Botany. *Gen. Char.*—Calyx ebracteolate, of 4 spreading, small, equal sepals united at the base. Petals 0. Stamens 10 distinct, nearly equal; anthers oblong. Style filiform. Legume stalked, obliquely elliptical, coriaceous, somewhat compressed, 2-valved, with 2 ovules, 1-seeded. Seed elliptical, inclosed in a baccate aril. Embryo straight; radicle somewhat lateral.—*Trees.* Leaves abruptly pinnate. Leaflets coriaceous, somewhat unequal, ovate. Flowers paniculate (De Cand.)

Species.—1. **C. MULTIJUGA, Hayne, L.**—Leaflets 6 to 10 pairs, ovate-lanceolate, acuminate, mucronate, with pellucid dots. Petiole slightly hairy.

1 See Paris, Pharm. 6th edit. i. 271.
3 Duncan, Suppl. to the Edinb. New Disp. p. 45.
In the province of Para the greatest quantity of the balsam is furnished by this species (Hayne).

2. C. Langsdorffii, Desf. L.—Leaflets 3 to 5 pairs, ovate or oval, blunt, equal-sided, with pellucid dots. Petioles and peduncles slightly downy.—This and the following species furnish the balsam collected by the natives of Santa Paulo.

3. C. coriacea, Mart.—Leaflets 2 to 3 pairs, elliptical, equal-sided, emarginate, coriaceous, not dotted, reticulated, smooth on both sides, somewhat glaucous beneath. Petioles and peduncles almost smooth.—Bahia. It yields balsam of copaiva in Santa Paulo.

4. C. officinalis, Linna, D.; C. Jacquinii, Desf.—Leaflets 2 to 5 pairs, incurved, ovate, unequal-sided, obtusely acuminate, with pellucid dots.—Venezuela, near Calaboso, West Indies.—An inferior kind of balsam is said to be obtained from this species.

The following are species of Copaifera described by Hayne:

5. C. Beyrichii, Hayne.—Mandiocca, in the Brazils.
7. C. Maritii, Hayne.—Para.
8. C. Bijuga, Wild.—Brazils.
10. C. nitida, Mart.—Brazils (Minas Geraes).
11. C. laxa, Hayne.—Brazils.
12. C. cordifolia, Hayne.—Brazils.
14. C. oblongifolia, Mart.—Brazils (Minas Geraes).

Extraction of the Balsam.—The balsam is obtained by making incisions into the stems of the trees. It exudes so abundantly that, at the proper season, twelve pounds are sometimes obtained in the space of three hours. If, however, no balsam should flow, the wound is immediately closed with wax or clay, and re-opened in a fortnight, when an abundant discharge takes place. Old trees sometimes furnish balsam two or three times in the year. Langsdorff, in his account of Santa Catherina, observes that "the tree which yields copaiva balsam, or balsam of Tolu, Copaifera officinalis, is here called oleo breto, or black olive. It abounds in the forests, but very little use is made of it. I was assured, that when the incision is made in the tree to procure the balsam, which is done only in the very hot summer months, a strong sound is heard, and the sap or balsam rushes out in a stream, as when a vein is opened in the human arm."

Commerce.—Balsam of Copaiwa is principally obtained from Para and Maranhao. This probably is yielded, for the most part, by C. multijuga, the tree assigned in the London Pharmacopoeia. Carthagea, Maracaibo, and Savanilla, also furnish some. Is this from C. officinalis? Occasionally it is brought from Rio Janeiro, and is there probably procured from C. Langsdorffii and coriacea. Some is imported from the West Indies; and a considerable quantity, at second hand, from New York. It is usually brought over in casks holding one cwt. or one and a half cwt. In 1839, duty (4s. per cwt.) was paid on 643 cwt.

1. Piso, op. supræ cit. p. 56.
2. Voyages and Travels in Various Parts of the World, during the Years 1803—1807, p. 43, Lond. 1813.
Species of Copaifera.

Fig. 370

Species of Copaifera.
DESCRIPTION.—Balsam of Copaiva (Balsam Copaiva seu Copaibæ) is a clear transparent liquid, having for the most part the consistence of olive oil. It has a pale yellowish colour, a peculiar, not disagreeable odour, and a bitter somewhat acid and nauseous taste. Its sp. gr. is less than that of water, but is not constant. It is 0·95 according to Schönberg, while Stoltze says it is 0·966. By keeping, it becomes considerably denser, owing to the loss of volatile oil. Balsam of copaiva is insoluble in water, but is completely soluble in alcohol, ether, and the oils, both fixed and volatile. When acted on by alkalies it yields a kind of soap, which is insoluble in water.

Considerable variation exists in the colour, consistence, and sp. gr. of, as well as in the relative quantities of volatile oil and resin yielded by, balsam of copaiva. Even the odour and taste vary somewhat. The differences doubtless depend in great part upon the balsam being procured from different species. The smaller species, which grow in the interior of the Brazils, as in Bahia and M nas, yield, as we are told, less balsam, but it is more resinous and sharper. *Brazilian Copaiva* is thin, clear, and pale-coloured. *West Indian Copaiva* (produced probably by *C. officinalis*) is thick, golden-yellow, not transparent, and has a less agreeable smell, which is somewhat like that of turpentine. [It is to be regretted that the term balsam is still erroneously applied to this liquid. The London College has more correctly described it as an oleo-resin; it is in fact resin dissolved in essential or volatile oil like ordinary turpentine. It contains no benzoic acid, which has generally been regarded by pharmacologists as a necessary constituent of a substance to which the term balsam is applied.—Ed.]

ADULTERATION.—There is no reason to suppose that balsam of copaiva is adulterated in this country now; though the following fact, mentioned by Dr. Paris,¹ proves that formerly it was. "A curious trial took place some time since, between the owners of certain premises that were burnt down, and the Governors of the Sun Fire-Office, in consequence of the latter refusing to indemnify the proprietor for his loss, because the fire had been occasioned by his making Balsam of Copaiba."—Gray² has published formulae for making a *balsamum copaiba reductum*, as well as *copaiba factitia*.—The *Edinburgh College* gives the following characters of the purity of the Balsam:—

"Transparent: free of turpentine odour when heated: soluble in two parts of alcohol: it dissolves a fourth of its weight of carbonate of magnesia, with the aid of a gentle heat, and continues translucent."

The turpentine odour may be recognised by dropping the suspected balsam on a heated iron (as a spatula). The mixture of magnesia and copaiva here referred to, acquires, in several hours, the translucency, aspect, and consistency of very thick mucilage of gum arabic. This test was proposed by Blondeau.³ If one or two drops of suspected balsam be placed on unsized paper, and carefully heated over a lamp to expel the volatile oil, an homogeneous translucent spot is left, if the balsam be pure; but if it have been mixed with castor oil, the spot of resin is surrounded by an oily areola.⁴ Planché⁵ has recommended ammonia as a test. If pure balsam be shaken

¹ *Pharmacologia*, 6th edit. ii. 183.
² *Suppl. to the Pharm.*
³ *Journ. de Chim. Méd.* i. 560; and ii. 41.
⁵ *Journ. de Pharm.* xi. 223.
with liquor ammoniac (sp. gr. 0·965) it becomes clear and transparent in a few instants; not so when castor oil is present. Ebulbition with water (to expel the volatile oil and obtain the hard resin), and the action of potash, and of sulphuric acid, have also been proposed as tests.

Composition.—F. Hoffmann¹ submitted copaiva to a chemical examination. Afterwards Schönberg² analysed it. In 1826, Stoltze,³ and, in 1829, Gerber,⁴ submitted it to analysis.

Stoltze’s Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volatile oil (copaivic acid)</th>
<th>Yellow dark resin</th>
<th>Brown soft resin</th>
<th>Water and loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38·00</td>
<td>52·75</td>
<td>1·66</td>
<td>7·59</td>
</tr>
<tr>
<td>Balsam of Copaiva</td>
<td>100·00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gerber’s Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Fresh Balsam</th>
<th>Old Balsam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>31·70</td>
</tr>
<tr>
<td></td>
<td>51·38</td>
<td>53·68</td>
</tr>
<tr>
<td></td>
<td>2·18</td>
<td>11·15</td>
</tr>
<tr>
<td></td>
<td>5·44</td>
<td>4·10</td>
</tr>
<tr>
<td>Balsam of Copaiva</td>
<td>100·00</td>
<td>100·63</td>
</tr>
</tbody>
</table>

1. Volatile Oil (see post).

2. Resin of Copaiva (Resina Copaiva).—After the balsam has been deprived of its volatile oil by distillation, a brownish resinous mass is left behind. This, when gently heated to expel the residual water, is sold as resin of copaiva. It consists of two resins—one called copaivic acid, the other the viscid resin of copaiva. They are separated by rectified spirit, which dissolves the acid resin, but leaves the viscid one.

a. Copaic Acid; Yellow Brittle Resin of Copaiva.—One hundred parts of balsam yield, on an average, fifty parts of this acid. Copaivic acid is an amber-coloured, brittle, crystallizable resin, soluble in alcohol, rectified spirit, ether, and the volatile and fixed oils. It is decomposed by sulphuric and nitric acids. Its acid properties are proved by its alcoholic solution reddening litmus, and by the definite compounds (copaivates) which it forms with bases. Thus, if an alcoholic solution of nitrate of silver be dropped into the alcoholic solution of this resin, we obtain, on the addition of a little ammonia, a white crystalline precipitate (copaivate of silver), slightly soluble in alcohol, and composed of one atom copaivic acid, and one atom oxide of silver. In the same way we may form the analogous copaivates of lead and lime. The copaivates of potash and soda are soluble, and have a bitter taste and a disagreeable odour: they are easily decomposed by acids. The copaivate of ammonia is soluble in ether and alcohol, but not in water. The copaivate of magnesia is prepared by adding copaivate of potash to sulphate of magnesia.

Copaivic acid is isomeric with pinic acid; that is, its composition is C₂H₂O₄ (Rose).

b. Viscid Resin of Copaiva; Brown Soft Resin of Copaiva.—When a hot alcoholic solution of copaiva cools, it retains in solution the acid resin already described, but deposits a brown viscid substance, which is termed the viscid resin of copaiva. As it is more abundant in old than in recent balsam, Gerber regards it as produced by some alteration of the acid resin. It is soluble in anhydrous alcohol and ether, and in the volatile and fixed oils. It has very little affinity for basic substances. One hundred parts of balsam contain from 1·65 to 2·13 per cent. of this resin.

Physiological Effects.—Copaiva produces the general and topical stimulant effects of the oleo-resins, already described. Taken in moderate doses it creates a sensation of warmth in the stomach, gives rise to eructions having the odour of the balsam, and not unfrequently occasions nausea, or even actual vomiting. The continued use of it often impairs the appetite, and disorders the digestive functions. These may be regarded as the local effects on the stomach. The constitutional effects, or those

⁴ Journ. de Pharm. xvi. 70 and 367.
which result from the absorption of the balsam, or of its active constituent, the oil, are those of a stimulant whose influence is principally directed to the secreting organs, more especially to the mucous membranes and to the urino-genital apparatus. The oil passes out of the system in part by the lungs, and the odour of its vapour is readily detectable in the breath of persons taking it. The urine is increased in quantity and altered in quality; thus its colour is heightened, its odour becomes balsamic, and its taste bitter; moreover, not unfrequently it is turbid, as if containing mucus.

[It has been proved that the oleo-resinous matter of copaiva enters the urine, and causes the secretion to simulate an albuminous condition, inasmuch as it becomes precipitable by nitric acid. It is important to remember this in a pathological point of view. The precipitate may be distinguished from that of albumen by the fact of its not subsiding as albumen does after the fluid has been set aside for a few hours.—Ed.]

The influence of copaiva over the mucous membrane lining the urethra, is shown, even in the healthy state, by the warmth and tickling sometimes experienced in this part, both before and after evacuating the urine, as observed by König, a medical student, in his experiments with this medicine; and also by the marked influence which the balsam has in mucous discharges from this membrane—an influence familiar to every tyro in medicine. Furthermore, it is said occasionally to have produced unpleasant irritation of the testicles, though I have never observed this. It also acts as a stimulant, but in a less marked manner, to other mucous membranes; namely, the bronchial and gastro-intestinal membranes. The greater influence of copaiva over the urethral than over other mucous membranes is by some explained thus:—Besides the influence which this receives in common with the other membranes of the same class, by the general circulation, it is exposed to the local action of copaiva contained in the urine as this fluid is expelled from the bladder. If this hypothesis were correct, the influence of copaiva over the mucous lining of the bladder would be greater than that over the urethral membrane. Not unfrequently it gives rise to an eruption, usually of a scarlet colour, referable to either urticaria or erythema, though some describe it as being miliary. Vesicular eruptions are also spoken of, but I have never seen them. Mr. Judd has depicted two eruptions caused by the balsam:—one he calls small puniceous patch eruptions; the other was a papular eruption. Rheumatism has also been ascribed to the use of the balsam.

Large doses of copaiva irritate the gastro-intestinal canal, and occasion a sensation of heat at the pit of the stomach, nausea, vomiting, loss of appetite, and purging, with, not unfrequently, griping pains of the bowels. The whole system becomes powerfully stimulated; the pulse is fuller and more frequent, the skin hotter, and thirst and headache are produced. Occasionally, hæmaturia and dangerous ischuria are brought on. "I saw," says Kraus, "a very dangerous case, of thirty-six hours standing, almost instantaneously relieved by the application of a warm poultice (made of four ounces of the

1 Rees On the Analysis and Treatment of Urinary Diseases, p. 204.
2 Wibmer, Wirk. d. Arzneim. u. Gifte, i. 484.
3 Pract. Treat. on Urethritis and Syphilis, Lond. 1836.
5 Heilwittelkunde, 621, Gött. 1831.
Copaiva:—Effects; Uses.

1881

Hyoscyamus plant) over the genital organs." The same author also says that the repeated use of large doses occasions, "in young marriageable subjects, a measles-like eruption over the whole body, which I have many times seen treated by pretended great diagnosticians (Diagnostikern) as true measles."

In one case1 pain at the stomach, general uneasiness, and epileptic convulsions, followed, and were ascribed to, the use of copaiva. But the correctness of ascribing the convulsions to the use of the copaiva appears very doubtful.

When we compare the operation of copaiva with that of other agents possessing powers of a somewhat similar kind, we observe that both in local and constitutional effects it is more powerful than the balsams properly so called (that is, the native oleo-resins which contain benzoic acid), while its operation on the urino-genital organs is much more marked. It forms an intermediate substance between the balsams and the turpentine, being less powerful, but more aromatic, than the latter: yet, observes Ribes,2 the turpentine is less successful in gonorrhoea. The same author considers it to be less powerful than balsam of Mecca, but more so than balsam of Canada.

Uses.—The principal employment of copaiva is in mucous discharges from the urino-genital organs, more especially in gonorrhoea. There are two methods of treating this disease by copaiva: one is, not to exhibit the balsam until the inflammatory symptoms have subsided,—the other is to give it at the very outset, in order to cut short or suppress the disease.

The first method is that followed by the best English and German surgeons. It consists in employing, during the violence of the inflammatory stage, antiphlogistic and soothing measures; and when the inflammation has quite or nearly subsided, or is of a very mild character, giving copaiva with the view of diminishing or stopping the discharge. This is the plan recommended by Hunter,3 and the same practice is recommended in the published lectures of Sir Astley Cooper4 and Mr. Lawrence.5 It is undoubtedly the safest method of treatment; for although copaiva may sometimes, or even frequently, be exhibited during the acute or inflammatory stage of gonorrhoea, not only with impunity, but even with advantage, there is no denying the fact that it has, occasionally at least, aggravated the symptoms. This, indeed, is admitted by Ansiaux,6 one of the principal supporters of the other plan of treatment. Many practitioners judge of the propriety of exhibiting the balsam by the quality of the discharge only, and refrain from administering this medicine until the discharge has acquired what is called a gleet character. I believe most prudent surgeons consider the existence of much pain or scalding in passing the water, an irritable condition of bladder, or violent chordee, as contraindicating the use of co-

2 Quoted by Bayle, Bibl. Thér. i. 363.
3 Treat. on the Vener. Dis.
4 Lancet, iii. 199.
6 Mén. sur le Traité. de la Blephoro.; quoted by Bayle, op. supra cit. 348.
paiva; while the absence of these symptoms may be regarded as permitting or indicating it.

The second method of treating gonorrhoea by copaiva consists in exhibiting this medicine in large doses at the commencement of the disease; that is, in its acute stage, usually without adopting any preliminary antiphlogistic or soothing measures. In America the practice is not new; but in Europe it has been recommended or adopted to any extent only since the commencement of the present century, and principally by the recommendations of Ansiaux, Ribes, and Delpech.¹

Ansiaux candidly admits that in some cases the practice has been injurious; in one instance he saw it produce acute pain, irritable bladder, and discharge of blood by the urethra. The second of these writers seems to regard copaiva as a specific for gonorrhoea and all its consequences, including swollen testicle, dysury, ischury, cystitis, nephritis, &c.! Delpech speaks of its use in a much more guarded manner: he employs leeches, and the usual antiphlogistic measures, when the inflammatory symptoms are very severe; but when the inflammation is not excessive, he commences at once with the balsam. In fact, his practice approximates very much to that usually followed in this country and Germany. The partisans of this second method of treating gonorrhoea say, that both copaiva and cubeb cure more easily and promptly, and with less chance of relapse, the sooner they are exhibited after the commencement of the disease; in other words, old claps are less readily cured by them than recent ones.

It has been stated by Delpech and Ricord—and I believe the experience of most practitioners bears out their statement—that copaiva is less successful in the gonorrhoea of females than in that of males. Trousseau and Pidoux² have endeavoured to account for this by saying that in the female gonorrhoea is not confined to the mucous lining of the urethra (on which the influence of copaiva is principally exercised), but extends to that of the vagina.

Velpeau³ employs lavements of the balsam in gonorrhoea. By this mode of exhibition the nausea and vomiting which copaiva is apt to occasion, when taken by the mouth, are entirely obviated. Velpeau asserts, that by this mode of administration blennorrhagic discharges of both males and females are almost always diminished, and frequently completely stopped. He found the same practice useful in non-venerial puriform discharges from other mucous membranes. Indeed, he asserts that copaiva lavements may in all cases be substituted for the administration of this liquid by the mouth.

In chronic inflammation of the bladder (commonly termed cystirrhœa, or catarrhus vesicae) copaiva has at times been found beneficial.⁴ Delpech relates a case of acute vesical catarrh cured by it. But catarrhus vesicae is for the most part accompanied with considerable irritation, which is in general greatly increased by stimulants like copaiva.

¹ Bayle, op. supra cit.
² Traité de l'Emploi du Balsam de Copahu.
In *lencorrhea* copaiva has been employed with some advantage. Favorable reports of this practice have been published by Cuttet and Lacome,\(^1\) Armstrong,\(^2\) and others.

In *chronic pulmonary catarrh* its employment has been spoken of favourably. Armstrong,\(^3\) Hallé, Bretonneau, and La Roche (quoted by Bayle), have borne testimony to its good effects. It is only adapted for chronic, or old-standing cases, and for torpid habits. Its stimulant influence is calculated to be very injurious where there is inflammation or febrile disorder. Dr. Fothergill\(^4\) has very properly reprobed the practice of administering it in pulmonary consumption, as recommended by Fuller and others.

In *chronic inflammation of the mucous membrane of the bowels*, especially of the colon and rectum, copaiva has been used.\(^5\) Dr. Cullen\(^6\) spoke favourably of its use in *hemorrhoids*. "I have learned from an empirical practitioner," he says, "that it gives relief in hemorrhoidal affections; and I have frequently employed it with success. For this purpose it is to be given in doses of from 20 to 40 drops, properly mixed with powdered sugar, once or twice a day."

It was formerly employed as a *topical application* to wounds and ulcers.

Administration.—Dose, from gtt. xx. to f\(\text{ij}\), or even more. It is sometimes taken on sugar, and this is said to be the most efficacious method of giving it, in affections of the urinary organs; but its nauseous taste is a great objection to its employment in this way. Some take it swimming on half a *wine-glassful of water*, to which a few drops of some bitter tincture have been added. Many persons employ it in the form of *emulsion* (made with mucilage, yolk of egg, or alkalies). If mucilage be employed, it should not be very thick, otherwise it will not mix well. Spirit of nitric ether is frequently added to cover the unpleasant flavour. Opium is sometimes conjoined to counteract purging, and acids (especially the sulphuric) to check nausea. *Syrup of copaiva* (prepared by rubbing 3iv. of balsam with 32 grs. of calcined magnesia, and then adding 64 drops of oil of peppermint and 62 ozs. of simple syrup) has been recommended.\(^7\) Balsam of copaiva has also been taken in the form of *pills*; various powders (starch, gum, rhubarb, magnesia, &c.) being employed to give it a proper consistence. If magnesia be employed (as recommended by Mialhe), the copaivic acid unites with it, and thereby forms copaivate of magnesia, which has considerable consistence, and absorbs the volatile oil. In some cases the balsam acquires, by magnesia, a pilular consistence; but frequently it does not become thicker than honey. Bordeaux turpentine also possesses the property of solidifying with magnesia. The following is a formula for *copaiva pills*:\(^8\)—Balsam of Copaiva, 3ij.; Calcined Magnesia, 5vj. or 5vj. (or common Carbonate of Magnesia, 3ij.) Several hours are frequently required to effect the solidification of the balsam.—Velpeau’s *copaiva lavement* is thus pre-

1 Bayle, op. supra cit.
2 Pract. Idrstr. of the Scarlet Fever, &c. 1818.
4 Med. Obs. and Inq. iv. 231.
6 Mat. Med.
8 Soubeiran, Traité de Pharm. i. 523.
pared:—Balsam of Copaiva, 5ij.; Yolk of one Egg; Distilled Water, f3viiij. Make an emulsion, and to which add Tincture of Opium, gtt. xx. or gtt. xxx.

The resin of copaiva, which was much extolled a few years since,¹ is the least active part of the balsam.

1. OLEUM COPAIBAE, E.; Essential Oil of Copaiva. — (Copaiva, 5j.; Water, Oiss. Distil, preserving the water; when most of the water has passed over, heat it, return it into the still, and resume the distillation; repeat this process so long as a sensible quantity of oil passes over with the water.)—The directions of the Edinburgh College make the process of obtaining the oil a more operose one than it really is. Mr. Whipple informs me, that from 249 lbs. of balsam he obtained 128 lbs. of volatile oil and 120 lbs. of resin. Ader² has published a method for procuring the oil without distillation; but the process is more expensive, while the oil obtained by it is impure, owing to the presence of a little resinous soap.

When oil of copaiva has been rectified, and afterwards freed from water by digesting it on chloride of calcium, it has a specific gravity of 0.878. It is colourless, and has an aerid taste, and an aromatic, peculiar odour. Sulphuret of carbon and sulphuric ether dissolve it in all proportions; absolute alcohol dissolves two-fifths its weight of it; ordinary rectified spirit takes up less than this. Potassium may be preserved in it unaltered, showing the absence of oxygen. It dissolves sulphur, phosphorus, and iodine (by the latter it is coloured), and absorbs chlorine, with which it becomes turbid and viseid. When dropped on iodine, heat and hydriodic acid are suddenly produced.

Sulphuric and nitric acids convert it into a resinous substance. When hydrochloric acid gas is passed into this oil, crystals of the hydrochlorate of the oil of copaiva (or artificial camphor of the oil of copaiva) are deposited, while a fuming oily product, saturated with acid, remains. Hence, therefore, it is probable that oil of copaiva, like the oil of turpentine, consists of at least two isomeric oils; one, which forms the crystallisable compound with hydrochloric acid; the other, which does not form this crystalline matter.

Oil of copaiva is isomeric with oil of turpentine,—that is, it consists of C10H16.

For medicinal use I prefer the oil of copaiva to any other preparation of the balsam. The usual dose is from ten to twenty drops, which may be gradually increased; but I have known f5ij. taken at one dose without any ill effects. It may be taken on a lump of sugar.

2. GELATINE CAPSULES OF COPAIVA: Bacca Copaifera factitia, Pharm. Castrensis Rutherica.—(Prepared by dipping the bulbous extremity of a metallic rod into a concentrated solution of gelatine. When the rod is withdrawn it is to be rotated in order to diffuse the gelatine equally over the bulb. As soon as the gelatinous film has hardened, it is to be removed from

¹ Thorn, Observ. on the Treat. of Gonorrhea by a New Prepar. from the Bals. of Copaiba, 1827.
² Journ. de Pharm. xv. 95.
the bulb and placed on pins furnished with heads, and fixed on a cork table. When dried, the capsules are placed in little cells in the cork table; the balsam is introduced into them by means of a glass tube, and they are then closed by dropping some concentrated solution of gelatine on the orifices. Desfontenelle has described another method of making the capsules. Gelatine capsules are the invention of a Frenchman of the name of Mothe: they have been introduced with the view of avoiding the nauseous odour and taste of various medicines (as balsam or oil of copaiba, oil of cubeb, creasote, Dippel’s oil, &c.) When swallowed, the gelatinous capsule dissolves in the gastro-intestinal juices, and the liquid medicine escapes. The capsules found in the shops are olive-shaped, and contain about ten grains of balsam. Ratier has proposed to introduce them into the rectum. For this purpose they are to be conveniently greased.

OTHER MEDICINAL LEGUMINOSÆ.

1. Spartium junceum, or Spanish broom, the σπαρτίων of Dioscorides, is occasionally employed in medicine. The seeds, in large doses, are emetic and purgative; in small quantities, diuretic. They have been employed by Dr. Eccles in dropsical affections. Their advantage over other diuretics is their tonic operation, in consequence of which they may be persisted in for an indefinite length of time (Pearson). They may be taken, in the form of powder, in doses of from grs. x. to grs. xv. three times a-day, in cold ginger-tea or mint-water; but the tincture (prepared by digesting 3ij. of the bruised seeds in 13viiiij. of proof spirit) is the best form of exhibition. Its dose is 15j. to 15ij.

2. The Butea frondosa is a middling-sized tree, common in Bengal and in the mountainous parts of India. "From natural fissures and wounds made in the bark of this tree, during the hot season, there issues a most beautiful red juice, which soon hardens into a ruby coloured, brittle, astringent gum. This is gum butea. It has been recently brought over by Mr. Beckett, by whom samples were given to Dr. Royle. On examination I found this gum to be identical with a substance which I had previously met with in an old drug firm of this city, marked gummi rubrum astringens, and samples of

1 For further details, consult Sir James Wylie’s Pharmacopoeia Castrensis Ruthenica, p. 681, Petropolii, 1840.
3 Ratier, Observ. sur Broomseed, Lond. 1835.
4 Roxburgh, Fl. Indica, iii. 245.
5 Proceedings of the Committee of Commerce and Agriculture of the Royal Asiatic Society, p. 50, Lond. 1838.
by the natives of North-Western India for precipitating their indigo, and in tanning. English tanners, however, object to its use on account of the colour which it communicates to the leather. 3

3. Indigo (pigmentum indicum; ἴνδικον, Dioscorides; indicum, Pliny) is a blue pigment obtainable from various plants by fermentation. The ancients also employed the term ἴνδικον, or indicum, to some other substances. 4 The indigo of commerce is procured from the genus Indigofera. In India, I. tinctoria is commonly cultivated for this purpose. During the fermentation, the indigo is deposited as a feeculet matter. Lime water promotes its separation. Blue indigo does not exist in the plants previous to fermentation: it is, therefore, a product, not an educt of them. Commercial indigo is principally brought from the East Indies, but a considerable quantity is imported from Guatemala, and other places. It usually occurs in ebulical cakes of an intense blue colour. Rubbed with a smooth hard body (as the nail), it assumes a coppery or bronze hue. It is insoluble in water, cold alcohol, ether, diluted sulphuric or hydrochloric acids, weak alkaline solutions, and cold oils (both fixed and volatile). When heated to about 550° F. it evolves a reddish, violet vapour (vapour of indigo), which condenses in minute crystals. This distinguishes it from Prussian blue. Deoxidising agents (as protosulphate of iron, sesquisulphuret of arsenic, the process of fermentation, &c.) destroy its blue colour by abstracting oxygen from the indigotin, and converting it into indigocyan, or white indigo; which, by exposure to the air, attracts oxygen, and becomes blue. Chlorine and the hypochlorites destroy the blue colour of indigo. Rubbed with oil of vitriol it yields a deep blue liquid, commonly termed sulphate of indigo, Saxon blue, or liquid blue. Commercial indigo consists of indigo blue (indigotin), indigo brown, indigo red, and a glutinous substance. Indigotin consists, according to Dumas, of C₃H₈N₂O₂. Indigo has, of late years, been employed as a medicine. Its physiological effects, according to Dr. Roth, 5 are as follows:—Shortly after taking it the patient experiences a sense of constriction at the fauces, and the impression of a metallic taste on the tongue. These are followed by nausea, and frequently by actual vomiting. The intensity of these symptoms varies in

1 Hist. des Drogs. 3me édit. ii. 428.

2 Med. Obs. and Inv. 4th edit. i. 355.

4 Beckmann, Hist. of Ind. and Dacca. iv. 118.

5 Dissec. de Indico, Berol. 1834; and Brit. and For. Med. Rev. ii. 244.
different cases. In some the vomiting is so violent as to preclude the further use of the remedy. The matter vomited presents no peculiarity except in its blue colour. When the vomiting has subsided, diarrhoea usually occurs: the stools are more frequent, liquid, and of a blue or blackish colour. The vomiting and diarrhoea are frequently accompanied by cardialgia and colic. Occasionally these symptoms increase, and the use of the remedy is in consequence obliged to be omitted. Dyspepsia and giddiness sometimes succeed. The urine has a brown, dark, violet colour; but Dr. Roth never found the respiratory matter tinged with it. After the use of indigo for a few weeks, twitchings of the muscles sometimes were observed, as after the use of strychnia. It has been employed principally in spasmodic affections—viz. epilepsy, convulsions of children, chorea, and hysteria. In epilepsy it has been tried by Von Stathy, Lenhossek, Grossheim, Ideler, Wolf, Leineweber, Depp, and Noble, with good effect. Some of the successful cases were of very long standing. Roth says, that at the commencement of the treatment the frequency of the paroxysms was invariably increased. Idiopathic epilepsy is said to have been more benefited by it than the symptomatic epilepsy. I have tried it in a considerable number of epileptic cases at the London Hospital, but without deriving the least benefit from it. The dose of indigo should be as large as the stomach can bear. At the beginning it may be a few grains; afterwards this quantity should be increased to draecums, or even an ounce or more in the day. Some of the patients above referred to took from 3 to 12 daily, for three or more months. The best mode of exhibiting it is in the form of an electuary, composed of one part of indigo and two parts of syrup, with a small portion of water. The powder is apt to cause spasm of the fauces. Aromaties, mild tonics, astringents, and opiates (as the compound powder of ipecacuanha), may be conjoined, according to circumstances.

Order LXIII. Terebinthaceæ, Jussieu.—The Terebinth Tribe.

Burseraceæ, Xanthoxylaceæ, Cannaraceæ, Amyridaceæ, and Anacardiaceæ, Lindley.

Characters.—Flowers hermaphrodite, polygamous, or dioecious. Sepals 3 to 5, more or less united at the base, imbricated in aestivation, very rarely adherent to the ovary. Petals rarely 0, generally distinct, as many as, and alternate with, the sepals, very seldom united at the base; imbricated in aestivation. Stamen, as well as the petals, arising from the lower part of the calyx, or from the calyxine disk, rarely from the torus surrounding the ovary; either equal in number to, and alternate with, the petals, or double (very rarely quadruple) the number of the petals, and then placed alternately anterior and between the petals. Carpels, in some, numerous, distinct, with one style,—in others many, united by the ovaries; in either case some of them are frequently abortive, and hence the carpels in many appear solitary, 1-celled, but the number of the styles and stigmas then usually indicates abortion. Fruit capsular or drupaceous. Seeds few, usually solitary, commonly exalbuminous. Embryo straight, curved, arched, or folded back; cotyledons various; radicle usually superior (De Caud.)

Properties.—The principles common to all the Terebinthaceæ, are:—1st, Fixed oil in the seeds; 2ndly, Volatile oil combined with resin in the turpentine of the pistacias; 3rdly, Resin which flows either naturally or from artificial openings in the stems of many of the species; 4thly, Gum usually combined with resin—as in olibanum, myrrh, taecamahæa, &c.

1 Roth, op. cit.; Dierbach, Neuest. Entl. in d. Mat. Med. i. 222, 1837.
3 Fée, Cours d’Hist. Nat. i. 619.
285. PISTACIA TEREBINTHUS, Linn. L. E. D.—THE TURPENTINE PISTACIA.

Sex. Syst. Dioecia, Pentandria.

(Oleo-resina, L.—Liquid resinous exudation, E.)

History.—This tree is the Τερέβινθος or Τερέβινθος of the Greeks. Hippocrates employed the fruits, the buds, and the resin, medicinally.

Botany. Gen. Char.—Flowers dioecious, apetalous. Males: Racemes amentaceous, with 1-flowered scales [bracts]. Calyx 5-cleft. Stamens 5; anthers almost sessile, 4-cornered. Females: Racemes more lax. Calyx 3- or 4-cleft. Ovary 1- to 3-celled. Stigmas 3, rather thick. Drupe dry, ovate, with a somewhat osseous nut, usually 1-celled, 1-seeded, sometimes bearing two abortive cells at the side. Seeds solitary in the cells, affixed to the side of the cell, exalbuminous. Cotyledons thick, fleshy, oily, with a superior lateral radicle.—Trees with pinnate leaves (De Cand.)

Sp. Char.—Leaves pinnate, with an odd one; leaflets about 7, ovate-lanceolate, rounded at the base, acute, mucronate (De Cand.)

A tree of 30 or 35 feet in height. Young leaves reddish, old ones dark-green. Racemes compound. Fruit almost round, purplish.

Hab.—Syria and the Greek Archipelago.

Extraction.—Tournefort¹ says, that the turpentine harvest in Scio is made, from the end of July to October, by cutting crosswise with a hatchet the trunks of the largest turpentine trees. The turpentine runs down on flat stones placed under the trees, where it hardens. The quantity yielded by each tree is small, not exceeding eight or ten ounces.

Properties.—Chian or Cyprus turpentine (Terebinthina Chia seu Cypria) has the general properties of the coniferous turpentines already described. Its consistency is that of honey, but more glutinous. Its colour is greenish-yellow. It has an agreeable turpentine-like odour, combined with the odour of fennel, or, according to some, of citron and jasmine. Its taste is very mild. By keeping, it resinifies, and acquires a somewhat less agreeable odour. Genuine Chian turpentine is scarce; the coniferous turpentines being usually sold for it.

Composition.—I am unacquainted with any analysis of it; but its composition is doubtless similar to the coniferous turpentines.

Physiological Effects, Uses, and Administration.—Exactly similar to the other coniferous turpentines.

¹ Voyage into the Levant, ii. 62, Lond. 1741.
286. PISTACIA LENTISCUS, Linn. L. E. D.—THE MASTIC OR LENTISK TREE.

Sex. Syst. Dioecia, Peutandria.

(Resina ex inciso cortice fusa, L.—Concrete resinous exudation, E. D.)

History.—This tree is the Ξιρος of the Greeks. Hippocrates employed the leaves, resin (mastic), and the oil prepared from the fruit, in medicine.

Sp. Char.—Leaves abruptly pinnate; leaflets about 8, lanceolate. Petiole winged (De Cand.)

A mere bush. Leaves evergreen. Flowers very small. In var. β angustifolia the leaflets are somewhat linear: in var. γ Chia they are ovate.

Hab.—South of Europe, North of Africa, Levant.

Extraction.—Tournefort¹ says, that in Scio the extraction of mastic commences on the first of August. The bark is cut crosswise with huge knives. The mastic exudes and hardens partly on the stem, partly on the ground. The same incisions furnish mastic towards the end of September, but in lesser quantities. The mastic which concretizes on the stem is called mastic in the tear, while that which falls to the earth constitutes common mastic.

Properties.—Mastic (mastiche) occurs in small spherical, flattened, or irregular, pale-yellow tears, which are externally farinaceous, owing to their mutual attrition. Their fracture is vitreous. They have a mild, agreeable odour, and an aromatic taste.

Composition.—Mastic consists of a minute portion of volatile oil, about 90 per cent. of resin soluble in alcohol, and 10 per cent. of a resinous substance (masticine) insoluble in alcohol.

1. Soluble Acid Mastic Resin; Resin, α; Mastichic Acid.—This resin is soluble in alcohol. It possesses the properties of an acid, and combines with bases to form four series of salts. Its formula, according to Johnstone, is C^{40}H^{40}O^{4}.

2. Insoluble Non-Acid Mastic Resin; Resin β; Masticine.—This resin is insoluble in alcohol. It is white, elastic, tenacious, soluble in an alcoholic solution of resin α, as well as in ether and oil of turpentine. Its formula, according to Johnstone, is C^{40}H^{39}O^{2}. To this resin mastic owes its toughness.

Physiological Effects.—Analogous to common resin and the turpentines.

Uses.—Mastic is rarely employed as a medicine. It has been used to check excessive discharges from the mucous membranes, as leucorrhcea, gleet,

¹ *Voyage into the Levant*, ii. 60, Lond. 1741.
chronic pulmonary catarrh, and old diarrhoeas. Dentists occasionally employ it for filling up the cavities of carious teeth. The Turkish ladies chew it to sweeten the breath, and preserve the teeth and gums. Dissolved in alcohol it forms a very useful cement and varnish. A solution of it in oil of turpentine is a common varnish.

Administration.—It is exhibited as an adjunct only to other medicines. It is a constituent of the dinner pills (composed of aloes, ½½j.; mastic and red roses, ½½j.; syrup of wormwood, q. s.), in which it serves to divide the particles of the aloes. It is a constituent of the tinctura ammoniac composita, Ph. L.; formerly called eau de luce or spiritus ammoniac succinatus, which has been already described.

287. RHUS TOXICODENDRON, Linn.—TRAILING POISON OAK, OR SUMACH.

Sex. Syst. Pentandria, Trigynia.

History.—The attention of medical practitioners of this country was first drawn to the medicinal properties of this plant in 1793, by Dr. Alderson, of Hull. It was first described by Cornutus, in his Plant. Canad. Hist. Paris, 1804. Botany. Gen. Char.—Calyx small, 5-partite, persistent. Petals 5, ovate, spreading. Stamens 5, all fertile in the male and hermaphrodite flowers. Ovary 1, somewhat globose, 1-celled. Styles short, 3, or stigmas 3 sessile. Drupe almost juiceless, 1-celled; nut bony, perhaps by abortion 1-seeded, and sometimes 2- or 3-seeded. Seed exalbuminous, invested by the funiculus arising from the base of the nut; cotyledons foliaceous; radicle incumbent on the upper edge of the cotyledons (De Cand.)

Sp. Char.—Leaves pinnate with an odd leaflet, trifoliolate; leaflets angularly incised, pubescent (De Cand.)

Shrub, 1 to 3 feet high. Stems many, branching, covered with a brown bark. Flowers greenish-white. Fruit a round drupe, about as large as a pea.—Juice acrid, milky, becoming black by exposure to the air, and forming an indelible ink when applied to cotton or linen.

Rhus Toxicodendron is considered by some botanists as a variety only of Rhus radicans. I have followed Nuttall and De Candolle in considering it a distinct species.

Hab.—United States of America.

Composition.—I am not acquainted with any detailed analysis of this plant. There are at least two substances in it worthy of investigation:—viz. a volatile, acrid (narcotico-acrid?) principle, and the substance which blackens by exposure to the air. Tannic and gallic acids are said to be constituents of it.

Physiological Effects. 1. Of the Emanations.—When not exposed to the sun’s rays, as when it grows in shady places, and during the night, this

1 Essay on Rhus Toxicodendron, 3d edit. 1804.
2 Busse, Diss. laang. de Rhoie Toxicod. p. 10, Berol. 1811.
plant evolves a hydrocarburetted gas, mixed with an acrid vapour, which acts most powerfully on certain individuals exposed to its influence, and produces violent itching, redness, and erysipelatous swelling of the face, hands, or other parts which have been subjected to its operation; these effects are followed by vesications, and desquamation of the cuticle. In some cases the swelling of the face has been so great as to have almost obliterated the features; but all persons are not equally susceptible of this poisonous operation; so that some peculiar condition of the cutaneous organ seems necessary for the effect to be produced.1

2. Of the Plant. a. On Animals.—Orfila made several experiments with the watery extract of the Rhus radicrans (whose operation is probably quite similar to that of R. Toxicodendron), and concludes that "internally administered, or applied to the cellular texture, it produces a local irritation, followed by an inflammation more or less intense, and that it exerts a stupefying action on the nervous system after being absorbed." Lavina gave a few drops of the milky juice of Rhus Toxicodendron to guinea-pigs and birds, which were at first stupefied by it, but gradually recovered without any other noxious effect.

b. On Man.—In the human subject small doses of the leaves increase the secretions of the skin and kidneys, act slightly on the bowels, and, in paralysed persons, are said to have produced a return of sensibility and of mobility, with a feeling of burning and prickling, with twitchings, in the paralysed parts. Large doses occasion pain in the stomach, nausea, vomiting, giddiness, stupefaction, and an inflammatory swelling of the paralysed parts. These effects show that the poison oak possesses the two-fold operation of an acrid and a narcotic.

Uses.—It has been employed in old paralytic cases depending on a torpid condition of the nerves. It has also been given in chronic rheumatism, obstinate eruptive disorders, in some cases of amaurosis, and other nervous affections of the eyes.

Administration.—The powder of the leaves is given in doses of from half a grain to a grain, gradually increased until some obvious effect is produced.

[It has been excluded from the Materia Medica in the last editions of the London and Dublin Pharmacopoeias.—Ed.]

288. BOSWELLIA THURIFERA, Colebrooke.—THE OLIBANUM TREE.

Boswellia serrata of former Pharmacopoeias.

Sex Synt. Decandria, Monogynia.

History.—Olibanum was the frankincense used by the ancients in their religious ceremonies. It is the Lebonah of the Hebrews, the Lubán of the Arabs; from either of which terms the Greeks, probably, derived their
names for it, Ἀιβανός, Ἀιβανὸτος.¹ The earliest notice of it is by Moses.² Dioscorides³ calls it Ἀιβανός.

BOTANY. Gen. Char.—Flowers bisexual. Calyx small, 5-toothed, persistent. Petals 5, obovate-oblong, very patent, acute at the base, inserted under the margin of the disk; aestivation very slightly imbricative. Stamens 10, inserted under the disk, alternately shorter; filaments subulate, persistent; anthers caducous. Torus a cup-shaped disk, fleshy, larger than the calyx, crenulated on the margin. Ovary oblong, sessile; style 1, the length of the stamens, caducous; stigma capitate, 3-lobed. Fruit capsular, 3-angled, 3-celled, 3-valved, septicidal; valves hard. Seeds solitary in each cell, surrounded by a broad membranaceous wing. Cotyledons intricately folded, multifid.—Trees producing balsam and resin. Leaves deciduous, alternate towards the top of the branches, unequally pinnated; leaflets opposite, serrated. Stipules 0. Racemes terminal or axillary. Flowers on short pedicels, white (Wight and Arnott).

Sp. Char.—Leaflets oblong, obtuse, serrated, pubescent. Racemes axillary, single, shorter than the leaves (Wight and Arnott).

Hab.—Mountainous parts of Coromandel.

Description.—Olibanum, Indian Olibanum, or Olibanum of the Boswellia serrata (gummi-resina Olibanum; gummi Olibanum; Olibanum indicum seu ostindicum) is imported from India in chests. It consists of round, oblong, or ovate pale-yellowish, semi-opaque, fragile tears, having a balsamic resinous odour.

Mr. Johnstone states that it is a mixture of at least two gum-resins:

1. One variety of gum-resin consists of opaque, dull, hard, and brittle pieces, which, when introduced into alcohol, become almost immediately white and opaque, from a white powdery coating or crust left on their surface as the soluble portion is taken up. This variety constitutes the larger portion of the olibanum of commerce, and is the more fragrant when burned. It contains an acid resin and a volatile oil.

2. The second variety is in clearer, yellower, less brittle, and opaque pieces, generally in long tears (stalactitic?) as they have flowed from the tree. When introduced into alcohol, they become clear and transparent. They contain less gum. Their resin resembles colophony.

On the above statement I may remark, that all the tears of olibanum which I have tried became opaque when immersed in alcohol.

The substance called on the continent African or Arabian Olibanum (Olibanum arabicum) is rarely met with in this country. It consists of smaller tears than those of the Indian variety. They are yellowish or reddish, and intermixed with crystals of carbonate of lime. Some have supposed it to be the produce of Juniperus—some of an Amyris.—others of Boswellia glabra, which Roxburgh says yields a substance used as an incense and a pitch in India.

Composition.—Olibanum (Indian?) was analysed by Braconnot,⁴ who found the constituents to be as follows:—volatile oil 8, resin 56, gum 30, matter like gum, insoluble in water and alcohol 5·2; loss 0·8.

² Eruth, xxx. 34.
³ Lib. i. cap. 81.
⁴ Ann. de Chim. lxvii. 60.
1. VOLATILE OIL.—By distillation with water, olibanum yielded Stenhouse,\(^1\) colourless volatile oil, similar to oil of turpentine, but smelling more agreeably. Its formula is \(C_{10}H_{16}O\), which is identical with that for oil of spearmint.

2. RESIN.—According to Johnston,\(^2\) olibanum contains two kinds of resin.
 a. Acid Resin.—This is found in the rounded, opaque, dull, hard, and more brittle pieces, which become covered with a white crust. Its formula is \(C_{40}H_{38}O_6\).
 b. Resin resembling Colophony.—This is found in the clearer, yellower, less brittle and opaque long tears (stalactitic?). Its formula is \(C_{40}H_{38}O_4\).

Physiological Effects.—Olibanum is regarded as a stimulant of the same kind as the resins or oleo-resins.

Uses.—It is rarely employed internally. Formerly it was used to restrain excessive discharges from the mucous membranes. Thus it was given in chronic diarrhoea, old catarrhs, but more especially in leucorrhoea and gleet. It was also administered in affections of the chest; as hemoptysis. It has been used as an ingredient of stimulating plasters. As a fumigating agent it is employed to overpower unpleasant odours, and to destroy noxious vapours.

Administration.—Dose, 5ss to 5j, formed into an emulsion by the aid of the yolk of an egg.

289. **BALSAMODENDRON MYRRHA, Nees, L. E. D.—THE MYRRH TREE.**

Sex. Syst. Octandria, Monogynia.

Gummi-resina e cortice exudata, L.—Gummy-resinous exudation, E. D.

History.—The earliest notice of myrrh occurs in the Old Testament,\(^3\) from which it appears that this gum-resin was an object of trade with the Eastern nations more than 3,500 years ago. In the Hebrew language it is termed *Mur*, in allusion to its bitterness. The Greeks, who were well acquainted with it, called it *Συμφρόν*; or, in the Aeolic dialect, *Μυρρά*. Hippocrates\(^4\) employed it in medicine in several diseases; and Dioscorides\(^5\) describes several kinds of it, the most esteemed being the *Trogloodytica*. Some of the ancient poets tell us that the name of this gum-resin was derived from Myrrha, the daughter of Cinyras, King of Cyprus, who fell in love with her own father, and after having had criminal intercourse with him, fled to Arabia, where she was changed into a tree which still bears her name.

Notwithstanding the early knowledge of, and acquaintance with, the uses of myrrh, we had no accurate account of the tree which yields it until the return of Ehrenberg from his travels with Hemprich, during 1829-25, in various parts of Africa and Asia. He brought with him a specimen of the tree, which has been described and figured by Nees von Essenbeck\(^6\)

5. *Lib. i. cap. 77.*
under the name of Balsamodendron Myrrha. The first notice of the discovery of these travellers which I have met with, is in Alex. Humboldt's "Bericht über die naturhistorischen Reisen der Herren Ehrenberg und Hemprich," &c. published at Berlin in 1826.

Botany. Gen. Char.—*Flowers* irregular. *Calyx* 4-toothed, persistent. *Petals* 4, linear-oblong; *cépitation* induplicate-valvate. *Stamens* 8, inserted under the annular disk; *cépitation* warts between the stamens. *Ovary* 1. *Style* 1, short, obtuse. *Berry* or *drupe* ovate, acute, with four sutures, 1- to 2-celled; cells 1-seeded.—Oriental *trees giving out bal-am. Leaves* pinnated; leaflets 3 to 5, sessile, without dots (De Cand).

Sp. Char.—*Stem* shrubby, arborescent; branches squarrose, spinose. *Leaves* ternate; *leaflets* obovate, obtuse, obtusely tooth-letted at the apex, the lateral smooth. *Fruit* acuminate (Nees).

Fig. 376.

Balsamodendron Myrrha.

a. A leaf. b. The fruit.

Bark pale ash-grey, approaching white. *Wood* yellowish white; both it and the bark have a peculiar odour. *Leaves* on short stalks. *Flowers* unknown. *Fruit* ovate, smooth, brown, somewhat larger than a pea; surrounded at the base by a four-toothed calyx, and supported on a very short stalk.

Hab.—Gison, on the borders of Arabia Felix.

This species is considered by Lindley to be identical with the *Amyris Kataf* of Forskål, the Balsamodendron Kataf; Nees; *Protium Kataf*, Lindley. But the identity of the two plants is by no means satisfactorily demonstrated. *A. Kataf* is distinguished, 1st, by the absence of thorns; 2dly, by the leaves being four times larger, and the lateral leaflets agreeing both in form and size with the terminal ones; 3rdly, the fruit (according to Forskål) is round, with a depressed umbilicus at the point.

Exudation of Myrrh.—Myrrh, according to Ehrenberg, exudes, like cherry-tree gum, from the bark of the tree. It is at first soft oily, and of a pale yellow colour; but, by drying, becomes darker and redder.

Description.—Myrrh (*gummi-resina* myrrha; *gummi-myrrha*) is imported from the East Indies in chests, each containing from 1 to 2 hundred weight. Formerly the finest kind was brought from Turkey (*Turkey myrrh*), and an inferior one from the East Indies (*East India myrrh*); but at the present time nearly the whole is brought from India. In 1839, duty (6s. per cwt.) was paid on 216 cwt. Sometimes the same chest contains myrrh of all qualities, which is then termed *myrrh in sorts* (*myrrha naturalis* seu *myrrha in sortis*): but commonly it is brought over more or less sorted.

Myrrh is only partially soluble in water, alcohol, or ether: the first of those liquids takes up the gum principally, the two latter the resin and oil. Water takes up more of the myrrh than alcohol does. Alkaline solutions are good solvents for myrrh. A few drops of nitric acid dropped on a small fragment of myrrh, or on a concentrated tincture, develope a red colour.

1. Myrrh of first quality; Turkey myrrh (Myrrha turcica; M. vera seu rubra vel pinguis).—It occurs in pieces, of irregular forms and of variable sizes, consisting of tears (either distinct or agglomerated), usually covered with a fine powder or dust. In a chest of this kind a few pieces of fine quality may sometimes be met with, nearly as large as a man’s fist. The colour varies, being pale reddish-yellow, red, or reddish-brown. The pieces are fragile, semi-transparent, with a dull, in part splintery, fatty kind of fracture. In consequence of imperfect desiccation the largest and finest pieces often present internally, opaque, whitish or yellow stripe, or veins, which have been compared by Dioscorides, Pliny, and many others, to the white marks on the nails. The odour of myrrh is aromatic and balsamic, peculiar, but to most persons pleasant; the taste is bitter, acrid, and aromatic. The purest, palest, and most odorous pieces are sold as picked myrrh (myrrha electa seu selecta).

2. Myrrh of second quality; Myrrh in distinct small tears or grains.—Imported from the East Indies in chests. It consists of distinct tears or grains, which are rounded or irregular, and vary in size from that of a pin’s head to a pepper-corn, none of them in my specimens being so large as a small pea. They are somewhat shiny, more or less transparent, and vary in colour from pale or whitish yellow to reddish brown. It consists of tears of myrrh intermixed with fragments of gum-arabic, and of some resin very like mastic, or juniper. Many druggists in this country regard it as merely the settings of the finest kind; but I cannot agree with them in this opinion.

3. Myrrh of third quality; East India Myrrh (Myrrha indica seu ostindica). Formerly this was the only kind imported from the East Indies. It occurs in pieces, which are darker coloured than those of the so-called Turkey myrrh, and whose average size does not exceed that of a walnut. It is often mixed with other substances, particularly with Indian Bdellum (the produce of Amyris Commiphora), and with a substance of similar appearance to dark-red-coloured Senegal gum (Opocalpasum?).

Composition.—Myrrh was analysed, in 1816, by Pelletier,\(^1\) and in 1819 by Braconnot\(^2\) and by Brandes.\(^3\)

\[
\begin{array}{c|c|c|c}
\text{Brandes.} & \text{Braconnot.} & \text{Pelletier.} \\
\hline
\text{Volatile oil} & 2:60 & 2:5 & \text{34} \\
\text{Resin} \{\text{soft} & 22:24 & 23:0 & \\
\text{hard} & 5:56 & \} & \\
\text{Gum} \{\text{soluble (Arabine?)} & 54:38 & 46:0 & \text{66} \\
\text{insoluble} & 9:32 & 12:0 & \\
\text{Salts (benzoates, malates, phosphates, sulphates, and acetates of potash and lime) } & 1:36 & \} & \\
\text{Impurities} & 1:60 & \} & \\
\text{Loss} & 2:94 & 16:5 & \} \\
\hline
100:00 & 100:0 & 100 \\
\end{array}
\]

1. Volatile Oil.—Colourless, though by age it becomes yellowish. It is a thin fluid, heavier than water, having the odour and taste of myrrh, and being soluble in alcohol, ether, and the fixed oils. It partially evaporates in the air, the residue being a glutinous

\(^1\) Ann. de Chim. lxxx. 45.
\(^2\) Ibid. lvii. 52.
\(^3\) Berl. Jahrb. xxii. 275.

Varnish-like substance. It readily distils over with water, but not with spirit. With sulphuric, nitric, and hydrochloric acids, it forms red solutions.

2. Resin.—According to Brandes, this is of two kinds, both of which are soluble in alcohol.

a. Soft resin.—Odorous, soft at ordinary temperatures, and insoluble in ether. Unverdorben regards it as a mixture of hard resin and volatile oil.

b. Hard resin (Myrrhis acid ?).—Inodorous, hard, insoluble in ether, soluble in caustic alkalies, forming resinates (myrrhates ?). The resinate of baryta is soluble in water, but not in alcohol.

3. Gum.—Is also of two kinds: a. Soluble in water; the solution forming precipitates with alcohol and the salts of lead, silver, the protosalts of tin, and of mercury. b. Insoluble in water.

Physiological Effects.—In small or moderate doses, myrrh promotes the appetite, creates an agreeable warmth in the stomach, and occasions slight constipation. Its continued employment in these quantities assists the assimilative functions, increases the muscular activity, gives greater firmness to the solids, and diminishes excessive secretion from the mucous membranes.

In large doses (as from half a drachm to a drachm) it excites a disagreeable sensation of heat in the stomach, and in irritable conditions of this viscus may even bring on a slight inflammatory state; it accelerates the frequency and increases the fullness of the pulse, gives rise to a febrile condition of the body, and creates a feeling of warmth in the mucous membrane (especially in the membrane lining the air-passages). It has been supposed to have a specific stimulant operation on the uterus, and has, in consequence, been termed emmenagogue; but it does not appear to have any title to this appellation.

The local operation of myrrh is that of a mild astringent and a moderate stimulant. Kraus¹ says it is very similar to that of cinchona. In its remote effects myrrh partakes of both the tonic and stimulant characters, and hence some have denominated it a tonico-stimulant; and as its stimulant powers are analogous to those of the balsams, it has also been called a tonico-balsamic.

Myrrh differs from the fetid gum-resins, (assafœctida, galbanum, &c.) in not possessing that influence over the nervous system which has led to the use of the latter in various spasmodic diseases, and to their denomination of anti-spasmodics. From the balsamic substances it is distinguished by its tonic influence. It has some relation to cascarilla, but is more stimulant.

Uses.—The employment of myrrh is indicated in diseases characterized by feebleness of the vascular action, by weakness of the muscular fibre, and by excessive secretion from the mucous membrane. Relaxed and leucophlegmatic constitutions best admit of its use. It is frequently associated with tonics, especially the chalybeates, or with aloe. Indeed, it is rarely used alone. It is contraindicated in inflammatory diseases, and in plethoric individuals. It is used in the following cases:

1. In disordered conditions of the digestive organs arising from or connected with an atonic condition of the alimentary canal, as in some forms of dyspepsia, aperpsia, flatulence, &c.

2. In disordered states of the menstrual functions characterised by a

¹ Heilmittellehre.
Tincture.

1897

conceive,
Pilules
then
and
Macerate

3. In excessive secretion from the mucous membranes unconnected with inflammatory symptoms, and accompanied by marks of debility. In chronic pulmonary catarrh, for example, it is sometimes admissible and useful. It has also been used to check puriform expectoration in phthisis pulmonalis, though it is now rarely employed for this purpose, as in most cases it proves either useless or injurious. In mucous discharges from the urino-genital organs, as well as from the alimentary canal, it has also been administered.

4. As an external application, myrrh is employed for various purposes. Thus it is used as a dentifrice, either alone or mixed with other substances; and in caries of the teeth, and in a spongy or ulcerated condition of the gums, is very serviceable. As a gargle in ulcerations of the throat, tincture of myrrh, diluted with water, is frequently employed. In foul ulcers, myrrh has been used to destroy unpleasant odour, to promote granulations, and to improve the quality and diminish the quantity of the secreted matters: for these purposes it has been applied in a pulvulent form, as an ointment, or as a wash.

Administration.—Dose, gr. x. to 5ss. It is given in the form of powder, pill, or emulsion. The aqueous infusion and extract, which have been recommended for their mildness, are seldom employed, and very rightly so, as I conceive. Myrrh is a constituent of several pharmacopoeial preparations; as Mistura ferri composita, Pilulae ferri compositae, Pilulae aloës cum myrrha, Decoctum aloës compositum, Pilulae rhei compositae, and Pilula galbanii compositae (see these preparations.)

TINCTURA MYRRHAE, L. E. D. (Myrrh, powdered, 3iiij.; Rectified Spirit, Oij. Macerate for seven days, then press out and strain, L.—The Edinburgh College orders three ounces and a half of Myrrh, in moderately fine powder, to the same quantity of Spirit. “Pack the myrrh very gently, without any spirit, in a percolator; then pour on the spirit; and when thirty-three fluidounces have passed through, agitate well, to dissolve the oleo-resinous matter which first passes, and which lies at the bottom. This tincture is much less conveniently obtained by the process of digestion for seven days,” E.)—The Dublin College directs four ounces of Myrrh in coarse powder to two pints of Spirit. The maceration to continue for fourteen days, and the liquid to be then strained.)—Tonic and stimulant. Seldom employed internally, and then usually as an adjunct.—Dose, 5ss. to 5I. It is applied as a stimulant to foul and indolent ulcers. Diluted with water (which renders it slightly milky by the separation of the resin, without any precipitate being formed), it is used as a wash for the mouth in ulceration and sponginess of the gums, and as a gargle in affections of the throat.

OTHER MEDICINAL TEREBINTHACEÆ.

1. Elemi.—The history and origin of Elemi are involved in great obscurity. It appears that the resinous products of various terebinthaceous trees have been described under this name. The Edinburgh College correctly, as I conceive, declare elemi to be the
“concrete resinous exudation from one or more unascertained plants.” The London and Dublin Colleges formerly called it the resin of *Amyris elemifera* of Linnaeus. But this distinguished botanist has confounded, under one name, two distinct plants; viz. *Icica Icicariba*, De Candolle (*Icicariba*, Pison), a Brazilian tree (yielding, according to Pison, a resin similar to the so-called gum elemi), and *Amyris Plamieri*, De Candolle, a native of the Antilles, which also yields a resin. The London College, in their new Pharmacopoeia, no longer speak of elemi as the product of an Amyris, but describe it as a concrete turpentine derived from an unknown plant. To assist in determining the origin of elemi, I have taken much pains to ascertain its commercial route; and I find that all the importations of it, which I can trace, were from Amsterdam or Hamburgh. Pomet also states, that true elemi was brought from Holland: whence I conclude that it is the produce of a Dutch settlement. But one of the importers expressed to me his belief (in which I do not coincide), that the elemi brought from Holland was spurious, being made of common frankincense (p. 1188). It would appear that formerly it came from Ethiopia by way of the Levant. It is possible that it may be the produce of the *Canarium Zeylanicum* sive *syloestre primum Camari Barat* of Rumphius, which he says yields a resin so like elemi that it may be taken for it, and he puts a query, whether this tree may not be the source of it. I have received from Dr. Christison a specimen of the resin of *Canarium balsamifera* of Ceylon, which in odour and general appearance strongly resembles elemi. I have met with three kinds of elemi:—1st. *Elemi in flag leaves; Résine elemi en pain,* Guibourt; *Resina Elemi orientalis,* Martius. This is imported from Holland in triangular masses, weighing from one to two pounds each, enveloped in a palm-leaf. It agrees in most of its properties with the next variety. Martius ascribes it to *Amyris zeylanica* (*Balsamodendron zeylanicum*, Kunth). But if this were correct, it would doubtless be imported direct from Ceylon to England, which it is not.—2nd. *Elemi in the lamp.* This differs from the following kind only in its much paler yellow colour.—3rd. *Brazilian Elemi; Résine élémi du Brésil,* Guibourt. This variety I received from Prof. Guibourt. If it be really brought from the Brazils, it is doubtless obtained from *Icica Icicariba* (De Candolle) by incisions into the stem, and is gathered twenty-four hours afterwards. “It is imported in cases containing two or three hundred pounds each. It is soft and unctuous, but becomes hard and brittle by cold and age. It is semi-transparent, of a yellowish white, mixed with greenish points; its odour is strong, agreeable, analogous to that of fennel, and owing to a volatile oil, which may be obtained from it by distillation. As it owes its properties to this oil, it should be selected recent, not too dry, and strongly odorous” (Guibourt). It is soluble in alcohol, with the exception of its impurities, and a white, opaque, insipid, inodorous, crystallizable substance, called *elemine*, which is soluble in boiling alcohol. Martius describes *African Elemi* (the genuine elemi of the ancients) as being in small pieces like seacmonym, and having an acid taste. Bonastre analysed elemi, and found its constituents to be, volatile oil 12.5, resin soluble in both hot and cold alcohol 60.0, resin soluble in hot but not in cold alcohol (elemine) 24.0, bitter extractive 2.0, impurities 1.5. The resin A (readily soluble in cold alcohol) consists, according to Johnston, of C_30^H_{21}O_4 while the resin B (sparingly soluble in cold alcohol) is composed of C_30^H_{38}O.

The physiological effects of elemi are similar to those of the terebinthines. It is, however, never employed internally. Its principal or sole use is as a constituent of the *Unguentum Elemi*, L.D., which is composed, according to the *London College*, of Elemi, 3ij.; Common Turpentine, 3ij.; Suet, 3vj.; Olive Oil, 3ss. The Elemi and Suet are melted together and then removed from the fire, and the turpentine and oil immediately added; the mixture is then expressed through linen. The *Dublin College* employs 3iv. of Elemi; and lb. j. of White Wax Ointment—Elemi ointment is stimulative and digestive. It is applied as a stimulant to old and indolent ulcers, and to promote the discharge from issues and setons. It is an imitation of the ointment recommended by Arbeus, in 1574.3

2. Balm of Gilead (*Balsamum gileadense; B. de Meca; Oppohalsamum; Balm* of the Old Testament; *báσαω* of Theophrastus and Dioscorides) is procured from *Balsamo-*

1 See his *Mtt. Med.*
3 *De recta curand. vulner. ratione*, Amst. 1658.
The Buckthorn Tribe.

Balsamodendron gileadense. a middling-sized tree growing in Arabia. Mr. Bruce says it is obtained by cutting the bark of the tree with an axe, and receiving the juice in a small earthen bottle. The quantity obtained in this way is, however, very small; and none of it, it is said, reaches this country, that which occasionally comes here being obtained by boiling the branches and leaves in water. It is a whitish, turbid, thick, very odorous liquid, which resists, and becomes yellow by keeping. Trommsdorff analyzed it, and found it to consist of volatile oil 30/0, soft resin insoluble in alcohol 4/0, hard resin soluble in alcohol 64/0, extractive 0/4, loss 1.6. Bonastre also analyzed it. Its physiological effects are believed to be similar to balsam of copaiva and the liquid turpentines. The most wonderful properties were formerly ascribed to it. It is rarely or never employed by Europeans, but is adapted to the same cases as the terebinthines. The Asiatics use it for its odoriferous as well as its medicinal qualities.

3. The term *Bdellium* is applied to two gummy-resinous substances. One of these is *Indian Bdellium* or false myrrh (the Bdellium of Scripture), which is obtained from Amyris (Balsamodendron?) Commiphora. Dr. Roxburgh says that the trunk of this tree is covered with a light-coloured pellicle, as in the common birch, which peels off from time to time, exposing to view a smooth green coat, which in succession supplies other similar exfoliations. This tree diffuses a grateful fragrance, like that of the finest myrrh, to a considerable distance around. Dr. Royle was informed that this species yielded bdellium; and in confirmation of his statement I may add, that many of the pieces of this bdellium in my museum have a yellow pellicle adhering to them precisely like that procured from the common birch, and some of the pieces are perforated by spiny branches—another character serving to recognize the origin of this bdellium. Indian bdellium has considerable resemblance to myrrh. Many of the pieces have hairs (of the goat?) adhering to them. The other kind of bdellium is called *African Bdellium*, and is obtained from *Hendolatia africana*. It is a native of Senegal, and is called by the natives, who make toothpicks of its spines, *Njottont*. It consists of rounded or oval tears, from one to two inches in diameter, of a dull and waxy fracture. By age they become opaque, and covered, externally, by a white or yellowish dust. It has a feeble but peculiar odor, and a bitter taste. Pelletier found it to consist of resin 59/0, soluble gum 9/2, bassorin 30/0, volatile oil and loss 1/2. Resin of bdellium (African bdellium?) consists, according to Johnston, of C\textsubscript{10}H\textsubscript{18}O\textsubscript{5}.

Order LXIV. RHAMNACEÆ, Lindley. — THE BUCKTHORN TRIBE.

Rhamni, Jussieu. — Rhamnæ, De Candolle.

Characters.—Tube of the calyx adherent to the ovary, lobes valvate in aestivation, definite in number, 4 or 5. Petals as many as (rarely none), and alternate with the lobes of the calyx; often squamiform with a concave limb. Stamens as many as the petals, and opposite to them; anthers 2-celled. Ovary either adnate to the whole of the calyx, or adherent at the lower part or middle, 2 or 4-celled; cells with 1 ovule each.

2 *Journ. de Pharm.* xviii. 95.
3 *Ph. Ind.* ii. 245.
4 *Illustr.* 176.
5 Richard and Guillemain, *Fl. de Sénégal et.*
VEGETABLES.—NAT. ORD. RHAMNACEAE.

Style 1; stigmas 2 to 4. Pericarp usually indehiscent, baccate, drupaceous, or samaroidous, rarely capsular. Seeds erect, destitute of aril; albumen none, or usually fleshy; embryo straight in the axis of the seed, with an inferior radicle, and somewhat foliaceous cotyledons.—Shrubs or trees. Leaves simple, alternate, rarely opposite, often with stipules. Flowers small, often greenish (De Cand.)

Properties.—Require further examination. The fruit of Rhamnus contains purgative and colouring matters: that of Zizyphus is acidulous, saccharine, and alimentary.

290. RHAMNUS CATHARTICUS, Linn. L. E.—COMMON BUCKTHORN.

Sex. Syst. Pentandra, Monogynia.
(Fructus suecensis, L.—Fruit, E.)

History.—According to Dr. Sibthorp,¹ the ἱππος of Dioscorides is Lycium europaeum. The earliest notice of Rhamnus catharticus is in Tragus.²

Botany. Gen. Char.—Calyx 4- to 5-cleft, often circumscissile in the middle after flowering; the base persistent under, and adherent with, the fruit. Petals alternate with the lobes of the calyx, or none. Stamens inserted opposite the petals. Style 2- to 4-cleft. Fruit almost juiceless, or baccate, 2- to 4-celled; cells in the juiceless fruit, separable, 1-seeded (rarely 2-seeded), dehiscing inwards by a longitudinal chink. Seeds oblong, marked at the external side by a deep groove, which is broader towards the base (De Cand.)

Sp. Char.—Erect. Leaves ovate, toothed. Flowers fascicled, polygamous-dicecious. Berries 4-seeded, somewhat globose (De Cand.)

A spreading shrub with terminal spines. Leaves with 4 or 6 strong lateral nerves parallel with the margin or rib. Stipules linear. Flowers yellowish green: the males with broader petals, 4 stamens and 1 short style, without either ovary or stigma; the females smaller, with 4 stigmas projecting beyond the calyx, and rudimentary stamens. Fruit black, 4-celled.

Hab.—Indigenous; in hedges, groves, and thickets.—Flowers in May. The fruit is ripe in September.

Composition.—The expressed juice of buckthorn berries has been examined, chemically, by Vogel,³ and by Hubert.⁴

<table>
<thead>
<tr>
<th>Vogel’s Analysis</th>
<th>Hubert’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peculiar colouring matter</td>
<td>Green colouring matter</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>Acetic and malic acids</td>
</tr>
<tr>
<td>Mucilage</td>
<td>Brown gummy matter</td>
</tr>
<tr>
<td>Sugar</td>
<td>Sugar</td>
</tr>
<tr>
<td>Nitrogenous matter</td>
<td>Bitter substance (cathartine?)</td>
</tr>
</tbody>
</table>

Buckthorn Juice.

1. PURGATIVE PRINCIPLE.—The nature of the purgative principle of buckthorn requires

¹ Prodr. F. Græce, i. 155.
² See Sprengel, Hist. Rei Herb. ii. Pref. xi.
³ Bull. de Pharm. iv. 64.
further elucidation. Hubert asserts that it possesses the properties of cathartine before described (see Senna); but his experiments are not conclusive. As from 25 to 30 berries are sufficient to purge, while an ounce of the juice is required to produce the same effect, it is probable that the greater part of the purgative principle resides in the mare left after the expression of the juice. [Winckler has examined the substance called rhumeine, which Fleury obtained from the unripe berries. He considers that as the berries ripen, this principle becomes changed into cathartine and grape sugar.—Ed.]

2. COLOURING MATTER.—It is soluble in water, less so in alcohol, and insoluble in ether and oils. Acids reddens it; whereas alkalies render it green. Vogel thinks its proper colour is green, and that it only becomes purple by the action of the acetic acid, which is developed in the ripe fruit. When the juice is evaporated to dryness with lime, it constitutes sap-green, or the vert de vessie of the French.

3. MUCILAGE.—The mucilage of buckthorn is of a peculiar nature. It disappears by fermentation. It is abundant in the recent juice, to which it gives consistence.

PHYSIOLOGICAL EFFECTS.—The berries, as well as their expressed juice, are powerful hydagogue cathartics; usually griping and causing great thirst, and sometimes operating with considerable violence. "Syrup of buckthorn," says Sydenham, "purges in a manner only water, and evacuates a great quantity of it, and does not disturb the blood, nor render the urine highly-coloured, as other purges usually do: and this syrup has but one ill property—viz. that whilst it is working, it makes the sick very thirsty. But if you give the greatest dose of it to those that are difficulty purged, it will not give many stools, nor bring away so much water from them as it ought."

USES.—Buckthorn berries were formerly employed as cathartics, but their violent operation, and the sickness, griping, and thirst occasioned by them, have led to their disuse. "They be not meete to be ministered," says Dodoens, "but to young and lustie people of the countrie, which doe set more store of their money than their lives." The syrup is the only preparation now in use.

ADMINISTRATION.—Dose of the recent berries, 3j.; of the dried ones, 5j.; of the expressed juice, 1/3ss. to 1/5j.

SYRUPUS RHAMNI, L. E.; Syrup of Buckthorn. (Fresh Juice of Buckthorn Berries, Oiv.; Ginger sliced, Allspice bruised, of each, 5vj.; Sugar, lb. vj.; Rectified Spirit, 5vj.) Set by the juice for three days, that the dregs may subside, and strain. To a pint of the clear juice add the Ginger and Allspice; then macerate for four hours with a gentle heat, and strain; boil down the residue to a pint and a half; mix the liquors; add the sugar, and dissolve; lastly, mix in the spirit.—Cathartic. It is employed as an adjunct to purgative and occasionally to diuretic mixtures. Sydenham found it, in one case, most beneficial in dropsy; and "with the juvenile confidence of an inexperienced man, verily believed," as he tells us, that he "had got a medicine that would cure any manner of dropsy;" but he found his "mistake in a few weeks."—Dose, 5ss. to 5j.

2 Works, by Dr. Pecley, p. 391, 4th edit.
Order LXV. SIMARUBACEÆ, Lindl.—The Quassia Tribe.

Simarubææ, Richard.

Characters.—Flowers hermaphrodite, or rarely by abortion unisexual. Calyx 4- or 5 partite, persistent. Petals 4 or 5, hypogynous, erect, deciduous. Stamens equal in number, or twice as many as, the petals, inserted on an hypogynous disk, free. Ovary with lobes as numerous as the petals; style 1, filiform, enlarged at the base. Carpels as many as the petals, articulated on the axis, capsular, bivalved, dehiscing inwardly, monospermous. Seeds exalbominous, pendulous; cotyledons 2, thick; radicle short, superior.

Properties.—Bitterness is the prevailing quality of the order (see Quassia).

291. SIMARUBA AMARA, Aublet, E. D.—BITTER SIMARUBA, OR MOUNTAIN DAMSON.

Simaruba officinalis, De Cand.—Quassia simaruba, Linn.

Sex. Syst. Decandria, Monogynia.

(Root, E.—Cortex radicis, D.)

History.—Simaruba bark was first known to Europeans in 1713, when some of it was sent to Paris from Guiana, as the bark of a tree called by the natives Simarouba, which they employed with great success in dysentery. The first authentic botanical account of the tree was given by Dr. Wright.¹

Botany. Gen. Char.—Flowers unisexual. Calyx small, cup-shaped, 5-toothed or parted. Petals 5, longer, spreading. Males: stamens nearly equal to the petals, arranged around a receptacle bearing at its apex 5 very minute lobes (rudiments of ovaries), or sometimes none. Females; ovaries 5, placed on an even disk, surrounded at the base by 10 short hairy scales (rudiments of stamens). Styles the same number, short, distinct at the base; there united into 1, crowned by a broader 5-lobed stigma. Fruit 5 drupes (Lindley).

Sp. Char.—Male flowers decandrous. Stigma 5-partite. Leaves abruptly pinnate; leaflets alternate, somewhat stalked, pubescent beneath (De Cand.)

A very tall tree. Roots long and creeping. Stem thick; bark bitter, internally white, fibrous and tough, externally blackish and furrowed in the old trees, but smooth and gray, with yellow spots, in the young ones. Leaves alternate; leaflets alternate, 2 to 9 on each side, oval, firm, mucronate. Flowers small, yellowish white, some male, others female, mixed,

¹ Trans. Royal Soc. of Edinb. vol. ii. part 2, p. 73.
in panicles. Fruit of 5 ovate, black, smooth capsules, placed on a fleshy disk.

Hab.—Guayana, Cayenne, Jamaica.

Description.—The simaruba bark (cortex simarubae) of the shops is the bark of the root (cortex radicis simarubae), and is brought from Jamaica in bales. It is odourless, but bitter, and occurs in broad, folded, very fibrous pieces, several feet long, which are externally rough, warty, and marked with transverse ridges. The epidermis is of a grayish or whitish yellow colour; beneath it the bark is darker, and yellowish brown. On the inner surface the bark is pale yellowish white.

Composition.—Simaruba bark was analysed by Morin,1 who found in it the following substances:—Quassite, a brittle resin, an aromatic volatile oil having the odour of benzoin, woody fibre, nulin, an ammoniacal salt, malic acid, traces of gallic acid, malate and oxalate of lime, oxide of iron, and silica. No notice is taken of the mucilage, which, according to Pfaff,2 constitutes nearly one-fourth part of the bark.

Physiological Effects.—In small doses simaruba acts like the simple bitter tonics, whose effects have been already described. In full doses, however, it causes vomiting and purging, and is said also to promote perspiration and urine. Dr. Wright states, that negroes are less affected by it than whites.

Desbois de Rochefort3 classified it among emetics; and Bichat proposed it as a substitute for ipecacuanha. It is, however, usually arranged with the tonics.

Uses.—Simaruba may be employed in the same cases as other vegetable bitters. It has been principally celebrated in dysentery (whence the Germans call it Ruhrrinde, or dysentery-bark) by Dr. Wright4 and others. It is, of course, only applicable in the latter stages of the acute and the asthenic and chronic forms of the disease. More recently, Dr. O'Brien5 has borne testimony to its good effects, when given in conjunction with opium, in epidemic dysentery. It has also been employed in the advanced stages of diarrhoea. Like other vegetable tonics, it may be administered in dyspepsia, anorexia, and intermittents. It is a remedy, however, which is seldom used.

Infusum Simarubæ, E. D.; Infusion of Simaruba Bark. (Simaruba bark, bruised, 3ij. [3ij. D.]; Boiling Water, Oj. [f3ix. D.]) Macerate for two hours in a lightly-covered vessel, and strain [through linen or calico, E.])—Tonic; in large doses emetic.—Dose, as a tonic, f3j. to f3ij.

1 Journ. de Pharm. viii. 57.
2 Syst. d Mat. Med. ii. 74.
3 Cours El'ment. de Mat. Méd. i. 357.
4 Account of Quassia Simaruba.
5 Trans. of the King and Queen's College of Physicians, v. 237, Dublin.
292. PICRÆNA (Quassia) EXCELSA, Lindley, L. E. D.—THE LOFTY BITTER-WOOD TREE.

Quassia excelsa, Swartz.—Picrenia amara, Wright.—Quassia polygama, Lindsay.

Ser. Syst. Decandria, Monogynia.
(Lignum, L. D.—The Wood, E.)

History.—The wood of this tree has been introduced as a substitute for that of Quassia amara, with which it has often been confounded.

Botany. Gen. Char.—Flowers polygamous. Sepals 5, minute. Petals 5, longer than the sepals. Stamens 5, about as long as the petals, rather shaggy; anthers roundish. Ovaries 3, seated on a round, tumid receptacle. Style 3-cornered, bifid; stigmas simple, spreading. Fruit 3, globose, 1-celled, bivalved drupes, which are distant from each other, and placed on a broad hemispherical receptacle (Lindley).

Sp. Char.—The only species.
A tall, beautiful timber tree, sometimes 100 feet high. Leaves pinnate, with an odd one; leaflets 4 to 8 pairs, opposite, stalked, oblong, acuminate, unequal at the base. Racemes towards the ends of the branchlets, axillary, very compound. Flowers small, pale yellowish green. Drupe size of a pea, black, shining, round. 1

Hab.—Jamaica.

Description.—Quassia wood (lignum quassia),—sometimes called Jamaica quassia wood (lignum quassia jamaicensis) in order to distinguish it from the wood of Quassia amara,—is imported from Jamaica in billets of various sizes (sometimes a foot in diameter, and several feet in length), covered externally with a smooth brittle bark. The wood is white, but by exposure to the air becomes yellowish; it has no odour, but a most intensely bitter taste. Floors made of quassia wood retain for many years their bitterness. An efflorescence of nitrate of potash is frequently observed on it. 2

Adulteration.—Quassia wood has recently been somewhat scarce, and, in consequence, its chips have been adulterated with the chips of other woods; but the intense bitterness of the genuine wood readily distinguishes it.

Composition.—Though quassia wood has been the subject of repeated chemical investigation, I am unacquainted with any complete analysis of it. But from the experiments of Pfaff 3 and others, the following appear to me to be the principal constituents of it:—volatile oil a minute trace, a bitter principle (quassite), gummy extractive, pectin, woody fibre, and various salts (as oxalate, tartrate, and sulphate of lime, chlorides of calcium and sodium, an ammoniacal salt, and nitrate of potash).

Quassite; Bitter Principle of Quassia; Quassin.—Obtained by adding lime water to a

1 Lindsay, Trans. Roy. Soc. Edin. iii. 205.
2 Planche, Journ. de Pharm. xxiii. 542.
Physiological Effects.

a. On Animals.—From recent experiments it appears that quassia wood acts on animals as a narcotic poison. Dr. Wright tells us that no insect will live near cabinet work made of it. It has been long known that an aqueous infusion of this substance was an excellent fly-poison; but Hartl, one of Buchner’s pupils, has lately shown that it also possesses poisonous properties with respect to the larger animals. Thus he found that a rabbit, into a wound of whose thigh a grain of the alcoholic extract of quassia had been introduced, lost his strength and liveliness, and died on the third day. A second experiment made on an older and stronger animal was attended with the same results. No pain appeared to be experienced, nor were there any marks of irritation or inflammation observable after death. Kurtz mentions that complete paralysis of the hind extremities of a dog affected with the mange (Fetträude) was brought on by washing the ulcers with decoction of quassia: in seven hours, however, it disappeared.

These experiments seem to show that the bitter principle of quassia possesses poisonous properties somewhat like those of the Amer of Welther.

b. On Man.—In the usual medicinal doses, quassia operates as a stomachic and tonic—that is, it is bitter to the taste, promotes the appetite, and assists the digestive functions. It is devoid of all irritant, stimulant, and astringent properties; and has been, therefore, sometimes taken as a type of the simple or pure bitters. It is more powerful than, but in other respects analogous to, gentian in its operation. “We can find nothing in this wood,” says Dr. Cullen, “but a pure and simple bitter;”—and he goes on to observe that he believes it to be an excellent substance, capable of doing all that any pure and simple bitter can do, but no more.

Does it act as a narcotic on man, as on other animals? I have employed, and seen others administer quassia most extensively, but never had grounds for suspecting any effect of the kind alluded to. Yet some have observed effects which certainly seem to favour the notion that quassia possesses a specific influence over the cerebro-spinal system. In females endowed with extreme susceptibility, I have seen, says Barbier, involuntary movements of the arms and legs produced by the aqueous infusion of quassia. Kraus

2 Med. Plants of Jamaica.
3 Buchner, ToxicoL S. 266.
5 Mat. Med.
6 Traté Elém. de Mat. Méd. 2de édit. i. 250.
7 Heilmittel. S. 412, 1831.
says that the continued use of quassia brings on ambylophia (dimness of sight); and Kurtz asserts that the long-continued use of quassia has brought on amaurosis.

Like many other substances, quassia mixed with dead animal matter checks putrefaction; and hence it is termed antiseptic. Ebeling, a many years ago, performed some experiments to determine its power in this respect, compared with other bitters, and found it much superior to several of them.

Uses.—Quassia is employed in the same cases as several other simple bitters, some of which have been already noticed. Though I am not disposed to place much confidence in the above-quoted statements of Barbier, Kraus, and Kurtz, yet a cautious practitioner would avoid employing it in amaurosis and cerebral affections. Quassia is principally employed in dyspepsia, anorexia, and other stomach disorders of a functional kind of an atomic character, more especially when occurring in a gouty subject. Though it has been beneficially employed in intermittents, few practitioners will, I suspect, use it, when they can procure cinchona, quina, or arsenic.

Kraus suggests that it may be useful in intolerance of light, and other diseases of the eye, accompanied with great sensibility without fever or congestion; yet only (he adds) as an adjuvant to hyoscyamus and belladonna.

An infusion of quassia has been proposed as a wash in compound fractures, wounds, and ulcers, to keep off insects. In its use, however, we should bear in mind the effect which Kurtz states was produced on a dog by a wash of this kind.

1. Infusum Quassia, L. E. D.; Infusion of Quassia. (Quassia wood, in chips, $\frac{3}{ij}$. [3i. E. D.]; Boiling [distilled, L.] Water, $\frac{1}{ij}$. [1iiiis. D.]) Macerate for two hours in a lightly covered vessel, and strain [through linen or calico, E.] [Infuse one hour, D.].—Tonic. Generally employed in dyspeptic and other stomach affections. It has an advantage over some other vegetable bitter infusions, that chalybeates can be combined with it without changing its colour.—Dose, $\frac{1}{3}ij$. to $\frac{1}{5}ij$. It is in common use as a fly-poison.

2. Tinctura Quassae, E.; Tincture of Quassia. (Quassia in chips, 3x.; Proof Spirit, Oij. Digest for seven days, and filter.)—Dose, $\frac{1}{3}ss$. to $\frac{1}{5}ij$. This tincture possesses all the bitterness of the wood.

3. Tinctura Quassae Composita, E.; Compound Tincture of Quassia. (Cardamom seeds bruised, Cochineal bruised, of each 5ss.; Cinnamon, in moderately fine powder; Quassia in chips, of each 5vij.; Raisins, 3vij.; Proof Spirit, Oij. Digest for seven days, strain the liquor, express strongly the residuum, and filter. This tincture may also be obtained by percolation, as directed for the Compound Tincture of Cardamom provided the quassia be rasped or in powder.)—An aromatic tonic.—Dose, 3ij. to 5ij.

OTHER MEDICINAL SIMARUBACEÆ.

The wood of Quassia amara (Linn. E.) has been employed in medicine under the name of Surinam quassia wood (ligum quassiae surinamense). Fermín mentions that about the year 1714 the flowers of this shrub were highly valued at Surinam on account of their stomachic properties. In 1730, the root is said to have been found in the collection of Seba, a celebrated spice-dealer of Amsterdam. Haller tells us that a relative of this took quassia for an epidemic fever in 1742, and that it was then a well-known medicine. In 1763 Linnaeus published a dissertation on this medicine, in which he states that he received specimens of the tree from one of his pupils, C. D. Dahlbergh, a military officer and counsellor at Surinam, who had become acquainted with the medical properties of the root through a black slave named Quassia, who employed it as a secret remedy in the cure of endemic malignant fevers of that place. From this circumstance Linnaeus named the tree in honour of the slave, Quassia. Rolander, who returned from Surinam in 1756, tells us he saw and conversed with this black, who was almost worshipped by some, and suspected of magic by others. Rolander found him to be a simple man, better skilled in old women's tales than in magic. All parts of the plant are intensely bitter. The wood, as I have received it, is in cylindrical pieces (covered by a thin, greyish-white, and bitter bark) not exceeding two inches in diameter, very light, without odour, but having an extremely bitter taste. The chemical and medical properties are similar to the wood of Simaruba amara.

ORDER LXVI. RUTACEÆ, De Candolle.—THE RUE TRIBE.

Characters.—Sepals 3, 4, or 5; more or less adherent at the base, so that the calyx is dentate, cleft, or parted. Petals very rarely 0, usually as many as the sepals, frequently unguiculate, distinct. Disk fleshy-glandular, surrounding the ovary, arising from the receptacle external to the petals, and bearing the stamens on the upper part. Stamens usually twice as many as the petals, and then either all fertile or the alternate ones barren. Carpels as many as the sepals, sometimes fewer by abortion, either distinct or united at the base, or perfectly connate. Style arising from the centre of the ovary, single, divided into as many stigmas as there are ovaries. Carpels, when ripe, generally distinct, one-celled, deliscient, bivalved, cocculese within. Seeds affixed to the inner angle, inverse; embryo straight, compressed; radicle superior.—Herbs or shrubs, with opposite or alternate stipulate leaves (Condensed from De Candolle).

Properties.—Volatile oil and bitter matter are the predominating constituents of this order. These confer stimulant, tonic, and in some cases, narcotic qualities.

293. RUTA GRAVEOLENS, Linn. L. E.—COMMON OR GARDEN RUE.

Sex. Syst. Decandria, Monogynia.

(Folium, L.—Leaves and unripe fruit, E.)

History.—This plant was highly esteemed by the ancients; and is frequently mentioned by Hippocrates under the name of Ἡγανός. Pliny² says that Pythagoras (who died in the year 489 before Christ) fancied that rue

1 Murray, App. Med. iii. 433.
was hurtful to the eyes; but, adds Pliny, he was in error, since engravers and painters eat it with bread or cresces to benefit their eyes. The ancients had a curious idea that stolen rue flourished the best; just as, says Pliny, it is said that stolen bees thrive the worst.

Botany. Gen. Char.— *Calix* persistent, 4-, rarely 3- to 5-partite. *Petals* as many as the segments of the calyx, unguiculate, somewhat cochlæate. *Stamens* twice as many as the petals. *Nectariferous pores* at the base of the ovary, as many as the stamina. *Ovary* on a short, thick stalk. *Style* 1. *Capsule* somewhat globose, divided into as many cells as there are petals. *Seeds* affixed by the internal angle; *albumen* fleshy; *embryo* curved; *radicle* long; *cotyledons* linear.—Perennial or suffruticos, fetid *herbs*, of a sea-green colour. *Leaves* alternate. *Flowers* corymbose, yellow, central, often 5-cleft (De Cand.)

Sp. Char.— *Leaves* supradccompound; lobes oblong, the terminal one obovate. *Petals* entire or somewhat toothed (De Cand.)

A small, branching, hairless *undershrub*, with the lower part only of the stem woody. *Leaves* dotted, glaucous or bluish green. *Flowers* in umbellate racemes. *Petals* 4 or 5, unguiculate, concave, yellow. The first flower has usually ten stamens, the others eight. It is remarkable that the anthers move in turns to the pistillum, and, after having shed their pollen, retire. *Fruit* roundish, warted, 4-lobed, each lobe opening into two valves.

Hab.— South of Europe. Commonly cultivated in gardens.

Description.— The herb (herba *rute*; herba *rute hortensis*) is readily recognised by its strong disagreeable odour, which it owes to volatile oil. Its taste is bitter and nauseous. 100 lbs, yield by drying about 22 lbs. The dried herb is greyish green, and has a less powerful odour. The unripe *fruits* (*fructus immaturus rute*) is also officinal in the Edinburgh Pharmacopœia.

Collection.— Rue was analysed, in 1811, by Mähl,\(^1\) who found in it the following constituents:—*Volatile oil, bitter extractive, chlorophylle, peculiar vegeto-animal matter* precipitable by tincture of nutgalls, *malic acid, gum, albumen, starch*, and *woody fibre*.

1. **Volatile Oil.—** (See p. 1910.)
2. **Bitter Extractive.—** Very bitter, insoluble in alcohol and ether.

Physiological Effects. a. On Animals generally.— Orfila\(^2\) found that eighteen grains of oil of rue, injected into the veins of a dog, acted as a narcotic, and caused staggering and feebleness of the posterior extremities; but in a few hours the animal had recovered. Six ounces of the juice of rue, introduced into the stomach of a dog, killed it within twenty-four hours. The mucous membrane of the stomach was found inflamed.

b. On Man.— The topical action of rue is that of an acrid. When much handled it is apt to cause redness, swelling, and vesication of the skin. The following is an illustrative case from Buehner:\(^3\)—After some very hot days in June 1823, Roth, an apothecary at Aschaffenburg, cut down a considerable

\(^1\) Pfaff, Mat. Med. iv. 339.
\(^2\) Toricol, Gén.
\(^3\) Torikologie, 265.
quantity of rue while in full bloom, and separated the leaves from the stalks. The next morning both his hands were very red and hot, and, on the third day, appeared as if they had been exposed to hot aqueous vapour. They were besmeared with oil. Towards evening vesication commenced, and was most copious at the points of the fingers. On the fourth day the parts were still much swollen; and, between the blisters, the skin had assumed a dark red or purplish hue. On the fifth and sixth days the swelling extended up the back part of the arms as far as the elbow. Poultices (of chamomile and elder flowers) were applied, and the blisters cut. Within four weeks the skin had gradually peeled off. His children, who had played with the rue, suffered from swelling of the face and hands.

The constitutional effects of rue are those of a stimulant and narcotic. It has long been celebrated as an antispasmodic in epilepsy, hysteria, and flatulent colic. It is a very popular emmenagogue, especially in hysterical cases; and is sometimes resorted to for the purpose of procuring abortion. Its narcotic and reputed uterine influence seems to be proved by three cases of poisoning with it, taken for the purpose of causing miscarriage, published by Helie.¹ In these cases the rue produced the effects of an acro-narcotic poison—viz. epigastric pain, violent and continued vomiting, inflammation and swelling of the tongue, salivation, colic, fever, thirst, disorder of the muscular system (manifested by tottering gait, and irregular and convulsive movements of the body and limbs), giddiness, confused vision, contracted pupil, delirium, or rather reverie, somnolency, and, after some days, miscarriage. During the stupor the pulse was feeble, very small, and slow (in one case beating only thirty times in the minute); there were great debility, faintness, and coldness of the skin. The general appearance was that of an intoxicated person. The ill effects lasted several days. In one case a decoction of fresh sliced roots, as big as the finger, had been taken; in the second, a decoction of the leaves; in the third, a large dose of the expressed juice of the fresh leaves.

Uses.—Rue is comparatively but little employed by the medical practitioner. It formerly enjoyed great celebrity as an antispasmodic and emmenagogue; a celebrity which it still retains among the public. The observations above made on the effects of rue prove that it is a much more active agent than is commonly supposed, and its remedial powers deserve to be more carefully examined than they have hitherto been. In the flatulent colic, especially of children, it is an exceedingly valuable remedy, and may be administered either by the stomach, or, in infants, by the rectum, in the form of clyster. It may also be employed with benefit in some cases of infantile convulsions. It has been employed in hysteria, amenorrhea, and epilepsy. In the two first of these maladies it will probably at times prove serviceable, and in them it deserves further trials. It has likewise been used as an anthelmintic. In former times it was eaten as a condiment, and was regarded as a universal antidote to poisons. It has been employed topically as an antiseptic in gangrene and foul ulcers, and likewise as a local stimulant, rubefacient, and discutient, in cold swellings, contusions, &c.

¹ Lond. Med. Gaz. xxiv. 171.
Administration.—Dose of the powder from 3j. to 5ss.; but this is not an eligible mode of preparation, as rue loses part of its activity (by the volatilization of its essential oil) by drying. An infusion prepared by digesting an ounce of the fresh herb in 8j. of boiling water, called rue tea, is a popular remedy. It is given in doses of 1f3j. to f3ij. Rue water (aqua rutæ) may be prepared with the oil, as mint water: its dose is f3j. to f3ij.

1. Confectio Rutæ, L.; Confection of Rue. (Fresh Rue, Caraway, Bay Berries, of each, 3iiss.; Sagapenum, powdered, 3ss.; Black Pepper, 3ij.; Prepared Honey, 3xvj.; Distilled Water, as much as may be sufficient. Rub the dry ingredients into a very fine powder; then add the powder by degrees to the sagapenum, melted in the honey and water by a slow fire.)—Carminative and antispasmodic. Employed in flatulent colic and infantile convulsions. Objectionable in inflammation of the intestinal mucous membrane. Dose, 8j. to 5j. Sometimes employed in the maladies of children in the form of conema, composed of gruel and a scruple of the confection.

2. Oleum Rutæ, E.; Oil of Rue. (Obtained by submitting the herb, with water, to distillation.)—From 12 lbs. of the leaves, gathered before the plant had flowered, Lewis1 obtained only about 5ij. of oil; but the same quantity of herb, with the seeds almost ripe, yielded above 3j. It is pale yellow, has a bitterish acrid taste, and a sp. gr. of 0·911. It is somewhat more soluble in water than the other volatile oils. It is stimulant, antispasmodic, and emmenagogue. Used in spasmodic and convulsive diseases, and in amenorrhcea.—Dose, gtt. ij. to vj. rubbed down with sugar and water.

3. Syrupus Rutæ; Syrup of Rue.—Though syrup of rue is not contained in any of the British pharmacopæias, it is a useful preparation, and is always kept in the shops. It is usually prepared extemporaneously by adding eight or ten drops of the oil to a pint of simple syrup. It is used by nurses to relieve the flatulent colic of children.—Dose, one or two teaspoonfuls.

294. Barosma, Willdenow.—Various Species, L. E.
Barosma serratifolia; B. crenulata, Willd.—Barosma crenata, De Cand. Willd. Eckl. D.

Sect. Syst. Pentandria, Monogynia.

(Folia, L.—Leaves, E.—Folia, D.)

History.—The natives of the Cape of Good Hope employ several species of Barosma, on account of their odoriferous and medicinal properties. The Hottentots employ a powder, composed of the leaves of various odoriferous plants (principally Barosmas), under the name of Bookoo or Buku, for anointing their bodies.2 Barosma crenata was introduced into the botanical

1 Mat. Med.
2 Burchell, Travels in Southern Africa, ii. 479; and ii. 59.
gardens of this country in 1774, but it was not employed in medicine till 1823.

Botany. Gen. Char.—**Calyx** 5-cleft or parted; dotted. **Disk** lining the bottom of the calyx generally with a short, scarcely prominent, rim. **Petals** 5, with short claws. **Filaments** 10; the five opposite the petals sterile, petaloid, sessile, ciliate, obscurely glandular at the apex; the other five longer, smooth or hispid, subulate, with the anthers usually furnished with a minute gland at the apex. **Style** as long as the petals. **Stigma** minute, 5-lobed; **ovaries** auriculate at the apex, usually glandular and tuberculated. **Fruit** composed of 5 cocci covered with glandular dots at the back (Lindley).—**Shrubs.** Leaves opposite, flat, smooth, dotted. Flowers stalked, axillary.

Species.—The leaves of several species of Barosma constitute Buchu or Bu ku.
1. **Barosma crenulata,** Willd.; **Diosma crenulata,** Linn.; **D. odorata,** (De Cand.); **D. latifolia,** Loddiges; **D. serratifolia,** Burchell.—Leaves ovate-oblong, crenate, smooth, glandular. **Pedicels** solitary, with two bracts immediately under the flower (De Cand.).—Upright shrub, between 2 and 3 feet in height; branches brownish-purple. Leaves about an inch long, oval-lanceolate, on very short petioles, very obtuse, delicately and minutely crenated, quite glabrous, rigid, darkish-green, and quite smooth above, with a few very obscure oblique nerves; beneath paler, dotted with glands which are scarcely pellucid, while at every crenature is a conspicuous pellucid gland; there is also a narrow pellucid margin round the whole leaf. Peduncles about as long as the leaf. **Calyx** of 5 ovate-acuminate leaflets, green, tinged with purple. **Corolla** of 5 ovate petals, purple in bud, bluish-coloured when fully expanded (Condensed from Hooker).—Cape of Good Hope.
2. **Barosma crenata,** Ecklon and Zeyher; **Diosma crenata,** De Candolle, Loddiges, L. D.—Leaves ovate [or obovate] acute, dotted, glandulose-serrate at the margin. **Pedicels** solitary, somewhat leafy (De Cand.)—**Flowers** pink, terminal, on short leafy branches.—Cape of Good Hope.
3. **Barosma serratifolia,** Willd., De Candolle, Loddiges.—Leaves linear-lanceolate, serrulate, smooth, glandular. **Pedicels** solitary, bearing two leaflets above the middle (De Cand.) **Leaves** acuminate, 3-nerved. **Flowers** lateral, white.—Cape of Good Hope.

Description.—The leaves of several species of Barosma are known in the shops as Buchu (Bucku, E.; **Folia Barosma seu Diosma**). They are intermixed with stalks and fruit. They are smooth, somewhat shining, sharply or bluntly serrated or crenated, and beset both on the edges, especially between the teeth, and on the under surface, with glands filled with essential oil. Their consistence is coriaceous: their colour pale or yellowish-green; their odour strong and rue-like (though some compare it to rosemary, others to cumin, or cat's urine), and their taste is warm and mint-like. They present considerable variety in shape. The most common are the following:—

1 *Bot. Mag.* t. 3413.

\[a. \] Ovate or obovate Buch. Leaves of Barosma crenata, Eekl. and Zeyher.—Leaves ovate, oval, oblong, or obovate.

\[b. \] Ovate-oblong Buch. Leaves of Barosma crenulata, Willd.—Leaves ovate-oblong, or obovate-oblong or oval-lanceolate, obtuse.

\[c. \] Linear-lanceolate Buch. Leaves of Barosma serratifolia, Willd.—Leaves linear-lanceolate, acuminiate.

Composition.—Two analyses of buchu have been made: one, in 1827, by Brandes\(^1\); the other, in the same year, by Cadet de Gassicourt.\(^2\)

<table>
<thead>
<tr>
<th>Brandes's Analysis</th>
<th>Cadet's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale yellow volatile oil</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>Resin</td>
<td>0'88</td>
</tr>
<tr>
<td>Bitter extractive (Diosmin)</td>
<td>Gum</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>2'34</td>
</tr>
<tr>
<td>Gum</td>
<td>3'78</td>
</tr>
<tr>
<td>Lignin</td>
<td>4'77</td>
</tr>
<tr>
<td>Brown substance extracted by potash</td>
<td>Chlorophyll</td>
</tr>
<tr>
<td>Nitrogenous matter extracted by potash</td>
<td>12'71</td>
</tr>
<tr>
<td>Albumen</td>
<td>1:56</td>
</tr>
<tr>
<td>Malic acid, and matter precipitable by tannin</td>
<td>45'00</td>
</tr>
<tr>
<td>Bassoir, with oxalate and phosphate of lime</td>
<td>Lignin, &c.</td>
</tr>
<tr>
<td>Various salts of potash and lime</td>
<td>4'53</td>
</tr>
<tr>
<td>Water</td>
<td>3'07</td>
</tr>
<tr>
<td>Acetic acid and loss</td>
<td>12'94</td>
</tr>
<tr>
<td></td>
<td>3'86</td>
</tr>
</tbody>
</table>

Leaves of Diosma crenata......100'00

1. **Volatile Oil of Buchu** (Oleum Barosmae seu Diosmæ).—Yellowish-brown, lighter than water; odour that of the leaves.

2. **Bitter Extractive; Diosmin**.—Brownish-yellow, bitter, and somewhat pungent. Soluble in water; but neither in alcohol or ether.

Physiological Effects.—Buchu is an aromatic stimulant and tonic. Taken in moderate doses it promotes the appetite, relieves nausea and flatulence, and acts as a diuretic and diaphoretic. Its constitutional effects appear referable—first, to its action on the stomach; and, secondly, to the absorption of the volatile oil, which is subsequently thrown out of the system by the secreting organs, on which it appears to act topically in its passage through them. Buchu seems to have a specific influence over the urinary organs.

Uses.—The natives of the Cape of Good Hope prepare a spirit of buchu (which they term buchu brandy), by distilling the leaves with the dregs of wine, which they employ in chronic diseases of the stomach and bladder.

In this country buchu has been principally employed in chronic maladies of the urino-genital organs. Dr. Reece\(^3\) first drew the attention of practitioners and the public in this country to it in these cases; and in 1828, Dr. McDowell\(^4\) gave a most favourable account of its good effects. It has

\(^1\) Gmelin, Handb. d. Chem. ii. 1258.

\(^2\) Journ. de Chim. Méd. iii. 44.

\(^3\) Gazette of Health, for 1821, 1822, 1823, and 1824.

\(^4\) Trans. of the King and Queen's College of Physicians, iv. 131, Dublin, 1824.
since been employed by a considerable number of practitioners, and its remedial powers fairly tried. It seems to be principally adapted to chronic cases attended with copious secretion. In chronic inflammation of the mucous membrane of the bladder, attended with a copious discharge of mucus, it frequently checks the secretion, and diminishes the irritable condition of the bladder, thereby enabling the patient to retain his urine for a longer period; but I have several times seen it fail to give the least relief, and in some cases it appeared rather to add to the patient's sufferings. In irritable conditions of the urethra, as spasmopdic stricture, and in gleet, it has occasionally proved serviceable. In lithiasis, attended with increased secretion of uric acid, it has been given with considerable benefit by Dr. Carter, and others, and has appeared to check the formation of this acid. For the most part it should be given in these cases in combination with alkalies (as liquor potassae). In prostatic affections, in rheumatism, and even in skin diseases, it has also been employed; and, it is said, with good effect. In dyspepsia Dr. Hulton has found it serviceable.

Administration.—The dose of buchu, in powder, is 3ij. or 3ss. It is usually taken in wine. But the infusion and tincture are more eligible preparations.

2. **TINCTURA BUCHU, D.; Tinctura Buchu, E.; Tincture of Buchu.** (Buchu, 3v.; Proof Spirit, Oij. Digest for seven days, pour off the clear liquor, and filter. This tincture may be conveniently and quickly made also by the process of percolation, E.—The proportions used by the Dublin College are essentially the same, and the tincture is directed to be prepared by maceration.)—Dose, $f_5j.$ to $f_5v.$

295. GALIPEA OFFICINALIS, Hancock, E.; and GALIPEA GUSPARIA, De Candolle, L.

Sex. Syd. Diandria, Monogynia.

(Cortex, L.—Bark, E.)

History.—Mutis is said to have employed angostura bark in 1759; but it did not come to England until 1788, and was first publicly noticed in the London Medical Journal for 1789. Mr. A. E. Brande says, that, in 1791, 40,000 lbs. or upwards had been imported. It was called Cortex Angusturae, from Angostura, a place in South America, whence the Spaniards first brought it.

2 M'Dowell, *op. cit.*
3 *Exp. and Observ. on the Angostura Bark,* Lond. 1793.
Botany. Gen. Char.—Calyx short, 5-toothed. Petals 5, united into a salver-shaped corolla, or closely approximating; tube short, pentagonal; lobes spreading, acute. Stamens 4 to 7, hypogynous, somewhat adherent to the petals, unequal, sometimes all fertile, commonly two antheriferous, two to five shorter, sterile. Nectary cupuliform. Styles 5, afterwards combined into 1, and forming a 4- or 5-grooved stigma. Carpella 5, or by abortion fewer, containing two ovules, obtuse, cocculiform, sessile, with a separable endocarp. Seeds solitary by abortion; cotyledons large, corrugated, biauriculate.—Smooth shrubs. Leaves alternate, simple, or plurifoliate; leaflets oblong, acuminate. Peduncles axillary, many flowered (De Cand.)

Species.—Humboldt and Bonpland¹ state that Galipea Cusparia, De Cand. yields Angostura bark; whereas Dr. Hancock² asserts that it is a species which he calls Galipea officinalis. But it appears to me not improbable that both species may yield a febrifuge bark.

1. Galipea Cusparia, De Cand. L.; Bonplania trifoliata, Willd. D.; Cusparia febrifuga, Humb. and Bonpl.—Leaves trifoliate. Racemes stalked, almost terminal. Calyx 5-toothed. Sterile stamens 3 (De Cand.)—A majestic forest tree, 60 or 80 feet high. Leaves 2 feet long, gracefully fragrant; petioles 1 foot long, or nearly so; leaflets sessile, unequal, ovate-lanceolate, acute. Flowers white, with fascicles of hairs seated on glandular bodies on the outside. Stamens monadelphous (Kunth); fertile ones, 2; sterile ones, 3, according to Roemer—4 according to Kunth; anthers with two short appendages. Stigmas 5. Seed solitary.—Forests of tropical America. Yields Angostura bark (Humboldt and Bonpland).

2. Galipea officinalis, Hancock, E.—Leaves trifoliate. Racemes stalked, axillary, terminal. Stamens 2. Nectaries (sterile stamens?) 5 (Hancock).—A tree, usually 12 or 15 feet high, never exceeding 20 feet. Leaves, when fresh, having the odour of tobacco; leaflets oblong, pointed at both extremities, from 6 to 10 inches long, on very short stalks; petioles as long as the leaflets. Flowers white, hairy. Stamens distinct; fertile ones, 2; sterile ones, 5; anthers without appendages. Stigma simple, capitate. Seeds 2 in each capsule; 1 usually abortive. Neighbourhood of the Orinoko (Carony, Alta Gracia, &c.) Yields Angostura or Carony bark (Hancock).

Description.—Angostura or Cusparia bark (cortex angosturea seu cuspariae) is imported directly or indirectly from South America. "The most of what I have seen," says Mr. A. E. Brände, "has been put into casks in the West Indies; but where the original package remains it is very curious, and formed carefully of the large leaves of a species of palm, surrounded by a kind of net-work made of flexible sticks." It occurs in flat pieces and quilts, of various sizes, the longest pieces being from six to ten inches in length, covered with a yellowish-grey or greyish-white spongy epidermis, easily scraped off by the nail. The internal surface is brownish, not quite smooth, somewhat fibrous or splintery, easily separable into laminae; the fracture is short and resinous; the odour strong but peculiar, and somewhat animal; the taste bitter, aromatic, and slightly acid.

¹ Pl. Æquinoct. ii. 59, t. 57.
Substitution.—I have already noticed the serious accidents which have resulted in consequence of the bark of the nux-vomica tree being substituted, either from ignorance or commercial cupidity, for angostura bark. Hence arose the distinction into true or West India angostura, and false, spurious, or East India angostura. Though the characters of the latter have been fully described, it may be as well to place them in contrast with those of the genuine angostura. In drawing up the following table of characteristics, I have been greatly assisted by the tables of Guibourt\(^1\) and Fée.\(^2\)

<table>
<thead>
<tr>
<th>Angostura Bark</th>
<th>Nux Vomica (False Angostura) Bark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Quills or flat pieces, straight or slightly bent.</td>
</tr>
<tr>
<td>Odour</td>
<td>Disagreeable.</td>
</tr>
<tr>
<td>Taste</td>
<td>Bitter, afterwards somewhat acrid, persistent.</td>
</tr>
<tr>
<td>Hardness and Density</td>
<td>Bark fragile when dry, easily cut, light, tissue not very dense.</td>
</tr>
<tr>
<td>Fracture</td>
<td>Dull and blackish.</td>
</tr>
<tr>
<td>Epidermoid crust</td>
<td>Whitish or yellowish, insipid, unchanged, or rendered slightly orange-red by nitric acid.</td>
</tr>
<tr>
<td>Inner surface</td>
<td>Separable into laminae; deepened by nitric acid.</td>
</tr>
<tr>
<td>Infusion of the bark prepared by digesting one part of bark in 24 parts of water.</td>
<td>Blue colour destroyed.</td>
</tr>
<tr>
<td>Ferrocyanide of Potassion</td>
<td>Flocculent dark greyish-brown precipitate.</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>No change: hydrochloric acid caused a yellow precipitate.</td>
</tr>
<tr>
<td></td>
<td>A small quantity makes the liquor cloudy; a large quantity renders it transparent deep red.</td>
</tr>
</tbody>
</table>

Composition.—Angostura bark has been the subject of repeated chemical investigation. Notices of the earlier attempts to analyse it are given by Meyer\(^3\) and by Pfaff.\(^4\) The analyses which deserve quoting are those of Pfaff\(^5\) and Fischer.\(^6\)

Fischer’s Analysis.

<table>
<thead>
<tr>
<th>Angostura bark</th>
<th>102:6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>0:3</td>
</tr>
<tr>
<td>Peculiar bitter principle</td>
<td>3:7</td>
</tr>
<tr>
<td>Bitter hard resin</td>
<td>1:7</td>
</tr>
<tr>
<td>Balsamic soft resin</td>
<td>1:9</td>
</tr>
<tr>
<td>Elastic resin</td>
<td>0:2</td>
</tr>
<tr>
<td>Gum</td>
<td>5:7</td>
</tr>
<tr>
<td>Lignin</td>
<td>89:1</td>
</tr>
</tbody>
</table>

1. *Hist. des Drog.*, 3me édit. ii. 6.
2. Cours d’Hist. Nat. Pharm. i. 588.
4. Syst. der Mat. Med. ii. 58.
5. Ibid.
1. Volatile Oil; Odorous Principle of Angostura.—Obtained by submitting the bark to distillation with water. It is yellowish white, lighter than water, has the peculiar odour of the bark, and an acrid taste. To this, as well as to the resin, the bark owes its acrid, aromatic taste.

2. Angosturin; Cusparin, Saladin; Bitter extractive, Pfaff; Peculiar Bitter Principle. —A neutral principle obtained by Saladin in the form of tetrahedral crystals, by submitting the alcoholic tincture of the bark (prepared without heat) to spontaneous evaporation. When heated it fuses, loses 23.99 per cent. of its weight, and subsequently inflames, without giving any evidence of its being volatile or nitrogenous. It is insoluble in the volatile oils and in ether; but dissolves slightly in water, more so in alcohol. Alkaline solutions also dissolve it. Nitric acid renders it greenish yellow; sulphuric acid reddish brown. Tincture of nutgalls precipitates it from its aqueous and alcoholic solutions.

3. Resin.—The hard resin is brown, bitter, soluble in potash, alcohol, and acetic ether; but insoluble in sulphuric ether and oil of turpentine. The soft resin is acrid, greecuish yellow, soluble in alcohol, ether, oil of turpentine, and almond oil; but insoluble in a solution of potash. It is coloured red by nitric acid.

Physiological Effects.—A powerful aromatic or stimulant tonic (see the effects of the aromatic bitters). Its aromatic or stimulant properties depend on the volatile oil and resin; its tonic operation, on the bitter principle. In its tonic and febrifuge powers it approximates to cinchona bark, but is devoid of astringency. It is less likely to irritate the stomach or to cause constipation than cinchona; but usually keeps the bowels gently open. In full doses it is capable of nauseating and purging. Dr. Hancock says the warm infusion causes sweating and diuresis. In its combination of tonic and aromatic properties, it is most allied to cascarilla. In its stomachic qualities it approaches calumba.

Uses.—Angostura bark is but little employed by practitioners of this country. We may fairly ascribe this in part to the serious consequences which have resulted from the use of the false angostura, and in part to the belief that we have other remedies of equal, if not of superior, efficacy to it. In some of the continental states, its employment has been prohibited. It may be administered as a febrifuge in intermitten ts and remittents, especially in the worst forms of the bilious remittents of tropical climates. Drs. Williams, Wilkinson, Winterbottom, and, more recently, Dr. Hancock, have spoken in the highest terms of its efficacy. In some of these cases it is said to have proved greatly superior to cinchona. It sits more readily on the stomach, and does not cause constipation like the latter, but keeps the bowels gently open. In adynamic continued fever, especially when complicated with great disorder of the digestive organs (manifested by vomiting or purging), it has been used with good effect. As an aromatic tonic and stomachic, in general relaxation and muscular debility, and in atonic conditions of the stomach and intestinal tube (as some forms of dyspepsia, anorxia, &c.), it has been employed with great success. It has also been administered to check profuse mucous discharges, as in the latter stages and chronic

1 Pfaff, op. supra cit. Bd. ii. 61 and 69; and Bd. vi. 191.
3 Pfaff, op. supra cit. vi. 191.
5 Ibid. 1799, part iv. p. 331.
7 Winterbottom; also Lettsom, Mem. of the Med. Soc. of Lond. iv. 191.
forms of dysentery and diarrhoea, and in chronic bronchial affections attended with excessive secretion of mucus. In fine, angostura is applicable to any of the purposes for which other vegetable tonics, (especially cascarilla, calumba, and cinchona) are commonly employed.

Administration.—It may be given in powder in doses of from grs. x. to 5ss. But the infusion and tincture are better preparations.

4. Infusum Cuspariae, L. E.; Infusion of Cusparia. (Cusparia, bruised, 5v. ; Boiling (distilled, L.) Water, Oj. Macerate for two hours in a lightly covered vessel, and strain [through linen or calico, E.].—Tonic, stomachic, and stimulant. Used in low fever, bilious diarrhoeas and dysenteries, muscular debility, dyspepsia, &c.—Dose, from ½j. to 5½j. Tincture of cinnamon is an agreeable addition to it.

2. Tinctura Cuspariae, E.; Tincture of Cusparia. (Cusparia, in moderately fine powder, ½ivss. ; Proof Spirit, Oij. This tincture is to be made like the tincture of cinchona, and most expeditiously by the process of percolation, E.)—Tonic, stimulant, and stomachic. Generally employed as an adjunct to bitter infusions.—Dose ½j. to 5½j.

OTHER MEDICINAL RUTACEÆ.

The root of Dictamnus Fraxinella, or Bastard Dittany, was formerly employed in medicine, but of late years has fallen into almost total disuse. There are two varieties of this plant: a. purpurea with purple flowers; and b. alba with white flowers. It is a native of the South of Europe. The root contains volatile oil, resin, bitter extractive, and probably gum. It is an aromatic tonic, and is reputed to possess antispasmodic, diuretic, and emmenagogue properties. It was formerly employed in intermittents, epilepsy, hysteria, amenorrhœa, chlorosis, and worms. The dose of it is from ½j. to 5j. Attention has been recently drawn to it by Dr. Aldis, who states that it has been employed, during forty years, with great success, in the cure of epilepsy, by Baron A. Sloet van Oldruitenborgh and family. I am acquainted with one patient (a young lady) who took it for six months without receiving any ultimate benefit from it.

Order LXVII. Zygophyllaceæ, Lindley.—THE BEAN CAPER TRIBE.

Zygophylleæ, R. Brown.

Characters.—Sepals 5, distinct, or scarcely coherent at the base. Petals 5, alternate with the sepals, inserted on the receptacle. Stamens 10, distinct, hypogynous, 5 opposite to the sepals, and 5 to the petals. Ovary distinct, 5-celled; styles 5 united into one, sometimes rather distinct at the apex. Capsule of five carpels, which are more or less adnate to each other and to the central axis; cells dehiscendent at the superior angle.

1 Loud. Med. Gaz. xii. 142.
usually many-seeded, or 1-seeded, neither eococuliferous nor arilliferous. Seeds albuminous, or commonly exalbuminous; embryo straight; radicle superior; cotyledons foliaceous.—Herbs, shrubs, or trees. Leaves with stipules at the base, usually compound (De Cand.)

Properties.—The Guaiacums are resinous, and possess stimulant properties.

296. **GUAIACUM OFFICINALE**, Linn. L. E. D.—OFFICINAL GUAIACUM.

Sex. Syst. Decandria, Monogynia. (Lignum; Resina e ligno igne comparata, L.—Resin obtained by heat from the wood, E.—Wood and resin, D.)

History.—The Spaniards derived their knowledge of the medicinal uses of Guaiacum from the natives of St. Domingo, and introduced this remedy into Europe in the early part of the sixteenth century (about 1508). The first importer of it was Gonsalvo Ferrand, who, being infected with the venereal disease, and not obtaining any cure for it in Europe, went to the West Indies, to ascertain how the natives in that part of the world treated themselves, as the disease was as common with them as small-pox with Europeans. Having ascertained that Guaiacum was employed, he returned to Spain and commenced practitioner himself. “I suppose,” says Freind, “he might make a monopoly of it; for it appears that some time after it was sold for seven gold crowns a pound.”

Botany. Gen. Char.—Calyx 5-partite, obtuse. Petals 5. Stamens 10; filaments naked, or somewhat appendiculate. Style and stigma 1. Capsule somewhat stalked, 5-celled, 5-angled, or by abortion 2- or 3-celled. Seeds solitary in the cells, affixed to the axis, pendulous; albumen cartilaginous, with small chinks; cotyledons somewhat thick.—Trees with a hard wood. Leaves abruptly pinnate. Peduncles axillary, 1-flowered (De Cand.)

Sp. Char.—Leaves bijugate: leaflets obovate or oval, obtuse (De Cand.)

A tree rising 30 or 40 feet high. Stem commonly crooked; bark furrowed; wood very hard and heavy. Leaves evergreen. Flowers 6 to 10 in the axillae of the upper leaves. Peduncles an inch and a half long, unifloral. Sepals 5, oval. Petals 5, oblong or somewhat wedge-shaped, pale blue. Stamens somewhat shorter than the petals. Ovary compressed, 2-celled; style short, pointed. Capsule obovate, coriaceous, yellow.

Hab.—St. Domingo and Jamaica.

Description and Composition.—In this country the wood and the resin only are officinal; but on the continent the bark also is used. They are imported from St. Domingo.

1. Guaiacum Wood (Lignum Guaiaci). This is commonly termed lignum vitae. It is imported in large logs or billets, and is extensively used for making pestles, rulers, skittle-balls, and various other articles of turnery ware. On examining the transverse sections of these stems, hardly any traces of medulla or pith are observable, while the annual or concentric layers or zones are extremely indistinct. The wood is remarkable, says Dr. Lindley,\(^1\)

"for the direction of its fibres, each layer of which crosses the preceding
diagonally; a circumstance first pointed out to me by Professor Voigt."
This fact, however, was noticed by Brown\(^1\) above fifty years ago. The dis-
tinction between the young and old wood is remarkable. The young wood
(called alburnum or sapwood) is of a pale yellow colour; while the old
wood (called duramen or heartwood) which forms the central and principal
part of the stem is of a greenish brown colour, in consequence of the deposi-
tion of resinous matter, first in the ducts and subsequently in all parts of the
tissue. By boiling a thin shaving of the wood in nitric acid, the whole of
the deposited matter is destroyed, and the tissue restored to its original
colourless character.

Shavings, turnings, or raspings of guaiacum (lignum guaiaci raspatum
seu rasum; rasura vel scobs guaiaci) are prepared by turners for the use of
druggists and apothecaries. They are distinguished from the raspings of
other woods by nitric acid, which communicates to them a temporary bluish-
green colour. A decoction of the shavings is yellowish, and does not change
colour in the air, and very little even by nitric acid, though after some time
it becomes turbid. Neither a solution of emetic tartar, nor the tincture
of nutgalls, causes any precipitate. The ferruginous salts deepen its colour.

Trommsdorff\(^2\) analysed the wood, and found it to consist of resin 26·0,
bitter, piquant extractive 0·8, mucous extractive with a vegetable salt of
lime 2·8, colouring matter (?) similar to that of the bark 1·0, and woody
fibre 69·4.

Guaiacum bark (Cortex Guaiaci) is gray, compact, very hard, heavy, and resinous. Its
internal surface sometimes presents numerous small, brilliant, apparently crystalline points,
which Guibourt supposes to be benzoic acid. Trommsdorff\(^3\) analysed this bark, and
found it to consist of the following substances:—peculiar resin different from that of the
wood 2·2, peculiar, bitter, piquant extractive precipitable by acid 45, gum 0·8, brownish,
yellow colouring matter 4·1, mucous extractive with sulphate of lime 12·0, and lignin 76·0.

2. Guaiacum Resin (Resina Guaiaci).—This is commonly, though very
erroneously, denominated gum guaiacum. It is obtained from the stem of the
tree by the following methods:—

\(\alpha\). By natural exudation.—It exudes naturally from the stem, and may
be seen on it at all seasons of the year.\(^4\) \(\beta\). By juggling.—If the tree be
wounded in different parts, a copious exudation takes place from the wounds,
which hardens by exposure to the sun. This operation is performed in May.

\(\gamma\). By heat.—Another method of obtaining it is the following:—"The trunk
and larger limbs being sawn into billets of about three feet long, an auger hole
is bored lengthwise in each, and one end of the billet so placed on a fire that
a calabash may receive the melted resin which runs through the hole as the
wood burns.\(^5\) \(\delta\). By boiling.—It is also obtained in small quantities by
boiling chips or sawings of the wood in water with common salt. The resin

\(^1\) Nat. Hist. of Jamaica, p. 226.
\(^3\) Ibid. vii. 429.
\(^4\) Brown, op. supra cit. p. 226.
\(^5\) Wright, Med. Plants of Jamaica.
swims at the top, and may be skimmed off. The salt is used to raise the boiling point of the water.

Guaiacum occurs in tears and in masses. **Guaiacum in tears** (*Guaiacum in lachrymis*) occurs in rounded or oval tears, of varying size, some being larger than a walnut. Externally they are covered by a grayish dust. They are said to be produced by **Guaiacum sanctum**. **Lump Guaiacum** (*Guaiacum in massis*) is the ordinary kind met with in the shops. These masses are of considerable size, and are ordinarily mixed with pieces of bark, wood, and other impurities; they are of a brownish or greenish-brown colour, and have a brilliant, shiny, resinous fracture. Thin laminae are nearly transparent, and have a yellowish-green colour. The odour is balsamic, but very slight, though becoming more sensible by pulverization. When chewed, guaiacum softens under the teeth, but has scarcely any taste, though it leaves a burning sensation in the throat. Its specific gravity is 1·2289. When heated, guaiacum melts and evolves a fragrant odour. The products of the destructive distillation of guaiacum have been examined both by Mr. Brande and Unverdorben. Among the new substances obtained by the latter are *two empyreumatic oils of guaiacum* (one volatile, the other fixed,) and pyroguaiaic acid.

The characters of guaiacum resin, according to the *Edinburgh Pharmacopoeia*, are as follows:—"Fresh fracture red, slowly passing to green: the tincture slowly strikes a lively blue colour on the inner surface of a thin paring of a raw potato."

In 1805, Mr. Brande analysed guaiacum. In 1806 it was examined by Bucholz, and in 1828 by Buchner. Dr. Ure has made an ultimate analysis of it.

<table>
<thead>
<tr>
<th>Brande's Analysis</th>
<th>Buchner's Analysis</th>
<th>Ure's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substance sui generis (guaiacum properly so called)</td>
<td>Pure resin 79·8</td>
<td>Carbon 67·88</td>
</tr>
<tr>
<td></td>
<td>Bark Woody fibre 16·5</td>
<td>Hydrogen 7·05</td>
</tr>
<tr>
<td></td>
<td>20·1 Extractive</td>
<td>Oxygen 25·07</td>
</tr>
<tr>
<td>Guaiacum 91</td>
<td>Guaiacum 99·9</td>
<td>Guaiacum 100·00</td>
</tr>
</tbody>
</table>

1. **Guaiacic Acid**; **Guaiacin**.—Is insoluble in water, but is readily dissolved by alcohol, and is precipitated from its alcoholic solution by water, sulphuric and nitric acids, and chlorine. Ether dissolves the resin, but not so readily as alcohol. Solutions of the caustic alkalies (potash and soda) dissolve it, forming *alkaline guaiacates* (*guaiacum soaps; sapones guaiacini*). The mineral acids precipitate it from its alkaline solution. Various salts (as acetate of baryta, acetate of lime, acetate of lead, nitrate of silver, and chloride of gold) occasion precipitates (*guaiacates*) with the alkaline solution. Guaiacic acid is remarkable for the changes of colour it undergoes by the influence of various agents. Thus, its powder, and paper moistened with its tincture, becomes green in air or oxygen gas, but not in carbonic acid gas. This change, which seems connected with the absorption of oxygen, is influenced by the intensity and colour of the light. Various substances give a *blue* tint to guaiacum when in contact with air: thus gluten, but not starch. Hence powdered guaiacum has been proposed as a test for the goodness of wheaten.

1 Wright, *op. supra cit.*
2 *Journ. de Pharm.* xx. 520.
3 *Phil. Trans.* for 1806, p. 89.
6 *Dict. of Chem.*
Physiological Proceed, for says essentially think of one slight The cold of various Hour that immediately compound. yuaiacate sulphate of quantity solution solution might resin, which potash tional system to perhaps we symptoms guaiacum. nausea, increased operation is observed partly in the vascular system, but principally in the exhaling and secreting organs, especially the skin and kidneys. Dr. Cullen justly observes that it seems to stimulate the exhalants more in proportion.
than it does the heart and great arteries. If diluents be exhibited, and the skin kept warm, guaiacum acts as a powerful sudorific; whereas, when the surface is kept cool, perspiration is checked, and diuresis promoted. By continued use it has caused a mild salivation. The stimulant influence of guaiacum is extended to the pelvic vessels, and thus the hemorrhoidal and menstrual discharges are somewhat promoted by it. But there is no reason for supposing that the pelvic organs are specifically affected by it. In very large doses guaiacum causes heat and burning in the throat and stomach, vomiting, purging, pyrexia, and headache.

In its operation on the system guaiacum is allied to the balsams. Dr. Cullen considered its resinous part to be very analogous to the balsams and turpentines.

2. Of the Wood.—The operation of the wood is similar to, though milder than, that of the resin. Any activity which the wood communicates to boiling water must depend on the extractive, as the resin is not soluble in this fluid.

Pearson says, that the decoction excites a sensation of warmth in the stomach, produces dryness of the mouth, with thirst, increases the natural temperature of the skin, renders the pulse more frequent, and, if the patient lie in bed and take the decoction warm, it proves moderately sudorific; but if he be exposed freely to the air, it acts as a diuretic. Continued use occasions heartburn, flatulence, and costiveness. Kraus mentions a measles-like eruption over the whole body, as being produced by large doses of the wood.

3. Of the Bark.—The bark acts in a similar way to the wood. Regnandot injected, at eight in the morning, three ounces of an aqueous infusion of it into the veins of a young man twenty years of age. In half an hour a shivering fit came on, with colicky pains, followed by two stools: this shivering remained till five o'clock in the evening.

Uses.—In the employment of guaiacum the acrid and stimulant properties of this resin are to be remembered. The first unites it for use in cases of impaired digestion, where there is irritation or great susceptibility of, or inflammatory tendency in, the alimentary canal: the second renders it improper in plethoric individuals, in all states of excitement or acute inflammation, and in persons whose vascular system is easily excited, and who are disposed to hemorrhages. It is admissible and useful, on the other hand, in atonic or chronic forms of disease, with retained secretions, especially in relaxed and phlegmatic constitutions.

The following are some of the diseases in which it has been employed:

1. In chronic rheumatism, especially when occurring in scrofulous subjects, or in persons affected with venereal disease, guaiacum may be administered with considerable advantage under the conditions before mentioned. In cases of great debility, with coldness of surface, and in old persons, the ammoniated tincture may be employed.

2. In gout.—As a preventive of gout it was introduced by Mr. Emerigon,

3 Heilmittelk. 612.
of Martinico.¹ His remedy (the specificum antipodagricum Emerigontis, as our German brethren term it) consisted of two ounces of guaiacum digested for eight days in three pints avoidupois of rum. The dose was a table-spoonful, taken every morning fasting for a twelvemonth. Its stimulant qualities render it inadmissible during a paroxysm of gout; and with regard to its use in the interval, it is, of course, adapted for chronic atonic conditions only.

3. In chronic skin diseases, where sudorifics and stimulants are indicated, guaiacum may be serviceable, especially in scrofulous and syphilitic subjects.

4. In obstructed and painful menstruation not arising from any plethoric, inflammatory, or congested state of system, the volatile tincture of guaiacum has been employed with advantage. Dr. Dewees² states that he has long been in the habit of employing it in painful menstruation with good effect. Drs. Macleod and Jewell have also borne testimony to its emmenagogue qualities.

5. As a remedy for venereal diseases, guaiacum wood was at one time in the greatest repute. Nicholas Poll³ tells us, that within nine years from the time of its introduction into Europe, more than three thousand persons had derived permanent benefit from its use. Experience, however, has taught us the true value of this remedy, and we now know that it has no specific powers of curing or alleviating syphilis. It is applicable, as an alternative and sudorific, for the relief of secondary symptoms, especially venereal rhematism and cutaneous eruptions, more particularly of scrofulous subjects. Mr. Pearson found it serviceable after the patient had been subjected to a mercurial course. Under its use, thickening of the ligaments and periosteum subsided, and foul indolent sores healed. During its administration the patient should adhere to a sudorific regimen.

6. In scrofula, especially that form called cutaneous, guaiacum is used with occasional advantage.

7. In chronic pulmonary catarrh, especially of gouty subjects, it has also been used.

Administration.—The powder of guaiacum resin may be given in doses of from grs. x. to 3ss. It may be administered in the form of pill, bolus, or mixture (see Mistura Guaiaci). The resin is a constituent of the Pilula hydrargyri chloridi compositæ, Ph. L., commonly termed Plummer’s Pills, and of the Pulvis aloës compositus. The resin is also given in the form of alcoholic and ammoniated tincture. The wood is exhibited in decoction only. It is a constituent of the Decoctum surze compositum, L.

1. Mistura Guaiaci, L. E.; Guaiacum Mixture. (Guaiacum, 3iij.; Sugar, 3ss.; Acacia Powder, 3ij.; Cinnamon Water, Oj. [f3xixss. E.] Rub
the guaiacum with the sugar and acacia, and to these, while rubbing, add gradually the cinnamon water.)—Dose, 1/3 ss. to 1/3 ij. twice or thrice a-day.

2. **TINCTURA GUIACI**, E. D.; *Tincture of Guaiacum*. (Guaiacum in coarse powder, 3vij. [3vij. D.]; Rectified Spirit, Oij. Digest for seven days, E. [fourteen days, D.], and then filter [strain, express, and filter, D.])—Stimulant, sudorific, and laxative. Dose, 1/3j. to 1/3v. As it is decomposed by water, it should be administered in mucilage, sweetened water, or milk, to hold the precipitated resin in suspension.

4. **DECOCTUM GUIACI**, E.; *Decoction of Guaiacum*. (Guaiacum turnings, 5ij.; Raisins, 5ij.; Sassafras, rasped, 3j.; Liquorice Root, bruised, 3j.; Water, Ovij. Boil the guaiacum and raisins with the water gently down to Ov., adding the liquorice and sassafras towards the end. Strain the decoction.)—This is the old *Decoction of the Woods*. The resin of guaiacum being insoluble in water, the extractive alone is dissolved by this menstruum. The sassafras can confer but little activity on the preparation. Taken in doses of 1/3v., four times daily, and continued with a sudorific regimen, it acts on the skin, and has been thought to be useful as an alterative in old venereal, rheumatic, and cutaneous diseases.

Order LXVIII. OXALIDACEÆ, Lindley. — The Wood-Sorrel Tribe.

Oxalideæ, De Candolle.

Characters.—Sepals 5, sometimes slightly cohering at the base, persistent, equal. Petals 5, hypogynous, equal, unguiculate, with a spirally-twisted estivation. Stamens 10, usually more or less monadelphous, those opposite the petals forming an inner series, and longer than the others; anthers 2-celled, innate. Ovary with 5 angles and 5 cells; 5 styles filiform; stigmas capitate or somewhat bifid. Fruit capsular, membranous, with 5 cells, and from 5 to 10 valves. Seeds few, fixed to the axis, enclosed within a fleshy integument, which curls back at the maturity of the fruit, and expels the seeds with elasticity. Albumen between cartilaginous and fleshy. Embryo the length of the albumen, with a long radicle pointing to the hilum, and foliaceous cotyledons.—*Herbaceous plants, under-shrubs, or trees*. Leaves alternate, compound, sometimes simple by abortion, very seldom opposite or somewhat whorled (Lindley).

Properties.—Acidulous and refrigerant.
297. Oxalis Acetosella, Linn.—Common Wood- Sorrel.

History.—Mr. Bicheno\(^1\) declares this to be the genuine shamrock.

Botany. Gen. Char.—Sepals 5, free or united at the base. Petals 5; Stamens 10; filaments slightly monadelphous at the base, the five external alternate ones shorter. Styles 5, pencilled at the apex or capitate. Capsule pentagonal, oblong, or cylindrical (De Cand.)—Perennial herbs. Leaves never abruptly pinnate.

An elegant little plant. Leaflets delicate bright green, often purplish at the back, drooping at night. Footstalks slender, purplish. Bracts 2, scaly. Flowers drooping, white, with purplish veins.

Hab.—Indigenous; woody and shady places. Flowers in May.

Description.—Woodsorrel (herba acetosella) is odourless. Its taste is agreeably acidulous.

Composition.—I am unacquainted with any analysis of this plant. Its expressed juice yields by evaporation binoxalate of potash. Payen\(^2\) analysed Oxalis crenata. From its stems he obtained water, lignin, oxalate of potash, albumen, soluble nitrogenous matter, chlorophylle, oxalate of ammonia, free oxalic acid, oxides, salts, gum, an aromatic substance, and sugar. The quantity of oxalate of potash was from 1.06 to 1.23 per cent.

Binoxalate of Potash; Salt of Woodsorrel.—In Switzerland and some parts of Germany this salt is obtained on the large scale from woodsorrel, by evaporating the expressed juice, redissolving the residue, and crystallising. 500 parts of the plant yield four parts of the crystallised salt. It crystallises in white rhombic prisms. It consists of—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalic acid</td>
<td>2</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
</tr>
<tr>
<td>Crystallized binoxalate potash</td>
<td>1</td>
</tr>
</tbody>
</table>

In commerce the quadroxalate of potash is substituted for it (see p. 522).

Physiological Effects and Uses.—Woodsorrel is refrigerant. Taken as a salad, it is considered a good antiscorbutic. Infused in milk, to form whey, or in water, it furnishes a grateful drink in fevers. A solution of the binoxalate of potash has been employed as a substitute for lemonade.

\(^1\) Phil. Mag. new series, vii. 288.

\(^2\) Journ. de Chim. Méd. new series, i. 260.
Order LXIX. Vitaceæ, Lindley.—The Vine Tribe.

Ampelideæ, Kunth, De Candolle.

Characters.—Calyx small, nearly entire at the edge. Petals 4 or 5, inserted on the outside of the disk surrounding the ovary; in aestivation turned inwards at the edge, in a valvate manner, and often inflected at the point. Stamens equal in number to the petals, and opposite them, inserted upon the disk, sometimes sterile by abortion; filaments distinct, or slightly cohering at the base; anthers ovate, versatile. Ovary superior, 2-celled; style 1, very short; stigma simple; ovules erect, definite. Berry round, often by abortion changing to tendrils often opposite the leaves. Flowers small, green (Lindley).

Properties.—Acid leaves, and a fruit like that of the common grape, is the usual character of the order (Lindley).

Sex. Syst. Fendandria, Monogynia.

(Fructus preparatus, L.—Dried fruit, E.—The fresh and the dried fruit, D.)

History.—The grape-vine has been known and cultivated from the most remote periods of antiquity. Among the most ancient of the profane writers, Homer,¹ Hippocrates, and Herodotus,² may be referred to as speaking of the vine.

Botany. Gen. Char.—Calyx somewhat 5-toothed. Petals 5, cohering at the point, separating at the base, and dropping off like a calyptra. Stamens 5. Style 0. Berry 2-celled, 4-seeded; the cells or seeds often abortive (De Cand.).

Sp. Char.—Leaves lobed, sinuated, toothed, smooth or downy (De Cand.).

A hardy, exceedingly variable shrub. Leaves more or less lobed, smooth, pubescent or downy, flat or crisp, pale or intensely green. [Tendrils opposite to each footstalk, solitary, spiral.] Branches prostrate, climbing or erect, tender or hard. Racemes loose or compact, ovate or cylindrical. Fruit red, pale, or white, watery or fleshy.

¹ Od. vii. 121; and xxiv. 342.
² Euterpe, lxxvii.
globe, ovate or oblong, sweet, musky, or austere. Seeds variable in number, or sometimes the whole of them abortive (De Cand.)—No less than 1,400 varieties are cultivated at the Luxembourg gardens.

Description.—Grapes (Uva) considered with respect to their shape and colour, may be thus arranged:

1. Round, dark-red, purple, or black grapes.—The most remarkable variety of this division is the black Corinthian grape, which, when dried, constitutes the currant of the grocer.
2. Oval, dark-red, purple, or black grapes.—To this division belongs the favourite black Hamburg grape.
3. Round and white grapes.
4. Oval and white grapes.—The Portugal grape comes under this division. It is imported, packed in saw-dust, and contained in earthen jars, from Portugal and Spain. The berries are large, fleshy, sweet, and slightly acidulous. They keep a long time after they have ripened. In 1822, the ad valorem duty of 20 per cent. on these grapes produced £1720. The white Cornichon grape is remarkable for its elongated elliptical berry.
5. Red, rose-coloured, grayish, or striped grapes.

Various parts of the vine, some of which were formerly employed in medicine, are distinguished by peculiar names; thus, the leaves are termed *pam-pinii*; the cirri or tendrils, *capreoli*; the tender shoots, *palmites*; the juice or sap, *lachryma*; and the juice of unripe grapes *omphacium*, or commonly *agresta*. The twigs or cuttings of the vine are used for flavouring vinegar.

Composition.—The juice of unripe and ripe grapes has been examined by several chemists. The following are the most important results:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proust.</td>
<td>Geiger.</td>
</tr>
<tr>
<td>Extractive.</td>
<td>Wax.</td>
</tr>
<tr>
<td>Malic acid, a little.</td>
<td>Chlorophylle.</td>
</tr>
<tr>
<td>Citric acid, much.</td>
<td>Tannin.</td>
</tr>
<tr>
<td>Bitartrate of potash.</td>
<td>Glutinous matter.</td>
</tr>
<tr>
<td>Sulphate of potash.</td>
<td>Tannin.</td>
</tr>
<tr>
<td>Sulphate of lime.</td>
<td>Extractive.</td>
</tr>
<tr>
<td>Unripe Grape juice.</td>
<td>Sugar (uncrystallizable).</td>
</tr>
<tr>
<td></td>
<td>Gallic acid.</td>
</tr>
<tr>
<td></td>
<td>Tartaric acid (free)</td>
</tr>
<tr>
<td></td>
<td>about 1:12 per cent.</td>
</tr>
<tr>
<td></td>
<td>Malic acid (free)</td>
</tr>
<tr>
<td></td>
<td>about 2:19 per cent.</td>
</tr>
<tr>
<td></td>
<td>Bitartrate of potash.</td>
</tr>
<tr>
<td></td>
<td>Malate, phosphate,</td>
</tr>
<tr>
<td></td>
<td>sulphate, and muriate of</td>
</tr>
<tr>
<td></td>
<td>lime.</td>
</tr>
<tr>
<td></td>
<td>Juice of White Grape of</td>
</tr>
<tr>
<td></td>
<td>good quality.</td>
</tr>
</tbody>
</table>

Proust.	**Béard.**
	Odorous matter.
	Sugar.
	Gum.
	Glutinous matter.
	Malic acid.
	Malate of lime.
	Bitartrate of potash.
	Supertartrate of lime.
	Ripe Grape juice.
	Ripe Grape juice.

1 Thompson, in Loudon's *Encycl. of Gardening*.
2 *M'Culloch, Dict. of Commerce*.
1. Grape Sugar.—This is one variety of the granular or crumbling sugars (Krümelzuckers) of the Germans. It agrees with common sugar in its most essential properties (see p. 1018), but is less soluble in water and in alcohol than the latter, and does not sweeten so effectually. From its boiling alcoholic solution it is deposited, on cooling, in the form of an irregularly crystalline mass. Its formula is $\text{C}_{12}\text{H}_{22}\text{O}_{14}$.

2. Bitartrate of Potash.—The impure bitartrate of potash, called crude tartar or ergot, which is deposited during the fermentation of grape wine, and the purified bitartrate, have been already described.—(See page 518).

Dried Grapes or Raisins.—Grapes, when properly dried, are denominated Raisins (Uva passae). Of these there are two principal kinds:

1. Raisins commonly so called (Uva passae mayores; Passule mayores). In Granada the finest kinds of raisins (viz. the Muscatels and the Blooms) are sun-dried; while the Lexias (so called from the liquor in which they are immersed) are dipped in a mixture of water, ashes, and oil, and afterwards sun-dried.1 By this treatment the juice exudes and candies on the fruit. Dillon2 states that the sun-dried raisins have their stalk half cut through while the bunch remains on the vine. The raisins of Valencia are prepared by steeping them in boiling water, to which a lye of vine stems has been added.3 Some raisins are said to be dried by the heat of an oven. Raisins are imported in casks, barrels, boxes, and jars. The best come in jars and quarter boxes weighing twenty-five lbs. The varieties known in the market are distinguished partly from their place of growth, as Valentias and Smyrnas, partly from the variety of grape from which they are prepared, as Sultanas, Blooms, and Muscatels; and partly from the mode of curing them, as Raisins of the Sun. Muscatels are the finest. Sultanas are stoneless. The raisins of Malaga are of three kinds:4 1st Muscatels; 2nd Sun or Bloom Raisins (obtained from a long grape called Uva larga); and the Lexia Raisins.

2. Corinthian Raisins or Currants (Uva passae minores; Passulae minores; Passule Corinthiae). These are obtained from a remarkably small variety of grape called the Black Corinth. They were formerly produced at Corinth (whence they received their name), but are now grown in Zante, Cephalonia, Patras, &c. At Zante they are gathered in August, disposed in couches on the ground to dry, cleaned, and laid up in magazines (called seraqlies), where they eventually adhere so firmly as to require digging out.8 They require eight, ten, or fourteen days for drying.6 For exportation they are trodden in barrels.

Physiological Effects.—Fresh grapes, when ripe, are wholesome, nutritious, refrigerant, and, when taken freely, diuretic and laxative. The skin and the seeds are indigestible, and should be rejected. "I think we may assert," says Dr. Cullen,7 "that grapes which contain a large quantity of sugar are, if taken without their husks, the safest and most nutritive of summer fruits." Raisins are somewhat more nutritive, and less refrigerant; for they abound more in sugar, and contain less acid, than the fresh grape; but, if eaten too freely, they are apt to disorder the digestive organs, and cause flatulence. They possess demulcent and emollient qualities.

Uses.—Both grapes and raisins are employed at the table as a dessert. They are apt to disagree with dyspeptics and children. Raisins are also used

1 Inglis, Spain in 1830, ii. 193.
2 Travels through Spain, p. 376.
3 Laborde, A View of Spain, iv. 99.
4 Busby’s Journal of a recent Visit to the principal Vineyards of Spain and France, p. 44, Lond. 1834.
6 Holland, Travels in the Ionian Isles, p. 21; and Williams, Travels in Italy, &c. ii. 182.
7 Mat. Med. i. 253.
in various articles of pastry. Considered medicinally, fresh grapes prove valuable in febrile and inflammatory complaints; they allay thirst, and diminish febrile heat: they have been found serviceable in dysentery\(^1\) and in phthisical complaints.\(^2\) "The subjects of pulmonary affections, who pass the summer in Switzerland," observes Sir J. Clark,\(^3\) "may try the effects of a course of grapes, 'eure de raisins,' a remedy in high estimation in several parts of the continent."

Raisins are employed in medicine principally as flavouring agents; they enter into several officinal preparations (as Decoctum Hordei compositum, Decoctum Guaiaci, Tinctura Cardamomi composita, Tinctura Senne composita, Tinctura Quassiae composita), the flavour of which they improve, though they contribute nothing to the efficacy of these compounds.

1. **POTASSUM BITARTRAS.**—See page 518.

2. **ACIDUM TARTARICUM.**

3. **TROCHISCI ACIDI TARTARICI, E.**; Acidulated Lemon Lozenges or Acidulated Drops. (Tartaric Acid, \(\text{viij}\); Pure Sugar, \(\text{viij}\); Volatile Oil Lemon, \(\text{m}x\). Pulverize the sugar and acid, add the oil, mix them thoroughly, and with mucilage beat them into a proper mass for making lozenges.)—Employed for coughs and sore-throats. More commonly taken, on account of their agreeable flavour, as articles of confectionary.

4. **VINUM;** Wine.—The necessarily confined limits of this work compel me to devote a smaller space to the consideration of wine than its interest and importance otherwise demand.

In the British pharmacopoeias the only officinal wine directed to be used is Sherry (Vinum Xericum, L; Vinum Album; Sherry, E; Vinum album Hispanicum, D.) For medicinal purposes, however, other wines are also used; so that it is necessary to take a general view of the properties of wines.

The manufacture of wine deserves a passing notice. Grape juice does not ferment in the grape itself. This is owing, not, as Fabroni\(^4\) supposed, to the gluten being contained in distinct cells to those in which the saccharine juice is lodged, but to the exclusion of atmospheric oxygen, the contact of which, Guy-Lussac\(^5\) has shown, is necessary to effect some change in the gluten, whereby it is enabled to set up the process of fermentation. The expressed juice of the grape, called must (mustum), whose composition has been already stated, readily undergoes the vinous fermentation when subjected to a temperature of between 60° and 80° F. It becomes thick, muddy, and warm, and evolves carbonic acid gas. After a few days this process ceases; the thick part subsides, the liquid becomes clear, and is then found to have lost its sweet taste, and to have become vinous. I have already explained the theory of the process, and also made some remarks.

1 Zimmermann, Treat. on Diet. 2d edit. p. 87, Lond. 1774.
2 Moore, View of Society, &c. in Italy, ii. 254.
4 *De l'Art de faire le Vin*, Paris, 1801.
5 *Ann. de Chim.* lxxvi. 245.
respecting yeast. The wine is now drawn off into casks, where it undergoes further changes. It is then racked off into other casks, where it is subjected to the operation of sulphuring (i. e. exposed to sulphurous acid, either by burning sulphur matches in the cask, or by the addition of wine impregnated with this acid), to render the glutinous matter incapable of re-exciting fermentation. After this, the wine is usually clarified, or fined (i. e. deprived of those matters which render the wine turbid, and dispose it to undergo deteriorating changes). Isinglass or white of egg (i. e. gelatine or albumen) is commonly employed for this purpose. The first forms with the tannic acid—the second with the alcohol, reticulated coagula, which envelop and carry down the solid particles that endanger the safety of the wine.\(^1\)

The peculiar qualities of the different kinds of wine depend on several circumstances; such as the variety and place of growth of the vine from which the wine is prepared,—the time of year when the vintage is collected,—the preparation of the grapes previously to their being trodden and pressed,—and the various manipulations and processes adopted in their fermentation.

The wines of different countries are distinguished in commerce by various names. The following is a list of the wines most commonly met with, arranged according to the countries producing them:—

1. French Wines.—Champagne (of which we have the still, creaming, or slightly sparkling,—the full frothing,—the white—and the pink); Burgundy (red and white); Hermitage; Côte Rôtie; Roussillon; Frontignac; Claret (the most esteemed being the produce of Lafitte, Latour, Château Margaux, and Haut-Brion); Vin de Grave; Sauterne; and Barsac.

2. Spanish Wines.—Sherry (Xeres); Tent (Rota); Mountain (Malaga); Benicarlo (Alcántar).

3. Portuguese Wines.—Port, red and white (Oporto); Bucellas, Lisbon, Calcavella, and Colares (Lisbon). An inferior description of red Port Wine is shipped at Figueira and Aveiro.

4. German Wines.—Rhine and Moselle Wines. The term Hock (a corruption of Hocheimer) is usually applied to the first growths of the Rhine. The term Rheinish commonly indicates an inferior Rhine wine.

5. Hungarian Wines.—Tokay.

6. Italian and Sicilian Wines.—Lachryma Christi; Marsala; Syracuse; Lissa.

7. Greek and Ionian Wines.—Canthian and Cyprus wines.

8. Wines of Madeira and the Canary Islands.—Madeira and Canary (Teneriffe).

9. Wines of the Cape of Good Hope.—Cape Madeira, Pontac, Constantia red and white (a sweet, luscious wine, much esteemed).

11. English Wines.—Grape, Raisin, Currant, Gooseberry, &c.

Wines are also designated, according to their colour, red or white; according to their taste and other properties, sweet, acidulous, dry, strong or generous, light, rough, sparkling, &c.

The constituents of wine are, according to Gmelin,\(^2\) as follows:—

Alcohol, an odorous principle (volatile oil?) blue colouring of the husk

1 For further details, consult Fabroni, De l'Art de faire le Vin, traduit de l'Italien par F. R. Band, Paris, 1501; Chaptal, L'Art de faire le Vin, 2e édit. Paris, 1819: also Ann. de Chim. t. xxxiv. xxxvi. xxxvii.; Dr. Macculloch, Remarks on the Art of Making Wine, 1816; and Busby's Journal, before quoted.

2 Handb. d. Chem. ii. 1255.
(in red wine), tannin, bitter extractive, grape sugar (especially in the sweet wines), gum, yeast, acetic acid (from the commencement of the acetous fermentation), malic acid, tartaric acid, bitartrate of potash, bitartrate of lime, sulphates and chlorides, phosphate of lime, carbonic acid (especially in the effervescing wines), and water. To these may be added, in some of the Rhine wines, paratartaric or racemic acid.

1. Bouquet of Wine: Odoriferous Principle of Wine.—Every wine has a peculiar odour, which depends, doubtless, on a small quantity of volatile oil. The oil obtained from corn and potato spirit has already been noticed. Liebig and Pelouze have examined the oily liquid procured in the distillation of wine as well as by submitting wine lees to distillation, and found it to be an ethereal ether (C\(^6\)H\(^3\)O\(^3\)P) mixed with an ethereal ether (C\(^6\)H\(^4\)O\(^6\)P). From 22,000 lbs. (about 2200 imperial gallons) only two lbs. and one-fifth of oily liquid were procured.

2. Alcohol.—Mr. Brande\(^1\) has shewn that alcohol exists ready formed in wine. He also ascertained the quantity of this substance which exists in different wines. The latter point has also been examined by several other chemists; as Geiger,\(^2\) Julia-Fontenelle,\(^3\) Prout, and Ziz,\(^4\) and more recently by Dr. Christison.\(^5\) Buris\(^6\) has ascertained the alcoholic strength of the wines of the Pyrénées-Orientales. Wines which contain a comparatively small quantity of spirit are denominated light wines; while those which have a much larger quantity are denominated strong or generous wines.\(^7\)

Table of the proportion of Alcohol (sp. gr. 0.825 at 60° F.), by measure, contained in 100 parts of Wine. (A. means average; F. Fontenelle; P. Prout.)

<table>
<thead>
<tr>
<th>Brandy</th>
<th>Others</th>
<th>Brandy</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lissa</td>
<td>A. 25-41</td>
<td>15-90 P.</td>
<td>24. White Hermitage...</td>
</tr>
<tr>
<td>4. Port</td>
<td>A. 22-96</td>
<td>21-20 P.</td>
<td>27. Zante</td>
</tr>
<tr>
<td>7. Sherry</td>
<td>A. 19-17</td>
<td></td>
<td>30. Sheraaz</td>
</tr>
<tr>
<td>10. Lachryma Christi</td>
<td>19-70</td>
<td></td>
<td>33. Burgundy</td>
</tr>
<tr>
<td>11. Constantia, white</td>
<td>A. 19-75</td>
<td>14-50 P.</td>
<td>34. Hock</td>
</tr>
<tr>
<td>15. Bucellas</td>
<td>18-40</td>
<td></td>
<td>38. Champagne</td>
</tr>
<tr>
<td>18. Cape Madeira</td>
<td>A. 20-51</td>
<td></td>
<td>41. Frontignac(Rivesaltes)</td>
</tr>
<tr>
<td>20. Calcavella</td>
<td>A. 18-65</td>
<td></td>
<td>43. Gooseberry</td>
</tr>
<tr>
<td>22. Alba Flora</td>
<td>17-26</td>
<td></td>
<td>45. Tokay</td>
</tr>
<tr>
<td>23. Malago</td>
<td>17-26</td>
<td></td>
<td>46. Elder</td>
</tr>
</tbody>
</table>

2. Phil. Trans. for 1811, p. 337; and for 1813, p. 82.
8. For further details respecting wines, the reader is referred to the works of Barry and Henderson already quoted, and to The Topography of all the known Vineyards, English translation, 1824; Redding’s History of Modern Wines, 1833; and Busby’s Visit to the Vineyards of Spain and France, London, 1834.
According to the more recent experiments of Dr. Christison, the quantity of alcohol in wines has been somewhat overrated. The following are his results:

<table>
<thead>
<tr>
<th>Alcohol (0°7999)</th>
<th>Proof Spirit per cent. by weight.</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakest</td>
<td>14:97</td>
<td>Mean of 7 wines</td>
</tr>
<tr>
<td>Mean of 13 wines</td>
<td>16:20</td>
<td>Strongest</td>
</tr>
<tr>
<td>White</td>
<td>14:97</td>
<td>White</td>
</tr>
<tr>
<td>Weakest</td>
<td>13:98</td>
<td>Mean of 13 wines, excluding those very long kept in cask</td>
</tr>
<tr>
<td>Sherry</td>
<td></td>
<td>Strongest</td>
</tr>
<tr>
<td>Mean of 9 wines every long kept in cask in the East Indies</td>
<td>14:72</td>
<td>Madre da Xeres</td>
</tr>
<tr>
<td>Madeira</td>
<td></td>
<td>Mean of 13 wines, excluding those very long kept in cask in the East Indies</td>
</tr>
<tr>
<td>Teneriffe, long in cask at Calcutta</td>
<td>13:84</td>
<td>Cereial</td>
</tr>
<tr>
<td>Dry Lisbon</td>
<td>16:14</td>
<td>Shiraz</td>
</tr>
<tr>
<td>Amontillado</td>
<td>12:95</td>
<td>12:63</td>
</tr>
<tr>
<td>Clarat, a first growth of 1811</td>
<td>7:72</td>
<td>Chateau-Latour, first growth 1825</td>
</tr>
<tr>
<td>Rosan, second growth 1825</td>
<td>7:61</td>
<td>Rosan, second growth 1825</td>
</tr>
<tr>
<td>Ordinary Clarat, a superior "via ordinaire"</td>
<td>8:99</td>
<td>Rivesaltes</td>
</tr>
<tr>
<td>Malhusey</td>
<td>12:86</td>
<td>9:31</td>
</tr>
<tr>
<td>Rüdesheimer, superior quality</td>
<td>8:40</td>
<td>Malhusey</td>
</tr>
<tr>
<td>Ditto inferior quality</td>
<td>6:90</td>
<td>Rüdesheimer, superior quality</td>
</tr>
<tr>
<td>Hambacher, superior quality</td>
<td>7:35</td>
<td>Ditto inferior quality</td>
</tr>
</tbody>
</table>

Dr. Christison states that by keeping wines, as Sherry and Madeira, in casks, for a moderate term of years, the quantity of alcohol increases; but after a certain time it decreases; and it is probable that at the period when wines begin to lose alcohol they cease to improve in flavour.

3. Free Acids.—All wines are more or less acidulous, as determined by litmus. They owe this property principally to malic acid, but in part also to citric and tartaric acids. The Rhenish and Moselle wines and clarat are termed acid wines. The brisk, frothing, sparkling, or effervescent wines (as Champagne), which are bottled before fermentation is complete, owe their peculiar properties to the retention, and subsequent escape when the confining force is removed, of the developed carbonic acid gas. They are apt to become ropy,—a change which is prevented by pure tannic acid or powdered nutgalls. The tannic acid of some wines, especially the red wines (as Port), is derived, in great part, from the husk of the grape, but partly, perhaps, from the seeds. It gives to these wines their astrigent, and power of becoming dark-coloured with the ferruginous salts.

4. Sugar.—This constituent varies considerably in quantity in different wines. Those in which it is abundant are denominated sweet wines, as Tokay, Tent, and Frontignac.

5. Extractive.—Exists in all wines, but diminishes (by deposition) with their age.

6. Colouring Matter.—All wines contain more or less colouring matter. When grape juice, without the husks of the fruit, is fermented, the wine is pale, and is denominated white wine; but if the husk be present during fermentation, the wine is deep coloured, and is usually called red wine. Except in the tintilla or leinturier grape, the purple colouring matter resides in the husk, and is dissolved in the newly-formed alcohol, and is reddened by the free acid. In the exception just mentioned, the colouring matter is diffused through the pulp. According to Nees von Essenbeck, the purple colouring matter of the grape resides on the inner side of the husk (epicarp). By exposure to the sun, as well as by age, the colour of wines is diminished; the colouring matter being precipitated. It may be artificially removed by milk, lime water, charcoal, or subacetate of lead.

7. Tartar (Biktartrate of Potash).—The most important saline constituent of wine is tartar. It is deposited, along with colouring and extractive matters, both in the cask and bottle, constituting argol (see p. 518) and the crust. The deposition increases with the
formation of alcohol. Red wines (especially the youngest, roughest, and most coloured) contain more than white wines.

Adulteration.—Various impositions are said to be practised by dealers on the consumers of wines. These are almost entirely confined to the mixing of wines of various qualities. In some cases, however, the finest wines have been prepared by mixture. "From the gradual mixture of wines of various ages," observes Mr. Busby, "no wine can be further from what may be called a natural wine than sherry." In some cases inferior kinds of wine are substituted by fraudulent dealers for finer ones.

To augment the strength of wine, brandy is frequently added. This is done to sherry before it is shipped from Spain. To good wines, however, it is never added in greater quantities than four or five per cent.² By recent regulations, ten per cent. of brandy may be added to wines after their arrival in this country, and while in the bonded vaults; the increased quantity only paying the wine duty.

Colouring matters are also employed to deepen or change the tint of wine. In Spain, boiled must (of the consistency of treacle, and having a similar flavour, but with a strong empyreumatic taste) is employed to deepen the colour of sherry. It is prepared by boiling down must to a fifth part of its original bulk.³ In this country, caramel is said to be used for a similar purpose. In Portugal the juice of the elderberry has been employed to augment the colour of Port-wine, the produce of poor vintages. To such an extent was this, at one time, practised, that the Wine Company of Portugal rooted out the trees, and prohibited their growth in the wine district.

Flavouring substances are also occasionally added to wines. Thus in Spain, Amontillado or Montillado (a very dry kind of sherry) is added to sherries which are deficient in the nutty flavour. Being very light in colour, it is also used to reduce the colour of sherries which are too high. Kino and logwood are said to be used in this country to augment the astringent flavour and deepen the colour of Port-wine.

Lead, formerly used to sweeten wine,⁴ may be occasionally detected, in very minute quantity, in wine (by sulphuretted hydrogen). It is usually to be traced to shot in the bottle, and rarely to fraud.⁵

Effects.—The physiological effects of wine next deserve our attention. Taken in moderate quantities, wine operates as a stimulant to the nervous and vascular systems, and the secreting organs. It quickens the action of the heart and arteries, diffuses an agreeable warmth over the body, promotes the different secretions, communicates a feeling of increased muscular force, excites the mental powers, and banishes unpleasant ideas. In a state of perfect health, its use can be in no way beneficial, but, on the contrary, its habitual employment in many cases proves injurious, by exhausting the vital powers, and inducing disease. The actual amount of injury it may

¹ Op. supra cit. p. 3.
² Ibid. p. 4.
³ Ibid. pp. 4 and 11.
⁴ See Beckmann, Hist. of Insect. i. 306.
⁵ See a case in the Phil. Mag. liv. 229.

inflict will of course vary with the quantity and quality of the wine taken, and according to the greater or less predisposition to disease which may exist in the system. Maladies of the digestive organs, and of the cerebro-spinal system, gout and dropsy, are those most likely to be induced or aggravated by it. Intoxication in its varied forms is the effect of excessive quantities of wine. It is remarkable, however, that though the effects of wine mainly depend on the alcohol contained in this liquor, yet they differ in several circumstances from those of the latter. In the first place, wine possesses a tonic influence not observed after the use of ardent spirit. Common experience proves to every one, that the stimulant influence communicated by wine is slower in its production and subsidence than that developed by spirit. In the second place, the intoxicating influence of wine is not equal to that of mixtures of ardent spirit and water of corresponding strengths, nor proportionate, in different wines, to the relative quantities of alcohol which they contain. This will be obvious from the following table, drawn up from Mr. Brande's results, before quoted:

Average quantities of Ardent Spirit and of Wine, containing four fluidounces of Alcohol (sp. gr. 0.825 at 60° F.)

<table>
<thead>
<tr>
<th>Brandy, about</th>
<th>8 fluidounces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Wine</td>
<td>16½ ditto.</td>
</tr>
<tr>
<td>Claret</td>
<td>26½ ditto.</td>
</tr>
<tr>
<td>Champagne</td>
<td>32 ditto.</td>
</tr>
</tbody>
</table>

Now it is obvious from this table that if the intoxicating power of vinous liquids was in proportion to the spirit contained in them, that a pint of Port-wine would be almost equal to half a pint of brandy, and that Claret would exceed Champagne in its influence over the nervous system; all of which we know not to be the case. It is therefore obvious, that the other constituents of the wine possess the power of modifying the influence of the alcohol. Furthermore, it is probable that they are enabled to do this by being in chemical combination with the spirit; for it is asserted by connoisseurs, that a brandied wine (i.e. wine to which brandy has been added) is more intoxicating than a non-branded wine equally strong in alcohol. Hence dealers endeavour to obviate this by the operation of fretting in, and which, in a scientific point of view, may be regarded as effecting the chemical combination of the foreign spirit with the constituents of the wine, by a second or renewed fermentation. A third distinction between the operation of wine and ardent spirit is the greater tendency of the latter to induce disease of the liver.

"It is well known," observes Dr. Macculloch,¹ "that diseases of the liver are the most common, and the most formidable, of those produced by the use of ardent spirits; it is equally certain that no such disorders follow the intemperate use of pure wine, however long indulged in. To the concealed and unwitting consumption of spirit, therefore, as contained in the wines commonly drunk in this country, is to be attributed the excessive prevalence of those hepatic affections which are comparatively little known to our continental neighbours."

Uses.—The uses of wines are threefold—dietetical, medicinal, and pharmacetical. To persons in health, the dietetical employment of wine is either useless or pernicious. The least injurious are the light wines, especially Claret.

As a medicinal agent, wine is employed principally as a cordial, stimulant, and tonic; but some of the wines possess astringent and acid properties, for which they are occasionally resorted to. In the latter stages of fever, when languor and torpor have succeeded to a previous state of violent action, and in the low forms of this disease, wine is at times undoubtedly useful. It supports the vital powers, and often relieves delirium and subsultus tendinum, and promotes sleep. But it is much less frequently and copiously employed than formerly. As a stimulating tonic and invigorating agent, it is given in the state of convalescence from fever, and from various chronic non-febrile diseases. In extensive ulceration, copious suppuration, gangrene of the extremities, and after extensive injuries or severe operations, or profuse hemorrhages, when the powers of life appear to be failing, wine is administered often with the best effects. It has been liberally employed in tetanus, and at times with apparent alleviation of the disease. If in any of the preceding cases it causes dryness of the tongue, thirst, quick pulse, restlessness, or delirium, it should of course be immediately laid aside. And it is obvious that in acute inflammation, especially of the brain or thoracic organs, in tendency to sanguineous apoplexy, and in the first or acute stage of fever, the employment of wine is objectionable, and calculated to prove highly injurious.

1. Port-wine (Vinum Lusitanicum seu Portugalicum) is applied to most of the purposes above mentioned for which a stimulant and tonic is required, and is the wine ordinarily employed in the public hospitals of this metropolis. On account of its astringency, it is particularly useful in those cases which are attended with a relaxed condition of the bowels; but it is apt to disagree with weak stomachs. A mixture of two-thirds Port-wine and one-third water is used as an injection for the radical cure of hydrocele.

2. Burgundy (Vinum Burgundicum) is a stimulant, and somewhat astringent wine; but is rarely used in this country for medicinal purposes.

3. Sherry (Vinum Xericum, Ph. L.; Vinum Album, Ph. Ed.; Vinum album Hispanicum, Ph. D.) is peculiarly valuable, on account of the small quantity of free acid which it contains; and it is, therefore, the wine best adapted for patients troubled with gout, or having acidity of stomach, or a deposition of lithic acid in the urine.

4. Madeira (Vinum Madeiraicum) is a more stimulating wine than Sherry, and is, therefore, better adapted for old persons and debilitated broken-down constitutions, where its slight acidity is not objectionable. It is an excellent wine for invalids.

5. Champagne (Vinum Campanicum) is a diuretic and a speedy intoxicator. It excites lively and agreeable feelings, and, in consequence, is adapted for hypochondriacal cases. On account of the evolution of carbonic acid, it may be occasionally employed to allay vomiting.

6. The Rhine wines (Vinum Rhenanum), of which Hock (Vinum Hochheimense) is the most familiar example, and the Moselle wine (Vinum Mosellanum), are refrigerant and light wines. They prove diuretic and slightly aperient. Their acidity adapts them for use where phosphatic sediments are observed in the urine. They are used also in low fever, with at least less likelihood of doing harm than the stronger wines.

7. Claret (Vinum rubellum) has been already mentioned as one of the least injurious of wines. It is adapted for the same cases as the Rhine and Moselle wines. Both are,
of course, objectionable in gouty cases and lithic acid deposits, on account of their
acidity.

As a pharmaceutical agent, wine is employed for the preparation of the
medicated wines (vina medicata). Sherry is the kind employed by the
British colleges; but for economy druggists often use Cape wine. Its efficacy
resides essentially in the alcohol which it contains. In some cases, however,
its acidity may increase its solvent power. But as the quantity of alcohol
which it contains is variable, and as it is more liable to undergo decomposition
than a tincture containing the same proportion of spirit, the medicated
wines are objectionable preparations.

5. SPIRITUS VINI GALICI, L.—See post.

6. MISTURA SPIRITUS VINI GALICI, L.—See post.

299. ALCOHOL, L. E. D.—ALCOHOL.

History.—Fermented liquors were known in the most remote ages of
antiquity. The Sacred historian tells us, 1 that, after the flood (which is
supposed to have occurred 2348 years before Christ), "Noah planted a vine-
yard: and he drank of the wine, and was drunken." Homer, 2 the most
ancient of all the profane writers whose works have reached us, and who
lived more than 900 years before the Christian era, also frequently mentions
wine, and notices its effects on the body and mind. Herodotus, 3 who wrote
445 years before Christ, tells us that the Egyptians drank a liquor fermented
from barley.

It is uncertain at what period vinous liquors were first submitted to distil-
lation. Morewood 4 considers the Chinese to have been acquainted with this
process long before the rest of Asia, Africa, and Europe. It is usually stated,
that Albucasis, who is supposed to have lived in the 12th century, taught the
mode of procuring spirit from wine. 5 But as the process of distillation
was certainly known long before his time, 6 it is highly probable that his pre-
decessors had submitted fermented liquors to this operation. Raymond
Lully, 7 in the 13th century, was acquainted with spirit of wine (which he
called aqua ardens), as well as with the mode of depriving it of water by
means of carbonate of potash.

Preparation.—The preparation of alcohol may be divided into three stages:
the production of a fermented vinous liquor; the preparation from this of an
ardent spirit by distillation; and, lastly, rectification or purification.

1 Genesis, ix.
2 Odyssey, ix. and xxi.
3 Euterpe, lxxvii.
4 Essay on Inebriating Liquors, p. 107, Lond. 1824.
5 Gmelin, Handb. d. Chem. ii. 274.
6 Dr. Royle's Essay on the Antiquity of Hindu Medicine, p. 46, London, 1837.
7 Thomson's History of Chemistry, i. 41, Lond. 1830; Testamentum Novissimum, edit. Basil,
p. 2, 1600.
Preparation of Alcohol.

Fig. 379.

Improved Apparatus for the Distillation of Spirit.
INORGANIC SUBSTANCES.—Alcohol.

STAGE 1. PRODUCTION OF A VINOUS LIQUOR.—When vegetable substances are placed in contact with air and moisture, they undergo that kind of decomposition which is denominated fermentation. The products of this process vary at different periods or stages; and on this depends the distinction into kinds or varieties of fermentation. Thus starchy liquids, under some circumstances, become saccharine; the process being termed the saccharine fermentation. Sugar dissolved in water, and mixed with nutritious matter (ferment), is converted into carbonic acid and alcohol; and to this process the name of vinous fermentation is applied. Under some circumstances, mannite, lactic acid, and a syrupy mucilage, are formed by the action of the nutritious or albuminous principles of vegetable juices on the sugar: this change has been denominated the viscous or mucilaginous fermentation. Vinous liquids are capable of generating acetic acid, and the process is denominated acetic fermentation. Lastly, most vegetable substances are slowly converted into gases, and a substance called vegetable mould (humus), constituting the process termed the putrefactive fermentation.

To produce a vinous liquid, it is necessary that there be present sugar (or some substance capable of forming sugar, as starch), a certain quantity of water, and a ferment (usually yeast.—See page 395). Moreover, a certain temperature (the best is between 70° and 80° F.) is requisite.

Both grape and cane sugar yield alcohol by fermentation. It is highly probable, however, "that cane sugar, before it undergoes vinous fermentation, is converted into grape sugar by contact with the ferment; and that, consequently, it is grape sugar alone which yields alcohol and carbonic acid." On this view, the one equivalent or 171 parts of crystallised cane sugar unite with one equivalent or 9 parts of water, to form one equivalent or 180 parts of grape sugar, which, in the process of fermentation, are converted into four equivalents or 88 parts of carbonic acid, and two equivalents or 92 parts of alcohol.

MATERIALS.

<table>
<thead>
<tr>
<th>1 eq. Crystallized Cane Sugar 171</th>
<th>1 eq. Grape Sugar 190</th>
<th>1 eq. water 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>

COMPOSITION.

<table>
<thead>
<tr>
<th>4 eq. Carbon 24</th>
<th>8 eq. Carbon 48</th>
<th>8 eq. Oxygen 64</th>
<th>4 eq. Oxygen 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 eq. Carb. Acid</td>
<td>2 eq. Alcohol'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 eq. Hydrog. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

Vinous fermentation, then, is the metamorphosis of sugar into alcohol and carbonic acid. But as the elements of the yeast or other ferment take no part in the transformation (that is, do not enter into combination with the elements of the sugar), some difficulty has been experienced in accounting for its agency in exciting fermentation. Two opinions are entertained respecting it: by some it is regarded as a putrefying substance, whose atoms are in continual motion, which they communicate to the constituents of the sugar,

2 It l. p. 946.
and thereby destroy its equilibrium;¹ by others, yeast² is considered to consist essentially of seeds or sporules, whose vegetation is the immediate cause of the metamorphosis of the sugar. The liquid obtained by the vinous fermentation has received different names, according to the substance from which it is obtained. When procured from the expressed juices of fruits, as grapes, currants, gooseberries, &c. it is denominated Wine (Vinum); from a decoction of malt and hops, Ale or Beer (Cervisia);³ and from a mixture of honey and water Mead (Hydromelii). Fermented infusions of barley (raw grain and malt), prepared by the distillers of this country for the production of ardent spirit, are technically denominated Washes.

The liquid obtained by vinous fermentation consists of water, alcohol, colouring and extractive matters, ananthic ether, volatile oil (e. g. oil of potatoes, oil of grain, &c.), various acids and salts.

Stage 2. Production of Ardent Spirits.—By the distillation of a vinous liquid we obtain Ardent Spirit (Spiritus Ardens). When grape wine is employed, the spirit is called Brandy (Spiritus Vini Gallici, Ph. L.); when the vinous liquid is obtained by the fermentation of molasses or treacle, the spirit is termed Rum (Spiritus Sacchari); when the liquid is a fermented infusion of grain (Wash), the spirit is denominated Corn Spirit (Spiritus Frumenti); and when the vinous liquid is either a fermented infusion of rice or toddy (Palm Wine), the spirit is named Arrack (if from the former, it is termed Spiritus Oryze). The well-known liquors called Gin, Hollands or Geneva, and Whiskey, are corn spirits flavoured.

Ardent spirit, from whatever source obtained, consists of water, alcohol, volatile oil, and, frequently, colouring matter. The following are, according to Mr. Brande,⁴ the average quantities of alcohol (sp. gr. 0.825 at 60° F.) in some kinds of ardent spirit:

<table>
<thead>
<tr>
<th>Brandy contain</th>
<th>55.39</th>
<th>Whiskey (Scotch) contain</th>
<th>54.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rum</td>
<td>53.68</td>
<td>Whiskey (Irish)</td>
<td>53.20</td>
</tr>
<tr>
<td>Gin</td>
<td>51.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each variety of ardent spirit has an aroma peculiar to itself, which is characteristic of the substance from which it is produced. This depends on volatile oil.

When wash is distilled, the fluid that comes over is called Singlings, or

¹ The view above referred to is that entertained by Liebig; for full details of it I must refer to his work, entitled Organic Chemistry, in its Application to Agriculture and Physiology, edited by L. Playfair, Ph. D., Lond. 1840; and Turner’s Elements of Chemistry, 7th ed. p. 944, 1840. Berzelius (Journ. de Chimie Médicale, t. iii. p. 425, 2de Série, 1837) ascribes decompositions of this kind, which are effected by the mere contact of one body with another, to a new force which he supposes to be called into action, and which he denominates catalytic force (from κατάληφω, I loosen or dissolve).

² The Yeast Plant has already been described and figured in a former part of this work, to which the reader is referred (See Fermentum Cervisiae, p. 935, ante). For further details, consult the Memoirs of Schwann (Poggendorf’s Annalen der Physik, Bd. xli. p. 184; Pharmaceutisches Central-Blätt für 1837, S. 547; and Meyen’s Report on the Progress of Vegetable Physiology during the year 1837, Lond. 1839). Cagniard-Latour and Turpin (Biblioth. Univ. de Geneve, Nov. 1838; and Jameson’s Edinb. New Phil. Journ. vol. xxv.), Keitzing (Répertoire de Chimie, t. iii. Paris, 1838), Quevenne (Journ. de Pharm. t. xxiv.); and Turpin, (Memoires de l’Académie Royale des Sciences de l’Institut, t. xvii., Paris, 1840).

³ See ante, p. 981.

⁴ Phil. Trans. for 1811 and 1813.

VOL. II.
Organic Substances.—Alcohol.

Low Wines. It is concentrated or doubled by a second distillation, by which Raw Corn Spirit is obtained. Towards the end of the distillation the distilled product acquires an unpleasant odour and taste from the presence of volatile oil, and is called Faints. Raw corn spirit is sold by the distiller to the rectifier at 11 or 25 per cent. over proof, in the language of Sikes’s hydrometer.

Stage 3. Rectification.—The object of the rectifier is to deprive ardent spirit of its volatile oil and water. This is effected by repeated distillations, and by the use of pearlash (carbonate of potash), which, by its powerful affinity for water, checks the rise of this fluid in distillation. In this way is procured the liquid called Rectified Spirit (Spiritus Rectificatus, L. E. D.), which is sold by the rectifier to the chemist or apothecary.

1. Corn Spirit Oil; Oil of Grain; Potato Spirit Oil; Fuselöl; Hydrate of Amyle; Amylic Alcohol; Bihydrate of Amyline.—All ardent spirits contain a volatile oil which the Germans call Fuselöl. In 1823, Pelleter described that obtained from Potato Spirit, and which has been subsequently examined in 1838, by Dumas, and in 1839 by Cahours. The oil from corn spirit was described several years ago by Buchner. It has been long known to Messrs. Bowerbank, rectifiers, of London, who obtain it in the rectification of corn spirit. From them I procured it several years ago, under the name of Oil of grain; and, in 1836, noticed it in my lectures. In 1839, I gave a short description of its properties in the first edition of this work. It has since been more completely examined by Dr. Apjohn. Under the name of Oleum siticunum, Mulder has described a peculiar oil, which he obtained from corn spirit.

Oil of grain, as I received it from Messrs. Bowerbank, is a limpid, transparent liquid, of a pale yellow colour, and having a very nauseous odour and an acid taste. The inhalation of its vapour produces an unpleasant and persistent sensation in the throat. When washed with water (to remove the alcohol), and subsequently distilled from chloride of calcium (to deprive it of water), it is quite colourless, and had, according to my experiments, a sp. gr. of 0.833 at 56° F. [0.813 at 60°, Apjohn]. It boils at about 265° F. Dr. Apjohn failed to congeal it at —6° F.; but Cahours congealed the oil from potato spirit at —4° F. It burns in the atmosphere with a flame like that of light carburetted hydrogen gas [with a bluish white flame, Cahours]. It dissolves iodine; and, according to Dr. Apjohn, is a good solvent for fats, resins, and camphor. It is not miscible with water, which, however, sparingly dissolves it. Neither is it miscible with liquor ammonium, nor with liquor potasse. It dissolves in nitric acid, but acquires a slightly yellowish red tinge; and, when the mixture is heated, violent reaction takes place: nitrous fumes mixed with nitric ether are so rapidly evolved, that, if the experiment be performed in a tabulated retort, the stopper is sometimes driven out with considerable violence. When mixed with oil of vitriol, a violet- or blood-red-coloured thick liquid, with the evolution of a mint-like odour, is produced, and, according to Cahours, sulphiomylic acid (bisulphate of oxide of amyle C\(^{11}\)H\(^{11}\)O + O + 2SO\(^{3}\)Aq.) is formed. When distilled with dry phosphoric acid, it yields, according to the same authority, a carbo-hydrogen called amilene (C\(^{10}\)H\(^{10}\)). Potassium readily decomposes it with the evolution of hydrogen. If it be heated with fused potash, hydrogen is disengaged, and a compound of potash and valerianic acid (C\(^{10}\)H\(^{10}\)O\(^{3}\)Aq.) is formed.

This oil is composed of carbon, hydrogen, and oxygen. Cahours regards it as the

2 Ann. de Chim. et de Physiq. t. xxx. p. 221; and Journ. de Chim. Méd. t. i. p. 76.
4 Ibid. t. lxx. p. 81.
5 Repertorium, xxiv. 270.
8 Pharmaceutisches Central-Blätt für 1837, S. 807.—Sitico, from arricōs, of or pertaining to corn.
hydrated oxide of a hypothetical base, called amule or amyle (C\(^{10}\)II), and Liebig has adopted his views.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
<td>60</td>
<td>68.18</td>
<td>68.13</td>
<td>68.6</td>
<td>68.90</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>12</td>
<td>12</td>
<td>13.64</td>
<td>13.33</td>
<td>13.6</td>
<td>13.58</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>18.18</td>
<td>18.54</td>
<td>17.8</td>
<td>17.52</td>
</tr>
</tbody>
</table>

Spiritus. Its p. 60 2 8g the...

13 Atom. 6S13

I am informed by Messrs. Bowerbank, that they obtain from 500 gallons of corn spirit about one gallon of oil, which they employ as a substitute for lamp oil.

[This preparation, under the name of Alcohol Amylicum, or Fusel Oil, has been introduced into the Supplement of the last Dublin Pharmacopoeia.

Take of the light liquid which may be obtained at any large distillery by continuing the distillation for some time after the pure spirit has been all drawn off, any convenient quantity.

Introduce it into a small still or retort connected with a condenser, and apply heat so as to cause distillation. As soon as the oil begins to come over unmixed with water, the receiver should be changed, and the distillation being resumed, and carried nearly to dryness, the desired product will be obtained. The liquid drawn over during the first part of the distillation will consist of an aqueous fluid, surmounted by a stratum of the fusel oil. This latter, though impregnated with a minute quantity of water, should be separated and preserved as being sufficiently pure for use.—Ed.]

2. (Enanthic Acid and Enanthic Ether.—The only liquid obtained in the distillation of wine is a mixture of Enanthic acid and Enanthic ether. (See Vinum, ante, p. 1929).

Properties of Rectified Spirit.—The liquid sold by rectifiers as rectified spirit (Alcohol Dilutum, L.; Spiritus Rectificatus, E. D.) varies from 54 to 60, or even 64 per cent. over proof; in the language of Sikes’s hydrometer. Hatters employ that at 54 or 56; varnish-makers that at 58 per cent. over proof. The London College fixes the sp. gr. at 0.838 at 62° F.; the Edinburgh College at 0.838, or under, at 60° F.; the Dublin College at 0.840.

Purity.—Rectified spirit, besides having the sp. gr. above mentioned, should be colourless, transparent, and not rendered turbid on the addition of water. "In taste and smell it resembles wine" (Ph. L.) Its freedom from other substances than alcohol and water is to be determined partly by the purity of its odour, by the absence of any acid or alkaline reaction, and by its easy and complete volatility. It is frequently contaminated with the oil of corn spirit; of the presence of which there are two tests, sulphuric acid and nitrate of silver. If colourless oil of vitriol be added to rectified spirit, it causes a red tinge if the oil be present. According to Vogel, nitrate of silver is a more delicate test for the oil; if it be mixed with spirit, and exposed to solar light, it becomes red if any oil be present, but undergoes no change of colour if the spirit be pure. The following are the directions of the Edinburgh College for the application of this test:—

"Four fluidounces [of rectified spirit] treated with 25 minims of solution of nitrate of silver [Ph. Ed.], exposed to bright light for twenty-four hours, and then passed through a filter purified by weak nitric acid, so as to separate the black powder which is formed,—undergo no further change when exposed to light with more of the test.

The peculiar odour which spirit obtained from brandy or whiskey possesses, depends on a volatile oil, which "is best removed, on the small scale, by rectification with a little caustic potash (Göbel, Liebig), or by digesting the spirits with freshly-ignited pine charcoal."
Proof Spirit (Spiritus tennior, L. E. D.)—The sp. gr. of proof spirit is fixed by law at 0·920. [The London College directs that it should be made by adding to every five pints of Rectified Spirit (Spiritus Rectificatus, or Alcohol Dilutum, sp. gr. 0·838) three pints of distilled water at a temperature of 62°. The Edinburgh College orders of rectified Spirit (sp. gr. 0·838) 3xvi. and of Distilled Water, 3xij. or a sufficiency. The Dublin College orders of Rectified Spirit (sp. gr. 0·840) seven pints, Distilled Water, four pints. Mix. The specific gravity is 0·920. This College prepares a stronger spirit, called Spiritus Fortior, by agitating eight ounces of carbonate of potash, dried at a low red heat, with half a gallon of Rectified spirit, separating the upper stratum by decantation, and distilling the liquid thus separated in a chlorid of zinc bath, with a Liebig's condenser, until the product amounts to seventy-two ounces. The specific gravity of the Spiritus Fortior is 0·818. It is an intermediate compound between Alcohol and Rectified Spirit.—Ed.] The tests of the purity of Proof Spirit are the same as for Rectified Spirit.

Preparation of Alcohol.—Alcohol (E. D.) is prepared by the chemist from the rectified spirit purchased of the rectifier. It is obtained by adding chloride of calcium, carbonate of potash, or well-burnt lime, to the spirit, which is then submitted to distillation. The salts or lime retain the water, while the alcohol distils over. The Pharmacopoeia of the London College contains no process for the preparation of alcohol.

The Edinburgh College directs "Rectified Spirit, Oj.; Lime well burnt, 3xvij. Break down the lime into small fragments: expose the spirit and lime together to a gentle heat in a glass matrass till the lime begins to slake; withdraw the heat till the slaking is finished, preserving the upper part of the matrass cool with damp cloths. Then attach a proper refrigeratory, and, with a gradually-increasing heat, distil off seventeen fluid-ounces. The density of this alcohol should not exceed 0·796: if higher, the distillation must have been begun before the slaking of the lime was finished.

The Dublin College takes of Spirit rectified by Carbonate of Potash (Spiritus Fortior), of a sp. gr. 0·818, Oj.; Pulverised fresh burnt Lime, 3x. This mixture is to be distilled by means of a chlorid of zinc bath until a product of nearly 3xvij., of a sp. gr. 0·793, is procured. The first two ounces are to be rejected.

Properties of Alcohol.—Alcohol is a limpid, colourless, inflammable liquid, having a peculiar and penetrating odour, and a burning taste. Its sp. gr. at 60° F. is 0·7947; at 68° F. it is 0·792—0·791. It is obvious, therefore, that the Alcohol of the Edinburgh and Dublin colleges is a mixture of alcohol, properly so called, and water. No means of solidifying it are at present known. [It has been exposed by Faraday to a cold of —166°, by means of a bath of solid carbonic acid and ether. It acquired the consistency of castor oil, but did not solidify.—Ed.] It boils at 172° F.: every volume of the boiling liquid gives 488·3 volumes of vapour, calculated at 212° F. It is very combustible. In atmospheric air it burns with a pale blue flame, giving out a very intense heat, and generating carbonic acid and water, but depositing no carbon, unless the supply of oxygen be deficient. The colour of the flame may be variously tinted—as yellow by chloride of sodium, whitish violet by chloride of potassium, green by boraec acid or a cupreous salt, carmine red by chloride of lithium, crimson by chloride of strontium, and greenish yellow by chloride of barium.

Alcohol has a strong affinity for water: hence it abstracts this fluid from the atmosphere, and precipitates from their watery solution those salts (e. g. sulphate of potash) which are not soluble in spirit: while, on the other hand,
water precipitates from their alcoholic solution those substances (e. g. resin and oil) not soluble in water. By the mixture of alcohol and water, heat is evolved, while air-bubbles are so copiously developed, that for a few moments the liquid appears turbid. When cold, the resulting compound is found to possess a greater density than the mean of its constituents; but as the condensation varies with the proportions of alcohol and water employed, the sp. gr. of the resulting compound can be ascertained by experiment only. The maximum condensation is obtained by mixing 54 vols. of alcohol with 49.77 vols. of water: the resulting compound measures 100 vols., so that the condensation is 3.77. If we regard this as a definite compound of alcohol and water, its composition may thus be stated:

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>1</th>
<th>23</th>
<th>40</th>
<th>54.00</th>
<th>42.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>3</td>
<td>27</td>
<td>54</td>
<td>49.77</td>
<td>49.77</td>
</tr>
<tr>
<td>Terhydrate of Alcohol</td>
<td>1</td>
<td>50</td>
<td>100</td>
<td>100.00</td>
<td>92.68</td>
</tr>
</tbody>
</table>

[condensation 3.77]

Alcohol combines with certain salts (as the chlorides and nitrates) to form definite compounds, which have been termed *alcohates*, in which the alcohol appears to act as a substitute for the water of crystallization. Alcohol is a solvent of many organic substances, as volatile oil, fixed oil, resin, extractive, most varieties of sugar, many nitrogenous organic acids, the vegetable alkalies, urea, caseine, gliadine, leucine, and osmazome. It prevents the putrefaction of animal substances, and is, in consequence, extensively employed in the preservation of anatomical preparations. It acts, in part at least, by excluding air (oxygen) and water,—the two powerful promoters of putrefaction; for when animal substances are immersed in spirit, this fluid abstracts water from the tissue, which, in consequence, shrivels up, and thus prevents putrefaction, by removing one of the essential conditions to its production, namely, the presence of water. Its attraction for water, and its power of coagulating albuminous substances, are properties which probably assist in rendering it an antiseptic. Alcohol and rectified spirit of wine give greater firmness to, and whiten, the animal tissues. The latter property is objectionable in the preservation of some morbid specimens, as gelatiniform cancer (*cancer gelatiniforme* or *aréolaire* of Crueviller,—*la matière colloide* of Laennec). A mixture of one part rectified spirit and three water will, however, preserve specimens of the last-mentioned disease in a transparent condition.

Characteristics.—Alcohol and ardent spirits are recognised by their inflammability, odour, taste, and miscibility with water. They dissolve camphor and resin. In order to detect alcohol in liquids supposed to contain it, let the suspected liquor be submitted to distillation with a gentle heat (as from a vapour or water-bath), and to the distilled liquid add dry carbonate of potash, to abstract the water. The alcohol floats on the surface of the alkaline solution, and may be recognised by the characters above mentioned, [especially by its power of dissolving camphor.]

Composition.—The elementary constituents of alcohol are carbon, hydrogen, and oxygen; [and, according to the views of modern chemists, the formula for this compound is $C_4H_6O_2 = 46$, or $Ae\ O + H\ O$; *i. e.* alcohol is
regarded as a hydrated oxide of ethyle, a compound radical, which has recently been procured in a separate state by Dr. Frankland.—Ed.]

Alcoholometry.—The value of ardent spirit is, of course, proportionate to the quantity of alcohol contained therein; and, therefore, a ready mode of estimating this is most desirable. The alcoholometrical method usually adopted consists in determining the sp. gr. of the liquid by an instrument called the hydrometer (from ὕδωρ, water, and μέτρον, a measure). That employed in this country, in the collection of the duties on spirits, is called Sikes's hydrometer (fig. 380). Spirit having the sp. gr. 0·920, at 60° F., is called proof spirit; that which is heavier is said to be under proof, while that which is lighter is called over proof. The origin of these terms is as follows:—Formerly a very rude mode of ascertaining the strength of spirits was practised, called the proof: the spirit was poured upon gunpowder, in a dish, and inflamed. If at the end of the combustion the gunpowder took fire, the spirit was said to be above or over proof; but if the spirit contained much water, the powder was rendered so moist that it did not take fire: in this case the spirit was declared to be below or under proof. As spirit of different strengths will or will not inflame gunpowder, according to the quantity of spirit employed, it became necessary to fix the legal value of proof spirit. Spiritus tenuior, Ph. L. is defined, by act of parliament, to be such, that at the temperature of 51° F., thirteen volumes of it weigh exactly as much as twelve volumes of water. According to this definition the sp. gr. at 60° F. is 0·920, and spirit of this strength consists of—

<table>
<thead>
<tr>
<th>By Weight</th>
<th>Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>49</td>
</tr>
<tr>
<td>Water</td>
<td>51</td>
</tr>
<tr>
<td>Proof spirit</td>
<td>100</td>
</tr>
</tbody>
</table>

Spirit which is of the strength of 43 per cent. over proof at the least, is recognised by the legislature as spirits of wine. All spirit under this strength is known in trade as plain spirit. Distillers are not permitted to send out spirits at any other strengths than 25 or 11 per cent. above, or 10 per cent. below proof. Raw corn spirit, therefore, is sold at 25 or 11 per cent. above proof. Compounded spirits (as Gin) are not allowed to be kept or sent out stronger than 17 per cent. under proof; but Gin, as sold by the rectifier, is usually 22 per cent. under proof. Foreign or Colonial spirits (not being compounded colonial spirits) must not be kept or sent out of less strength than 17 per cent. under proof. Rum and Brandy, as commonly sold, are 10 per cent. under proof.

A series of carefully drawn-up tables, showing the relation which exists

1 6 Geo. IV. cap. 80, Sects. 101 & 114.
2 Ibid. Sect. 81.
3 Ibid. Sect. 124.
4 Ibid. Sect. 130.
between the sp. gr. of spirit of different strengths, and the indications of Sikes's hydrometer, is a great desideratum. Mr. Gutteridge\(^1\) has published some tables; but several of his statements do not coincide with experiments which I have made on the subject. The following are extracts from his work:

<table>
<thead>
<tr>
<th>Specific Gravity of Spirit.</th>
<th>1945</th>
</tr>
</thead>
<tbody>
<tr>
<td>between the sp. gr. of spirit of different strengths, and the indications of Sikes's hydrometer, is a great desideratum. Mr. Gutteridge(^1) has published some tables; but several of his statements do not coincide with experiments which I have made on the subject. The following are extracts from his work:—</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Gravity of Spirit.</th>
<th>1945</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sikes's Hydrometer.</th>
<th>Sp. Gr. at 60° F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 per centum</td>
<td>0·8095</td>
</tr>
<tr>
<td>64</td>
<td>0·8221</td>
</tr>
<tr>
<td>63·1</td>
<td>0·8238</td>
</tr>
<tr>
<td>62</td>
<td>0·8259</td>
</tr>
<tr>
<td>61·1</td>
<td>0·8277</td>
</tr>
<tr>
<td>60</td>
<td>0·8298</td>
</tr>
<tr>
<td>59·1</td>
<td>0·8315</td>
</tr>
<tr>
<td>58</td>
<td>0·8336</td>
</tr>
<tr>
<td>57·1</td>
<td>0·8354</td>
</tr>
<tr>
<td>56</td>
<td>0·8376</td>
</tr>
<tr>
<td>55·9</td>
<td>0·8379</td>
</tr>
<tr>
<td>55·7</td>
<td>0·8383</td>
</tr>
<tr>
<td>55·5</td>
<td>0·8396</td>
</tr>
<tr>
<td>54·1</td>
<td>0·8413</td>
</tr>
<tr>
<td>50·1</td>
<td>0·8482</td>
</tr>
<tr>
<td>43·1</td>
<td>0·8597</td>
</tr>
<tr>
<td>25</td>
<td>0·8869</td>
</tr>
<tr>
<td>11·1</td>
<td>0·9060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sikes's Hydrometer.</th>
<th>Sp. Gr. at 60° F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof</td>
<td>0·9200</td>
</tr>
<tr>
<td>5 per centum</td>
<td>0·9259</td>
</tr>
<tr>
<td>10</td>
<td>0·9318</td>
</tr>
<tr>
<td>11</td>
<td>0·9329</td>
</tr>
<tr>
<td>15·3</td>
<td>0·9376</td>
</tr>
<tr>
<td>17·1</td>
<td>0·9306</td>
</tr>
<tr>
<td>20</td>
<td>0·9426</td>
</tr>
<tr>
<td>22·3</td>
<td>0·9448</td>
</tr>
<tr>
<td>23·1</td>
<td>0·9456</td>
</tr>
<tr>
<td>25·1</td>
<td>0·9476</td>
</tr>
<tr>
<td>30·1</td>
<td>0·9522</td>
</tr>
<tr>
<td>40·1</td>
<td>0·9603</td>
</tr>
<tr>
<td>50·3</td>
<td>0·9673</td>
</tr>
<tr>
<td>60·4</td>
<td>0·9734</td>
</tr>
<tr>
<td>70·1</td>
<td>0·9790</td>
</tr>
<tr>
<td>80·4</td>
<td>0·9854</td>
</tr>
<tr>
<td>90·2</td>
<td>0·9922</td>
</tr>
<tr>
<td>100 (water)</td>
<td>1·0000</td>
</tr>
</tbody>
</table>

The sp. gr. of spirit may be readily ascertained by Lovii's beads, or by the specific gravity bottle.

Table of the Specific Gravities of Mixtures of Spirit (0·825 at 60° F.) and Water at 60° F.\(^2\)

<table>
<thead>
<tr>
<th>Temperature 60° F.</th>
<th>Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirit 100 + Water 0</td>
<td>0·82500</td>
</tr>
<tr>
<td>100 + 5</td>
<td>0·83399</td>
</tr>
<tr>
<td>100 + 10</td>
<td>0·84508</td>
</tr>
<tr>
<td>100 + 15</td>
<td>0·85430</td>
</tr>
<tr>
<td>100 + 20</td>
<td>0·86208</td>
</tr>
<tr>
<td>100 + 25</td>
<td>0·86918</td>
</tr>
<tr>
<td>100 + 30</td>
<td>0·87365</td>
</tr>
<tr>
<td>100 + 35</td>
<td>0·88169</td>
</tr>
<tr>
<td>100 + 40</td>
<td>0·88720</td>
</tr>
<tr>
<td>100 + 45</td>
<td>0·89232</td>
</tr>
<tr>
<td>100 + 50</td>
<td>0·89707</td>
</tr>
<tr>
<td>100 + 55</td>
<td>0·90144</td>
</tr>
<tr>
<td>100 + 60</td>
<td>0·90549</td>
</tr>
<tr>
<td>100 + 65</td>
<td>0·90927</td>
</tr>
<tr>
<td>100 + 70</td>
<td>0·91287</td>
</tr>
<tr>
<td>100 + 75</td>
<td>0·91622</td>
</tr>
<tr>
<td>100 + 80</td>
<td>0·91933</td>
</tr>
<tr>
<td>100 + 85</td>
<td>0·92225</td>
</tr>
<tr>
<td>100 + 90</td>
<td>0·92499</td>
</tr>
<tr>
<td>100 + 95</td>
<td>0·92758</td>
</tr>
<tr>
<td>100 + 100</td>
<td>0·93002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature 60° F.</th>
<th>Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water 100 + Spirit 95</td>
<td>0·93247</td>
</tr>
<tr>
<td>100 + 90</td>
<td>0·93493</td>
</tr>
<tr>
<td>100 + 85</td>
<td>0·93749</td>
</tr>
<tr>
<td>100 + 80</td>
<td>0·94018</td>
</tr>
<tr>
<td>100 + 75</td>
<td>0·94296</td>
</tr>
<tr>
<td>100 + 70</td>
<td>0·94579</td>
</tr>
<tr>
<td>100 + 65</td>
<td>0·94876</td>
</tr>
<tr>
<td>100 + 60</td>
<td>0·95151</td>
</tr>
<tr>
<td>100 + 55</td>
<td>0·95493</td>
</tr>
<tr>
<td>100 + 50</td>
<td>0·95804</td>
</tr>
<tr>
<td>100 + 45</td>
<td>0·96122</td>
</tr>
<tr>
<td>100 + 40</td>
<td>0·96437</td>
</tr>
<tr>
<td>100 + 35</td>
<td>0·96752</td>
</tr>
<tr>
<td>100 + 30</td>
<td>0·97074</td>
</tr>
<tr>
<td>100 + 25</td>
<td>0·97409</td>
</tr>
<tr>
<td>100 + 20</td>
<td>0·97771</td>
</tr>
<tr>
<td>100 + 15</td>
<td>0·98176</td>
</tr>
<tr>
<td>100 + 10</td>
<td>0·98554</td>
</tr>
<tr>
<td>100 + 5</td>
<td>0·99244</td>
</tr>
<tr>
<td>100 + 0</td>
<td>1·00000</td>
</tr>
</tbody>
</table>

Another mode of judging of the strength of spirits is the phial test, tech-

2 Drawn up from Gilpin's Tables in the Philosophical Transactions for 1792.—The spirit, which Mr. Gilpin called alcohol, was composed of 89 alcohol (sp. gr. 0·796 at 60° F.) and 11 water.
nically called the bead; the preuve d'Hollande of the French. It consists in shaking the spirit in a phial, and observing the size, number, and bursting of the bubbles (or beads as they are termed): the larger and more numerous the beads, as well as the more quickly they break, the stronger the spirit. Hitherto chemical analysis has been of little avail in determining the strength of spirit, at least for commercial purposes; for, on the one hand, we are yet in want of an accurate method of determining the relative quantities of alcohol and water in mixtures of these fluids; while, on the other, the combustion of spirit by the black oxide of copper, and the estimation of the quantity of alcohol by the carbonic acid produced, is impracticable for ordinary purposes.

[The strength of alcoholic liquids may be, in general, determined by the following process. Place four ounces of the liquid in a retort, and distil two ounces at a very low temperature. Make up the distilled liquid in the receiver to four ounces with distilled water, and agitate the mixture until the liquids are thoroughly incorporated. When the mixture is quite cold, its specific gravity may be taken by the bottle, and the temperature being noted, its strength may be read off by the aid of the above table.—Ed.]

Physiological Effects. α. On Vegetables.—Alcohol acts on plants as a rapid and fatal poison. Its effects are analogous to those of hydrocyanic acid.

β. On Animals.—Leeches immersed in spirit die in two or three minutes. Their bodies are shrivelled or contracted, and before death they make but few movements; the head and tail of the animal are drawn together. Fontana1 found, that when half the body of a leech was plunged in spirit, this part lost all motion, whilst the other half continued in action. The same experimentalist observed, that spirit killed frogs, when administered by the stomach (in doses of 40 drops), injected beneath the skin, or when applied to the brain or spinal marrow. Plunging the heart of this animal into spirit caused its motion to cease in twenty seconds. Applied to the right crural nerve of a frog, it destroyed the power of moving in the right foot, on the application of stimulus. Monro2 observed that alcohol applied to the hind legs of a frog rendered the pulsations of the heart less frequent, and diminished sensibility and mobility. Fontana3 states, that turtles were killed by spirit administered by the stomach or by the anus, or injected beneath the skin: before death, the animal became motionless: applied to the heart of these animals it destroyed the contractility of this viscus. Some very interesting experiments were made with spirit on birds by Flourens.4 This distinguished physiologist administered six drops of alcohol to a sparrow, whose skull he had laid bare. In a few minutes the animal began to be unsteady both in walking and flying. After some time a dark-red spot appeared on the skull, in the region of the cerebellum, and became larger and deeper-coloured in proportion as the alcohol more powerfully affected the animal. I have given alcohol to birds, but have hitherto been unable to discover the physical

Physiological Effects.

changes here stated. In some other experiments, Flourens observed that alcohol produced the same effects on the movements of birds as the removal of the cerebellum occasioned, but that when alcohol was administered the animal lost the use of his senses and intellectual faculties; whereas, when the cerebellum was removed, no alcohol being given, he preserved them. From these and other observations Flourens is of opinion, that alcohol, in a certain dose, acts specifically on the cerebellum, and that in larger doses it affects other parts also. Furthermore, he thinks the physical action of alcohol on the cerebellum to be absolutely the same as a mechanical lesion.

The effect of alcohol on fishes is analogous to that on other animals. If a little spirit be added to water, in which are contained some minnows (Cyprinus phoxinus, Linn.), the little animals make a few (spasmodic?) leaps, and become incapable of retaining their proper position in the water, but float on their sides or back. If removed into pure water they soon recover.

The mammals, on which the effects of alcohol have been tried, are dogs, cats, horses, rabbits, and guinea-pigs. The principal experimentalists are, Courten,¹ Fontana,² Viborg,³ Brodie,⁴ and Orfila.⁵ The results of their experiments may be thus briefly expressed:—Four drachms of alcohol, injected into the jugular vein of a dog, coagulated the blood, and caused instant death (Orfila). Introduced into the stomach of cats, dogs, or rabbits, it produces an apoplectic condition (Brodie and Orfila): this state is preceded, according to Orfila, by a strong excitation of the brain. The same experimentalist found that alcohol acts with less energy when injected into the cellular texture than when introduced into the stomach; from which he infers that its first effects are the result of the action which it exerts on the extremities of the nerves; though he admits that ultimately it becomes absorbed. On examining the bodies of animals killed by introducing alcohol into the stomach, this viscus has been found in a state of inflammation.

γ. On Man.—The effects of alcoholic liquors on man vary with the strength of the liquid, the substances with which the alcohol is combined, the quantity taken, and the constitution of the patient.

aa. The local effects of alcohol or rectified spirit are those of a powerfully irritant and caustic poison. To whatever part of the body this agent is applied it causes contraction and condensation of the tissue, and gives rise to pain, heat, redness, and other symptoms of inflammation. These effects depend partially or wholly on the chemical influence of alcohol over the constituents of the tissues: for the affinity of this liquid for water causes it to abstract the latter from soft living parts with which alcohol is placed in contact; and when these are of an albuminoid or fibrinous nature, it coagulates the liquid albumen or fibrin, and increases the density and firmness of the solid albumen or fibrin. The irritation and inflammation set up in parts to which alcohol is applied, depend (in part) on the resistance which the living tissue makes to the chemical influence of the poison: in other words, it is the reaction of the vital powers brought about by the chemical action of

¹ Philosophical Transactions for 1712.
² Op. supra cit.
³ Abhandl. für Thierärzte, Theil II. quoted by Wihmer, Die Wirkung, &c.
⁴ Philosophical Transactions for 1811.
⁵ Toxicologie Générale.
alcohol. But, besides the local influence of this liquid, dependent on its affinity, we can hardly refuse to admit a dynamical action, in virtue of which it sets up local irritation and inflammation, independent of its chemical agency. The coagulation of the blood contained in the vessels of the part to which this liquid is applied (an effect which Orfila observed when he killed an animal by injecting alcohol into the cellular tissue of the thigh of a dog), depends on the chemical influence of the poison.

68. The remote effects of ardent spirits on man may be conveniently considered in the order of their intensity; and for this purpose we may divide them into three degrees or stages.¹

1. First or mildest degree. Excitement.—This is characterised by excitement of the vascular and nervous systems. The pulse is increased in frequency, the face flushed, the eyes animated and perhaps red, the intellectual functions are powerfully excited, the individual is more disposed to joy and pleasure; cares disappear; the ideas flow more easily and are more brilliant. At this period the most violent protestations of love and friendship are frequently made; there is a strong disposition to talk, and various indiscretions are oftentimes committed (In vino veritas). This degree of effect I presume to be the condition to which all persons aspire in drinking: the unfortunate drinks to drown his cares; the coward to give him courage; the bon-vivant for the sake of enjoying the society of his friends; the drunkard from mere sensuality. None, perhaps, would wish to go beyond this, yet many, when they have got thus far, exceed their intended limit.

2. Second degree. Intoxication or drunkenness.—The essential character of this stage is a disordered condition of the intellectual functions and volition; manifested by delirium, varying in its characters in different individuals, and by an incapability of governing the action of the voluntary muscles. This state is accompanied with excitement of the vascular system, and frequently with nausea and vomiting; it is followed by an almost irresistible desire for sleep, which usually continues for several hours, and is attended with copious perspiration. When the patient awakes he complains of headache, loathing of food, great thirst, and lassitude: the tongue is furred and the mouth clammy.

During a paroxysm of drunkenness, certain peculiarities are observed in the character of the delirium in different individuals. These appear to depend on what is commonly denominated temperament. Mr. Macnish² has offered a classification of drunkards, founded on these peculiarities. He describes the sanguineous drunkard, the melancholy drunkard, the surly drunkard, the phlegmatic drunkard, the nervous drunkard, and the choleric drunkard.

3. Third degree. Coma or true apoplexy.—This condition is usually observed when excessive quantities of spirits have been swallowed in a short time. According to Dr. Ogston, the patient is sometimes capable of being roused; the pulse is generally slow, the pupils are usually contracted, but more commonly dilated, and the breathing is for the most part slow: but exceptions exist to all these statements. Convulsions are rare: when they occur the patients are usually young. In some cases actual apoplexy (with or without sanguineous extravasation) is brought on. The immediate cause of death appears to be either paralysis of the muscles of respiration, or closure of the glottis.

¹ The newspaper reports of the proceedings at the Metropolitan Police Offices furnish examples of the employment, by the lower classes, of certain terms to designate the different degrees of the effects of fermented and spirituous liquors. When an individual is merely excited, he is described as fresh; but neither tipsy nor drunk. When the disordered intellect is just commencing, he is said to be half seas over. When he is beginning to be unsteady in his gait, he is described as being tipsy. When he reels, falls about, is incapable of standing, but is yet sensible, he is said to be drunk. And, lastly, when he is insensible or nearly so, he is described as dead drunk.—Sir Walter Scott (Waverley) distinguishes fuddled or half seas over (ebrius) from drunken (ebrius).

CONSEQUENCES OF HABITUAL DRUNKENNESS.—The continued use of spirituous liquors gives rise to various morbid conditions of system, a few only of the most remarkable of which can be here referred to. One of these is the disease known by the various names of delirium tremens, d. potatorum, oinomania, &c., and which is characterised by delirium, tremor of the extremities, watchfulness, and great frequency of pulse. The delirium is of a peculiar kind. It usually consists in the imagined presence of objects which the patient is anxious to seize or avoid. Its pathology is not understood. It is sometimes, but not constantly, connected with, or dependent on, an inflammatory condition of the brain or its membranes. Sometimes it is more allied to nervous fever. Opium has been found an important agent in relieving it.

Insanity is another disease produced by the immoderate and habitual use of spirituous liquors. In 110 cases of this disease, occurring in male patients admitted into the Hanwell Asylum in 1840, no less than 31 were ascribed to intemperance, while 34 were referred to combined causes, of which intemperance was stated to be one. It is remarkable, however, that of 70 female patients, admitted during the same year, only four cases were ascribed to intemperance.

Disease of the liver is frequently met with in drunkards who use ardent spirits. It is generally of the kind termed, by Baillie, common tubercle of the liver; by Dr. Elliotson, the gin liver; by others, granulated, lobulated, mammelled, or scirrhous liver. Laennec calls it cirrhosis (from κίρρης, yellowish), in reference to its usual tawny, yellow colour. A beautiful representation of it is given by Cruveilhier. Dr. Carswell has described it as consisting in atrophy of the lobular structure of the liver, produced by the presence of a contractile fibrous tissue. It is not, therefore, a disease depending on the formation of a new tissue. The ascites, which so frequently accompanies it, arises from the compression to which the portal vessels are subjected by the fibrous tissue; and the jaundice, another frequent effect of it, doubtless depends on compression of the gall ducts. Some excellent remarks on this disease have been made by the late Dr. Hope.

Stomach affections are common results of dram-drinking. Persons addicted to the use of ardent spirits suffer from loss of appetite, and are usually dyspeptic; and chronic inflammation of the stomach, or even a scirrhous state of the pylorus, has been said to be occasionally produced by hard drinking.

Dram-drinkers are sometimes affected with granular disease of the kidneys, which is generally attended by albuminous urine. Dr. Hope regards this state as corresponding to the granular liver just described.

1 Report of the Resident Physician [Dr. Conolly] of the Hanwell Lunatic Asylum, presented to the Court of Quarter-Sessions at the Middlesex Sessions, 1840.
2 London Medical Gazette, vol. xii. p. 484.
3 Anatom. Patholog. liv. 12, pl. 1.
4 Pathological Anatomy, art. Atrophy.
5 Principles and Illustrations of Morbid Anatomy. Lond. 1834.
6 See also Dr. Christison On Granular Degeneration of the Kidneys, p. 110. Edinb. 1839.
ORGANIC SUBSTANCES.—Alcohol.

Peculiarities of Intoxication from Spirit.—Different kinds of ardent spirits present some peculiarities in their operation on the system, which will be noticed hereafter (see Brandy, Rum, Gin, Whiskey, and Arrack).

The effects of spirit agree, in a considerable number of circumstances, with those of wine, but present some peculiarities. Spirit more speedily induces excitement, which, however, is of shorter duration, being more rapidly followed by collapse, relaxation, or debility. Death is by no means an infrequent consequence of deep intoxication from spirit. Dram-drinkers suffer usually from loss of appetite, especially in the morning, when they are troubled with vomiting; moreover, they are usually thin, wasted, and emaciated. Wine-bibbers, on the other hand, often enjoy an unimpaired appetite, and are frequently plump or corpulent, plethoric individuals. Liver disease, from intemperance, is said to be peculiar to those who take ardent spirits. Organic disease of the stomach is also a consequence of spirit-drinking.

A somewhat similar distinction holds good between the effects of spirit and those of malt liquors. The latter possess nutritive properties in addition to narcotic powers; hence we frequently observe that the beer toper is a plethoric, corpulent individual.

The effects of opium are readily distinguished from those of spirit when insensibility has not come on. The sleep which both these agents commonly induce is not usually preceded, in the case of opium, by delirium, thickness of voice, and peculiar difficulty of articulation. When delirium is produced by this drug (opium) it is rather of the ecstatic kind. "There is more poetry in its visions—more mental aggrandisement—more range of imagination." But when insensibility is present, the diagnosis is not always easy. The odour of the breath is in these cases an important diagnostic. Moreover, the pupil is usually (though not invariably) dilated by spirit, whereas it is contracted by opium.

Modus Operandi.—That alcohol becomes absorbed is proved by the fact that it has been found in the blood, in the urine, the breath, the bile, the fluid of the serous membranes, the brain, and the liver.

Tiedemann and Gmelin recognized the odour of it in the blood of the splenic vein, though they were unable to detect it in the chyle. A similar observation is reported by Magendie. Dr. Percy also found it in the blood of animals to which he administered it. He likewise detected it in the urine and the bile. Moreover, the recognition of the odour of alcoholic liquors in the breath of individuals who have swallowed them, as well as their detection by the smell in the fluid contained in the ventricles of the brain and in the pericardium, prove indisputably that alcohol is absorbed. Dr. Cooke states, on the authority of Sir A. Carlisle, that in one case the

1 Hogarth, in his Beer Alley and Gin Lane, has well represented the differences between drunkards devoted to malt liquors, and those given to the use of spirit. The first are plump, rubicund, and bloated; the latter are pale, tottering, emaciated, and miserable.

3 Über die Wege auf welchen Substanzen aus dem Magen ins Blut gelangen, Heidelberg, 1820.

4 Element. Compend. of Physiology, by Dr. Milligan, p. 448. 1823.

5 An Experimental Inquiry concerning the presence of Alcohol in the Ventrices of the Brain, after Poisoning with that liquid, together with Experiments illustrative of the Physiological Action of Alcohol, Lond. 1839.

6 Treatise on Nervous Diseases, i. 222, Lond. 1820.
fluid of the ventricles of the brain had the smell, taste, and inflammability of gin. Dr. Christison\(^1\) has questioned the correctness of this observation, on the ground that gin of sufficient strength to take fire could not enter the blood-vessels without coagulating the blood. But the objection appears to me to be groundless; for I find that a small quantity of undiluted commercial gin may be added to white of egg without causing either coagulation or the slightest opacity. Dr. Ogston\(^2\) has confirmed the testimony of Carlisle, and states that in one case he found about four ounces of fluid in the ventricles, having all the physical qualities of alcohol. Dr. Percy\(^3\) has recently set the question at rest, and satisfactorily proved the accuracy of the above statements, by his experiments on animals. He appears to think that some peculiar affinity exists between the substance of the brain and the spirit; more especially as, after analysing a much larger quantity of blood than can possibly exist in the cranium, he could generally obtain much more alcohol from the brain than from this quantity of blood. He was unable to determine whether or not the fluid of the ventricles contained any alcohol. Dr. Percy also detected alcohol in the liver, and has endeavoured to connect this fact with the frequent occurrence of hepatic disease in drunkards.

Morbid Appearances.—On examining the bodies of individuals who have been poisoned by ardent spirits, redness and inflammation of the stomach are sometimes, but not invariably, found. In confirmed drunkards the mucous membrane of the stomach is often injected and thickened. Congestion of the cerebral vessels, with or without extravasation of blood or effusion of serum, is not unfrequently observed. Traces of spirit may or may not be found in the stomach, according to the rapidity with which death has been produced. The odour of spirit may perhaps be recognised in various parts of the body, especially in the brain and the serous cavities.

Uses.—Spirit of wine is used both for medicinal and pharmaceutical purposes.

1. **Medicinal Uses.**—Spirit is used both internally and externally:
 a. **Internally.**—Spirit of wine is rarely administered internally; for when ardent spirit is indicated, Brandy, Gin, or Whiskey, is generally employed. The separate uses of each of these will be noticed presently: at present, therefore, I shall confine myself to some general remarks on the internal employment of spirit. I may observe, however, that Brandy is the ardent spirit usually administered for medicinal purposes; and, unless otherwise stated, is the spirit referred to in the following observations.

As a *stomachic stimulant*, spirit is employed to relieve spasmodic pains and flatulency, to check vomiting (especially sea-sickness), and to give temporary relief in some cases of indigestion, attended with pain after taking food. As a *stimulant and restorative*, it is given with considerable advantage in the latter stages of fever. As a *powerful excitant*, it is used to support the vital powers, to prevent fainting during a tedious operation, to relieve syncope and languor, and to assist the restoration of patients from a state of suspended animation. In *delirium tremens* it is not

\(^1\) *Treatise on Poisons*, 3d ed. p. 853.
\(^2\) *Edinburgh Medical and Surgical Journal*, vol. xi.
\(^3\) Op. supra cit.
always advisable to leave off the employment of spirituous liquors at once, since the sudden withdrawal of the long-accustomed stimulus may be attended with fatal consequences. In such cases it is advisable to allow, temporarily, to the patient the moderate use of the particular kind of spirit which he has been in the habit of employing. In poisoning by foxglove and tobacco, spirit and ammonia are used to rouse the action of the heart. In mild cases of diarrhoea, attended with griping pain, but unaccompanied by any inflammatory symptoms, a small quantity of spirit and water, taken warm, with nutmeg, is often a most efficacious remedy.

8. Externally.—Spirit of wine is used externally for several purposes, of which the following are the principal:—As a styptic, to restrain hemorrhage from weak and relaxed parts. It proves efficacious in two ways: it coagulates the blood by its chemical influence on the liquid, albumen, and fibrin, and it causes the contraction of the mouths of the bleeding vessels by its stimulant and astringent qualities. Sponge or soft linen, soaked in spirit and water, has been applied to the mouth of the uterus in uterine hemorrhage.1 Spirit is employed to harden the cuticle over tender and delicate parts. Thus, brandy is sometimes applied to the nipples, several weeks before delivery, in order to prevent the production of sore nipple from sucking in individuals predisposed to it. Spirit is also applied to the feet, when the skin is readily blistered by walking. The efficacy of spirit, in hardening the cuticle, depends, in part, on its chemical influence. Spirit gargles have been found serviceable in checking the tendency to inflammation and swelling of the tonsils. As a stimulant application, warm rectified spirit has been applied to burned or scalded parts, on the principles laid down for the treatment of these cases by Dr. Kentish.2 Properly diluted, spirit has been employed as a wash in various skin diseases, and in ulcers of bedridden persons, and as a collyrium in chronic ophthalmia. Frictions with rectified spirits have been used in the abdominal region, to promote labour pains; on the chest, to excite the action of the heart, in fainting or suspendedanimation; on the hypogastric region, to stimulate the bladder, when retention of urine depends on inertia, or a paralytic condition of this viscus; on various parts of the body, to relieve the pain arising from bruises, or to stimulate paralysed parts.

The inhalation of the vapour of rectified spirit has been recommended to relieve the irritation produced by the inspiration of chlorine; but I have tried the practice on myself without benefit. The readiest mode of effecting it is to drop some spirit on a lump of sugar, and hold this in the mouth during inspiration.

Diluted spirit has been used as an injection for the radical cure of hydrocele. A mixture of wine and water, however, is commonly employed in this country.

Spirit has been used to form cold lotions. As the efficacy of it depends on its evaporation, it should be applied by means of a single layer of linen, and not by a compress. Evaporating lotions are applied,—to the head in cephalalgia, in phrenitis, in fever, in poisoning by opium, &c.; to

fractures of the extremities; to parts affected with erysipelatous inflammations, &c.

Antidotes.—The first object in the treatment of poisoning by spirituous liquors is to evacuate the contents of the stomach. This is best effected by the stomach-pump; emetics being frequently unsuccessful. Stimulants are then to be employed: the most effectual are the injection of cold water into the ears, cold affusion to the head and neck, warmth to the extremities when these are cold, and the internal use either of ammonia, or of the solution of the acetate of ammonia, both of which agents have been found useful in relieving stupor. The cerebral congestion often requires the cautious employment of local blood-letting, and the application of cold to the head. If the patient appear to be dying from paralysis of the respiratory muscles, artificial respiration should be effected: if from closure of the larynx, tracheotomy may be performed.

4. SPIRITUS VINI GALLICI; Brandy;¹ Eau-de-vie.—This is an ardent spirit obtained by the distillation of wine. Its properties are subject to some variation, arising from different growths of the vine: “the brandies of Langueoc, Bordeaux, Armagnac, Cognac, Aunis, Saintonge, Rochelle, Orleans, Barcelona, Naples, &c. being each recognisable by an experienced dealer.”² The most celebrated of the French brandies are those of Cognac and Armagnac. Genuine brandy has an agreeable, vinous, aromatic odour. Both its flavour and odour, however, are peculiar. Pale brandy has a very slight brownish yellow tint, derived from the cask in which it has been kept. The high coloured brandy, usually found in the shops of this country, is artificially coloured (before its arrival in this country) by burnt sugar (caramel); which is said to render the spirit mellow and more palatable.³ Saunders wood is also stated, by the same authority, to be frequently used as a colouring ingredient. The constituents of brandy are alcohol, water, volatile oil, a minute portion of acetic acid, a little acetic ether, anaesthetic ether, colouring matter, and tannin. The latter is said to be derived from the cask in which the spirit has been preserved; but I find that the high coloured brandies react more powerfully on the salts of iron than pale brandy: whence I conclude that some astringent matter has been added to them.

Brandy when just imported is usually above proof. I found a sample of pale brandy, in bond, supplied to me by my friend, Mr. Gassiot, to be 1:5 over proof; and a coloured brandy, 2:2 over proof, as indicated by Sikes’s hydrometer. By keeping in the cask its alcoholic strength is diminished. I am informed that brandy, as usually sold, is 10 per cent. under proof. This would give, according to Gutteridge’s table, a sp. gr. of 0·9318. But Soubeiran⁴ states, that the sp. gr. of eau-de-vie varies from about 0·902 to 0·941. Now according to Gilpin’s tables a spirit having the sp. gr. of 0·93002 is composed of equal parts of alcohol (sp. gr. 0·825) and water. But Mr. Brande states that 100 parts by measure of brandy contain 53·39 parts of

¹ Brandy is a contraction for Brandy-wine (Branntwein, Germ.), which literally signifies Burnt-wine (Vinum adustum).
² Ure’s Dictionary of Arts and Manufactures, p. 164, Lond. 1839.
³ M’Culloch’s Dictionary of Commerce.
⁴ Nouveau Traité de Pharmacie, t. i. p. 142, 2nde éd.
alcohol, sp. gr. 0 825. The relative quantities of spirit contained in this and other ardent spirits, in wine, and in beer, have been already mentioned.

British Brandy is extensively manufactured, and sold as foreign brandy. Dr. Ure\(^1\) gives the following formula for it:—"Dilute the pure alcohol to the proof pitch; add to every hundred pounds weight of it from half a pound to a pound of argol (crude winestone) dissolved in water, a little acetic ether, and French-wine vinegar, some bruised French plums, and flavour-stuff from Cognac; then distil the mixture, with a gentle fire, in an alembic furnished with an agitator. The spirit which comes over may be coloured with nicely burned sugar (caramel) to the desired tint, and roughened in taste with a few drops of tincture of catechu or oak-bark."

Acid matters (as Grains of Paradise) are sometimes added to brandy to give it an artificial strength: they may be readily detected by evaporation. Sugar, also, may be discovered in the same way. The residue of the evaporation of genuine brandy yields a green colour with the salts of iron, indicating the presence of tannin; and imitation brandy may be readily made to produce the same effect, by the addition of catechu, or some other astringent.

The general effects and uses of brandy are those of alcohol already described. From the ardent spirits in ordinary use it is distinguished by its cordial and stomachic properties; and it is, in consequence, the stimulant usually preferred for medicinal purposes.

Burnt Brandy is a popular remedy for diarrhoea.

2. MISTURA SPIRITUS VINI GALLICI, L.; (Brandy, Cinnamon Water, of each, f\(\frac{3}{5}\)iv.; the yolks of two Eggs; Purified Sugar, 3ss.; Oil of Cinnamon, m\(\frac{1}{2}\). Mix.)—This mixture is an imitation of a well-known compound, termed Egg-flip\(^2\). It is an exceedingly valuable stimulant and restorative; and is employed in the latter stages of low fever, and in extreme exhaustion from uterine and other hemorrhages. The dose of it is from 2\(\frac{3}{5}\)ss. to 3\(\frac{1}{5}\)ss.

3. SPIRITUS SACCHI; Rum.—This is an ardent spirit obtained both in the West and East Indies, by distillation from the fermented skimmings of the sugar boilers, the drainings (called molasses) of the pots and hogsheads of sugar, the washings of the boilers,\(^3\) and the lees or spent wash of former distillations, called dunder.\(^4\) It is imported into this country in puncheons. In some parts of the West India islands it is customary to put slices of pine-apples in the puncheons of rum: hence the designation pine-apple rum.

The term Tafia, or Taffia, is applied to a spirit obtained, by distillation, from the fermented juice of the sugar-cane.\(^5\) It is, therefore, Cane Spirit (Spiritus Succhi Sacchari).

Good rum is transparent and of a brownish tint. Its depth of colour,

1 Dictionary of Arts and Manufactures, p. 165.
2 The terms Egg-flip, Egg-hot, or simply Flip, are applied to a preparation of ale with egg and ardent spirit (see Dr. Kitchener's Cook's Oracle).
3 The Civil and Natural History of Jamaica, by P. Browne, M.D., p. 132, Lond. 1789.
4 Dunder, from the Spanish redundar, to overflow.
5 Mérat and De Leus, Dict. de Mat. Méd. t. vi. p. 150.
however, varies considerably. The peculiar flavour of rum depends on volatile oil. The quantity of alcohol (sp. gr. 0·825) in 100 vols. of rum is, according to Mr. Brande, about 53·68 vols. As sent out, its strength is 10 per cent. under proof, in the language of Sikes's hydrometer. Jamaica rum is more highly esteemed than the Leeward Islands rum.

The general effects and uses of rum are similar to those of alcohol already described. It is considered more heating and sudorific than the other kinds of ardent spirit, to which it has been popularly thought preferable in coughs, catarrhs, and rheumatism.

4. SPIRITUS FRUMENTI COMPOSITUS; Compound Corn Spirit. — The spirit manufactured in the British Islands is usually obtained by distillation from fermented infusions of corn. The ardent spirits known as Gin, Whiskey, and the various Compounds, are corn spirit differently flavoured.

Gin owes its peculiar flavour to the Juniper, whence it is frequently denominated Spiritus Juniperi. It is not allowed to be sent out stronger than 17 per cent. under proof; but it is usually sold to the trade at 22 per cent. under proof. The retail dealer always reduces its strength, and flavours it with sugar. Frequently also other additions are made to it. Gin possesses the general properties of alcohol. On account of the oil of juniper which it holds in solution, it is more powerfully diuretic than brandy and rum; and hence it is a popular remedy in dropsical and other affections, in which an augmentation of the renal secretion is considered desirable. Moreover, it is frequently used to promote menstruation. It is the ordinary intoxicating spirit of the lower classes in this metropolis. At the London Hospital, gin is frequently administered medicinally, as a substitute for brandy, to patients who have been accustomed to its use.

Whiskey agrees in most of its properties with gin, from which it differs in its peculiar smoky flavour and odour: these it acquires from the malt, which is dried by turf fires. It is the national spirit of Ireland and Scotland.

5. ARRACK, or RACK.—This is a spirit obtained in various parts of the

1 "They talk of a common experiment here [Jamaica], that any animal's liver put into rum grows soft, and not so in brandy, whence they argue this last less wholesome than that: but their experiment, if true, proves no such thing. I think it may be said to have all the good and bad qualities of brandy, or any fermented or vinous spirit." —Sloane's Jamaica, vol. i. p. xxx. Lond. 1707.

2 By spirit dealers, British compounded spirits are denominated Compounds, while foreign compounded spirits are called Liqueurs. Both classes of liquors are sweetened spirits.

The following list of Compounds, usually kept at the gin-shops of this metropolis, has been supplied to me by the proprietor of one of these establishments:—

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Under Proof</th>
<th>Compounds</th>
<th>Under Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gin</td>
<td>17</td>
<td>Tent</td>
<td>"</td>
</tr>
<tr>
<td>Gin</td>
<td>22</td>
<td>Aniseed</td>
<td>"</td>
</tr>
<tr>
<td>Mint (Peppermint)</td>
<td>64</td>
<td>Caraway</td>
<td>"</td>
</tr>
<tr>
<td>Cloves</td>
<td>"</td>
<td>Lovage</td>
<td>"</td>
</tr>
<tr>
<td>Bitters</td>
<td>"</td>
<td>Usquebaugh (X)</td>
<td>"</td>
</tr>
<tr>
<td>Raspberry</td>
<td>"</td>
<td>Rum Shrub</td>
<td>"</td>
</tr>
<tr>
<td>Noyeau</td>
<td>"</td>
<td>Orange Cordial (X)</td>
<td>"</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>"</td>
<td>Citron ditto (X)</td>
<td>"</td>
</tr>
</tbody>
</table>

"The above are permitted to us at the strengths named; but, in point of fact, are much nearer approaching 80 U.P.—Those marked thus (X) are seldom asked for."

VOL. II.
East. In Batavia it is procured by distillation from fermented infusions of rice, whence it has been termed Rice Spirit (Spiritus Orize). In Ceylon, it is obtained by distillation from fermented cocoa-nut toddy (by some called Palm wine).

"Pine apples, steeped in it, impart a most exquisite flavour to the spirit; and, by age, it becomes a delicious liqueur, which is unrivalled in the world for making nectarial punch." In England, arrack is never employed for medicinal purposes. In its general properties it agrees with the other ardent spirits; but is said to be distinguished by its stimulating and narcotic properties. It is sometimes used in this country to impart an agreeable flavour to punch. A mock arrack is made by dissolving twenty grains of benzoic acid in two pounds of rum.

2. PHARMACEUTICAL USES OF ALCOHOL.—Alcohol is not employed in the preparation of any official substances, but it is a valuable agent in chemical analysis, and is used in determining the purity of certain medicinal substances; as iodine, iodide of potassium, the vegetable alkalies, castor oil, &c. Rectified and proof spirits are most extensively employed in official pharmacy: as in the formation of Tinctures, Spirits, Ethers, Ethereal Oil, and Resinous Extracts, and in the manufacture of the Vegetable Alkalies. Lastly, spirit is added to various preparations to assist in preserving them.

1. TINCTURE, L. D.; Tinctures, E.; Alcoolés.—These are solutions of vegetable, animal, or mineral substances, in proof or rectified spirit. They are preparations of substances whose active principles are imperfectly or not at all soluble in water, or whose aqueous solutions readily undergo decomposition.

Some are prepared by solution merely; as the Tinctura Iodinii composta, Ph. L.; Tinctura Camphora, Ph. Ed.; and Tinctura Ferri Sesquichloridi.

Some of the vegetable tinctures are prepared by adding rectified spirit to the expressed juices of plants. These preparations are frequently denominated preserved vegetable juices. They have been long in use on the continent. In 1835, Mr. Squire² commenced their manufacture. More recently, Mr. Bentley³ has directed the attention of the profession to them.

Mr. Squire states that, on an average, the juice of the young plant just coming into flower will yield only two-thirds of the amount of extract which is obtained from the same quantity of juice from the matured plant ("when more than half the flowers are fully blown"), and the strength of the product is also inferior. He also asserts⁴ that the leaves only should be used: and in the case of biennial plants, those of the second year's growth should exclusively be employed.⁵

The mode of obtaining these preparations is as follows:—The leaves being bruised in a marble mortar, are placed in a powerful press. The expressed juice is allowed to stand

1 The Coco-Nut Palm, its Uses and Cultivation. By J. W. Bennett, Esq. Lond. 1836.
3 On the Best Method of obtaining the more powerful Vegetable Preparations for Medicinal Use.
4 Op. supra cit.
5 See the article Hyoscyamus for an account of the relative quantities of juice and extract yielded by the leaves and stalks.
for twenty-four hours, by which a considerable quantity of feenient matter is deposited. Rectified spirit [56 over proof] is then added, in the proportion of four fluidounces to every sixteen fluidounces of the juice, which is quite sufficient to render the preservation complete, and throw down any mucilage which may be mechanically suspended. After standing twenty-four hours the liquor is to be filtered.¹

Mr. Squire employs one measure of spirit to two measures of juice.

These preserved expressed juices are superior preparations to the tinctures prepared by digestion from the same parts of either fresh or dried plants. In some cases (e. g. Aconite), tinctures prepared with rectified spirit from the dried roots, by digestion, are greatly superior in activity to the preserved juices of the leaves.

The ordinary method of preparing tinctures is by maceration or digestion.

“Tinctures are usually made by reducing the solid ingredients to small fragments, coarse powder, or fine powder, macerating them for seven days or upwards in proof spirit or rectified spirit, straining the solution through linen or calico, and finally expressing the residuum strongly to obtain what fluid is still retained in the mass.”—Ph. E.

“All Tinctures should be prepared in stoppered glass vessels, and frequently shaken during maceration.”—Ph. Loud.

The tinctures which are made with resinous substances cannot in general be well prepared in any other way than by digestion. This remark applies to Tinctura Aloes, Tinctura Assafacetide, Tinctura Benzoini composita, Tinctura Guaiac, and Tinctura Balsami Tolihani. Another and more expeditious method of preparing tinctures is by percolation or lixiviation (procédé ou méthode de déplacement); and which is also applicable to the preparation of ethereal, as well as alcoholic, tinctures, and of infusions. The principle of this method has been adopted by the Scotch brewers; the process being called by them sparging. It has also been used in the preparation of coffee. It was first employed for pharmaceutical purposes by Boulay.²

In the preparation of tinctures its profound advantages are expedition, economy, and uniformity of strength. But it is more troublesome, requires more skill and attention, and is not equally applicable to all substances. It answers best for those tinctures made with woody and fibrous parts, as roots, barks, woods, leaves, fruits, seeds, and insects. The Tinctures of Catechu and Myrrh may also be prepared in this way. The Edinburgh College offers the following remarks on this mode of preparation:

“A much superior method, however, has been lately introduced, which answers well for most tinctures; namely, the method of displacement by percolation. According to this process, the solid materials, usually in coarse or moderately fine powder, are moistened with a sufficiency of the solvent to form a thick pulp. In twelve hours, or frequently without any delay, the mass is put into a cylinder of glass, porcelain, or tinned iron, open at both ends, but obstructed at the lower end by a piece of calico or linen, tied tightly over it as a filter; and the pulp being packed by pressure, varying as to degree with various articles, the remainder of the solvent is poured into the upper part of the cylinder, and allowed gradually to percolate. In order to obtain the portion of the fluid which is kept in the residuum, an additional quantity of the solvent is poured into the cylinder, until the tincture, which has passed through, equals in amount the spirit originally prescribed: and the spirit employed for this purpose is then recovered for the most part by

¹ Bentley, op. supra cib.
² Journal de Pharmacie, t. xix. p. 393.
pouring over the residuum as much water as there is of spirit retained in it, which may be easily known by an obvious calculation in each case. The method by percolation, where applicable, will be found much more convenient and expeditious than the mode hitherto commonly followed, and it exhausts the solid materials in general much more completely. As considerable practice, however, is required for managing the details in different cases, more especially in regard to the degree of firmness with which they are to be packed in the cylinder, we have thought it right to direct that the method of maceration may be followed as an alternative. But the method of percolation is now preferred by all who have made sufficient trial of it to apply it correctly."

The percolator is best made of tin plate or zinc. A simple tube (of glass, porcelain, or tinned iron), as stated by the Edinburgh College, answers for an extemporaneous percolator. It is fitted into the mouth of a wide-mouthed bottle by means of a cork (fig. 381), in which is a small aperture to allow of the escape of air. One of the most convenient percolators is that proposed by Boullay. It is a simple cylinder of equal diameter, and terminating inferiorly in a cone or funnel. Mr. Deane's percolator¹ (fig. 382) is a modification of this: its lower end, C D, has a smaller circumference than its upper one, A B; is flat, and communicates with a tube, to which a stop-cock is fitted. Soubeiran² has adapted to Boullay's percolator a tin receiver, to which is fitted, at the most depending part, a stop-cock, by which the tincture may be drawn off (fig. 383).

The size of the percolator must, of course, vary according to circumstances. The smallest may be half an inch in diameter and four inches long. Large ones are six inches in diameter and eighteen inches long. They should be furnished with two diaphragms (perforated metallic disks, fig. 382, E, F), between which the ingredients are placed. When small percolators are used, a little cotton-wool, or even tow, may be substituted for the lower diaphragm,—or a piece of calico or linen may be tied over the end of the tube, as directed by the Edinburgh College. The lower

¹ Pharmaceutical Transactions, part ii.
² Nouveau Traité de Pharmacie, t. i. p. iii. 2nde éd.
extremity of the percolator should be furnished with a stop-cock (see figs. 382 and 383), for regulating the discharge of the fluid.

Considerable skill and experience are required in packing the ingredients. Indeed, the principal art of percolating has reference to this part of the process. Substances, as Rhubarb and Gentian, which yield a large quantity of mucilage, and are to be acted on by water, must be employed in the form of a very coarse powder, and should be placed loosely in the percolator, in order to allow them to swell. With alcohol or ether, however, the tissues swell less, the mucilaginous matter is not dissolved, and the percolation is readily effected even with a finer powder and closer packing.

Boullay imagined that one liquid may be employed to displace another liquid, without the two liquids becoming mixed; hence he called the process the displacement method. The Edinburgh College, I presume, has adopted his opinion, since it directs the tincture to be displaced by spirit, and the spirit by water. But Guillermond\(^1\) has shown that this displacement cannot be effected without a certain degree of mixture.\(^2\)

2. SPIRITUSS, L.; Spirits, E.; Essentia, D.—These are alcoholic solutions of volatile substances (usually of a vegetable nature) sometimes obtained by distillation. Some of them are prepared with rectified spirit (e.g. Spiritus Rosmarini), some with alcohol, as Essentia Foeniculi, D. The spirits which owe their peculiar flavour and odour to volatile oil are now prepared according to the directions of the London College, by dissolving the oil in spirit, without the aid of distillation; and, for all therapeutical purposes, they are equally effective.

300. AETHER SULPHURICUS, L. E. D.—SULPHURIC ETHER.

History and Synonymes.—This liquid is said to have been known to Raymond Lully,\(^3\) who lived in the 13th century; and to Basil Valentine,\(^4\) in the 15th century. In 1540, Valerius Cordus\(^5\) described the method of making it. He termed it Oleum Vitrioli dulce. The Germans call it Vitriolic Naphtha (Naphtha Vitrioli).

Natural History.—It is always an artificial product.

Preparation.—The Edinburgh and Dublin Colleges give directions for the preparation of sulphuric ether. In the Pharmacopoeia of the London College Ether is placed among the articles of the Materia Medica.

The London College formerly ordered of Rectified Spirit, lb. iii.; Sulphuric Acid, lb. ii.; Carbonate of Potash, previously ignited, zi:; pour two pounds of the spirit into a glass retort, add the acid to it, and mix. Afterwards place it on sand, and raise the heat so that

\(^1\) Journal de Pharmacie, t. xxi. p. 349.
\(^2\) For further details respecting percolation, consult, besides the memoirs already quoted, Dausse, Mémoire sur la préparation de tous les extraits pharmaceutiques par la méthode de déplacement, Paris, 1836.
\(^3\) Dulk, Die Preussische Pharmakopöe überras. und erläutert, 2 Th. S. 201, 2 Aufl. Leipz. 1830.
\(^4\) Ibid.
the liquor may quickly boil, and the Ether pass into a receiving vessel cooled with ice or water. Let the liquor distil until some heavier portion begins to pass over. To the liquor which remains in the retort, after the heat has subsided, pour the remainder of the spirit, that ether may distil in the same manner. Mix the distilled liquors, then pour off the supernatant portion, and add to it the Carbonate of Potash, shaking them frequently during an hour. Lastly, let the ether distil from a large retort, and be kept in a stoppered vessel.

The directions of the Edinburgh College are as follows:—"Take of Rectified Spirit, $\frac{3}{4}$ l.; Sulphuric Acid, $\frac{1}{3}$ x. Pour twelve fluidounces of the spirit gently over the acid contained in an open vessel, and then stir them together briskly and thoroughly. Transfer the mixture immediately into a glass matrass connected with a refrigeratory, and raise the heat quickly to about 280°. As soon as the ethereal fluid begins to distil over, supply fresh spirit through a tube into the matrass in a continuous stream, and in such quantity as to equal that of the fluid which distils over. This is best accomplished by connecting one end of the tube with a graduated vessel containing the spirit, passing the other end through a cork fitted into the matrass, and having a stop-cock on the tube to regulate the discharge. When forty-two ounces have distilled over, and the whole spirit has been added, the process may be stopped. Agitate the impure ether with sixteen fluid ounces of a saturated solution of muriate of lime, containing about half an ounce of lime recently slaked. When all odour of sulphurous acid has been thus removed, pour off the supernatant liquor, and distil it with a very gentle heat, so long as the liquid which passes over has a density not above 0735. More ether of the same strength is then to be obtained from the solution of muriate of lime. From the residuum of both distillations, a weaker ether may be obtained in small quantity, which must be rectified by distilling it gently again."

The Dublin College directs Sulphuric Ether to be thus prepared:—"Take of Rectified Spirit, three pints; Oil of Vitriol of commerce, eight fluidounces; Fresh burned Lime, in fine powder, one ounce: mix the acid and ten ounces of the spirit in a glass matrass, capable of holding a quart at least, and, without allowing the mixture to cool, connect the matrass with a Liebig's condenser, and, applying a sufficient heat to maintain the liquid in brisk ebullition, commence the distillation. As it proceeds, admit gradually, through a glass tube traversing the cork of the matrass, the remainder of the spirit, regulating its influx so that the boiling liquid shall maintain a constant level; and, when the entire of it has been introduced, continue the application of the heat until the contents of the matrass become black, and show a tendency to froth over. (The tube through which the spirit enters should dip by its lower extremity, where its diameter is contracted, at least half an inch beneath the surface of the liquid in the matrass; and the eduction pipe of the reservoir for the spirit, with which the exterior extremity of the glass tube is connected, should be furnished with a stop-cock, to regulate the descent of the spirit. This reservoir also should be placed at least three feet above the level of the boiling liquid.) The crude ether thus obtained is to be agitated with the pulverised quicklime, and then rectified, the distillation being continued as long as the product, on being well shaken, continues to have a specific gravity lower than 750. The resulting liquid should be preserved in a cool place in accurately stopped bottles. A fresh reservoir being attached to the further end of the condenser, and the distillation resumed, a product will be obtained which may be substituted for rectified spirit in a subsequent ether process."

Theory of Etherification.—In order to convert one equivalent or 46 parts of alcohol into one equivalent or 37 parts of ether, we must abstract one equivalent or 9 parts of water.

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 equivalent Alcohol is composed of</td>
<td>4 eq.</td>
<td>6 eq.</td>
<td>2 eq.</td>
</tr>
<tr>
<td>Abstract 1 equivalent Water composed of</td>
<td>0 eq.</td>
<td>1 eq.</td>
<td>1 eq.</td>
</tr>
<tr>
<td>1 equivalent Ether</td>
<td>4 eq.</td>
<td>5 eq.</td>
<td>1 eq.</td>
</tr>
</tbody>
</table>

[Or, the change may be thus represented:—$$\text{C}_4\text{H}_6\text{O}_2=\text{HO}+\text{C}_4\text{H}_5\text{O}.$$ Assuming that ethyle is represented by C_4H_5, then ether is an oxide of this]
compound radical AeO, and alcohol is a hydrated oxide, containing in addition the elements of one equivalent of water.—Ed.]

But, though the change thus far appears very simple, there are some accessory reactions which make the theory of etherification exceedingly complicated, and about the precise nature of which chemists are not quite agreed.

That the sole or efficient cause of the conversion of alcohol into ether is not the mere abstraction of water, by the affinity of the sulphuric acid for that liquid, is proved by various circumstances, of which the following are some:—

a. Water may be abstracted from alcohol by alkalies and chloride of calcium, yet nothing like ether is the result.

b. Water passes over, during the whole process, along with the ether, with which the acid ought to combine in preference to dehydrating the alcohol.

c. Ether is not produced by the action of anhydrous sulphuric acid on alcohol.

d. Ether is never produced except by the aid of heat.

e. When the oil of vitriol is mixed with rectified spirit, the saturating power of the acid is diminished.

When oil of vitriol is added to rectified spirit, a new compound is formed, which contains, besides the elements of sulphuric acid,—carbon, hydrogen, and oxygen. As this new compound reddens litmus, and forms salts with bases, it has been regarded as an acid (Sulpho-vinic acid;? Ethereo-sulphuric acid). But as the sulphuric acid, by its union with the elements of the alcohol, has lost half its saturating power, the new compound is rather to be regarded as a supersalt (bisulphate of the oxide of ethyle), combined with water; or as a double salt composed of sulphate of the oxide of ethyle and sulphate of water. Carbo-hydrogen is the basic constituent of this salt, which, by the action of heat, is resolved into ether, sulphuric acid, and water. On the ethyle hypothesis, so ably advocated by Liebig, the following is an explanation of the changes attending the formation of ether:—

Alcohol is regarded as a hydrate of the oxide of ethyle, and its equivalent is assumed to be 46. On the addition of oil of vitriol, two equivalents or 30 parts of anhydrous sulphuric acid combine with one equivalent or 37 parts of oxide of ethyle (ether), contained in the alcohol, and form one equivalent or 117 parts of bisulphate of oxide of ethyle (bisulphate of ether). The water of the alcohol and of the oil of vitriol unites with the bisulphate. By the heat which is subsequently applied to the mixture, the hydrated bisulphate is resolved into ether, water, and sulphuric acid.

"If we consider each particle of the [hydrated] bisulphate of oxide of ethyle as composed of ether [oxide of ethyle], anhydrous sulphuric acid, and water, it is clear that the anhydrous acid, at the moment of its separation from the ether, must seize on all water, free or combined, in the vicinity of the ether. Thus, at the moment the ether becomes free, the anhydrous acid, also set free, prevents it from uniting with water to form alcohol. But when the gaseous ether passes through the undecomposed hydrated bisulphate of oxide of ethyle, a certain proportion of the water of that compound must evaporate in the dry gas; and in these circumstances the ether and water do not combine together. The surface of the effervescing liquid has the temperature at which [hydrated]
bisulphate of oxide of ethyle is decomposed; but at this temperature, 284°, the water of that compound is gaseous. There are thus produced, simultaneously, water in the gaseous form by evaporation, and ether, also gaseous, by decomposition; which, as both are in the nascent state, unite to form alcohol. Thus the alcohol, always observed to distil over with the ether, is derived from the surface; and the ether and water, which distil over, proceed from the decomposition in the interior of the liquid. This explains why no ether is obtained when the liquid is not in brisk ebullition, no matter how high the temperature may be; it explains further, why more alcohol is obtained when a current of dry air passes through the liquid, since in that case the same decomposition goes on in the interior of the liquid as generally occurs at the surface.91

During the distillation of ether the relative proportions of the ingredients are constantly varying; for the absolute quantity of hydrated bisulphate of ethyle is continually diminishing, and thereby the relative quantity of oil of vitriol is increasing. In consequence of this, the boiling point of the liquid gradually rises. When it arrives at about 320°, new reactions take place between the oxide of ethyle and the sulphuric acid. The principal products of these reactions are sulphuric acid, olefiant gas, water, and carbon; but these are not the only products. In certain proportions of the ingredients, acetic acid \([C^4H^3O^9]\) is formed. "With a great excess of [sulphuric] acid, traces of formic acid \([C^2H^4O^3]\) and carbonic oxide are produced. As long as olefiant gas comes off, carbonic acid cannot be detected. During this decomposition, sulphurous acid and olefiant gas are given off in equal volumes." "Carbon and water are the elements of acetic acid, the formation of which must diminish the quantity of carbon in the residue. By the action of the sulphuric acid in excess on acetic acid, formic acid and sulphurous acid are formed; and by the action of the sulphuric acid in excess on formic acid, carbome oxide gas is produced."92 "It is probable that in this decomposition the elements of sulphuric acid and of ether first arrange themselves so as to form ethionic \([4SO^3,C^4H^4O]\) or isethionic \([S^2O^3,C^4H^5O^2+aq.]\) acids." A small quantity of Light Oil of Wine is also produced. In the directions for the preparation of ether given by the London College, the process is directed to be stopped when some "heavier portion" begins to pass over. This heavier liquid is an aqueous solution of sulphurous acid. On the small scale ether may be readily made in a tubulated glass retort, connected by Liebig's condensing tube, with a cooled glass receiver. At Apothecaries' Hall, London, it is made in a leaden still, having a pewter head connected by about six feet of tin pipe with a very spacious condensing worm, duly cooled by a current of water; the receivers are of pewter with glass lids, and have a side tube to connect them with the delivering end of the worm-pipe. The still is heated by high-pressure steam carried through it in a contorted leaden pipe. A tube enters the upper part of the still for the purpose of suffering alcohol gradually to run into the acid.93

Mitscherlich94 has shown how a given quantity of oil of vitriol may be made to convert an unlimited quantity of alcohol into ether; the whole of the alcohol which enters the retort passing off as ether and water. As, however, ether is usually prepared from hydrated alcohol (rectified spirit),

1 Liebig, in Turner's Elements of Chemistry, 7th edit. p. 841.
2 Liebig, op. supra cit.
the superfluous water gradually dilutes the acid until ultimately it becomes too dilute to effect the conversion of alcohol into ether. The process of the Edinburgh Pharmacopoeia is an imitation of Mitscherlich's principle. [According to this chemist, ether is produced only so long as the liquid has a temperature between 281° and 302°.] The rectification of ether is intended to free it from alcohol, water, sulphurous acid, and oil of wine. It may be effected by the addition of carbonate of potash and re-distillation. In order to separate alcohol from ether, the readiest method is to shake the ether with twice its bulk of water; then pour it off, and remove the water, which the washed ether has dissolved, by adding some fresh burned lime, or fused chloride of calcium, and distilling the ether a second time.

Properties.—At ordinary temperatures ether is a colourless, very limpid liquid, having a penetrating, peculiar, though somewhat fragrant odour; a hot, pungent taste; and a high refractive power. It is a bad conductor of electricity. According to Liebig, it may be frozen at 46° below zero. The sp. gr. of pure ether at 65°F. is, according to Dumas and Boullay, 0.713. The ether of the shops contains a little alcohol, and its sp. gr. varies from 0.733 to 0.765: in the London Pharmacopoeia its sp. gr. at 62° F. is fixed at 0.750. Ether is extremely volatile: when of sp. gr. 0.720, its boiling point (the mercury in the barometer standing at 30 inches) is about 98°F. In a vacuum, it boils at 40° F. below zero. The evaporation of ether causes intense cold; [and the greatest degree of cold yet produced = −166°, has resulted from the admixture of ether with solid carbonic acid.—Ed.] The sp. gr. of ether-vapour was found, by Gay-Lussac, to be 2.586. Pure and recently prepared ether possesses neither acid nor alkaline properties; but, by exposure to air and light, it absorbs oxygen, by which acetic acid and water are produced. The acetic acid is not immediately observed, because it combines with some undecomposed ether to form acetic ether. Ether is very combustible: it burns in atmospheric air with a yellowish-white flame, and forms carbonic acid and water. Its vapour, mixed with oxygen or atmospheric air, forms a violently explosive mixture. One volume of ether vapour consumes, in burning, six volumes of oxygen gas: the products are, four volumes of carbonic acid, and five volumes of aqueous vapour. By the slow combustion of ether vapour, by means of a coil of platinum wire, acetic, formic, and lactic [aldehydic] acids are produced.

Ether is sparingly soluble in water: nine volumes of the latter dissolve one of the former. Ether, which has been washed with water, contains a small portion of this liquid. Alcohol dissolves ether in all proportions. Ether abstracts bichloride of mercury, terchloride of gold, bichloride of platinum, and the sesquichloride of iron, from their watery solutions. It readily dissolves bromine and iodine; but the solutions, by keeping, undergo decomposition. It sparingly dissolves sulphur and phosphorus: the ethereal solution of phosphorus is luminous in the dark, when poured on hot water. It dissolves the volatile oils, most of the fatty and resinous substances, some of the vegetable alkalies, urea, osmazone, gun cotton (forming collodion), and caoutchouc.

Characteristics.— Sulphuric ether may be recognised by its combustibility, its yellowish-white flame, its volatility, its peculiar odour and taste, its complete solubility in alcohol, and its sparing solubility in water, in consequence of which, when mixed with water and agitated in a phial, the mixture
speedily separates, on standing, into two layers. It dissolves most resins: the solutions, evaporated on the surface of water, leave a resinous film.

Composition.—The following is the elementary composition of ether:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>64·87</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5</td>
<td>13·51</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>21·62</td>
</tr>
<tr>
<td>Ether</td>
<td>1</td>
<td>100·00</td>
</tr>
</tbody>
</table>

Chemists are not agreed as to the manner in which these elements are associated. Ether has been considered, at different times, as a dihydrate of olefiant gas,—a hydrate of ethereine,—or as the oxide of ethyle (etherum).

2 eq. olefiant gas 28 1 eq. etherine 25 1 eq. ethyle 29
1 eq. water 9 1 eq. water 9 1 eq. oxygen 8

1 eq. Dihydrate of Olefiant Gas 37 1 eq. Hydrate of Ethereine 37 1 eq. Oxide of Ethyle 37

In this table olefiant gas is regarded as $\frac{2}{3}$ carbo-hydrogen, etherine as a $\frac{1}{3}$ carbo-hydrogen, and ethyle as $\frac{1}{2}$ carbo-hydrogen.

[Dr. Frankland has succeeded in isolating the compound radical ethyle. He procured it by the action of zinc at high temperatures upon iodide of ethyle. He describes it as a colourless and inflammable gas, of a specific gravity $= 2·0039$, incondensable to the liquid state at zero, but capable of being converted under a pressure of 2·25 atmospheres, at 37·5°, into a colourless transparent liquid.1—Ed.]

Purity.—The ether of commerce is usually contaminated with small quantities of either spirit or water, or both. These augment its sp. gr., but do not much affect its medicinal properties. The London College states that its sp. gr. should not exceed 0·750; but this is too high. The Edinburgh College fixes it at 0·735, or under. I think 0·740 would be sufficiently low. Ether which contains no alcohol does not coagulate the serum of the blood. Pure ether does not reddish litmus, but the ether of the shops usually does so slightly, either from being imperfectly prepared, or from having been too long kept. Ten fluidounces of water should not dissolve more than one fluidounce of ether, and the solution should be quite transparent. It should speedily and totally evaporate in the air. It should not become milky when mixed with water. “When agitated in a minut measure, with half its volume of concentrated solution of muriate of lime, its volume is not lessened,” Ph. Ed.

Physiological Effects. a. On Vegetables.—Ether, like alcohol, acts as a powerful and rapid poison to plants.

β. On Animals.—The effects of it on dogs have been determined by Orfila,2 who found that half an ounce introduced into the stomach, and the esophagus tied, caused attempts to vomit, diminished muscular power, insensibility, and death in three hours. Three drachms and a half injected into

1 See Journal of Chemical Society, vol. ii.
2 Toxicol. Gén.
the cellular tissue of the thigh caused death on the fourth day. Jäger found that half an ounce of ether acted as a fatal poison to a crane; at the end of forty-eight hours its odour could be readily detected in the body. He made similar experiments with pigeons and ducks. One of the last-mentioned animals took altogether an ounce of ether, yet was not dead at the end of twenty-four hours.

γ. On Man.—The operation of ether is analogous to that of alcohol, but is much more rapid and transient. Swallowed in moderate doses it makes a powerful impression on the mouth, throat, and stomach; allays spasm, and relieves flatulence; but, according to some observers, it augments neither the heat of the body nor the frequency of the pulse. Its first effects on the cerebral functions are those of an excitant, but the subsequent ones are those of a depressing agent. In somewhat larger doses it produces intoxication like that caused by alcohol. In excessive doses it occasions nausea, a copious flow of saliva, giddiness, and stupefaction.

The long and habitual use of ether diminishes the effect of this substance over the system, and, therefore, the dose must be proportionately increased. Dr. Christison mentions the case of an old gentleman who consumed sixteen ounces every eight or ten days, and had been in the habit of doing so for many years. Yet, with the exception of an asthma, for which he took the ether, he enjoyed tolerable health. The chemist, Bucquet, who died of seirrhus of the colon, with inflammation of the stomach and of the intestines generally, took, before his death, a pint of ether daily, to alleviate his excruciating pains.

When the vapour of ether, sufficiently diluted with atmospheric air, is inhaled, it causes irritation about the epiglottis, a sensation of fulness in the head, and effects analogous to those caused by the protoxide of nitrogen; moreover, persons peculiarly susceptible of the action of the one are also powerfully affected by the other. If the air be too strongly impregnated with ether, stupefaction ensues. In one case this state continued, with occasional periods of intermission, for more than thirty hours: for many days the pulse was so much lowered that considerable fears were entertained for the safety of the patient (op. cit.) In another case, an apoplectic condition, which continued for some hours, was produced. [The anaesthetic properties of this vapour are well known. In surgical operations it has been much used for the purpose of destroying sensibility; but preference is now given to the vapour of chloroform.—Ed.]

Modus Operandi.—When ether is swallowed, it is rapidly absorbed, and subsequently thrown out of the system by the pulmonary exhalants. Magendie says, that ether introduced into the cavity of the peritoneum is discoverable in the expired air by its odour. Thrown into the cavity of the pleura, it produces speedy death, and its odour is very obvious when we approach the mouth of the animal. In the case of a man poisoned by lauda-

1 Wibmer, in Die Wirkung, &c.
2 Schwilgué, Traité de Mat. Méd. 1818; also Trousseau and Pidoux, Traité de Thérop. 1836.
3 Mérat and De Lens, Dict. Mat. Méd.
4 Journal of Science, iv. 158.
5 Elem. Compend. Physiol. by Milligan.
num, and to whom before death half an ounce of spirit of sulphuric ether was given, the ether was detected by its odour in the brain.¹

Uses.—Ether is employed both medicinally and for pharmaceutical purposes.

1. Medicinal Uses. a. Internal.—Ether is principally valuable as a speedy and powerful agent in spasmodic and painful affections not dependent on local vascular excitement, and which are accompanied by a pale, cold skin, and a small, feeble pulse. If administered during a paroxism of spasmodic asthma, it generally gives relief, but has no tendency to prevent the recurrence of attacks. In cramp of the stomach, singultus, and flatulent colic, its happy effects are well established.² It is sometimes highly advantageous in a paroxism of angina pectoris. During the passage of urinary or biliary calculi, it may be used as a substitute for, or in combination with, opium, to overcome the spasm of the ducts or tubes through which the calculus is passing. In the latter stages of continued fever, ether is sometimes admissible. It is employed to relieve the subsultus tendinum and hiccup. Desbois de Rochefort³ administered it in intermittent fevers. He gave it about half an hour before the expected paroxysm; it acted as a mild diaphoretic, and prevented the recurrence of the attack. Headache of the kind popularly called nervous, that is, unconnected with vascular excitement, is sometimes speedily relieved by ether. I have found it beneficial principally in females of delicate habits. In such it occasionally gives immediate relief, even when the throbbing of the temporal vessels and suffusion of the eyes (symptoms which usually contra-indicate the employment of ether) would seem to show the existence of excitement of the cerebral vessels.

In flatulence of the stomach it may be taken in combination with some aromatic water. Against sea-sickness it should be swallowed in a glass of white wine. Durandé⁴ recommends a mixture of three parts ether and two oil of turpentine, as a solvent for biliary calculi. Bourdier⁵ employed ether to expel tape-worm. He administered it, by the stomach and rectum, in an infusion of male fern, giving a dose of castor oil an hour after. In faintness and lowness of spirits, it is a popular remedy. In poisoning by hemlock and mushrooms, it has been employed.⁶ In asphyxia it has been used with benefit.

The vapour of ether is inhaled in spasmodic asthma, chronic catarrh, and dyspnoea, hooping-cough, and to relieve the effects caused by the accidental inhalation of chlorine gas. It may be used by dropping some ether in hot water, and inspiring the vapour mixed with steam; or it may be dropped on sugar, which is to be held in the mouth. The inhalation of the vapour of the ethereal tincture of hemlock is occasionally useful in relieving spasmodic affections of the respiratory organs, and has been recommended in phthisical cases.

² On the Effects of Ether in Spasmodic Affections of the Stomach, and in Intermittents. See Medical Facts and Observations, vol. v. Lond.
³ Coura Élém. de Matière Médicale, Paris, 1789.
⁵ Mém. de la Société de Méd.
⁶ J. Frank, Toxicologie, S. 70, 108.
 Uses; Administration; Antidotes.

β. External.—The principal external use of ether is to produce cold by its speedy evaporation. Thus, in strangulated hernia it may be dropped on the tumour and allowed to evaporate freely: by this means a considerable degree of cold is produced, and, in consequence, the bulk of the part diminished, whereby the reduction of the hernia is facilitated. Dropped on the forehead, or applied by means of a piece of thin muslin, ether diminishes vascular excitement, by the cold produced from its evaporation, and is exceedingly efficacious in headache and inflammatory conditions of the brain. In burns and scalds it may also be employed as a refrigerant. If its evaporation be stopped or checked, as by covering it with a compress, it acts as a local irritant, causing rubefaction, and, by long-continued application, vesication. It is used with friction as a local stimulant.

2. Pharmaceutical Uses.—Ether is employed in the preparation of the Compound Spirit of Sulphuric Ether. Ether, or its alcoholic solution, is also used to extract the active principles of certain drugs, as of Lobelia, Aloes, Musk, &c. The solutions are called Ethereal Tinctures (Tinctura Etherea), or by the French pharmacologists Ethéroles. These may be conveniently prepared by percolation. Ether is of assistance in determining the purity of some medicinal substances, as of Aconitina and Veratria, which are very soluble in it. It is employed in toxicological researches, to remove Bichloride of Mercury from organic mixtures. [A solution of gun-cotton or xyloidine in ether is well known and extensively employed in pharmacy under the name of Collodion.—Ed.]

Administration.—It may be given in doses of from f3ss. to f5ij.:—a tea-spoonful is the ordinary quantity. This dose may be repeated at short intervals. It is usually exhibited in some aromatic water, and frequently in combination with other antispasmodics and stimulants, as ammonia, or valerian. "It may be perfectly incorporated with water, or any aqueous mixture, by rubbing it up with spermaceti employed in the proportion of two grains for each fluidrachm of the ether." ¹

Antidotes.—In cases of poisoning by ether, the same treatment is to be adopted as before recommended in cases of poisoning by alcohol.

1. SPIRITUS AETHERIS SULPHURICI, E.; Spirit of Sulphuric Ether. (Sulphuric Ether, Oj.; Rectified Spirit, Oij. Mix them. The density of this preparation ought to be 0·809. "It does not affect litmus paper, or render water muddy: when agitated with twice its volume of a concentrated solution of muriate of lime, 28 per cent. of ether separates by rest.")—Its medicinal properties are similar to, though somewhat less powerful than, those of ether, over which it has the advantage of being miscible with water in all proportions. The dose of it is f3ij. to f5ij. mixed with some diluent. It is used in the preparation of the Tinctura Lobeliae etherea, E.

2. SPIRITUS AETHERIS COMPOSITUS, L.; Compound Spirit of Sulphuric Ether. (Sulphuric Ether, f5viij.; Rectified Spirit, f5xvj.; Ethereal Oil, f5ij. Mix.)—This preparation is commonly called Hoffmann's Mineral Anodyne Liquor (Liquor anodynum mineralis Hoffmanni); being made

in imitation of a preparation described by Hoffmann, which it is said he was taught by an apothecary of the name of Martmeier. This preparation is sometimes employed as an adjunct to laudanum, to prevent the nausea which the latter excites in certain habits. Its dose is from f5ss. to f5ij. in any proper vehicle.

301. OLEUM ÆTEREUM, L.—ETHEREAL OIL.

(Spiritus ætheris oleosus, D.)

HISTORY AND SYNONYMES.—This liquid is commonly termed heavy oil of wine, or simply oil of wine. Dumas says it was known to Paracelsus, who designated it sweet oil of vitriol. Modern writers have given it various appellations founded on its supposed composition. Thus, according to Mr. Hennell, it is a sulphate of hydrocarbon,—Dumas calls it sulphatic ether,—others a double sulphate of ether and hydrocarbon,—while Liebig terms it sulphate of oxide of ethyle and Etherole.

PREPARATION.—The following directions for procuring it are given in the London Pharmacopœia:

"Take of Rectified Spirit, one pint and a half; Sulphuric Acid, lb. iv.; Solution of Potash, Distilled Water, of each f3i.; or as much as may be sufficient. Mix the acid cautiously with the spirit. Let the liquor distil until a black froth arises; then immediately remove the retort from the fire. Separate the lighter supernatant liquor from the heavier one, and expose the former to the air for a day. Add to it the solution of potash first mixed with water, and shake them together. Lastly, when sufficiently washed, separate the ethereal oil which subsides."

The Dublin College gives the following directions for its preparation:—"Take of Rectified Spirit, one pint and a half; Oil of Vitriol of commerce, one pint and a half; Sulphuric Ether, five fluidounces: mix the oil of vitriol with one pint of the rectified spirit, in a matrass of glass, and, connecting this with a Liebig's condenser, apply heat, and distil, till a black froth begins to rise. Separate the uppermost or lighter stratum of the distilled liquid, and, having exposed it in a capsule for twenty-four hours to the atmosphere, let the residual oil be transferred to a moist paper filter, and washed with a little cold water, so as to remove any adhering acid. Let it now be introduced into a bottle containing the remainder of the spirit mixed with the ether, and dissolved."

The process of the London Pharmacopœia is that followed at Apothecaries' Hall, London. The late Mr. Hennell informed me that 33 lbs. avoid. of Rectified Spirit, and 64 lbs. avoid. of Oil of Vitriol, yielded in one operation 17 ounces avoid. of ethereal oil. There is, therefore, an immense loss in the operation.

THEORY OF THE PROCESS.—When oil of vitriol and alcohol are mixed, bisulphate of oxide of ethyle (C₄H₆SO₂) and water are formed. Under

2 Voihteles, Vollständiges System der Arzneymittel, Bd. ii. 3te Abt. S. 38, Leipzig, 1817.
3 Traité de Chimie, v. 543.
4 Philosophical Transactions, 1826.
5 Op. supra cit.
7 The term etherole is applied to a ½ carbo-hydrogen, better known as Light Oil of Wine.
the influence of heat the bisulphate suffers decomposition; but the reactions vary with the temperature. When the sulphuric acid is greatly in excess, and the boiling point of the liquid has attained 320° F., the principal products of the decomposition are sulphurous acid, olefiant gas (carbo-hydrogen), water, and carbon. At this period of the process heavy oil of wine is also produced in small quantity. Its formation may be accounted for by supposing that two equivalents of the bisulphate of oxide of ethyle and water react on another, and that the carbo-hydrogen \((C_4H_4 = \text{I eq. Ethereal}) \) of the one is substituted for the water of the other; the products being heavy oil of wine \((\text{oleum ethereum}, \text{Ph. L.}) \), sulphuric acid, and water.

The substance termed by Liebig Ethereal \((C_4H_4) \) is commonly denominated Light Oil of Wine. It was discovered by Hennell, who calls it Hydrocarbon from Oil of Wine, because it is obtained by boiling the heavy oil of wine with water. It is a colourless, oily liquid of sp. gr. 0'917 to 0'920. When kept for some time at a low temperature, it deposits a crystalline matter called Etherine or Camphor of Oil of Wine \((C_4H_4) \), which is isomeric with ethereal.

Properties.—Ethereal oil is an oily liquid, having usually a yellowish tint, though when quite pure it is said to be colourless. It has a peculiar aromatic odour, and a bitter taste. Its sp. gr., according to Mr. Hennell, is 1'05; but according to Serullas it is 1'13. It boils at 540° F. It is insoluble in water, but dissolves readily in alcohol and ether. It neither reddens litmus nor precipitates a solution of chloride of barium, so that the sulphuric acid contained in it seems to be completely neutralised. According to Mr. Hennell, ethereal oil dissolves a variable quantity of \(\frac{4}{3} \) carbo-hydrogen, part of which separates in a crystalline form \((\text{etherine}) \) when the oil is kept for some time, or when exposed to cold. When ethereal oil is slightly heated with water, it yields a light yellow oil \((\text{etherole}) \), which floats on water, and bisulphate of oxide of ethyle, which is dissolved by the water.

Characteristics.—Ethereal oil is recognised by its oily appearance, its peculiar odour and taste, its slight solubility in, but greater specific gravity than, water, and its solubility in ether and alcohol. If it be heated in a test-tube it yields an inflammable vapour which burns like olefiant gas, and a carbonaceous residue which contains sulphuric acid, as is proved by lixiviating with water, and testing by chloride of barium. Ethereal oil, added to a solution of chloride of barium, occasions no cloudiness; but, if we evaporate the mixture to dryness, the residue is found to contain sulphate of baryta.

Composition.—Three chemists have analysed ethereal oil, namely, Hennell, Serullas, and Liebig. The results of two only of these agree, namely, those of Liebig and Serullas.

<table>
<thead>
<tr>
<th>Liebig and Serullas.</th>
<th>Hennell.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric acid</td>
<td>2</td>
</tr>
<tr>
<td>Carbon</td>
<td>8</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
</tr>
<tr>
<td>Oleum Ethereum ((\text{Ph. L.}))</td>
<td>1</td>
</tr>
</tbody>
</table>

Properties; Characteristics; Composition. 1969
It would appear from this table that Hennell 1 must have analysed ethereal oil holding in solution carbo-hydrogen (etherine), and that he omitted to take into calculation the elements of water which this oil contains.

According to Serullas 2 and Liebig, 3 this oil is a double sulphate of oxide of ethyle (ether) and etherole (carbo-hydrogen).

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Or</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq. sulphuric acid</td>
<td>2</td>
<td>80</td>
<td>Sulphate of oxide of ethyle (ether)</td>
<td>1</td>
</tr>
<tr>
<td>1 eq. oxide of ethyle (ether)</td>
<td>1</td>
<td>37</td>
<td>Sulphate of etherole (carbo-hydrogen)</td>
<td>1</td>
</tr>
<tr>
<td>1 eq. etherole (carbo-hydrogen)</td>
<td>1</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Sulphate of Oxide of Ethyle and Etherole</td>
<td>1</td>
<td>145</td>
<td>Sulphate of Oxide of Ethyle and Etherole</td>
<td>1</td>
</tr>
</tbody>
</table>

Dumas, 4 however, regards it as true sulphatic ether (SO₃C₄H₅O), holding in solution variable quantities of carbo-hydrogen.

Physiological Effects.—These have not been determined. I gave fifteen drops to a small rabbit: death took place within an hour. The symptoms were indisposition to move, apparent tendency to sleep, followed by incapability of supporting the erect position, occasional convulsive movements, grating of the teeth, and insensibility. The body was opened immediately after death: the heart was still beating, and its right cavities were gorged with purple blood. Ethereal oil, therefore, acts on the nervous system in a somewhat analogous way to ether.

Uses.—Ethereal oil is used in the manufacture of the Spiritus Äetheris Compositus of the Pharmacopoeia.

"Dr. Hare," in his *Chemical Compendium*, "reports the opinion of Drs. Physick and Dewees in favour of the efficacy of the officinal oil of wine, dissolved in alcohol, in certain disturbed states of the system, as a tranquillising and anodyne remedy." 5

302. SPIRITUS ÄETHERIS NITRICI, L. E.—SPIRIT OF NITRIC ETHER, OR SWEET SPIRIT OF NITRE.

(Spiritus ætheranus nitrosus, D.—Hyponitrous ether, with four volumes of rectified spirit, E.)

History.—The first traces of this preparation are to be found in the writings of Raymond Lully, in the 13th century. 6 Basil Valentine, in the 15th century, taught a much improved method of preparing it. 7 Nitric ether was first mentioned by Kunkel, in 1651. 8 It has been known under various names, such as Dulcified Acid of Nitre (Acidum Nitri dulcificatum),

1 Philosophical Transactions for 1826, pp. 247-8.
3 Turner’s Elements of Chemistry, 7th edit. pp. 844 and 861.
5 United States Dispensatory.
6 Dalk, Die Preussische Pharmacopoei übers. und erläutert, 2er Th. S. 704, 2te Aufl. Leipz. 1830.
7 Ibid.
8 Thomson, System of Chemistry of Inorganic Bodies, 7th edit. ii. 317, 1831.
Preparation. — It is usually prepared by the action of nitric acid on rectified spirit at one operation, as in the process of the London College, which is that employed at Apothecaries' Hall, London. Or it may be procured by first preparing nitric [hypontrous] ether, and subsequently diluting this with rectified spirit, as in the process of the Edinburgh College.

1. Preparation of Hypontrous Ether. — Liebig¹ has lately given the following method of obtaining this compound in a state of purity: — "One part of starch, and ten parts of nitric acid, sp. gr. 1.3, are introduced into a capacious retort, which is connected by means of a wide tube, bent at right angles, with a two-necked bottle, so that the further end of the tube reaches to the bottom of the bottle. Into this bottle is introduced a mixture of two parts of alcohol at 85 p. c. and one part of water, and it is surrounded by cold water. The second aperture of the bottle is connected, by means of a long wide tube, with a good cooling apparatus or condenser. The starch and nitric acid are heated in the water-bath; pure hypontrous acid is disengaged, which, passing through the alcohol, instantly combines with the ether, forming hyponitrite of oxide of ethyle, which distils in a continuous stream. This process is very productive. By means of water, the new ether is purified from alcohol, and by standing over chloride of calcium it is freed from water. The tube which connects the retort with the two-necked bottle must have a length of two or three feet, and must be surrounded with moist paper during the operation. If the alcohol be not carefully cooled, it becomes spontaneously hot, and boils violently. From this moment the hyponitrite of ethyle is no longer pure."

The process of the Edinburgh College for the preparation of hypontrous ether is as follows: — Take of Rectified Spirit, 1/4, and 3/4;; Pure Nitric Acid (density 1.500) 43/4ij. Put fifteen fluidounces of the spirit, with a little clean sand, into a two-pint matras, fitted with a cork, through which are passed a safety-tube, terminating an inch above the spirit, and another tube leading to a refrigeratory. The safety-tube being filled with pure nitric acid, add through it gradually three fluidounces and a half of the acid. When the ebullition which slowly arises is nearly over, add the rest of the acid gradually, half a fluidounce at a time, waiting till the ebullition caused by each portion is nearly over before adding more, and cooling the refrigeratory with a stream of water, iced in the summer. The ether thus distilled over being received in a bottle, is to be agitated first with a little milk of lime, till it ceases to redden litmus paper, and then with half its volume of concentrated solution of muriate of lime. The pure hypontrous ether thus obtained should have a density of 0.899.

The theory of Liebig's process for making hypontrous ether is simple. Starch deoxidises nitric acid and evolves hypontrous acid [the nitrous acid of Graham and continental chemists]. This being conveyed into alcohol, combines with the oxide of ethyle of the latter, and disengages the water.

Hyponitrous ether is, however, usually prepared by the action of nitric acid on alcohol; as in the Edinburgh and Dublin processes. The reactions are then more complicated, but vary with the strength of the acid and the temperature. They essentially depend on the deoxidation of the nitric acid by the hydrogen and carbon of the ethyle of part of the alcohol. As hydrogen

¹ Turner's Elements of Chemistry, 7th ed. p. 848.
has more affinity than carbon for oxygen, it follows that in the earlier stages, and when reaction is moderate, it is the hydrogen of the ethyle which is oxidised by the oxygen of the nitric acid. Thus, when we employ a dilute acid, or moderate the reaction by cold, the products are aldehyde (hydrated oxide of acetylene), water, and hyponitrous ether. When, however, the reaction is more energetic, as when strong nitric acid is employed, and the temperature is not moderated, the carbon as well as the hydrogen of the ethyle is oxidised by the oxygen of the acid, and several products, besides those above mentioned, are then obtained. Carbonic (\(\text{CO}_2 \)) and oxalic (\(\text{C}_2\text{O}_3 \)) acids are formed by the oxidation of the carbon. Acetic (\(\text{C}_2\text{H}_4\text{O}_2 \)) and formic (\(\text{C}_2\text{H}_4\text{O}_2 \)) acids are also generated; "besides acetate and formate of ethyle" (Liebig). By the deoxidation of nitric acid there are obtained, besides hyponitrous acid already mentioned, nitrous acid, binoxide of nitrogen, protoxide of nitrogen, and nitrogen (Thénard).

2. Preparation of Spiritus Etherei Nitrici.—The processes of all the British Colleges differ from each other.

The London College orders of Rectified Spirit, lb. iii.; Nitric Acid, \(\frac{3}{4} \) iv. Add the Acid gradually to the Spirit, and mix; then let 32 fluidounces distil.

The Edinburgh College directs the pure hyponitrous ether (obtained by the process above detailed) to be mixed with the remainder (\(i.e., \text{I}_{\text{xxxj.}} \)) of the rectified spirit, or exactly four times its volume. Spirit of nitric ether ought not to be kept long, as it always undergoes decomposition, and becomes at length strongly acid. Its density, by this process, is 0.847.

The directions of the Dublin College are as follows:—Take of Rectified Spirit, two pints and eight fluidounces; Pure Nitric Acid, three fluidounces; Water, one ounce; Solution of Ammonia, a sufficient quantity: Place six ounces of the spirit in a glass matrass capable of holding a quart, and connect this with a Liebig's condenser, whose further extremity is fitted loosely by a collar of tow into a thin eight-ounce phial. Add now the water to the nitric acid, and, having introduced half of the resulting solution into the matrass, through a safety syphon tube, close the mouth of this tube with a cork, and apply for a few moments a gentle heat, so as to cause a commencement of ebullition. When the action (which, shortly after commencing, proceeds with much violence, and should be moderated by the external application of cold water) has relaxed, introduce gradually the remainder of the acid, so as to restore it. The action having entirely ceased, agitate the distilled product with half its bulk of the solution of ammonia, allow the mixture to rest for a few minutes, and, having separated the supernatant ethereal liquid, mix four ounces of it with the rest of the spirit, and preserve the product in small, strong, and accurately stopped bottles.

In the performance of the preceding distillation the condenser should be fed with ice-cold water, and the phial, in which the distilled liquid is received, should be surrounded by a mixture of one part salt and two of pounded ice; or, when ice cannot be procured, with a mixture of eight parts of sulphate of soda in small crystals and five of commercial muriatic acid.

At Apothecaries' Hall, London, this preparation is made in an earthenware still, with a condensing worm of the same material. The still is heated by the slow application of steam to its outer surface. The theory of the pro-

1 Acetylene, and the oxide of acetylene, are hypothetical substances. Aldehyde is regarded as the hydrate of the hypothetical oxide of acetylene.

3 Dr. Golding Bird (Loud. and Edinb. Phil. Mag. 1839, vol. xiv. p. 324) says, that while the ether distils, mixed with alcohol only, oxalhydric [saccharic] acid (\(\text{C}_2\text{H}_4\text{O}_4 \)), but no oxalic acid, is formed. He also states, that aldehyde is generated, but does not appear in the distilled liquid until the formation of ether has nearly or entirely ceased; the aldehyde and oxalic acid being nearly of simultaneous origin.
cess is essentially the same as that for preparing pure hyponitrous ether. The latter, when formed, distils over along with rectified spirit, and constitutes the Spiritus ætheris nitrici, Ph. L.

Properties. a. Of Hyponitrous Ether.—Pure hyponitrous ether, prepared by Liebig's process, is pale yellow, has a most fragrant smell of apples and Hungary wines, boils at 62°, and has the sp. gr. of 0.947 at 60°. It may be mixed with an alcoholic solution of potash without becoming brown (showing the absence of aldehyd); hyponitrite of potash and alcohol are formed. Impure hyponitrous ether, prepared by the ordinary processes, boils at 70° F., and has the sp. gr. 0.886 at 40°. Its smell is like that of the former, but at the same time suffocating. Mixed with an alcoholic solution of potash it becomes dark brown (showing the presence of aldehyd), with the production of resin of aldehyd. It is highly inflammable, burning with a bright flame. When kept it becomes acid, while nitric oxide gas is given off. This tendency to become acid is greater when air is admitted, and depends on the presence of aldehyd, which is oxidised by the oxygen of the air or of the hyponitrous acid. It is soluble in 48 parts of water, and miscible, in all proportions, with ether and alcohol (Liebig). The following is the composition of the pure hyponitrous ether:

<table>
<thead>
<tr>
<th>At.</th>
<th>Eq.Wt.</th>
<th>Theory</th>
<th>Demas ñ</th>
<th>Or, Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>32'00</td>
<td>32'69</td>
<td>Hyponitrous</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5</td>
<td>5</td>
<td>6'67</td>
<td>6'85</td>
<td>Acid</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
<td>42'67</td>
<td>41'46</td>
<td>Oxide of Ethyle</td>
<td>1</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>18'66</td>
<td>19'00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyponitrous Ether</td>
<td>1</td>
<td>75</td>
<td>100'00</td>
<td>100'00</td>
<td>Hyponitrite of Oxide of Ethyle</td>
<td>1</td>
</tr>
</tbody>
</table>

β. Of Spiritus Ætheris Nitrici.—Spirit of nitric ether is a colourless, limpid liquor, having a fragrant ethereal odour, somewhat analogous to that of ripe apples, and a pungent, aromatic, sweetish acidulous taste. Prepared according to the London Pharmacopœia, its sp. gr. should not exceed 0.834; but the preparation of the Edinburgh Pharmacopœia has a sp. gr. of 0.847. It is very volatile, producing much cold by its evaporation. It is very inflammable, and burns with a whitish flame. By keeping, it usually becomes strongly acid; though I have had some kept for several years which possessed only slight acidity. It dissolves in alcohol and water in all proportions. "Hyponitrous ether may be separated from the alcohol, water, and uncombined acid, which the preparation of the pharmacopœia contains, by digesting lime reduced to powder in it, and subjecting the mixture to distillation."

Characteristics.—It is principally distinguished by its peculiar odour, its inflammability, its lightness, and its miscibility with water. The spirit of nitric ether of the shops usually strikes a deep olive colour with the protosulphate of iron, thereby indicating the presence of binoxide or an acid of nitrogen; and produces, with tincture of guaiacum, a blue tint, which passes through various shades of green: this last effect depends on the presence

1 Mr. R. Phillips, Translation of the Pharmacopœia, 4th edit. Lond. 1841.
ORGANIC SUBSTANCES.—Spirit of Nitric Ether.

of an acid of nitrogen. These effects are not invariably produced; for in some spirit of nitric ether which I have had for several years they do not take place.

Composition.—Spirit of nitric ether is a mixture of [impure] hyponitrous ether and rectified spirit. Prepared according to the Edinburgh Pharmacopoeia, its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponitrous ether</td>
<td>1</td>
<td>0·886</td>
<td>20·9</td>
</tr>
<tr>
<td>Rectified spirit</td>
<td>4</td>
<td>0·883</td>
<td>79·1</td>
</tr>
<tr>
<td>Spiritus Ätheris Nitrici, Ph. Ed.</td>
<td>5</td>
<td>0·847</td>
<td>100·0</td>
</tr>
</tbody>
</table>

Purity.—Few articles of the pharmacopoeia are more extensively adulterated than spirit of nitric ether. To prove how great a fraud must be practised with it, I may mention that, in July 1840, Mr. Hennell informed me, that it was then selling in the trade at a price which was but just above that of the duty on the spirit used in manufacturing the genuine article. Wholesale dealers usually keep two, or even three, qualities of this preparation: the inferior ones being obtained by diluting the best with different quantities of water, or spirit of wine and water. Some years since large quantities of spirit of wine, flavoured with hyponitrous ether, were imported from Ireland into London, under the name of spirit of nitric ether, in order to evade the duty payable on it as spirit of wine. Aldehyd and an acid of nitrogen are accidental impurities frequently present. The goodness of spirit of nitric ether is to be estimated in part by an attentive examination of the flavour, and by taking the specific gravity of this liquid. Prepared according to the process of the London Pharmacopoeia, its density is 0·834. A free acid (an acid of nitrogen) may be recognised by litmus, and by the effervescence produced on the addition of the alkaline carbonates. The Edinburgh College gives the following characteristics of the purity of spirit of nitric ether:

"Density, 0·847: it effervesces feebly, or not at all, with a solution of bicarbonate of potash. When agitated with twice its volume of muriate of lime, 12 per cent. of ether slowly separates."

Two samples of spirit of nitric ether, prepared by Messrs. Howard and Co., of Stratford, I found to be 47·8 over proof, according to Sikes's hydrometer; indicating the sp. gr. to be about 0·85. But I failed to separate the hyponitrous ether by the use of a solution of muriate of lime, as directed by the Edinburgh College.

Physiological Effects. a. On Vegetables.—Its effects on plants have not been ascertained.

b. On Animals.—I am not acquainted with any experiments made to determine its effects on animals generally. Veterinarians employ it as a diuretic on various occasions, and as a stimulant in the advanced stages of fever, to rouse the exhausted powers of horses.¹

g. On Man.—The inhalation of its vapour is dangerous when too long continued, as is proved by the following case:—A druggist's maid-servant

¹ Youatt, The Horse, in the Library of Useful Knowledge.
was found one morning dead in her bed, and death had evidently arisen from
the air of her apartment having been accidentally loaded with the vapour of
this liquid from the breaking of a three-gallon jar of it. She was found
lying on her side, with her arms folded across the chest, the countenance and
posture composed, and the whole appearance like a person in a deep sleep.¹
The use of ether vapour in surgical operations has led to fatal results in
several instances. Taken as a liquid internally, in moderate doses, it operates
as a volatile stimulant and diuretic. According to the experiments of Alex-
ander, it acts mildly on the kidneys. It is believed to possess diaphoretic
properties. By some pharmacologists it is described as being refrigerant,
—a quality which it owes perhaps to the free acid which it usually contains.
I am unacquainted with the effects of large doses, but they are probably
analogous to, though less energetic than, those of other ethereal compounds.
Kraus² says, a boy twelve years of age took a drachm in the morning fasting,
and that it caused violent colic, which lasted for six hours, and was accompa-
nied with vomiting. Probably these effects arose from the preparation con-
taining a considerable quantity of free acid.

Uses.—It is employed as a diuretic in some disorders of children, and in
mild dropsical complaints, as in the anasarca which follows scarlatina. It is
given in conjunction with squills, acetate or nitrate of potash, or foxglove.
As a refrigerant and diaphoretic, it is used in febrile complaints in combina-
tion with the acetate of ammonia and emetic tartar. As a carminative it is
frequently useful in relieving flatulence and allaying nausea. On account of
its volatility it may be applied to produce cold by its evaporation. Spirit
dealers employ it as a flavouring ingredient.

Administration.—The usual dose of this liquid in febrile cases is f3ss. to
f3ij. or f3iij. When we wish it to act as a diuretic, it should be given in
large doses, as two or three tea-spoonfuls.

Antidotes.—In poisoning by the inhalation of the vapour of this com-
 pound, the treatment will be the same as that described for poisoning by
carbonic acid gas.

303. Æther Hydrochloricus.—Hydrochloric Ether.

History and Synonymes.—In the Edinburgh Pharmacopoeia for 1735,
was a preparation called Spiritus Salis dulcis. It was a solution of hydro-
chloric ether in rectified spirit. Very little, however, was known of the
properties of this ether till Gehlen published a dissertation on the subject, in
1804.³ This ether has had various appellations, such as Chlorhydric
Ether, Muriatic Ether, Marine Ether, and, hypothetically, Chloride of
Ethyle.

¹ Christison’s Treatise on Poisons.
² Heilmittellehre, S. 484, Götingen, 1831.
³ Thomson’s System of Chemistry of Inorganic Bodies, 7th edit. ii. 310, Loud. 1831.
PREPARATION.—It is best obtained by saturating alcohol with hydrochloric acid gas, and distilling, by means of a water-bath, into a carefully cooled receiver.

By the reaction of one equivalent or 37 parts of hydrochloric acid (HCl) on one equivalent or 46 parts of alcohol (C\(^4\)H\(^5\)O + H\(_2\)O), we obtain one equivalent or 65 parts of hydrochloric ether (C\(^4\)H\(^5\)Cl) and two equivalents or 18 parts of water (2H\(_2\)O).

PROPERTIES.— Hydrochloric ether is a colourless liquid, having a penetrating odour, and a taste somewhat sweetish. Its sp. gr. is 0'874 at 40° F. It boils at 51° F. This great volatility prevents its being kept in the shops. When pure it is quite neutral, dissolves in about 24 parts of water, does not precipitate nitrate of silver, and burns with a flame edged with green, producing vapours of hydrochloric acid. By the slow action of hydrate of potash on it, chloride of potassium and alcohol are formed.

Its composition is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>36-92</td>
<td>Ethyle</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5</td>
<td>5</td>
<td>7-69</td>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1</td>
<td>36</td>
<td>55-38</td>
<td>Chloride of Ethyle</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>Hydrochloric Ether</td>
<td>1</td>
<td>65</td>
<td>99-99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSIOLOGICAL EFFECTS AND USES.—It is a highly diffusible stimulant, like the other ethers, but is rarely employed alone; though it has been used as an antispasmodic.

SPIRITUS ÄETHERIS HYDROCHLORICI; Äther Muriaticus Alcoholicus; Spiritus Muriatico-Äthericus; Spiritus Salis dulcis; Spirit of Hydrochloric Ether; Spirit of Muriatic Ether; Dulcisified Marine Acid.—In the Edinburgh Pharmacopoeia for 1735, this was ordered to be prepared by adding one part of muriatic acid to three parts of rectified spirit, digesting for some days, and then distilling by a sand heat. Or it may be prepared by dissolving hydrochloric ether in an equal volume of rectified spirit. Liebig says, that the spiritus muriatico-ethericus, used on the continent, contains heavy muriatic ether, the composition of which is not known. The action of spirit of muriatic ether seems to be similar to that of spirit of nitric ether. A scruple of it thrown into the veins of a buck augmented the renal secretion. An ounce and a half injected into the jugular vein of a dog, coagulated the blood, caused difficulty of breathing, and death. It has been used in dyspeptic affections connected with hepatic obstructions. In hectic fever, Berends found its continued use beneficial. The dose of it is f\(_{5j}\). to f\(_{5iiij}\).

1 Lanzoni, quoted by Wibmer, Die Wirkung, &c. Bd. i. S. 56.
2 Freind, quoted by Wibmer.
304. AETHER ACETICUS.—ACETIC ETHER.

History.—It was discovered by Count de Lauraguais, in 1759.1

Preparation.—It is prepared by submitting to distillation a mixture of 16 parts of dry acetate of lead, 4½ of alcohol, and 6 of oil of vitriol; or 10 parts of crystallised acetate of soda, 15 of oil of vitriol, and 6 of alcohol, at 80 or 85 per cent. The product is rectified with slaked lime and chloride of calcium, to remove acid and water; and a quantity of acetic ether, equal in weight to the alcohol, is obtained (Liebig.)

Properties.—Acetic ether is colourless, and has an agreeable odour of acetic acid and ether. Its sp. gr. is 0·89 at 60°. It boils at 165°. It is soluble in 7 parts of water, and mixes with alcohol and ether in every proportion. Oil of vitriol resolves it into ether and acetic acid.

Composition.—The composition of this ether is as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>8</td>
<td>48</td>
<td>Ethyle</td>
<td>1</td>
<td>29</td>
<td>32·95</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>8</td>
<td>8</td>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>9·1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
<td>Acetic acid</td>
<td>1</td>
<td>51</td>
<td>57·95</td>
</tr>
</tbody>
</table>

Acetic Ether 1 88 100·00 Acetate of the Oxide of Ethyle 1 88 100·00

Physiological Effects and Uses.—Acetic ether is not used in medicine in this country. On the continent, however, it is occasionally employed. It is somewhat similar in its operation to the other ethers; but is milder, more agreeable, and more diaphoretic. It is used in nervous and putrid fevers, in cardalgia, spasmodic vomiting, and asthenic affections of the stomach and alimentary canal.2 Dose, f5ss. to f3ij.

305. CHLOROFORMYL, L.—CHLOROFORM, OR TERCHLORIDE OF FORMYLE.3

Chloroformum, D.

History.—The term chloric ether was applied by Dr. T. Thomson4 to the liquid formed by the union of equal volumes of chlorine and olefiant gas, and which is described in different chemical works under the name of chloride of olefiant gas, or the Dutch liquid. The formula of this liquid is C₄H₄Cl₂. In 1831, Mr. Guthrie, an American chemist, was led to attempt a cheap and easy process for preparing it, by a statement in Silliman’s Elements of Chemistry, that the alcoholic solution of chloric ether was a grateful and diffusible stimulant. His process was as follows:5—

"Into a clean copper still put three pounds of chloride of lime and two gallons of well-flavoured alcohol, of sp. gr. 0·844, and distil. Watch the process, and when the

1 Thomson, op. supra cit.
2 Sundelin, op. supra cit.
3 This article has been partly drawn up from a paper published by the author in the Pharmaceutical Journal for March 1846, vol. v. No. ix.
4 System of Chemistry, 6th edit. 1820.
product ceases to come over highly sweet and aromatic, remove and cork it up closely in glass vessels. The remainder of the spirit should be distilled off for a new operation. These proportions are not essential—if more chloride of lime be used, the ethereal product will be increased; nor is it necessary that the proof of the spirit should be very high, but I have commonly used the above proportions and proof, and have every reason to be satisfied with them. From the above quantity I have usually obtained about one gallon of ethereal spirit.”

Both Guthrie and Silliman erroneously believed the liquid thus obtained to be an alcoholic solution of the chloride of olefant gas, and hence they termed it chloric ether. In 1831, Soubeiran\(^1\) submitted to distillation a mixture of chloride of lime and alcohol, and examined the distilled product. He found it to consist of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>14.39</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2.35</td>
</tr>
<tr>
<td>Chlorine</td>
<td>83.26</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

The atomic composition which he gave for this liquid was, when reduced to the English mode of calculation, CHCl; or C\(^4\)H\(^4\)Cl\(^4\). He termed the liquid bichloric ether, because it contains, as he says, twice as much chlorine as is contained in the chloride of olefant gas. In 1832, Liebig\(^5\) examined the product obtained by submitting to distillation, in a capacious retort, diluted alcohol and chloride of lime. He analysed the distilled product, but failed to detect hydrogen in it. According to his experiments, the compound consisted of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>12.6523</td>
</tr>
<tr>
<td>Chlorine</td>
<td>88.18</td>
</tr>
<tr>
<td></td>
<td>100.8323</td>
</tr>
</tbody>
</table>

The formula which he deduced from this analysis was C\(^4\)Cl\(^5\), and he called the liquid chloride of carbon.

In 1834, Dumas\(^3\) examined this liquid. He showed that Soubeiran had not obtained it pure, and that Liebig had made an error with regard to its composition. From his analysis of the pure liquid, he deduced the following as its real formula: C\(^2\)HCl\(^3\). On account of the relation of its composition to that of formic acid, C\(^2\)H\(^2\)O\(^3\), the oxygen being replaced by three equivalents of chlorine, Dumas denominated this liquid Chloroform. Liebig has admitted the accuracy of Dumas’s analysis by adopting his formula of the composition of this liquid. He has, however, discarded Dumas’s name for this substance, and adopted that of the chloride or perchloride of formyle (Formyl-chlorid). Thus, then, it appears that the liquid now used in medicine under the names of chloric ether and terchloride of carbon, is altogether different from the chloride of olefant gas, to which the name of chloric ether was originally applied. Both of these names (chloric ether and terchloride of carbon) have been given to it from erroneous notions entertained of its nature and composition.\(^4\)

[Preparation.—This compound, the vapour of which is so largely em-

ployed for anaesthetic purposes in surgical and obstetric practice, has been introduced into two of the Pharmacopoeias, both of which contain formulæ for its preparation.

The directions of the London College are as follows:—Take of Chlorinated Lime, lb. iv.; Rectified Spirit, Oss.; Water, Ox.; Chloride of Calcium, broken into pieces. 3j. Put the lime first mixed with the water into a retort, and add the spirit to them, so that the mixture may fill only the third part of the retort. Then heat them in a sand-bath, and as soon as ebullition begins, withdraw the heat as quickly as possible, lest the retort should be broken by the sudden increase of heat. Let the liquid distil into the receiver so long that there may be nothing which subsides, the heat being reapplied if necessary. To the distilled liquid add a quarter of the water, and shake them all well together. Carefully separate the heavier portion which subsides, and add the chloride to it, and frequently shake them for an hour. Lastly, let the liquid distil again from a glass retort into a glass receiver.

The Dublin College gives the following formula:—Take of Chlorinated Lime, lb. x.; Fresh-burned Lime, lb. v.; Water, Cong. iv.; Rectified Spirit, 3xxv.; Peroxide of Manganese, in fine powder, 3j. Shake the lime with a quart of the water, first raised to the boiling temperature, and, having placed the slaked lime and the chlorinated lime in a sheet iron or copper still, pour on the residue of the water first mixed with the spirit, and raised to the temperature of 100°. Connect now the still with a condenser, and apply heat, which, however, must be withdrawn the moment the distillation commences. The distilled product, the bulk of which need not exceed a quart, will occur in two distinct strata, the lower of which is the crude chloroform. Let this be agitated twice in succession, with an equal volume of distilled water, and then in a separate bottle with half its volume of pure sulphuric acid. Lastly, let it be shaken in a matrass with the peroxyde of manganese, and rectified from off this at a very gentle heat. The specific gravity of chloroform is 1496. The lighter liquid which distils over with the chloroform, and the water used in washing the latter, should be preserved with the view of their being introduced, with a new charge, into the still in a subsequent process.

Properties.—It is a transparent, colourless liquid, having a sp. gr. of 1·48 L., or 1·496 D. It boils at 140°, and the density of its vapour is 4·2. It has a fragrant, ethereal, apple-like odour, and an ethereal, slightly acid, but sweet taste. It is readily dissolved by alcohol and ether, but requires 2000 parts of water to dissolve it, to which it imparts its peculiar odour. It is a powerful solvent, dissolving readily camphor, caoutchouc, wax, resins, and iodine. It is not inflammable, but communicates a dull, smoky yellow flame to alcohol.

Composition.—Its formula is well ascertained to be C₃H₇Cl₃.

Adulterations.—It may contain alcohol or ether,—a fact indicated by a corresponding alteration in its sp. gr. Sulphuric acid may be detected in it by adding a solution of a salt of baryta to water with which it has been shaken. Chloroform itself is neutral, and should have no acid reaction.

Physiological Effects.—In medicinal doses chloroform is a stimulant, sedative, antispasmodic, and anaesthetic. In large doses it causes profound coma and death. In man it has been observed to cause excessive depression of the heart's action, and in persons affected with disease of this organ ordinary doses have on several occasions proved fatal.

Administration.—Chloroform is seldom taken as a liquid; the dose is from five to ten minims, mixed with water and a little mucilage. The dose for inhalation of the vapour is from 3j. to 5ij. Dr. Simpson, however, has used as much as eight fluidounces in thirteen hours, in a case of labour. Its administration requires great care, and some experience on the part of the practitioner.
Uses.—Chloroform is now chiefly used as an agent for obtaining insensibility to pain during operations, and is therefore to be regarded more especially as an adjuvant to surgery. Before noticing the general history of its application in the above-mentioned manner, it may be well to state that it has also been used with advantage as a substitute for the ethers, and found to possess equal efficacy as a stimulant and antispasmodic. The form in which it has been ordinarily exhibited is in admixture with rectified spirit; and it is sold in the shops in this diluted condition under the name of chloric ether. This is a most improper appellation, inasmuch as the term chloric ether is understood by chemists to refer to an oil-like fluid, formed by the reaction of chlorine upon olefiant gas (see p. 1977). This solution of chloroform is for the most part made by adding one part of that fluid to nine parts of rectified spirit, the dose for an adult being from \(\eta \)xx. to \(\eta \)xI. two or three times a day. It may be used as a substitute for the sulphuric ether in all cases requiring an antispasmodic and stimulant remedy; and as its flavour is preferred by most persons to that of the ethereal preparations, it may be advantageously prescribed where objection is made to the latter form of stimulant.

With respect to the mode of using chloroform as an anaesthetic agent, by introducing it into the circulation during the respiratory process, experience has shown that this can only be done with any degree of safety by allowing the vapour to be admixed with atmospheric air in considerable proportion before it is taken into the lungs. This is effected by a variety of contrivances. The principle on which the earlier instruments for inhaling were constructed, was to close the nasal aperture by a spring clasp, and so to insure the admission of atmospheric air merely to the extent it might please the operator to permit by the mouth. The best instruments now in use are, however, constructed so as to allow the vapour to pass both by the nose and the mouth into the lungs, the patient being made to breathe through a mask. The form recommended by Dr. Snow, who has paid great attention to this subject, is figured in the accompanying woodcut, for which we are indebted to Dr. Snow. The mask is of simple construction, and is fixed to an inhaler of Dr. Snow's invention, which enables the operator to adjust the proportion of chloroform vapour to atmospheric air. The directions for use, which are appended to the description of the inhaler, will enable the reader at once to understand the principle of its action. If from two to three drachms of chloroform be used, the air respired will contain from 5 to 6 per cent. of vapour of chloroform; and this is considered by Dr. Snow to be a safe proportion.

The important observations made by Dr. Snow with respect to the action of chloroform on the lower animals, as well as the facts he has collected with regard to the deaths which have taken place in the human subject while chloroform was being inhaled, seem to have determined the following points very satisfactorily:—

1stly. Chloroform vapour, if it be inhaled in large proportion with atmospheric air, destroys life by paralysing the heart.

2dly. In smaller proportions, but long continued, it produces death apparently by the brain, and by interfering with the respiratory function. In such cases the heart is found to beat after respiration has ceased.

3dly. Chloroform vapour, if it be blown upon the heart, paralyses it immediately.
Apparatus for Administration.

Fig. 384.

Directions for use.—Unscrew the outer cylinder, and put into it as much water as will fill it when replaced: about 60° F. is the most suitable temperature for the water. Having replaced the

1. Outer case, containing water-bath, screwed on—b. Cylindrical vessel, into which the chloroform is put: it is lined with a coil or two of bibulous paper up to the point c. d. A cylindrical frame which screws into b: it has apertures at the top for the admission of air, and its lower two-thirds are covered with a coil or two of bibulous paper, which touches the bottom of the vessel b, except where the notches, e, are cut into it. f. Elastic tube. g. Expiratory valve of face-piece: the dotted lines indicate the position of this valve when turned aside for the admission of air not charged with vapour. h. Inside view of face-piece, pinched together at the top to adapt it to a smaller face. i. Inspiratory valve.

1 Direction for use.—Unscrew the outer cylinder, and put into it as much water as will fill it when replaced: about 60° F. is the most suitable temperature for the water. Having replaced the...
4thly. Atmospheric air, loaded with from 4 to 5, or even 6 per cent. of chloroform vapour, may be safely administered, inasmuch as that mixture will not act directly upon the heart, but will give timely notice of its increasing effects in modifying the normal discharge of the functions of life. The average time occupied in producing insensibility is from three to four minutes.

5thly. The proportion of as much as from 8 to 10 per cent. of vapour of chloroform to atmospheric air is a dangerous mixture, as it suddenly charges the blood going into the heart with a poison capable of acting directly on that organ.

From the above statement it would appear probable that many, if not all, the deaths which have so unfortunately occurred from the use of chloroform, have been the result of the too sudden administration of the vapour, and that in many cases much more than that quantity which caused dissolution might have been safely taken, had it been administered in a more diluted form.

To the experience of Dr. Snow, and the solid nature of his reasoning on this subject, we find opposed many very bold statements. Thus it has been recommended as the safest plan, to give the chloroform in large doses at once, and bring about anaesthesia as rapidly as can be effected. It is scarcely possible, however, after due consideration, to come to any other conclusion than that there has been more good luck than good management attending the practice of those gentlemen who act in direct opposition to rules laid down in accordance with the best results of careful experiment and accurate reasoning. Notwithstanding, however, that the knowledge we now possess may enable us, with due care, to protect from death healthy persons who inhale chloroform, it must be remembered that fatal cases must be expected in certain diseased conditions, even when every precaution has been taken. Thus it cannot be doubted, that where the heart is affected either with extensive disease of its component structures or of its valvular appliances, the dose of chloroform which might be perfectly safe in health may in such cases produce a fatal result. This remark especially applies where the heart is weakened either by fatty degeneration or fatty deposit, or where atrophy of its tissue and thinning of the walls of the organ have, to any considerable extent, lessened its muscular power. It unfortunately happens, too, that these conditions, and especially the former, are not always easily ascertainable during life. Again, we may expect that lesion of the brain, of an obscure character, may sometimes render the inhalation hazardous.

On the whole, then, even with every precaution, it would seem that to give chloroform to induce anaesthesia is to introduce an additional element of danger during an operation. Experience has shown that this amount of danger is but very small; and therefore, when every care is taken, and no
obvious disease can be detected in the internal organs of the patient, it may sometimes be justifiable to recommend the inhalation of chloroform, in order to secure the patient from suffering.

Antidotes.—When too strong an effect is produced by the vapour, the patient should be placed in a horizontal posture, and cold affusion, with artificial respiration, should be resorted to.—Ed.]

306. ACIDUM ACETICUM, L. E. D.—ACETIC ACID.

History.—Vinegar must have been known from the most remote periods of antiquity. It is mentioned, by Moses, 1 1490 years before Christ. Hippocrates 2 employed it (ακον) medicinally. Hannibal, in his passage over the Alps, is said to have softened the rocks by fire and vinegar. 3 Geber 4 was acquainted with the purification of vinegar by distillation. Stahl, in 1723, obtained concentrated acetic acid from the acetates by the action of sulphuric acid. 5

Natural History.—Acetic acid is peculiar to the organised kingdom. Acetic acid, free, or combined with potash, lime, or ammonia, is met with in the juices of many plants. Thus Vauquelin found the acetates of potash and lime in the sap of the elm; and Morin detected acetate of ammonia in the fruit of Areca Catechu. Many vegetable substances yield it by decomposition. Acetic acid is said to have been detected in the gastric juice, the perspiration, the urine, the milk, and the blood. It is probable, however, that in most, if not all, of these cases, lactic acid was mistaken for acetic acid.

Gmelin 6 says, acetic acid has been found in some mineral waters. If the observation be correct, the acid is probably to be referred to some decomposing organic matter accidentally present in the water. Geiger 7 states, that acetate of potash is found in some mineral waters.

Preparation.—The acetic acid of commerce is obtained from two sources—v vineger, and pyroligneous acid: the first is procured by exciting the acetous fermentation in certain liquors, the other by the distillation of wood.

1. Acetous Fermentation.—All liquids which are susceptible of vinous fermentation may be made to yield vinegar. A solution of saccharine matter (or some substance capable of producing sugar) is the essential ingredient. It is converted, by fermentation, first into alcohol, and subsequently into acetic acid. The liquids employed in the manufacture of vinegar vary according to circumstances. In this country the vinegar of commerce is obtained from an infusion of malt, or of a mixture of malt and

1 Numbers, vi. 3.
2 De Natura Multibri.
3 Livy, c. 37.—Polybius, however, from whom Livy has borrowed the greater part of his narrative, does not mention the use of vinegar. See some remarks on this subject in A Dissertation on the Passage of Hannibal over the Alps, p. 107, Oxford, 1820.
4 Investigation of Perfection, ch. iii.
5 Dulk, Die Preussische Pharmak. übers. und erläutert, 2ter Th. S. 123, 2te Aufl. Leipz. 1830.
7 Handb. d. Pharm. Bd. i. S. 601, 3te Aufl.
raw barley. In wine countries it is procured from inferior wines. Dilute spirit, beer, a solution of sugar, and other liquids, are also susceptible of the acetic fermentation.

1. Malt Vinegar (Acetum, L.; Acetum Britannicum, or British Vinegar, E.)—This is prepared from malt, or a mixture of malt and raw barley, which is mashed with hot water, as in the ordinary operation of brewing. The cooled wort is then transferred to the fermenting tun, where it is mixed with yeast, and undergoes the vinous fermentation. The wash is then introduced into barrels standing endways, tied over with a coarse cloth, and placed close together in darkened chambers, artificially heated by a stove. Here the liquor remains until the aceto-susceptible fermentation is complete. This process usually occupies several weeks, or even months. The product is not yet fit for sale. It is introduced into large tuns furnished with false bottoms, on which is placed rape (the residuary fruit which has served for making domestic wines). These rape-tuns are worked by pairs; one of them is quite filled with the vinegar from the barrels, and the other only three-quarters full, so that the fermentation is excited more easily in the latter than the former, and every day a portion of the vinegar is conveyed from one to the other, till the whole is completely finished, and fit for sale. Green twigs, or fresh cuttings of the vine, recommended by Boerhaave, are sometimes employed, instead of rape, to flavour vinegar. Formerly acetification was effected by placing the wash in barrels, the bung-holes of which were loosely covered with tiles. These barrels were then exposed to the sun and air for several months, until the acetification was perfect. But the introduction of stoved chambers has nearly superseded this method.

Malt vinegar has a yellowish-red colour, an agreeable acid taste, which it owes to acetic and partly to sulphuric acid, and a peculiar refreshing pleasant odour, which it derives from acetic acid and acetic ether. Vinegar of four different degrees of strength is sold by the makers, and are distinguished as Nos. 18, 20, 22, and 24: the latter, which is the strongest, is also called proof vinegar, and is estimated to contain 5 per cent. of real acetic acid; but, according to Mr. Phillips, it does not usually contain more than 4.6 per cent. One fluidounce (= 446 grs.) of the latter strength should saturate very nearly 58 grs. of crystallised carbonate of soda. In the London Pharmacopoeia it is stated that one fluidounce should saturate 60 grs. of crystallised carbonate of soda: the two grains extra being “allowed for saturating the sulphuric acid permitted to be mixed with vinegar, and for decomposing the sulphates of the water used in vinegar-making.” The Edinburgh College fixes the density of British vinegar at from 1.006 to 1.012; but it is usually higher than this. Mr. Phillips found it, in one sample obtained from a respectable source, to be 1.019. Dr.

1 The proper temperature is usually stated to be about 80° F.; but I suspect a much higher temperature is employed. I found the heat of one of these chambers so great, that I was unable to support it beyond a few minutes. The proprietor of the establishment (one of the largest vinegar works in the metropolis) refused to allow me to inspect the thermometer hanging up in the chamber.

2 For further information on this subject, consult Aikins’ Dictionary of Chemistry, vol. ii. p. 468, Lond. 1807; and Donovan’s Domestic Economy, vol. i. 1830, in Lardner’s Cabinet Cyclopædia.

3 Mr. R. Phillips, Translation of the Pharmacopoeia, 4th edit. p. 51, Lond. 1841.

T. Thomson found it to vary from 1.0135 to 1.0251. Vinegar is very liable to undergo decomposition: it becomes turbid, loses its acidity, acquires an unpleasant odour, and deposits a slippery gelatiniform substance. The mucilaginous coat or skin which forms on the surface of vinegar, and is called the mother of vinegar, appears to consist of myriads of exceedingly minute vegetables, having a globular form. The surface of vinegar is frequently covered by mouldiness (Mucor Mucedo). The microscopic animals, called Vinegar Eels (Anguillula Aceti), are generated and nourished in vinegar. They may be destroyed by submitting the liquid in which they are contained to heat. Vinegar is also infested by a small fly (Musea cellaris).

Malt vinegar consists of water, acetic acid, acetic ether, colouring matter, a peculiar organic matter, commonly denominated mucilage, a small portion of alcohol, and sulphuric acid. Vinegar-makers are allowed to add one-thousandth part by weight of sulphuric acid. This may be detected by a solution of chloride of barium, which forms a white precipitate (sulphate of baryta), insoluble in nitric acid. The quantity of sulphate of baryta thrown down from a fluidounce of vinegar, by the addition of solution of chloride of barium, should not exceed 1.14 grains. If the vinegar be free from copper, lead, tin, and other metallic matter, it yields no precipitate on the addition of hydrosulphuric acid (sulphuretted hydrogen). The presence of hydrochloric acid may be recognised by nitrate of silver, which produces a white precipitate (chloride of silver) with it, insoluble in nitric acid. The presence of nitric acid in vinegar may be recognised by boiling this liquid with indigo, which is rendered yellow by nitric acid. Or it may be detected by saturating the suspected acid with potash or soda, and evaporating to dryness: the residue deflagrates, when thrown on red-hot coals, if nitric acid be present. The following is the note appended to the Acetum (P.L.), which is now removed to the Materia Medica by the London College:—Reddish-brown, with a peculiar odour; specific gravity 1.019. An ounce is saturated by a drachm of crystals of carbonate of soda. No further precipitation can be effected by the addition of chloride of barium to the vinegar, after ten minutes of the solution of the chloride have been added, and the liquor filtered. Its colour is not changed by hydrosulphuric acid.

2. Wine Vinegar (Acetum Gallicum, or French Vinegar, E. D.)—In wine countries, vinegar is obtained from inferior wines. In France, wine vinegar is prepared in casks, which are placed in a stoved chamber, heated to between 68° and 77° F. Each vat communicates with the air by two apertures. Every eight or ten days the liquor in the vats must be changed. Either red or white wine may be used, but the latter is generally employed.

Wine vinegar is of two kinds, white and red, according as it is prepared.

1 See Keitzing, in the Répertoire de Chimie, iii. 263, Paris, 1838.
2 See some remarks on these animalcules by Professor Owen, in the Cyclopædia of Anatomy and Physiology, ii. 113, Lond. 1839.
3 The Edinburgh College states, that "in four fluidounces [of British vinegar] complete precipitation takes place with thirty minims of solution of nitrate of baryta;" but Mr. Phillips (Lond. Med. Gaz. Aug. 3, 1839) has shown, that more than three times this quantity of nitrate is required.
from white or red wine. *White wine vinegar* is usually preferred, as it keeps better. That which is made at Orleans is regarded as the best. According to the Edinburgh Pharmacopoeia, its density varies from 1.014 to 1.022. A sample of it, examined by Mr. Phillips, had a density of 1.016; and 100 minims of it saturated nearly 14 grains of crystallised carbonate of soda, while an equal quantity of English vinegar, exclusive of the sulphuric acid which it contains, saturated little more than 12 grains; consequently, the French is stronger than the English vinegar by nearly one-sixth. The constituents of wine vinegar are very similar to those of malt vinegar. It contains a small quantity of bitartrate and sulphate of potash. Both these salts occasion precipitates with barytic solutions: but that produced by the bitartrate is soluble in nitric acid. The Edinburgh College states that "ammonia, in slight excess, causes a purplish muddiness, and slowly a purplish precipitate. In four fluidounces, complete precipitation takes place with 30 minims of solution of nitrate of baryta," *Ph. Ed.* But Mr. Phillips has shown that this quantity of nitrate is more than twice as much as is requisite.

3. Improved, German, or Quick Method of Vinegar-making.—As acetification is essentially the oxidation of alcohol, the German chemists have contrived an improved method of effecting it, by which the time necessary to the production of vinegar is greatly curtailed. It consists in greatly enlarging the surface of the liquid exposed to the air.

This is effected by causing a mixture of one part of alcohol at 80 per cent., four to six parts water, $\frac{1}{1000}$ of ferment, honey, or extract of malt, to trickle down through a mass of beech shavings steeped in vinegar, and contained in a vessel called a *Vinegar Generator* (*Essigbild*) or *Graduation Vessel*. It is an oaken tub, narrower at the bottom than at the top, furnished with a loose lid or cover, below which is a perforated shelf (colander or false bottom), having a number of small holes, loosely filled with packthread about six inches long, and prevented from falling through by a knot at the upper end. The shelf is also perforated with four open glass tubes, as air vents, each having their ends projecting above and below the shelf. The tub, at its lower part, is pierced with a horizontal row of eight equidistant round holes, to admit atmospheric air. One inch above the bottom is a syphon-formed discharge pipe, whose upper curvature stands one inch below the level of the air-holes in the side of the tub. The body of the tub being filled with beech chips, the alcoholic liquor (first heated to between 75° F. and 83° F.) is placed on the shelf. It trickles slowly through the holes by means of the packthreads, diffuses itself over the chips, slowly collects at the bottom of the tub, and then runs off by the syphon pipe. The air enters by the circumferential holes, circulates freely through the tub, and escapes by the glass tubes. As the oxygen is absorbed, the temperature of the liquid rises to 100° or 104° F., and remains stationary at that point while the action goes on favourably. The liquid requires to be passed three or four times through the *cask* before acetification is complete, which is in general effected in from twenty-four to thirty-six hours.

Theory of Acetification.—A remarkable distinction between the acetous and vinous fermentation is, that for the former to be perfectly established, the presence of atmospheric air (or of oxygen) is essential, while for the latter this is not necessary. During the acetous fermentation the alcohol is converted into acetic acid, by the absorption of atmospheric oxygen. One equivalent or 46 parts of alcohol, with four equivalents or 32 parts of atmospheric oxygen, contain the elements of one equivalent or 51 parts of anhydrous acetic acid, and of three equivalents or 27 parts of water; or one equivalent or 60 parts of hydrous acetic acid, and two equivalents or 18 parts of water, as represented in the following equation, \[C_4H_6O_2 + O_2 = 3HO + C_4H_3O_3\] or \[2HO + C_4H_3O_3 + HO\.

According to Liebig, however, the transformation of alcohol into acetic acid is not immediate and direct. The atmospheric oxygen first oxidizes part of its hydrogen, forming water and aldehyd \((C_4H_4O_2)\); and the latter absorbing oxygen, is converted into acetic acid.

The student will observe that the theory of acetification above given does not account for the evolution of carbonic acid during the process, and which is generally considered to be an accidental result of continued vinous fermentation, and not essential to the formation of acetic acid.

2. By the Destructive Distillation of Wood.—By the destructive distillation of the hard woods (oak, beech, hornbeam, ash, and birch), in iron cylinders, an impure acid, called Pyroligneous Acid, is obtained. The woods should be dried during several months. The lighter woods, as fir, and old ship timber, do not pay to distil, as the acid product is too weak. Sometimes the still is a cast-iron cylinder, placed horizontally in a furnace, the fire of which plays around the cylinder, as in fig 386. Another form of still is used at a large manufactory in the neighbourhood of London. It is a short cylinder of large diameter, placed upright in the furnace. The wood, cut up into convenient lengths, is introduced into wrought-iron canisters, in each of which is a hole, to allow of the escape of volatile matters. By the aid of a crane, these canisters are raised and deposited in the cylindrical still, the top of which is then carefully closed and made air-tight by luting. The still communicates with a large iron pipe which passes successively through two tanks of cold water, in which it is variously convoluted, and terminates in an underground reservoir, where tar and an acid liquor are deposited. The incondensible products are carbonic acid and some inflammable gases (carbonic oxide, light carburetted hydrogen, and olefiant gas), which escape. When no more volatile matter comes over, the still is opened, and the canisters being removed while still hot, the apertures in them are carefully closed by damp sand, to exclude air.

The tar obtained by the above process yields, on distillation, oil of tar, and a residuum called English asphalt, or pitch. The acid liquor, which rests on the tar in the reservoir, consists of acetic acid, water, tar, and pyroxylic spirit. A light tarry matter usually floats on the top of it. By means of a pump, the acid liquor is raised and introduced into a copper still,
where it is subjected to distillation. The first runnings contain pyroxylic spirit. After this has come over, an impure dilute acetic acid, called pyroligneous acid, distils over. The residue in the retort is English asphalt, or pitch.

The pyroligneous acid thus obtained is mixed with cream of lime, and the mixture evaporated to dryness in shallow wrought-iron pans, when it forms a greyish mass, called pyrolignite of lime. If this be submitted to distillation with sulphuric acid, it yields an impure acetic acid, which is used in the manufacture of acetate of lead, and for making carbonate of lead by the Dutch process. If pyrolignite of lime be mixed with a solution of sulphate of soda, double decomposition is effected, and sulphate of lime and acetate of soda are the products. The latter is repeatedly crystallized until it is colourless, and is then in a fit state for the manufacture of pure concentrated acetic acid. [In some manufactories the acid liquor, after the separation of the greater part of the tar, by subsidence, is at once neutralized by carbonate of soda, and the crude acetate of soda is obtained by crystallization, and subsequently purified.—Ed.]

1. Pyroxylic Spirit; Pyrolygneous Ether; Hydrate of Oxide of Methyl; Bikhydrate of Methyrene.—Sometimes, but improperly, termed Naphtha. The first runnings of the distillation of the acid liquor above referred to, are redistilled once or twice, and the product is sold under the name of pyrolygneous ether. It is an impure liquor, containing, besides hydrate of the oxide of methyl, acetone and other inflammable liquors. It is employed by chemists as a substitute for spirit of wine for burning in lamps, and by haters and varnish-makers for dissolving resinous substances. Drs. Babington and Rees ¹ have suggested its use for the preservation of subjects for anatomical purposes. The spirit is to be injected into the aorta, the rectum, and the peritoneum. It was tried at the London Hospital, but the smell arising from the spirit was so intolerable, that, even if there were no other objections to its use, this alone would be fatal to it. Pure pyroxylic spirit is obtained by introducing it into a retort with excess of chloride of calcium, and distilling the mixture by a water-bath, as long as volatile matter passes off. A quantity of water, equal to the spirit employed, is then added, and the distillation continued. The product is now pure pyroxylic spirit, carrying along with it a little water, which is removed by a second distillation with quicklime (Liebig). Pure pyroxylic spirit is a very mobile, colourless, inflammable liquid, which has a peculiar odour, somewhat resembling that of alcohol and acetic ether. It boils at 150°F. It dissolves many resins, mixes with most essential oils, and forms crystalline compounds with baryta, lime, and chloride of calcium. Its composition is as follows:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Or, Atoms</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
<td>Oxide of Methyl</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4</td>
<td>4</td>
<td>Water</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>Hydrate of Oxide of Methyl</td>
</tr>
</tbody>
</table>

Pyroxylic Spirit... 1 32

Or, C₃H₅O + HO.

Methyl (C² H²) is the hypothetical radical of pyroxylic spirit.
Oxide of Methyl, or Methyllic Ether (C₃H₅O) is a colourless gas.
The repeated use of small quantities of pyroxylic spirit caused colicky pains, and acted as an antihelmintic.²

2. Eblanin; Pyroxanthine; Pyroxylene.—This substance was obtained by Seanlan from raw pyroxyline spirit. It is a crystalline substance, of an orange red colour. Oil of vitriol dissolves it, and assumes a reddish blue colour. Concentrated hydrochloric acid also dissolves it, and acquires an intense purple colour.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>21</td>
<td>126</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
</tr>
</tbody>
</table>

| Eblanin | 1 | 167 | 100.00 |

Preparation of Acetic Acid.—The Edinburgh and Dublin Colleges give directions for the preparation of a concentrated solution of acetic acid, which they simply term acetic acid. The London College has removed the Acidum Aceticum to the Materia Medica, and gives the following note for testing the purity of the commercial article which is described as “Acidum e ligno igne praeparatum, purificatum.”

Free of colour, with a very acid odour; specific gravity, 1.048; volatilized by heat. No precipitate thrown down in it on the addition of nitrate of silver or chloride of barium. A piece of silver being digested with it, nothing is thrown down on the subsequent addition of hydrochloric acid. Neither is its colourchanged on the addition of hydrosulphuric acid, nor ammonia, nor by ferroeyanide of potassium subsequently to the ammounia. 100 grains are saturated by 87 grains of crystals of carbouate of soda. Acidum Acetieum Dilutum, P.L.—Take of Acetic Acid, f5xxiiij.; of Distilled Water, Oj. Add to the acid as much of the water as may fill a pint measure exactly, and mix. The specific gravity is 1.008. A fluid ounce of it is saturated by 57 grains of crystals of carbonate of soda.

The Edinburgh College gives the following directions:—“Take of Acetate of Lead any convenient quantity; heat it gradually in a porcelain basin, by means of a bath of oil, or fusible metal (8 tim, 4 lead, 3 bishmutum) to 320° F.; and stir till the fused mass concretes again: pulverise this when cold, and heat the powder again to 320°, with frequent stirring, till the particles cease to aerate. Add six ounces of the powder to nine fluidaehms and a half of pure sulphuric acid, contained in a glass mattres: attach a proper tube and refrigeratory, and distil from a fusible metal-bath, with a heat of 320°, to complete dryness. Agitate the distilled liquid with a grain or two of red oxide of lead to remove a little sulphurous acid; allow the vessel to rest a few minutes, pour off the clear liquor, and redistil. The density should be not above 1.065.”

The directions of the Dublin College are as follows:—

Acidum Aceticum Glacial.—Take of Acetate of Lead, any convenient quantity. Place it in an oven at about the temperature of 300°, until it ceases to lose weight, and, having then brought it by trituratum to a fine powder, let it be introduced into a flask or retort, and exposed to an atmosphere of dry muriatic acid gas, until very nearly the whole of it exhibits a damped appearance. The flask or retort being now connected in the usual manner with a Liebig’s condenser, let heat be applied by means of a chloride of zinc bath, until the entire of the acetic acid shall have distilled over. The muriatic acid gas should be slowly disengaged from the materials directed in the formula for Acidum Muriaticum, using eight ounces of salt for every pound of anhydrous acetate of lead; and, to render it quite dry, it should, before being conducted into the vessel containing the sugar of lead, be made to bubble through oil of vitriol, and then pass through a long tube packed with small fragments of fused chloride of calcium. The specific gravity of this acid is 1.065.

Acidum Aceticum Forte (Acidum Acetieum).—Take of Glacial Acetic Acid, f3vj.; Distilled Water, 3iv. Mix. The specific gravity of this acid is 1.066.

Acidum Aceticium Dilutum.—Take of Acetic Acid of commerce (sp. gr. 1044) Oj.; Distilled Water, Ovij. Mix. The specific gravity of this acid is 1.006.

1 For further details, see Thomson’s Chemistry of Organic Bodies, p. 751, Lond. 1838.
The London College formerly ordered for the preparation of this acid, Acetate of Soda, lb. ij.; Sulphuric Acid, 3ix.; Distilled Water, 3ix. Add the sulphuric acid, first mixed with the water, to the acetate of soda put into a glass retort, then let the acid distil in a sand bath. Care is to be taken that the heat, towards the end, be not too much increased.

The proportions of acetate of soda, sulphuric acid, and water, above given, are nearly equal to one equivalent or 137 parts of crystallized acetate of soda, one equivalent or 49 parts of the strongest oil of vitriol (protohydrate of sulphuric acid), and six equivalents or 54 parts of water. The results of the distillation, on this calculation, will be the formation of one equivalent or 72 parts of anhydrous sulphate of soda, and the disengagement of one equivalent of 51 parts of anhydrous acetic acid, and thirteen equivalents or 117 parts of water. The calculated results agree very closely with the actual products. The resulting acid consists of 51 real acetic acid and 114.58 water; so that 117—114.58 = 2.42 of water must remain in the retort with the sulphate of soda. Omitting the water, and treating the acetate of soda as anhydrous, the following equation will represent the chemical changes which ensue, \(\text{Na}_2\text{C}_4\text{H}_4\text{O}_3 + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + \text{Ac}(\text{C}_4\text{H}_4\text{O}_3)\text{HO} \).

The Edinburgh College employs acetate of lead instead of acetate of soda. The salt is first dried to expel the water of crystallization, and the anhydrous salt thus obtained is subjected to distillation along with pure oil of vitriol, with the view, I presume, of obtaining glacial acetic acid. Hydrated acetic acid distils over, and sulphate of lead is left in the retort. To remove any sulphurous acid which may be formed, red oxide of lead is ordered to be added to the acetic acid, by which sulphate and sulphite of lead are formed, and the acetic acid is then to be redistilled. The Dublin College also employs acetate of lead to yield glacial acetic acid. The reactions are similar to those of the Edinburgh process.

The distillation of acetic acid is usually effected in glass or earthenware stills. On the large scale, silver condensers are sometimes used.

Properties.—**Glacial Acetic Acid** is the strongest acetic acid procurable. It crystallizes at 45° F. when we throw into it any particle of solid matter (a crystal of acetic acid answers best), and the thermometer plunged into it rises at the same time from 45° to 51°. These crystals are brilliant, broad flat plates, of a pearly lustre. They melt at a temperature somewhat below 60° F. The sp. gr. of the liquid at 60° is 1.06296.

When crystals of glacial acetic acid are dissolved in water we obtain a solution which, by way of distinction, we may denominate **liquid acetic acid**. The following table, drawn up by Dr. Thomson, shows the specific gravity of various atomic compounds of this acid and water:

1 The process of the Edinburgh Pharmacopoeia has been critically examined by Mr. R. Phillips (Lond. Med. Gaz. new series, vol. ii. for 1839–40, p. 271). It cannot be denied that several unnecessary refinements have been introduced into it, which render the operation troublesome, wasteful, and expensive. Such are the use of a bath of oil or fusible metal,—the addition of red lead,—and subsequent redistillation of the acid to get rid of a quantity of sulphurous acid, which, judging from the quantity of red oxide to be used, cannot exceed the 1/8th part of the product. Moreover, the whole process is objectionable, on the ground that acid of this strength is not required for medicinal or pharmaceutical purposes.

2 *First Principles of Chemistry*, ii. 135.
Properties.

Acid. Water. Sp. gr. at 60°.
1 atom + 1 atom 1.06296
1 + 2 1.07060
1 + 3 1.07084
1 + 4 1.07132
1 + 5 1.06820
1 + 6 1.06708
1 + 7 1.06349
1 + 8 1.05974
1 + 9 1.05794
1 + 10 1.05439

More recently Mohr has published the following table, exhibiting the sp. gr. of acetic acid of different strengths:

<table>
<thead>
<tr>
<th>Per Cent. of Glacial Acid (C₄H₄O₃ + Aq.)</th>
<th>Sp. Gr.</th>
<th>Per Cent. of Glacial Acid (C₄H₄O₃ + Aq.)</th>
<th>Sp. Gr.</th>
<th>Per Cent. of Glacial Acid (C₄H₄O₃ + Aq.)</th>
<th>Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0635</td>
<td>66</td>
<td>1.069</td>
<td>82</td>
<td>1.0424</td>
</tr>
<tr>
<td>99</td>
<td>1.0655</td>
<td>65</td>
<td>1.068</td>
<td>81</td>
<td>1.041</td>
</tr>
<tr>
<td>98</td>
<td>1.067</td>
<td>64</td>
<td>1.068</td>
<td>80</td>
<td>1.040</td>
</tr>
<tr>
<td>97</td>
<td>1.0680</td>
<td>63</td>
<td>1.068</td>
<td>79</td>
<td>1.039</td>
</tr>
<tr>
<td>96</td>
<td>1.069</td>
<td>62</td>
<td>1.067</td>
<td>78</td>
<td>1.038</td>
</tr>
<tr>
<td>95</td>
<td>1.070</td>
<td>61</td>
<td>1.067</td>
<td>77</td>
<td>1.036</td>
</tr>
<tr>
<td>94</td>
<td>1.0706</td>
<td>60</td>
<td>1.067</td>
<td>76</td>
<td>1.035</td>
</tr>
<tr>
<td>93</td>
<td>1.0708</td>
<td>59</td>
<td>1.066</td>
<td>75</td>
<td>1.034</td>
</tr>
<tr>
<td>92</td>
<td>1.0716</td>
<td>58</td>
<td>1.065</td>
<td>74</td>
<td>1.033</td>
</tr>
<tr>
<td>91</td>
<td>1.0721</td>
<td>57</td>
<td>1.064</td>
<td>73</td>
<td>1.032</td>
</tr>
<tr>
<td>90</td>
<td>1.0730</td>
<td>56</td>
<td>1.064</td>
<td>72</td>
<td>1.031</td>
</tr>
<tr>
<td>89</td>
<td>1.0730</td>
<td>55</td>
<td>1.064</td>
<td>71</td>
<td>1.029</td>
</tr>
<tr>
<td>88</td>
<td>1.0730</td>
<td>54</td>
<td>1.063</td>
<td>70</td>
<td>1.029</td>
</tr>
<tr>
<td>87</td>
<td>1.0730</td>
<td>53</td>
<td>1.062</td>
<td>69</td>
<td>1.028</td>
</tr>
<tr>
<td>86</td>
<td>1.0730</td>
<td>52</td>
<td>1.061</td>
<td>68</td>
<td>1.027</td>
</tr>
<tr>
<td>85</td>
<td>1.0730</td>
<td>51</td>
<td>1.060</td>
<td>67</td>
<td>1.026</td>
</tr>
<tr>
<td>84</td>
<td>1.0730</td>
<td>50</td>
<td>1.059</td>
<td>66</td>
<td>1.025</td>
</tr>
<tr>
<td>83</td>
<td>1.0730</td>
<td>49</td>
<td>1.058</td>
<td>65</td>
<td>1.024</td>
</tr>
<tr>
<td>82</td>
<td>1.0730</td>
<td>48</td>
<td>1.057</td>
<td>64</td>
<td>1.023</td>
</tr>
<tr>
<td>81</td>
<td>1.0732</td>
<td>47</td>
<td>1.056</td>
<td>63</td>
<td>1.022</td>
</tr>
<tr>
<td>80</td>
<td>1.0735</td>
<td>46</td>
<td>1.055</td>
<td>62</td>
<td>1.021</td>
</tr>
<tr>
<td>79</td>
<td>1.0735</td>
<td>45</td>
<td>1.054</td>
<td>61</td>
<td>1.019</td>
</tr>
<tr>
<td>78</td>
<td>1.0732</td>
<td>44</td>
<td>1.053</td>
<td>60</td>
<td>1.018</td>
</tr>
<tr>
<td>77</td>
<td>1.0732</td>
<td>43</td>
<td>1.052</td>
<td>59</td>
<td>1.017</td>
</tr>
<tr>
<td>76</td>
<td>1.073</td>
<td>42</td>
<td>1.0515</td>
<td>58</td>
<td>1.016</td>
</tr>
<tr>
<td>75</td>
<td>1.072</td>
<td>41</td>
<td>1.0513</td>
<td>57</td>
<td>1.015</td>
</tr>
<tr>
<td>74</td>
<td>1.072</td>
<td>40</td>
<td>1.051</td>
<td>56</td>
<td>1.014</td>
</tr>
<tr>
<td>73</td>
<td>1.072</td>
<td>39</td>
<td>1.050</td>
<td>55</td>
<td>1.013</td>
</tr>
<tr>
<td>72</td>
<td>1.071</td>
<td>38</td>
<td>1.049</td>
<td>54</td>
<td>1.012</td>
</tr>
<tr>
<td>71</td>
<td>1.071</td>
<td>37</td>
<td>1.048</td>
<td>53</td>
<td>1.011</td>
</tr>
<tr>
<td>70</td>
<td>1.070</td>
<td>36</td>
<td>1.047</td>
<td>52</td>
<td>1.010</td>
</tr>
<tr>
<td>69</td>
<td>1.070</td>
<td>35</td>
<td>1.046</td>
<td>51</td>
<td>1.009</td>
</tr>
<tr>
<td>68</td>
<td>1.070</td>
<td>34</td>
<td>1.045</td>
<td>50</td>
<td>1.008</td>
</tr>
<tr>
<td>67</td>
<td>1.069</td>
<td>33</td>
<td>1.044</td>
<td>49</td>
<td>1.007</td>
</tr>
</tbody>
</table>

From these tables it is obvious that density is no criterion of the strength of liquid acetic acid.

The Acidum Aceticum of the Edinburgh Pharmacopoeia is stated in one part of that work to have a sp. gr. of not above 1.065, in another

1 Pharm. Central-Blatt für 1839, S. 840-1.
to have a sp. gr. of not above 1.0685; moreover, in the same work, the density of the acid is said to be increased by [the addition of] 20 per cent. of water. There are, however, some obvious mistakes in these statements. The *Acidum Aceticum* of the London Pharmacopoeia has a sp. gr. of 1.048. One hundred grains of it are saturated by eighty-seven grains of crystals of carbonate of soda. Hence it contains 20.8 per cent. of real or anhydrous acetic acid. It is a limpid, colourless liquid, having a pungent but agreeable odour, and an acid taste. It possesses the usual properties of an acid;—such as reddening litmus, causing effervescence with the alkaline or earthy carbonates, and saturating bases. It is volatile, and by heat evolves an inflammable vapour.

Characteristics.—*Free acetic acid* is known by its peculiar odour and by its volatility. Its vapour reddens litmus, and fumes with ammonia. It does not occasion any precipitate with lime water, solutions of the barytes salts, or a solution of nitrate of silver. It forms with potash a very deliquescent salt. Concentrated acetic acid does not cause effervescence when marble is dropped into it, unless water be added. The neutral acetates are all soluble, save those of molybdenum and tungsten. The acetates of silver and protoxide of mercury are slightly soluble. The acetates are known by the acetic odour which they emit on the addition of sulphuric acid and the application of heat, and by the white lamellar and pearly precipitates which many of them produce with the nitrate of silver and the protonitrate of mercury. They reddens solutions of the sesquisalts of iron (forming *sesquiacetate of iron*). All the acetates are decomposed by heat, and give results which vary somewhat according to the nature of the base. Some of the acetates, as those of potash, lead, and copper, evolve, when heated, an inflammable fluid, called *acetone* or *pyro-acetic spirit*, whose composition is C₂H₃O₂.

Composition.—Anhydrous or real acetic acid (Ac) consists of carbon, hydrogen, and oxygen, in the following proportions:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>47.06</td>
<td>47.05</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>3</td>
<td>5.88</td>
<td>5.88</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
<td>24</td>
<td>47.06</td>
<td>47.07</td>
</tr>
<tr>
<td>Anhydrous Acetic Acid</td>
<td>1</td>
<td>51</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The *Acidum Aceticum* of the pharmacopoeias is a compound of Anhydrous or Real Acetic Acid and Water. Prepared according to the London Pharmacopoeia, 100 grs. of it contain 30.8 grs. of real acetic acid; or very nearly one equivalent of real acetic acid, and 13 equivalents of water.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Theory.</th>
<th>Experiment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous acetic acid</td>
<td>1</td>
<td>51</td>
<td>30.835</td>
</tr>
<tr>
<td>Water</td>
<td>13</td>
<td>117</td>
<td>69.65</td>
</tr>
<tr>
<td>Acidum Aceticum, Ph. L</td>
<td>1</td>
<td>168</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Owing to the errors before alluded to in the statements of the Edinburgh

College, it is impossible to estimate, correctly, the strength of the acid intended to be obtained by the process given in the Edinburgh Pharmacopoeia. If, however, the acid had a sp. gr. of 1.068, and 100 minimis of it required 216 grs. of crystallized carbonate of soda to saturate it, as stated by the College, its per-centrage quantity of real acetic acid would be 78.65.

Acetometry.—The strength of acetic acid is best determined by ascertaining the quantity of alkaline carbonate which is required to saturate a given quantity of acid. Crystallized carbonate of soda, or crystallized bicarbonate of potash, are salts of uniform constitution, and may be employed for this purpose. Every 144 grs. of the crystallized carbonate of soda, or 101 grs. of crystallized bicarbonate of potash, are equal to 51 grs. of real acetic acid, or 60 grs. of glacial acetic acid. Marble or carbonate of lime is objectionable, since concentrated acetic acid will not decompose it without the addition of water. It has been already shown that specific gravity is no criterion of the strength of the hydrated acid; since two acids of very unequal strength may have the same density. Moreover, the foreign matters (i.e., mucilage and alcohol) contained in vinegar, alter the density of this fluid, though they do not affect its acetometrical strength. The acetometrical method employed by the Excise is that recommended by Messrs. J. and P. Taylor, and consists in estimating the strength of the acid by the sp. gr. which it acquires when saturated by hydrate of lime. Acid which contains 5 per cent. of real acetic acid is equal in strength to the best malt vinegar, called by the makers No. 24, and is assumed as the standard of vinegar strength, under the denomination of proof vinegar. Acid which contains 40 per cent. of real acetic acid, is, therefore, in the language of the revenue, 35 per cent. over proof: it is the strongest acid on which duty is charged by the Acetometer. Vinegars, which have not been distilled, contain mucilage, and require an allowance for the increase of weight from this cause: hence in the Acetometer sold by Bate, a weight marked M is provided, and is used in trying such vinegars. As the hydrate of lime employed causes the precipitation of part of the mucilaginous matter in the vinegar, it serves to get rid of part of the difficulty above referred to.

Impurities.—The presence of sulphuric, hydrochloric, or nitric acid,—of metallic matter,—and of acid substances in acetic acid, may be detected by the same methods as have already been pointed out for vinegar. Sulphurous acid is recognised by the white precipitate (sulphate of lead) produced on the addition of peroxide of lead. The presence of lead in acetic acid is known by the yellow precipitate (iodide of lead) occasioned by the addition of iodide of potassium.

Physiological Effects.—Before proceeding to notice the operation of acetic acid on vegetables and animals, it may be useful to point out such of its effects on dead organic matters as have reference to its influence on living beings. In the first place, it is a well-known and powerful antiseptic, and is employed, partly on this account, in the ordinary operation of pickling, and in the preservation of animal food, and of anatomical preparations. The

1 Quarterly Journal of Science, vi. 255.
2 58 Geo. III. c. 65.
3 See Description of the Acetometer for determining the Strengths of Acetic Acid, made for the Revenue of the United Kingdom, by R. B. Bate, 21, Poultry, London.
impure acetic acid obtained in the distillation of wood acts more efficaciously in this respect than the pure acid, on account of the creasote which it contains. Secondly, the action of acetic acid on albumen, fibrin, and blood-disks, deserves especial notice. Liquid albumen (as serum of blood and white of egg) is not coagulated by the ordinary acetic acid of the shops. Coagulated albumen is readily dissolved by it with the evolution of nitrogen, especially with the assistance of heat. Fibrin, as muscle or the crassamentum of the blood, is also dissolved by it: the solution, by evaporation, yields a gelatiniform mass. Caseine is coagulated by it. It changes the form of the red particles of frog's blood, and dissolves part of the red colouring matter.\(^1\) It is an excellent solvent of gelatine, as well as of gelatinous tissue. Diluted and mixed with mucus, it acts as a digestive fluid.\(^2\)

a. *On Vegetables.*—Distilled vinegar is ranked, by Achard, among vegetable poisons.\(^3\)

b. *On Animals generally.*—Concentrated acetic acid acts as a caustic poison to dogs. It causes blackening of the mucous lining of the stomach, analogous to that produced by sulphuric acid.\(^4\) Four or five ounces of common vinegar proved fatal to dogs in ten or fifteen hours, when vomiting was prevented by tying the oesophagus.\(^5\) Injected into the veins, vinegar does not appear to act energetically. Viborg threw two ounces and a half of wine vinegar into the jugular vein of a horse: the next day the animal was well.\(^6\) Analogous results have been obtained by Courten and Hertwich (quoted by Wibner) and by Pommer.\(^7\)

The impure acetic acid obtained by the distillation of wood has been usually regarded as possessing much more activity than pure acetic acid of the same strength, in consequence of the presence of empyreumatic oil. An extensive series of experiments have been made with it on amphibials, birds, and mammals, by Berres, Kerner, and Schubarth. From these it appears that pyrolineous acid is a caustic poison; and that it destroys some of the lower animals, viz. amphibials, merely by contact with the external skin. Large doses affect the cerebro-spinal system, and cause giddiness, insensibility, paralysis, and convulsions. A very constant effect of it was an affection of the windpipe and lungs. The acid was detected by its odour, in the blood and secretions.\(^8\)

γ. *On Man.*—In the concentrated state acetic acid is an irritant and corrosive poison. Its chemical influence depends principally on its power of dissolving fibrin, albumen, and gelatine, as before mentioned, by which it is enabled to dissolve many of the animal tissues. Applied to the skin it acts as a rubefacient and vesicant. Only one fatal case of poisoning by its internal use is known. The patient (a girl) appeared to be intoxicated, complained of acute pain, and was violently convulsed.\(^9\) Swallowed in a very dilute

1 Müller's *Physiology*, p. 106.
2 Müller, *op. cit.* p. 545.
6 Wibner, *Die Wirkung der Arzneimittel. und Gifte*, Bd. i. S. 11.
7 Christison, *Treatise on Poisons.*
8 Wibner, *op. supra cit.*
form, and in moderate doses, it proves refreshing, allays thirst, diminishes preternatural heat, lowers the pulse, and augments the urine. In its general effects, therefore, it appears to lower the powers of life and to prove antiphlogistic. It agrees in its operation with the diluted mineral acids. Its local operation is astringent. Used moderately it assists the digestive process, and is, therefore, taken as a condiment. It is in repute with young ladies for diminishing obesity. "Every one knows," says Giacomini,1 "that when habitually taken, it produces leanness, from a sort of languor of the digestive process." The following is a case, quoted by this author, from Portal:

"A few years ago, a young lady, in easy circumstances, enjoyed good health; she was very plump, had a good appetite, and a blooming complexion. She began to look upon her plumpness with suspicion; for her mother was very fat, and she was afraid of becoming like her. Accordingly, she consulted a woman, who advised her to drink a small glass of vinegar daily: the young lady followed her advice, and her plumpness diminished. She was delighted with the success of the remedy, and continued it for more than a month. She began to have a cough, but it was dry at its commencement, and was considered as a slight cold, which would go off. Meantime, from dry it became moist; a slow fever came on, and a difficulty of breathing; her body became lean, and wasted away; night-sweats, swelling of the feet and of the legs, succeeded, and a diarrhoea terminated her life. On examination all the lobes of the lungs were found filled with tubercles, and somewhat resembled a bunch of grapes."

It is said that the long-continued use of it, in full doses, will induce chronic diseases of the gastro-intestinal mucous membrane; and Morgagni says, it has even given rise to scirrhus of the pylorus.

Vinegar may be taken in considerable quantity at one time without inconvenience. Dr. Christison2 knew a case in which eight ounces were swallowed without injury.

The vapour of strong acetic acid is very pungent and irritating. The long-continued inhalation of acetic vapours by the workmen employed at vinegar-works, is said by Sundelin3 to be injurious to the lungs, and to bring on chronic inflammation of these organs. On inquiry among the workmen of a large vinegar-manufactory, I find the notion of the injurious influence of the vapour generally repudiated. Both at these works, and at a pyrogogue acid manufactory, the workmen appeared in excellent health.

Uses.—The uses of acetic acid and vinegar, to the medical practitioner, are of two kinds,—medicinal and pharmaceutical.

1. Medicinal.—Taken internally, common vinegar, or acetic acid properly diluted, is used for various purposes: the most important of these are, to allay febrile heat by its refrigerant qualities; to diminish mordant vascular action; to relieve certain affections of the brain supposed to depend on, or be connected with, venous congestion; and to act by its chemical properties of an acid. Thus, in fevers whether simple or eruptive, but especially in those varieties commonly denominated putrid and bilious, vinegar (more or less diluted with water) is a most refreshing drink, allaying thirst, and diminishing excessive heat. In hemorrhages, as from the nose,

2 Christison, Treatise on Poisons.
3 Handb. d. Heilmittelrehe.
lungs, stomach, or uterus, it is particularly beneficial by its refrigerant, sedative, and astringent qualities. It diminishes excessive vascular action, and promotes contraction of the bleeding vessels. As a local astringent, it is injected into the nose in epistaxis, and is used as a wash in profuse hemorrhoidal discharges. The benefit obtained by the application of vinegar and water to the abdomen, vulva, and thighs, in uterine hemorrhages, arises principally from the cold produced. In *phthisis pulmonalis*, vinegar, diluted with water, is sometimes serviceable as a palliative, by its refrigerant qualities: it relieves the hectic symptoms, diminishes or puts a stop to the night sweats, checks bronchial hemorrhage, and prevents diarrhoea. In *mania*, it has been recommended as a means of allaying cerebral excitement. In poisoning by *opium*, it is used as a counter-poison; but as acetic acid forms very soluble, and, therefore, powerful compounds with morphia, it ought not to be exhibited until the contents of the stomach have been evacuated. In poisoning by the alkalies and their carbonates, and by lime, vinegar is the safest and most efficacious acidulous substance that can be administered. In diseases attended with *phosphatic deposits* in the urine, it may be advantageously used either as a medicine or condiment. As *an adjunct to the acetate of lead*, acetic acid is recommended by Dr. A. T. Thomson, to prevent the formation of carbonate of lead, which is more apt to produce lead colic than the acetate. In *seworv*, acetic acid has been found serviceable. *Clysters containing vinegar* have been employed for the purpose of provoking alvine evacuations in obstinate constipation and strangled hernia; of expelling the small round worm (*Ascaris vermicularis*); of checking uterine and intestinal hemorrhage; and of relieving inflammation or congestive conditions of the brain.

As a stimulant, disinfectant, and antiseptic, diluted acetic acid is used in gangrenous and other ill-conditioned ulcers. For these purposes crude pyrogallic acid is more efficacious than ordinary vinegar, on account of the creasote and other substances which it contains. In ulceration of the throat, in scarlatina, and in cynanche, gargles containing acetic acid or vinegar are sometimes used with good effect. Acetic collyria are useful, as mild astringents, in chronic ophthalmia, and for removing lime-dust adhering to any part of the globe or lid of the eye. Sponging the face, trunk, or extremities, with cold or tepid vinegar and water, usually proves refreshing and grateful in febrile disorders with a hot skin. It diminishes preternatural heat, promotes the cutaneous functions, and operates as a beneficial stimulant to the nervous system. *Fomentations containing vinegar* are used in bruises and sprains.

The concentrated acetic acid, known in the shops as Beaufoy’s, is a valuable remedy for the cure of the different forms of porriage, popularly called ringworm or scalled head. *Its application*, which may be effected by means of a piece of lint wrapped around a wooden stick, causes acute but temporary pain, redness of the skin, and whitening of the abraded spots. One or two applications are usually sufficient to effect a cure. Strong acetic acid is also employed as a caustic to destroy corns and warts. It has been proposed as a speedy means of exciting rubesfaction and vesication, and, for this purpose, blotting-paper or cambric, moistened with the acid, has been applied to the neck in cases of croup.

Administration.—*Vinegar is used as a condiment *ad libitum*. Medi-
cantly it is given in doses of from f3j. or f5ij. to f5ss. As an enema f3j. or f3ij. have been used. A refrigerant drink in fevers is made by adding f3j. or f3ij. of vinegar to a quart of water. A vinegar wash is prepared by mixing f3ij. of vinegar and f5v. of water.

Antidotes.—In poisoning by strong acetic acid, the treatment is the same as that for poisoning by other acids. (See Acidum Sulphuricum).

1. **ACETUM DESTILLATUM, E.**; **Distilled Vinegar.**—The Edinburgh is the only British college that gives directions for the preparation of this liquid.

They are as follows:—"Take of Vinegar (French, by preference) eight parts; distil over with a gentle heat six parts; dilute the product, if necessary, with distilled water till the density is 1:005."

The first portions which distil over are alcohol, acetic ether, water, and a little acetic acid. Thus prepared, distilled vinegar has a yellowish tint, and contains, besides acetic acid and water, a little alcohol, acetic ether, and an organic substance called mucilage. Hence, when it is saturated with alkalies, the solution becomes brown by heat, and deposits a dark-coloured substance, probably arising from the decomposition of the mucilage.

Its density is stated to be 1:005; and one hundred minims of it neutralize eight grains of crystallized carbonate of soda, indicating the per-centage quantity of real acid to be 3:07. In order to prevent the distilled vinegar from acquiring a metallic impregnation, the head of the still and the worm or condensing pipe should be of glass or earthenware. I was informed at one vinegar works that a silver worm was employed.

ACETUM GAL LICUM. French Vinegar is thus enumerated in the Materia Medica of the Pharmacopoeias of Edinburgh and Dublin.

2. **ACIDUM ACETICUM AROMATICUM, E.**—(Rosemary, and Origanum, of each f5j., dried; Lavender, dried, f3ss.; Cloves, bruised, f3ss.; Acetic Acid, Oiss. Macerate for seven days, strain and express strongly, and filter the liquor). In the former Edinburgh Pharmacopoeia there was contained, under the same name, a somewhat similar but weaker preparation, made with diluted acetic acid (i. e. distilled vinegar), in imitation of the celebrated Marseilles Vinegar or Vinegar of the Four Thieves (Vinaigre des Quatre-Voleurs; Acetum quatuor Furum), once supposed to be a prophylactic against the plague and other contagious diseases. It was a very useless preparation. In the present Edinburgh Pharmacopoeia, concentrated acetic acid has been substituted for distilled vinegar, and Origanum for Sage. It is now a pungent perfume, and may be used as a substitute for Henry's Aromatic Vinegar. But it appears to me to be a very unnecessary preparation.

2 The repute of this preparation as a prophylactic in contagious fevers, is said to have arisen from the confession of four thieves, who, during the plague of Marseilles, plundered the dead bodies with perfect security, and, upon being arrested, stated, on condition of their lives being spared, that the use of aromatic vinegar had preserved them from the influence of contagion. It is on this account sometimes called "Le Vinaigre des quatre Voleurs." It was, however, long used before the plague of Marseilles, for it was the constant custom of Cardinal Wolsey to carry in his hand an orange, deprived of its contents, and filled with a sponge which had been soaked in vinegar impregnated with various spices, in order to preserve himself from infection, when passing through the crowds which his splendour or office attracted. The first plague raged in 1649, whereas Wolsey died in 1531" (Paris, Pharmacologia, 6th edit. vol. ii. p. 18, Lond. 1822).
The *Acetum aromaticum*, or *Aromatic Vinegar* of the shops, is made in imitation of Henry’s Aromatic Vinegar. At Apothecaries’ Hall it is prepared by dissolving the Oils of Cloves, Lavender, Rosemary, and Acorus Calamus, in crystallizable Acetic Acid. It is a very volatile and corrosive preparation, and requires to be kept in carefully stoppered bottles. Some manufacturers add camphor. The addition of water to it causes the precipitation of the greater part of the camphor. It is a much perfumed pungent perfume, whose vapour is snuffed up the nostrils, to produce a powerful excitant impression, in fainting, languor, headache, and nervous debility. For this purpose it is dropped on sponge, which is preserved in smelling-bottles or *vinaigrettes*. It is also used for the purpose of correcting unpleasant odours, which it does, not by destroying, but by disguising them. *An extemporaneous aromatic vinegar* may be prepared by putting into a stoppered-bottle 1/3j. of acetate of potash, three drops of some essential oil (as Lavender or Lemon), and twenty drops of oil of vitriol.

3. **ACIDUM ACETICUM CAMPHORATUM**, E. D.; (Camphor, 3ss.; Acetic Acid, 5viss. Pulverize the camphor with the aid of a little rectified spirit, and dissolve it in the acid, E.)—(Camphor, 3j.; Rectified Spirit, 3j.; Strong Acetic Acid, 5x. Reduce the camphor to powder by trituration with the spirit: then add the acid and dissolve, D.)—This preparation is an officinal substitute for Henry’s Aromatic Vinegar. The spirit is used merely to assist in reducing the camphor to powder. Camphorated acetic acid is exceedingly pungent and corrosive. Its vapour is snuffed up the nostrils as a powerful stimulant in syncope. It is never used internally.

4. **OXYMEL**, L. D.; *Syrupus Aeci*, F.; *Oxymel Simplex* or *Simple Oxymel*. (The London College directs of Honey, lb. v.; Acetic Acid, 5vij.; Distilled Water, 3vijj. Mix the acid added to the water with the honey made hot.—The Dublin College orders of Honey, by weight, lb. j.; Acetic Acid of Commerce, sp. gr. 1·044, 5iij. Mix the acid with the honey previously heated, D.—The Edinburgh College substitutes sugar for honey:—Take of Vinegar, French in preference, 13j.; Pure Sugar, 5xiv. Boil them together).—*It is employed as a detergent and pectoral. It is frequently added to gargles; but is more commonly used as an expectorant in slight colds and coughs. Diffused through barley-water, it forms an agreeable refrigerant drink in febrile and inflammatory complaints. It is sometimes used as a vehicle for other medicines. Dose from 3j. to 3ss. or 3j.*

Pharmaceutical Uses.—Vinegar or acetic acid is employed for extracting the virtues of various medicinal substances, as Squills, Opium, Colchicum, and Cantharides: the solutions are called *Medicated Vinegars (Aeticula)*, or by the French pharmacologists, *Oxéolés* (from *œœce*, vinegar). A small quantity of spirit is usually added to them for the purpose of preventing the decomposition of the vinegar, and, in consequence of this, a small portion of acetic ether is generated. They are usually prepared by maceration. The preparations into the composition of which acetic acid and honey enter, are called *Oxymels (Oxymellites)*, or the *Acid Mellites*. Acetic acid is employed also in the manufacture of the salts called *Acetates*. It is a powerful solvent of the gum-resins, and is used, on this account, in the preparation of the *Emplastrum Ammoniaci*. Lastly, distilled vinegar is used in
the preparation of Cataplasma Sinapis, Ceratum Saponis, Linimentum Æru-
ginis, and Unguentum Plumbi compositum.

307. ACIDUM CITRICUM, L. E. D.—CITRIC ACID.

History.—This acid was first procured in the solid state by Scheele in 1781. It is sometimes termed the Concrete Acid of Lemons.

Natural History.—Citric acid is peculiar to the vegetable kingdom. It is found in many acid juices of fruits usually free, but sometimes in combination with either potash or lime. Besides the fruits of the genus Citrus, it is found, with little or no malic acid, in the fruits of Dulcamara, Dog-rose, Cranberry, Bird-cherry, and Whortleberry. Mixed with an equal quantity of malic acid, it is found in the Gooseberry, Red Currant, Strawberry, Raspberry, and Cherry. In the Tamarind it exists with both malic and tartaric acids.

Preparation.—The Edinburgh College alone gives directions for the preparation of this acid.

The London College, in its former Pharmacopoeia, ordered of Lemon Juice, Oiv.; Prepared Chalk, *iviss.; Diluted Sulphuric Acid, *xxviiis.; Distilled Water, Oij. Add the Chalk gradually to the Lemon Juice made hot, and mix. Set by, that the powder may subside: afterwards pour off the supernatant liquor. Wash the Citrate of Lime frequently with warm water. Then pour upon it the diluted Sulphuric Acid and the distilled Water, and boil for a quarter of an hour. Press the liquor strongly through linen, and strain it; evaporate the strained liquor with a gentle heat, and set it by, that crystals may be formed. Dissolve the crystals, that they may be pure, again and a third time in water, and as often strain the solution, boil down, and set it aside.

The Edinburgh College employs the same quantity of Lemon Juice and Chalk (or of the latter a sufficiency), and "Diluted Sulphuric Acid. fxxvii., or in the same proportion to the chalk required." The lemon juice is to be boiled twice, and allowed to rest once before the chalk is added. After the sulphuric acid has been added, the filtered liquor is to be tested with a solution of nitrate of baryta, and if the precipitate thereby obtained be not almost "entirely soluble in nitric acid," more citrate of lime is to be added [to saturate the great excess of sulphuric acid.]

The Dublin College gives no process for the preparation of this acid.

The juice of lemons and limes is imported for citric acid manufacturers, in pipes and hogsheds. It is saturated with chalk or whiting in a large vat. By this means a citrate of lime is formed. This is precipitated, while the carbonic acid of the chalk escapes, and the mucilage of the juice for the most part remains in solution.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>COMPOSITION</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalk</td>
<td>Carbonic Acid</td>
<td>Carbonic Acid Gas</td>
</tr>
<tr>
<td>Citric Acid</td>
<td></td>
<td>Citrate of Lime</td>
</tr>
</tbody>
</table>

\[\text{Ci} + \text{CaO,Co}^2 = \text{CaO, Ci} + \text{CO}^2. \]

1 The Edinburgh College employs half an ounce of diluted sulphuric acid less than the quantity formerly ordered by the London College; whereas it ought to have been increased by eight ounces, in consequence of the diluted sulphuric acid of the Edinburgh Pharmacopoeia being weaker than that of the London Pharmacopoeia (Mr. R. Phillips, Lond. Med. Gaz. new series, vol. ii. 1838-9, p. 690).
The supernatant liquor is then drawn off, and the citrate of lime is passed through a sieve and frequently washed with warm water, until the mucilage and other soluble impurities are for the most part got rid of. Sulphuric acid, diluted with water, is afterwards added: sulphate of lime separates, and citric acid is left in solution, \(\text{CaO}_2\text{Cl} + \text{SO}_3 = \text{CaO}_2\text{SO}_3 + \text{Cl} \).

The clear solution is then evaporated in leaden boilers, and the concentrated solution set aside to crystallize. The crystals are afterwards purified by re-solution and re-crystallization.¹

![Citric Acid Manufactory](image)

Properties.—Citric acid crystallizes in colourless, odourless, very sour, transparent, short, rhomboidal prisms, whose extremities are terminated by four trapezoidal faces, and which belong to the right prismatic system.² Crystallized citric acid becomes damp by exposure to a moist atmosphere, though Dumas, and other French chemists, state it to be unalterable by the air. According to Vauquelin, it is soluble in 75 parts of cold and 50 of boiling water. The solution is strongly acid, and becomes mouldy by keeping. Crystallized citric acid is much less soluble in alcohol than in water. Its sp. gr. is 1.617. Heated with potash, it is converted into oxalic and acetic acids and water. Treated with oil of vitriol it evolves sulphurous acid, carbonic acid, carbonic oxide, acetic acid, and water. Heated with nitric acid, it becomes oxalic acid.

¹ For further details, consult Parke's *Chemical Essays*, 2d edit. i. 539, 1823.
According to Crasso, crystallized citric acid, when exposed to heat, exhibits four stages of decomposition. During the first, the water of crystallization alone is given off, and the residue contains unaltered citric acid. The second stage is characterized by white vapours, and the production of acetone, carbonic oxide, and carbonic acid, while the residue consists of hydrated aconitic acid \((\text{C}_4\text{H}_2\text{O}_3 + \text{Aq.})\), which is the true pyroacetic acid. In the third stage, the aconitic acid, not being volatile, is itself decomposed, yielding carbonic acid and an oily liquid which soon crystallizes. This is the pyroaconitic acid, the citric of Baup, for which Crasso proposes the name of itaconic acid \((\text{C}_5\text{H}_4\text{O}_3 + \text{HO})\). This acid, when heated, yields citraconic acid \((\text{C}_5\text{H}_5\text{O}_3 + \text{HO})\), the citribic acid of Baup. In the fourth period empyreumatic oil is produced, and a voluminous coal remains behind.\(^1\)

Characteristics.—When added in excess to lime water, no precipitate is produced. “When a few drops of a solution of citric acid are added to lime water, a clear liquid results, which, when heated, deposits a white powder, soluble in acids without effervescence” (Liebig). It does not yield a crystalline precipitate when added in excess to a solution of carbonate of potash. It forms, with barytic water, a white precipitate (*citrate of baryta*). With a solution of acetate of lead it also furnishes a white precipitate (*citrate of lead*), soluble in ammonia, which forms with it a double salt (*ammoniacal citrate of lead*). Added to a solution of nitrate of silver it produces a white precipitate (*citrate of silver*), which, when heated, becomes brown, froths up, deflagrates, discharges white fumes, and leaves an abundant, ash-grey, coarsely fibrous, crumbly residue, which by heat becomes pure silver.

Composition.—The following is the composition of crystallized citric acid:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>4</td>
<td>24</td>
<td>35.8</td>
<td>36.28</td>
<td>34.28</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3</td>
<td>8</td>
<td>4.5</td>
<td>4.45</td>
<td>4.76</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5</td>
<td>40</td>
<td>59.7</td>
<td>59.27</td>
<td>60.96</td>
</tr>
</tbody>
</table>

Citric Acid crystallized by cooling a solution saturated at 212\(^\circ\).

Crystallized citric acid of commerce contains, however, somewhat more oxygen and hydrogen (elements of water) than the above. According to Berzelius, hypothetical dry citric acid is composed of \(\text{C}_4\text{H}_2\text{O}_4(=58)\); and, therefore, the acid, crystallized by cooling, consists of \(\text{Ci} + \text{Aq.} (58 + 9 = 67)\), and the commercial acid of \(\text{Ci} + 1\frac{3}{4} \text{Aq.} (58 + 12 = 70)\).

But Liebig\(^2\) regards the hypothetical dry citric acid as composed of \(\text{C}\text{I}_2\text{H}_5\text{O}^{11} (=165)\). On this supposition, the acid, crystallized by cooling, is composed of \(\text{Ci} + 3\text{HO} + \text{Aq.} (165 + 36 = 201)\); and the commercial crystals of \(\text{Ci} + 3\text{HO} + 2\text{Aq.} (165 + 45 = 210)\). On this view of its constitution citric acid is a tribasic acid: that is, it combines with three equivalents of

2. Turner's *Elements of Chemistry*, 7th edit.
ORGANIC SUBSTANCES.—Citric Acid.

Base: its equivalent weight being three times the amount assumed in the above tables.

Purity.—Powdered citric acid is sometimes adulterated with powdered tartaric acid. The fraud may be readily detected by dissolving the suspected acid in a small quantity of water, and adding cautiously to it a solution of carbonate of potash, taking care that the acid be in excess. If any tartaric acid be present, a white crystalline precipitate (bitartrate of potash) is formed. The directions of the London and Edinburgh Colleges for ascertaining the purity of the acid are as follows:—

This acid is soluble in water; what is precipitated from the solution by acetate of lead is dissolved by nitric acid. No salt of potash, except the tartrate, is precipitated by solution of citric acid. It is totally dissipated in the fire (Ph. Lond.)

The solubility of the plumbeous precipitate in nitric acid shows the absence of sulphuric acid or a sulphate, although a salt of baryta would be a better test.

A solution in four parts of water is not precipitated by carbonate of potash: when incinerated with the aid of the red oxide of mercury, no ash is left, or a mere trace (Ph. Ed.)

The elements of citric acid (viz. oxygen, hydrogen, and carbon) are dissipated by a red heat. But this dissipation is promoted by agents (ex. red oxide of mercury) capable of supplying oxygen without leaving any fixed residue. [When the acid is slowly heated in air it melts, burns with a yellowish flame, and leaves but a small residue of carbon. When warmed with concentrated sulphuric acid it is not blackened but acquires a yellowish colour. — Ed.]

Physiological Effects.—Orfila\(^1\) ranks citric acid among the irritant poisons; but Drs. Christison\(^2\) and Coindet gave draehm doses of it to cats without observing that the animals suffered any inconvenience therefrom. The effects of large doses of this acid on man I am not acquainted with. Small quantities of it, dissolved in water, form an agreeable beverage, which allays thirst, diminishes preternatural heat, checks profuse sweating, and promotes the secretion of urine. Vogt\(^3\) considers it to act more powerfully on the skin, and less so on the alimentary canal and urinary organs, than tartaric acid. In its action on the skin it agrees with acetic acid. The continued employment of it, as well as of other acids, disturbs the functions of the digestive organs.\(^4\)

Uses.—Citric acid is employed in medicine, as a substitute for lemon juice, in the preparation of refrigerant drinks and effervescing draughts, and as antiscorbutic, anti-narcotic, and anti-alkaline. (See Lemon Juice.)

1. Artificial Lemon Juice.—This is prepared by dissolving Citric Acid \(\text{viii.}\) in Water \(\text{xxvii.}\), and flavouring with a few drops of Essence of Lemons. This is less apt to undergo decomposition than the genuine juice, for which the artificial juice may be employed in the preparation of cooling beverages.

\(^1\) Toxicologie Générale.

\(^3\) Pharmacodynam. ii. 72, 2te Aufl.

\(^4\) For some further observations on its effects, see the article Lemon Juice in a subsequent part of this work.
2. EFFERVESCING CITRATES.—Citric acid, with the alkaline carbonates, is frequently employed in the preparation of effervescing draughts. The following are the relative proportions of acid and base required to form a neutral compound:

20 grains of Commercial Crystals of Citric Acid are saturated by about—

- Crystallized Bicarbonate of Potash 29 grs.
- Carbonate of Potash of Commerce .. 24 "
- Hydrated Sesquicarbonate of Ammonia 17 "
- Crystallized Carbonate of Soda .. 41 "
- Sesquicarbonate of Soda of Commerce 24 "

The most agreeable effervescing citrate is that prepared with bicarbonate of potash, flavoured with tincture of orange-peel and syrup (see *Potassae Citras*, Vol. I. page 521.) The carbonates of soda are rarely employed with citric acid.

308. ACIDUM TARTARICUM, L. B. D.—TARTARIC ACID.

History.—Tartaric acid was first procured in a separate state by Scheele, in 1770. It is sometimes termed the crystallized acid of tartar.

Natural History.—It is peculiar to the vegetable kingdom. In the free state it exists in tamarinds, grapes, the pine-apple, and pepper. It is also found native in combination with bases: thus, bitartrate of potash exists in tamarinds, grapes, and mulberries, and tartrate of lime in the fruit of *Rhus typhina*.

Preparation.—The London and Dublin Colleges have placed this acid among the articles of Materia Medica. No formula is given for its preparation. The process of the Edinburgh Pharmacopoeia is as follows:—

Take of Bitartrate of Potash, lb. iv.; Boiling Distilled Water, *Cong. iss.*; Prepared Chalk, $\frac{3}{2}$xxv. and 5vj.; Diluted Sulphuric Acid, Ovij. and $\frac{3}{2}$xvij.; Hydrochloric Acid, f$\frac{3}{2}$xxvis., or as much as may be sufficient. Boil the Bitartrate of Potash with two gallons of Distilled Water, and add, gradually, half the prepared Chalk; then, the effervescence having ceased, add the remainder of the Chalk, previously dissolved in the Hydrochloric Acid, with four pints of the Distilled Water. Lastly, set aside, that the Tartrate of Lime may subside; pour off the liquor, and wash frequently the Tartrate of Lime with Distilled Water, until it be void of taste; then pour on it the diluted Sulphuric Acid, and boil for a quarter of an hour. Evaporate the strained liquor by a gentle heat, that crystals may be formed.

Dissolve the crystals, that they may be pure, again, and a third time, in water, and as often strain the liquor, boil down, and set it aside.

The following is the *theory* of the process for making tartaric acid:—By the mutual action of bitartrate of potash and carbonate of lime (chalk), we obtain tartrate of potash in solution, and tartrate of lime precipitated, while carbonic acid escapes.—The following diagram explains these changes:—

1 The Edinburgh College employs the same quantity (Ovij. and f$\frac{3}{2}$xvii.) of diluted Sulphuric Acid formerly recommended by the London College; but, as its strength is weaker, the quantity ought to have been greater. The "Edinburgh College should have directed more than ten pints of Sulphuric Acid, instead of less than eight" (Mr. R. Phillips, *Loud. Med. Gaz.* new series, vol. ii. 1838-9, p. 689).
Tartaric Acid.

ORGANIC SUBSTANCES.—

MATERIALS. COMPOSITION. PRODUCTS.
1 eq. Chalk = 50 \{ \begin{align*} 1 \text{ eq. Carbonic Acid} & = 22 \\ 1 \text{ eq. Lime} & = 28 \end{align*} \} 1 \text{ eq. Carbonic Acid} = 22
1 eq. Bitartrate Potash = 114 \{ \begin{align*} 1 \text{ eq. Tartrate Potash} & = 114 \\ 1 \text{ eq. Tartrate Acid} & = 66 \end{align*} \} 1 \text{ eq. Tartrate Potash} = 114
1 eq. Lime = 94

or KO₃T + CaO₂CO² = CaO₂T + KO₂T + CO². If to the solution of tartrate of potash we add chloride of calcium (obtained by dissolving chalk in hydrochloric acid), double decomposition ensues; tartrate of lime is precipitated, and chloride of potassium remains in solution.

MATERIALS. COMPOSITION. PRODUCTS.
1 eq. Chlor. Calcium = 56 \{ \begin{align*} 1 \text{ eq. Chlorine} & = 36 \\ 1 \text{ eq. Calcium} & = 20 \end{align*} \} 1 \text{ eq. Chloride Potassium} = 76
1 eq. Tartrate Potash = 114 \{ \begin{align*} 1 \text{ eq. Potash} & = 36 \\ 1 \text{ eq. Potassium} & = 40 \end{align*} \} 1 \text{ eq. Tartrate Lime} = 94

or, KO₂T + CaCl = CaO₂T + K₂Cl. The tartrate of lime obtained in the above two operations is then decomposed by sulphuric acid, which forms the almost insoluble sulphate of lime, and sets tartaric acid free.

MATERIALS. COMPOSITION. PRODUCTS.
1 eq. Tartrate Lime = 94 \{ \begin{align*} 1 \text{ eq. Tartaric Acid} & = 66 \\ 1 \text{ eq. Lime} & = 28 \end{align*} \} 1 \text{ eq. Tartrate Lime} = 94
1 eq. Sulphuric Acid = 40

or, CaO₂T + SO³ = CaO₂SO³ + T.

Properties.—Tartaric acid crystallizes in elongated, colourless, inodorous, very sour, imperfectly transparent prisms, which belong to the oblique prismatic system.¹ The crystals are permanent in the air. When heated they fuse, and undergo chemical changes varying with the degree and continuance of the heat. When they have lost by heat a fourth of their water, they become tartralic acid, which has, in its salts, the same composition as tartaric acid, but neutralizes one-fourth less base. It differs from tartaric acid, therefore, as pyrophosphoric acid differs from phosphoric acid. When tartralic acid is further heated it loses as much more water, and becomes tartrelic acid, which also has, in its salts, the composition of tartaric acid,

Fig. 389. Fig. 390.

Crystals of Tartaric Acid.

Fig. 389. The crystal as usually modified. [The corresponding planes in both figures are marked with the same letters,] Fig. 390. The same modified form, with the planes irregularly disposed, as they appear in most of the crystals.

but only half the neutralizing power. It corresponds, therefore, to metaphosphoric acid. By a higher degree of heat all the water of this acid is driven off, and we have anhydrous tartaric acid, which, however, has lost its acid properties, and is quite insoluble in water. 1 “This is a powerful argument in favour of the view, according to which all acids are compounds of hydrogen” (Liebig). When subjected to distillation, tartaric acid yields carbonic acid, water, and two pyrogenous acids,—one of which is crystalline, and is called pyrotartaric acid \((\text{C}_5\text{H}_3\text{O}_3 + \text{Aq.})\); the other is oily, and is termed pyruvic acid \((\text{C}_6\text{H}_3\text{O}_5 + \text{Aq.})\) Strongly heated in the air it evolves the odour of caramel, and furnishes a carbonaceous mass, which eventually disappears by combustion. Cold water dissolves crystallized tartaric acid: boiling water takes twice its own weight of the acid. A soft, mucilaginous, flexible mass is formed in a solution of tartaric acid, as well as of emetic tartar, when long kept. 2 Alcohol sparingly dissolves the acid. Heated with either nitric acid or potash it yields oxalic acid. By the action of sulphuric acid on it acetie acid is formed. When heated with sulphuric acid it is strongly blackened.

Characteristics. — A solution of tartaric acid is very sour, and causes with solutions of caustic lime, baryta, and strontia, white precipitates (earthy tartrates), soluble in excess of acid. Sal ammoniac dissolves the precipitate (tartrate of lime) produced by lime water. With acetate of lead the solution of tartaric acid also forms a white precipitate (tartrate of lead) soluble in excess of acid. Dropped into a solution of sulphate of lime it furnishes no precipitate. Heated with a solution of chloride of platinum, tartrate of potash occasions a black precipitate (metallic platinum). If excess of acid be added to a concentrated solution of a potash salt, small granular crystals (bitartrate of potash) are deposited. With nitrate of silver, tartrate of potash furnishes a white precipitate (tartrate of silver), which, when heated, does not deflagrate, but becomes brown, froths up, evolves white fumes, and leaves pure silver.

The London College gives the following directions for ascertaining the purity of tartaric acid: —

Free of colour; destroyed by a red heat; soluble in water. The solution precipitates bitartrate of potassa from any neutral salt of potassa. Nothing is precipitated from the same solution by chloride of barium. That which acetate of lead precipitates is soluble in nitric acid. 100 grains of this acid dissolved in water are saturated by 192 grains of crystals of carbonate of soda.

Composition. — The composition of tartaric acid is as follows: —

\[
\begin{array}{cccc}
\text{Atoms} & \text{Eq. Wt.} & \text{Per Cent.} & \text{Berzelius.} & \text{At. Eq.Wt. Per Ct.} \\
\hline
\text{Carbon} & 4 & 24 & 36.36 & 35.980 & \text{Anhydrous tar-} \\
\text{Hydrogen} & 2 & 2 & 3.03 & 3.807 & \text{taric acid} \; \frac{1}{3} & 66 & 88 \\
\text{Oxygen} & 5 & 40 & 60.61 & 60.213 & \text{Water} \; \frac{1}{3} & 9 & 12 \\
\hline
\text{Anhydrous Tartric Acid} & \frac{1}{3} & 66 & 100.00 & 100.000 & \text{Crystallized Tar-} \\
\text{Acid} & \frac{1}{3} & 75 & 100 \hline
\end{array}
\]

or, \(\text{C}_4\text{H}_2\text{O}_5\) — Symbol T; or, \(\text{C}_4\text{H}_2\text{O}_5 + \text{HO.}\)

2 This formation is probably owing to the development in the solution of a vegetable organized being. Keitzing (*Repertoire de Chimie*, iii. 278, Paris, 1888) has described and figured the plant which forms in a solution of emetic tartar.
Liebig regards the equivalent weight of the acid as double that above assumed; and the acid, therefore, is considered as a bibasic one, inasmuch as, on that hypothesis, it saturates two equivalents of base. [According to Liebig, therefore, the formula of the crystallized acid is $\text{C}_8\text{H}_4\text{O}_{10}^+ + 2\text{HO},$ and of the acid in the bibasic salts, $\text{C}_8\text{H}_4\text{O}_{10} = \text{T}.$—Ed.] Fremy’s researches, above referred to, tend to support this view.

Impurity.—The only adulteration practised on this acid is the mixture of its powder with bitartrate of potash. This fraud may be detected by the difficult solubility in water of the bitartrate, and its yielding, on incineration, carbonate of potash (known by the tests hereafter to be described.) The tests of the purity of the acid, given by the Edinburgh College, are as follows:—

“When incinerated with the aid of the red oxide of mercury, it leaves no residuum, or a mere trace only.”—1st Ed.

This test is devised to detect any fixed substance, and might be used to recognise the potash, if bitartrate of this alkali had been present.

Physiological Effects.—The effects of tartaric acid, *in small doses* properly diluted, are those of a refrigerant. It reduces febrile heat, diminishes excessive vascular action, allays thirst, checks excessive perspiration, and perhaps also a too copious secretion of bile. It appears to promote the action of the absorbents, to increase the secretion of urine, and to act gently on the bowels. It possesses the tonic properties of the mineral acids in a very slight degree only, if at all. Its continued use very readily disturbs the digestive process. Some doubt exists as to the effects of *large doses* of the acid. According to Dr. Christison it may be taken in very considerable quantities without injury. Six drachms have been taken in twenty-four hours without inconvenience. Pommer, however, asserts that when it is injected into the veins it is scarcely less poisonous than oxalic acid (*Ibid.*) [One ounce of the acid taken at a dose, dissolved in half a pint of warm water, produced violent inflammation of the alimentary canal, and death in nine days.—Ed.]

Uses.—Tartaric acid may be used as a cheap substitute for citric acid or lemon juice, in the formation of acidulous refrigerant drinks, for febrile and inflammatory disorders. It is, however, rarely employed for this purpose. Its common medicinal use is in the preparation of effervescent compounds, with the alkaline carbonates, especially with bicarbonate of soda.

Effervescent Tartrates.—The following are the relative proportions of tartaric acid and alkaline carbonates for preparing effervescent draughts:—

<table>
<thead>
<tr>
<th>20 grains of the Crystals of Tartaric Acid are saturated by</th>
<th>27 grs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallized Bicarbonate of Potash</td>
<td>22 “</td>
</tr>
<tr>
<td>Carbonate of Potash of Commerce</td>
<td>15½ “</td>
</tr>
<tr>
<td>Hydrated Sesquicarbonate of Ammonia</td>
<td>38½ “</td>
</tr>
<tr>
<td>Crystallized Carbonate of Soda</td>
<td>22 “</td>
</tr>
<tr>
<td>Sesquicarbonate of Soda of Commerce</td>
<td></td>
</tr>
</tbody>
</table>

The most commonly used effervescent tartrate is that made with sesquicarbonate of soda (see *Soda Sesquicarbonas* and *Soda Tartras.*

309. ACIDUM OXALICUM.—OXALIC ACID.

History.—This acid was discovered by Scheele, though the credit of its discovery was for a long time given to Bergmann. 2

Natural History.—It is found in both kingdoms of nature. In the Unorganised Kingdom, oxalic acid, in combination with the protoxide of iron, constitutes the mineral denominated by Rivero, Humboldtite; by Neeker and Beudant, Humboldtite. In the Organised Kingdom, oxalic acid is found in both plants and animals, but principally in the former. Oxalic acid, in combination with either lime or potash, is a constituent of a considerable number of plants, especially those belonging to the orders Polygoneae and Licheneae. Oxalate of lime is found in Rhubarb, Bistort, many Lichens, &c. Some Lichens contain nearly half their weight of oxalate of lime. In Variolaria faginea (V. communis), Bracnot found 47.4 per cent. of this salt. Combined with potash, oxalic acid is found in Oxalis Acetosella, Rumex Acetosa, Rhubarb, &c. Oxalate of soda is found in Salsolea. A solution of free oxalic acid is said to exude from the hairs of Cicer Arietinum, but the accuracy of the statement is doubtful. Oxalate of lime constitutes the Mulberry Calculus, and is found in the Liquor Alantanoidis of the cow.

Preparation.—Oxalic acid is obtained by the action of nitric acid on sugar or potato starch. Treacle is usually employed in this country as a substitute for solid sugar. The process is generally conducted in open earthenware jars, heated by a warm water bath. The nitrous vapours evolved are usually allowed to escape into the air. In France, attempts have been made to economise them by their employment in the manufacture of sulphuric acid (see Sulphuric Acid). To prevent their noxious influence on the workmen and the surrounding neighbourhood, as well as to economise them, a patent has been taken out to conduct the process in closed vessels connected with receivers and condensers, by which the vapours are condensed and collected again to be used. 3 Oxalic acid is also obtained by digesting, by aid of a gentle heat, one part of sugar, or, better still, of potato starch, in 5 parts of nitric acid of sp. gr. 1.42, diluted with 10 parts of water, as long as gaseous products are evolved; by evaporation the acid is obtained in crystals, which may be purified by a second crystallization, after being well dried on paper or porous earthenware. From 12 parts of potato starch, 5 of the acid are obtained. The mother liquor should be treated with an additional quantity of acid, and again warmed, when a second crop of crystals will be obtained: this is repeated until the solution is quite exhausted. 4

1 This acid has been omitted, inadvertently I presume, in the Edinburgh Pharmacopoeia, though it is directed to be employed in the preparation of oxalate of ammonia.
3 Repertory of Patent Inventions, N.S. vol. vii. p. 5. Lond. 1837.—A patent has been taken out for preparing this acid in leaden vessels, and for obtaining it from potatoes (Ibid. N.S. vol. xv. p. 363, Lond. 1841).
The formation of oxalic acid depends on the oxidation of organic matter, at the expense of part of the oxygen of the nitric acid, while nitrous vapours are given out. Those organic matters, as sugar and starch, which contain oxygen and hydrogen in the same proportion as water, yield it in the greatest quantity. One equivalent of anhydrous sugar \((\text{C}_12\text{H}_2\text{O}_9)\), and eighteen equivalents of oxygen \((\text{O}^{18})\), contain the elements of six equivalents of anhydrous oxalic acid \((6\text{C}_2\text{O}_3)\), and nine equivalents of water \((9\text{HO})\). But the process is not so simple as this calculation would lead us to suppose. Part of the carbon of the sugar escapes in the form of carbonic acid gas. The mother liquor contains, besides some acetic acid, saccharic acid \((\text{C}_12\text{H}_2\text{O}_11)\); which, when acted on by a further portion of nitric, is converted into oxalic and carbonic acids. If the nitrous vapours be conveyed into a condenser, nitric and nitrous acids may be collected.

Properties.—The crystals of oxalic acid are colourless, transparent prisms, which belong to the oblique prismatic system. They are usually flattened, six-sided (by the truncation of one pair of the lateral edges), and have two or four terminal planes.\(^1\) The crystals of oxalic acid taste and react on vegetable colours powerfully acid. When pure they have no odour. Exposed to a warm air they effloresce, evolve 28 per cent. (equal to two equivalents) of water, and become a pulverulent residue (hydrate of oxalic acid). When heated rapidly to 350° F. they fuse, evolve water, and the hydrate of the acid sublimes, a portion of it at the same time undergoing decomposition, but no residue being left if the acid be quite pure. They dissolve in from 8 to 11 parts of water at 60° F., in their own weight of boiling water, and in 4 parts of alcohol at 60° F. By the action of oil of vitriol, aided by heat, they are resolved into water, which remains with the sulphuric acid, and equal volumes of carbonic acid and carbonic oxide gases.

Characteristics.—Oxalic acid strongly reddens litmus, and is entirely volatilized by heat. By the effect of heat it is at once known from the sulphates of magnesia and zinc, both of which are fixed. Nitrate of silver, added to a solution of it, yields a white precipitate (oxalate of silver), which is soluble in nitric acid, and when dried and heated on the point of a knife, by the flame of a candle or spirit-lamp, becomes brown on the edge, very feebly detonates, and is completely dissipated, being converted into water, carbonic acid, and metallic silver. With lime water, or a solution of chloride of calcium, oxalic acid yields a white precipitate (oxalate of lime), insoluble, or nearly so, in excess of oxalic acid, readily soluble in nitric acid, and slightly so in hydrochloric acid. If the precipitate be collected, dried, and calcined, it yields quicklime. With sulphate of copper, oxalic acid yields a bluish white precipitate (oxalate of copper). It reduces the sesqui-chloride of gold, and deoxidizes iodic acid on boiling.

To detect oxalic acid in oxalate of lime, proceed as follows:—Boil the oxalate with a solution of carbonate of potash for two hours, and filter. The liquor contains oxalate and carbonate of potash. Add acetate of lead, collect the precipitate (oxalate and carbonate of lead), suspend it in water, through which sulphuretted hydrogen is to be passed; filter

\(^1\) Crystallised oxalic acid has often been mistaken for sulphate of magnesia, and the consequence has been fatal in many instances. Sulphate of zinc and bicyanide of mercury are likewise apt to be confounded with this acid.
Composition; Impurity; Physiological Effects. 2009

(to get rid of the dark sulphuret of lead), boil the clear liquor, which is a solution of oxalic acid, and test as above for the free acid. If the oxalate of lime were mixed with organic matter, the filtered liquor should be freely acdulatated with nitric acid, before adding the acetate of lead. The acdulated liquor should be filtered, rendered faintly alkaline by carbonate of potash, again filtered, and then mixed with acetate of lead, and the precipitate treated as above.

Composition.—Anhydrous oxalic acid, as it exists in dry oxalate of lead, has the following composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Anhydrous Oxalic Acid</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

Or,

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonic Acid</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Carbonic Oxide</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Crystallised oxalic acid contains three equivalents of water, of two of which it may be deprived by heat, leaving, what has been termed, hydrate of oxalic acid. The composition of these two substances is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Oxalic Acid</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Water</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Crystallised Oxalic Acid</td>
<td>1</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhydrous Oxalic Acid</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Hydrate of Oxalic Acid</td>
<td>1</td>
<td>45</td>
</tr>
</tbody>
</table>

Some chemists regard the hydrate of oxalic acid as a real hydracid, composed of $\text{C}_2\text{O}_4\cdot\text{H}$. [The formula of this acid, in the anhydrous state, is $2\text{C}_2\text{O}_4\cdot\text{O}$, or C_2O_3; Symb. $\overline{O} = \text{eq. 36.24}$. The formula of the hydrated acid, 1 at. $\overline{O} + 1 \text{ eq. } \text{HO eq.} = 45.24$; and of the crystallized acid, 1 at. $\overline{O} + 3 \text{ eq. } \text{HO eq.} = 63.24$.—Ed.]

Impurity.—The crystals of oxalic acid of commerce are sometimes contaminated with nitric acid. In this state they have usually a faint odour, and stain the cork of the bottle, in which they are kept, yellow. If they be exposed to a warm atmosphere, the nitric acid escapes along with the water of crystallization. [The presence of nitric acid may be detected by boiling the crystals with a weak solution of sulphate of indigo. The colour is discharged.—Ed.]

Physiological Effects. a. On Vegetables.—A solution of oxalic acid acts as a poison to plants.¹ The acid (solid?) has been said to promote the germination of old seeds;² but I suspect the statement to be inaccurate.

b. On Animals.—The best series of experiments on the effects of this acid on animals are those of Christison and Coindet.³ They found that concentrated solutions of half-ounce doses of this acid introduced into the stomachs of cats and dogs caused exquisite pain, violent attempts to vomit, dullness, languor, great debility, and death in from two to twenty minutes. A post-mortem examination of the bodies showed softening and corrosion of

¹ Marcat, quoted by De Candolle, in his Physiologie Végétale, t. iii. p. 1355. Paris, 1832.
³ Edinburgh Medical and Surgical Journal, vol. xix. In Wibmer's work (Die Wirkung, &c. Bd. iv. S. 35) will be found a notice of the experiments of Rave and Klostermann.
the inner coat of the stomach. Large doses of a dilute solution caused great depression of the heart’s action; and small doses gave rise to tetanus or narcoticism. Furthermore, the acid acts with great violence, and produces nearly the same effects to whatever part of the body it is applied. From these results it has been inferred that the concentrated acid is a corrosive poison,—while the dilute acid ceases to be corrosive, but, becoming absorbed, acts on the brain, spinal cord, and heart. It appears to me absurd to suppose, as is usually done, that a dilute solution ceases to act chemically. It does not, indeed, destroy the gastric membrane as a concentrated solution does, but doubtless it must effect some chemical change on the blood when it gains access to it: though the precise alteration may hitherto have evaded notice. We know that a twentieth part of oxalic acid, added to boiling syrup, renders it thin, and incapable of crystallising; and it is possible that its action on other organic substances may be equally energetic; and thus alterations may be effected in the condition of the blood, which, though not very marked, may nevertheless be sufficient to render this fluid incapable of supporting life.

γ. On Man.—The effects of oxalic acid on the human subject vary somewhat with the dose. When this is large, and the solution concentrated, acute pain is experienced; but, after small doses and dilute solutions, this symptom is not well marked. Vomiting is usually present. The circulation is always depressed; the pulse being feeble or failing, and the surface cold and clammy. Nervous symptoms (such as lassitude, weakness of the limbs, numbness, pain in the back extending down the thighs, and, towards the end, convulsions) have sometimes, but by no means invariably, made their appearance. But death follows so speedily after the injection of large doses (“few of those who have died survived above an hour,” Christison), that the symptoms have not been fully made out. If life be prolonged for a few hours, symptoms of gastro-enteritis are observed. Post-mortem examination discovers irritation and often corrosion of the stomach. Some years since I opened the body of a man, who died in twenty minutes after swallowing oxalic acid by mistake for Epsom salts. The post-mortem examination was made a few hours after death, and while the body was quite warm. The stomach presented a diffused redness, like that of a part affected with erysipelas. The epithelium was destroyed, and presented, in patches, the appearance of the scalded cuticle, or of the pellicle which forms on the surface of boiling saline solutions.

Uses.—Oxalic acid is not at the present time used in medicine. In France, Tablettes d’Acide Oxalique are prepared. Either free or combined with ammonia, it is a valuable test for lime. It is employed for removing ink stains and iron moulds from linen; for cleaning the leather of boot-tops; and for certain styles of discharge in calico-printing.

Antidotes.—In cases of poisoning by this acid, it is advisable to administer as speedily as possible large quantities of chalk, whiting, or magnesia, suspended in water; by which inert earthy oxalates are formed in the stomach. In the absence of these antidotes, large quantities of warm water may be administered, and at the same time vomiting is to be promoted by tickling the throat. Small quantities of water may prove injurious by favouring absorption. Alkalis do not deprive the acid of its poisonous ope-
ratin. The stomach-pump and emetics may be used; but on account of the rapidity with which this acid acts it is not advisable to lose time by their application, until after the antidote has been administered. The same treatment is to be adopted in poisoning by the following salts:—

310. CREASOTON, L.—CREASOTE.

Creazotum, E.—Creasotum, D.

(An Oxy-hydro-carburet; prepared from pyroxylic oil, L.)

History.—This substance was discovered a few years since by Reichenbach, who termed it *Creasote* (from *ρασας, flesh, and σώζω, I preserve), or the *flesh-preserver*, on account of its antiseptic property. Its name is sometimes written *Creosote*, or *Kreosote*.

Natural History.—It is an artificial product; and is obtained by the destructive distillation of organic substances. It is found in pyroligneous acid, in tar, in Dippel's oil, in wood smoke, and empyreumatic waters.

Preparation.—The preparation of creasote is a very troublesome and tedious process. The following concise abstract of it is taken from Turner's *Elements of Chemistry* (5th edit. p. 872). Those portions of the oil (called in the Pharmacopoeia *pyroxylic oil*) distilled from wood-tar, which are heavier than water, are first freed from adhering acetic acid by carbonate of potash, and, after separation from the acetate, are distilled. A little phosphoric acid is mixed with the product to neutralize ammonia, and another distillation resorted to. It is next mixed with a strong solution of potash, which combines with creasote, allows any cupion which may be present to collect on its surface, and by digestion decomposes other organic matter: the alkaline solution is then neutralised by sulphuric acid, and the oil which separates is collected and distilled. For the complete purification of the creasote, this treatment with potash, followed by neutralization and distillation, requires to be frequently repeated.1 The oil from which creasote is prepared is that obtained by the distillation of wood-tar, and is either imported from Stockholm, Archangel, and America, or is made in the manufacture of pyroligneous acid.

Properties.—Pure creasote is colourless and transparent; and has a high refractive power, and an oleaginous consistence. Its odour is that of smoked meat, its taste burning and caustic, its sp. gr. 1·037 at 68° F. [According to the Dublin Pharmacopoeia, its sp. gr. is 1·066.—Ed.] It boils at 307° F.; and is fluid at −16·6° F. It is combustible, burning with a sooty flame. It absorbs chlorine, and is resinified by it. Nitric acid is decomposed by it, with the evolution of nitrous fumes. Sulphuric acid

1 For further details I must refer to Dumas' *Traité de Chimie*; the *Ann. de Chim. et Physiq.* t. 57, 1834; and Cozzi, in the *Journal de Pharmacie*, t. xxvii. p. 629.
in small quantity reddens, and in large quantity blackens it. Potassium decomposes it, with the evolution of gas (hydrogen?) and the formation of potash, which combines with some inspissated creasote. It is soluble in alcohol, ether, sulphuret of carbon, eupion, naphtha, acetic acid, and acetic ether. It dissolves resins, various colouring matters (as of cochineal, saffron, and madder), and some salts (as the acetate of potash). It has very little action on caoutchouc, and does not possess any acid or alkaline re-action on test paper. Mixed with water, it forms two combinations: one is a solution of 1:25 parts of creasote in 100 of water; the other, on the contrary, is a solution of 10 parts of water in 100 of creasote.

It coagulates soluble albumen. Concentrated albuminous liquids are immediately coagulated by it; diluted ones, gradually. Fibrin is not altered by it. It is powerfully antiseptic with respect to meat and fish. Tar, smoke, and crude pyroligneous acid, owe part, if not the whole, of their antiseptic properties to it. According to Dr. J. R. Cormack,¹ the only essential part of the mummifying process practised by the ancient Egyptians was the application of such a heat as would first dry up the body, and then decompose the tarry matters which had been previously introduced, and thus generate creasote.

Characteristics.—The odour of creasote is its most characteristic property. To this must be added its combustibility, its oleaginous appearance, its complete solubility in acetic acid and caustic potash, and its action on albumen before mentioned.

Impurity.—Creasote, when pure, is perfectly colourless; but that met with in commerce has frequently a more or less brownish tinge. Rectified oil of tar, capnomor, and a substance like almond oil, have been mixed with it.² These impurities are readily detected by mixing separate portions of the suspected liquid with acetic acid and caustic potash: pure creasote is completely soluble in these fluids; not so the adulterated. Capnomor is similar to creasote in many of its physical and chemical properties, and is frequently associated with the creasote of the shops.

Composition.—Ettling³ analysed creasote which was supposed to contain three per cent. of water. Making allowance for this impurity, its composition, as determined by this chemist, is nearly as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>14</td>
<td>84</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Creasote</td>
<td>1</td>
<td>109</td>
</tr>
</tbody>
</table>

or C₁₄ H₉ O₂. At present, however, the equivalent of creasote must be considered as uncertain, since no definite compound of this substance has been analysed, by which the combining proportion could be ascertained.

Physiological Effects. a. On Vegetables. — Plants moistened with

¹ Treatise on Creasote. Edinburgh, 1836.
² Cormack, op. cit.
³ Ann. de Chimie, lii. p. 333.
creasote water fade and die. The injurious effects of smoke on vegetation are probably to be referred principally to the creasote which it contains.

b. On Animals generally.—Insects (as flies), spiders, and small fishes, die in two minutes after their immersion in water containing a few drops of creasote suspended in it. According to Dr. Cormack, the effects of creasote on dogs are remarkably similar to those of hydrocyanic acid, and are much less apparent when this substance is injected into the carotid arteries than into the veins. When thrown into the latter it suddenly stops the heart’s action, and causes hurried respiration, one or two convulsive fits, shrill cries, and death. Injected into the carotid artery it produces coma. Introduced into the stomach it gives rise to dimness and fixation of the eyes, vertigo, and coma: when given in large quantities it also affects the heart. Corne-lianì and Miguet have observed inflammation of the gastro-intestinal mucous membrane of dogs poisoned by creasote, but which survived some time after its administration.

g. On Man.—Creasote operates locally as an irritant and caustic. Applied to the skin it causes heat, redness, and the destruction of the cuticle, which comes away in the form of furfuraceous scales. On the tongue it produces a painful sensation. Dropped into the eye it occasions acute pain. Placed in contact with a suppurating surface it whitens the part, like nitrate of silver. Swallowed in large doses it causes vomiting and purging. The caustic effect of creasote depends on its union with albumen. Unless largely diluted, it occasions, when swallowed, heat in the pharynx, oesophagus, and stomach. Small doses, as one or two minims, produce in most individuals no other unpleasant effect than that just mentioned. Larger doses give rise to nausea, vomiting, vertigo, headache, and heat of head. Dr. Elliotson knew a lady who increased the dose of creasote to forty drops before it disagreed: the addition of a single drop beyond this produced extreme giddiness, insensibility, and vomiting, followed by headache for several days. When given in moderate doses it does not affect the bowels; so that, as Dr. Elliotson has observed, “aperients are as requisite as if it was not taken.” When, however, the dose has been considerably augmented, diarrhœa, or even dysentery, has been produced. The influence of creasote on the urinary organs is sometimes very marked. Dr. Macleod was, I believe, the first who noticed that the urine acquired a blackish colour by the use of it. A similar effect is referred to by Dr. Elliotson. In some cases creasote is recognised, by its odour, in the urine, showing that it has been absorbed. Occasionally it increases the quantity of this secretion; but in diabetes it sometimes has an opposite effect. In some instances it has caused micturition and strangury, so that in its influence over the urinary organs it bears some resemblance to turpentine. Some other effects which have been ascribed to it require further evidence to establish them. In the dose

1 Miguet, Recherches sur la Créasote, 1834.
2 Cormack, op. cit. p. 66, et seq.
4 Medico-Chirur. Trans. vol. xix.
5 Cormack, op. cit. p. 93.
of two drachms creasote proved fatal in thirty-six hours. It caused acute pain.\(^1\)

Uses.—Various substances, some known to contain creasote, others supposed to do so, have long been used in medicine, in the same diseases in which creasote itself is now employed; and, in consequence, it has been imagined that they owe part of whatever efficacy they really possess to this substance. These remarks apply to Tar,\(^2\) Soot,\(^3\) Crude Pyrroligneous Acid, *Aqua Binelli,*\(^4\) the Empyreumatic Water of Runge and Hanke, Pyrothionide,\(^5\) and Animal or Dippel’s Oil. To this list should be added, according to Dr. Cormack (*op. cit.*), Mummy.

As an internal remedy, creasote has been principally celebrated, in this country, as a medicine possessing extraordinary powers of arresting vomiting. It has, however, been greatly overrated. It is decidedly injurious in inflammatory conditions and structural disease of the stomach, and frequently fails in allaying the sickness dependent on organic diseases, as of the heart and kidneys. It is most successful in hysterical cases, and sometimes succeeds in pregnancy. Creasote was first employed to relieve vomiting by Dr. Elliotson,\(^6\) to whose paper, as well as to that of Mr. Taylor, apothecary of the North London Hospital,\(^7\) I must refer for cases illustrative of extraordinary success with it. It is regarded by Dr. Macleod\(^8\) as of doubtful efficacy; and

\(^1\) See *The Times* of June 17, 1839. I presume the mental faculties were unaffected.

\(^2\) Tar will be described hereafter.

\(^3\) Wood Soot (*Fuligo Liqui*) was formerly contained in the list of the materia medica of the British Pharmacopoeias. It is still in use on the continent, and statements of its efficacy are occasionally met with in the periodicals. It is a mixture of distilled products from the imperfectly burnt wood and of ashes, or other fixed matters, carried up the chimney by the current of air. It consists of a pyrogenous or empyreumatic resin called *pyretin,* combined with *acetic acid,* which also saturates the bases (*potash, lime,* and *magnesia*) of the ashes which are carried up the chimney. Besides these, there are small quantities of *sesquioxide of iron,* *silica,* and *carbon.* *Acetate of ammonia,* *chloride of calcium,* and *sulphate of lime,* are also contained in soot. Moreover, there is extractive matter, part of which is insoluble in alcohol. Lastly, to these constituents must be added creasote. Braconnot (*Ann. Chim. de Phys.* t. xxxi., p. 37) mentions a bitter principle, which he calls *esbonite* (from *esbona,* soot) in soot; but Berzelius (*Fréact de Chemie,* t. vi., p. 725) considers it to be a mixture of different matters with the acid *pyretin.* The matters insoluble in water constitute about 0·44 of soot. Formerly soot was esteemed tonic, antispasmodic, and emmenagogue. It is now principally employed as an external remedy, chiefly in ringworm and other analogous eruptions, and obstinate ulcers. It is employed in the form of *decoction* (prepared by boiling two handfuls of soot in a pint of water for half an hour) and of *ointment* (composed of a drachm of soot to an ounce of lard). The decoction has been used as an injection in chronic cystitis (*Lond. Med. Gaz.* 1839-40, vol. i., p. 864). The *Tincture of Soot,* formerly in the London Pharmacopoeia, consists of Wood Soot 5 j.; Assafetida, 5 j.; and Proof Spirit, 5 j. It is sometimes called *Soot Drops* or *Hysteric Mixture,* and is prescribed in doses of one or two tea-spoonsfull in hysteria.

\(^5\) *Pyrothionide* (from *pyr. fire,* and *dibory, linen,* or *lignor pyro-oleasius et linteo paratus,* is a very popular remedy for tooth-ache and skin diseases. It is sometimes prepared by distilling rags, and is then called *rag oil,* but the common mode of procuring it is to burn a cone of paper on a plate or other cold body: it is then termed *paper oil.* It has been analysed by Herberger (*Buchner, Repertorium,* Bd. 32, S. 347). For further particulars concerning it, consult *Meral* and *De Lins,* *Dict. Mat. Méd.*; Dierbach, *op. cit.*; Schwartz, *Pharm. Tabell.* 2te Ane.; I. Richter, *Ausfährl. Arzneim.* Supplem., Bd.

\(^6\) Medicina-Chirurg. *Trans.* vol. xix.

\(^7\) *Lancet,* August 18, 1835.

\(^8\) *London Medical Gazette,* vol. xvi., p. 598, and vol. xvii., p. 653.
has completely failed in the hands of Dr. Paris.¹ Dr. Burne,² however, found it efficacious in gastro-enteritic irritation. I have found it much more frequently fail than succeed in alleviating irritable stomach. It sometimes relieves the chronic vomiting connected with granular disease of the kidneys when other means fail.³ In gastrodynia or flatulence it occasionally succeeds, but is admissible in those cases only in which local stimulants are usually found beneficial. Where both hydrocyanic acid and creasote have been separately tried without success, Dr. Elliotson advises their union. Creasote has been tried in a few cases of diabetes. In some it diminished both the quantity and saccharine quality of the urine.⁴ I have tried it at the London Hospital, but without obtaining benefit from its use. In neuralgia, hysteria, and pulmonary diseases, it has also been used with occasional advantage: but a more extended experience is required to establish its efficacy in these cases.

As an external agent creasote may frequently be employed with great advantage. It has been successfully applied to relieve toothache. After carefully cleaning out the cavity of the tooth, a drop of creasote, or an alcoholic solution of this principle, may be introduced by means of a camel's hair pencil, and the cavity filled with cotton soaked in this liquid. As a local application to chronic skin diseases (particularly the different forms of porrigo, impetigo, eczema) it is of considerable value. Where a caustic application is required, it may be applied undiluted; but for other purposes it is used either in the form of ointment, or dissolved in water as a wash. Creasote may be beneficially used as an application to foul and indolent ulcers. It serves the double purpose of stimulating the living surface (and thereby of changing the quality of actions going on in the part), and also of preventing the putrefaction of the secreted matters. It is sometimes applied pure, but more commonly diluted with water. Lupus is said to have healed under the employment of an ointment of creasote.⁵ In hemorrhages creasote acts as a most efficient styptic, partly in consequence of its power of coagulating albuminous liquids, and thereby of causing the formation of a clot, and partly by causing contraction of the bleeding vessels. Creasote water (prepared by mixing one part of creasote with eighty parts of water) may be applied either to bleeding wounds and leech-bites, or introduced into the vagina in uterine hemorrhage, by means of pledgets of lint soaked in it. There are many other purposes for which creasote has been applied as a local agent, but which I think it sufficient merely to name, referring the reader to the various papers and works before quoted for further information. It has been employed to check caries, to restrain excessive suppuration, and to repress fungous granulations in burns and scalds; to act as a counter-irritant in chronic ophthalmia, in which disease it is sometimes dropped into the eye on the same principle that nitrate of silver and other local stimulants are used; and to remove condylomatus and other excrescences. The inhalation of

¹ Appendix to the 8th edit. of the Pharmacologia, 1838.
² London Medical Gazette, August 18th, 1838.
⁴ Dr. Elliotson, Med-Chirurg. Trans.; and Professor Berard, Lancet, July 18, 1835.
⁵ Mr. Browne, in the London Medical Gazette for April 7, 1838.
creasote vapour is occasionally useful in relieving excessive bronchial secretion. Dr. Elliotson cured two cases of glanders in the human subject by injecting an aqueous solution of creasote up the affected nostril.¹

Administration.—Creasote may be given, at the commencement of its use, in doses of one or two drops diffused through an ounce of some aromatic water by the aid of mucilage; the dose should be gradually increased. As before mentioned, in one case forty drops were given with impunity: in another instance, ninety drops were administered in less than half a day without any bad symptom.²

As a caustic, undiluted creasote is sometimes applied by means of a camel's hair pencil.

Lotions, gargles, or injections of creasote, are prepared by dissolving from two to six drops (according to the circumstances of each case) in an ounce of water. A solution of this kind is sometimes mixed with poultices.

The inhalation of creasote vapour may be effected by diffusing a few drops of creasote through water or a mucilaginous liquid, and breathing through this by means of the ordinary inhaling bottle.

Antidotes.—In a case of poisoning by creasote, the depression of the vital powers is to be counteracted by ammonia and other stimulants. Dr. Cormack suggests the use of chlorine, but the value of this agent has not been determined by actual experiment. Oleaginous and mucilaginous drinks are recommended by Corneliani for the purpose of preventing the local action of creasote on the mucous lining of the stomach and intestines. Vinegar does not diminish, but, according to Corneliani, increases its activity. Dr. Cormack says albumen augments (?) its poisonous operation. Bleeding is suggested by this writer, in order to relieve the distension, and thereby to excite the contractions, of the heart. Artificial respiration should on no account be omitted. Any inflammatory symptoms which may subsequently appear are of course to be treated by the usual antiphlogistic measures.

1. **Mistura Creasoti**, Mistura Creazote, E. ("Take of Creazote and Acetic Acid, of each ⅟₁₉₁; Compound Spirit of Juniper, and Syrup, of each ⅟₃j.; Water, ½ xiv.; mix the creazote with the acid, then gradually [add] the water, and lastly the syrup and spirit). Dose ⅟₃j. to ⅟₅j. or more.

2. **Unguentum Creasoti**, L. D.; Unguentum Creazoti, E. (Creasote, ½ss.; Lard, ½j. rub them together L.—Axunge, ½ij.; Creazote, ½j. Melt the axunge, add the creazote, stir them briskly, and continue to do so as the mixture concretes on cooling, E. Take of Creazote, ½j.; Ointment of White wax, ½vij. To the ointment liquefied by a moderate heat add the creazote, and stir constantly until the mixture concretes, D.)—It is used principally in skin diseases, as ring-worm. The quantity of creasote may be augmented or lessened according to circumstances.

¹ See also *Lancet*, vol. ii. for 1834-5, p. 398.
311. PETROLEUM, L. E.—PETROLEUM, OR ROCK OIL.

Petroleum (Barbadense), L.
(Bitumen Petroleum. Petroleum Barbadosensis.)

History.—Herodotus\(^1\) mentions the petroleum springs of Zante (now called Zante) more than 400 years before Christ. Plutarch, in his Life of Alexander, speaks of a lake of naphtha at Ecbatana (now Hamadan), in Media. The substance known to mineralogists as petroleum is the black naphtha (νάφθα μελανα) of Dioscorides (lib. i.), the bitumen liquidum of Pliny (lib. xxxv.).

Natural History.—There are two varieties of liquid bitumen or mineral oil: one is transparent and nearly colourless, or only slightly yellow, and when burnt leaves no residuum; the other is thick, of a reddish brown colour or blackish, and leaves, after combustion, a black coal. The first is called naphtha (a Chaldean word); the second petroleum (from petra, a rock; and oleum, oil) or rock oil, because it is frequently found exuding in the form of an oily liquid from rocks. Both kinds are supposed to be produced by the decomposition of organic (vegetable) matter, for they are always found in Neptunian rocks, and they appear sometimes to be one of the products of the decomposition of coal.\(^2\) From the investigation of Drs. Christian and Gregory,\(^3\) it appears probable that some varieties of petroleum, as that of Rangoon, are products of destructive distillation, since they contain paraffine and eupion, substances obtained from organic bodies by heat.

Petroleum is found in this country at Ornanskirk in Lancashire, at Colebrook Dale, and at St. Catherine’s Well, near Edinburgh. In France it is produced at the village of Gabian in Languedoc, and hence it was termed Oleum Gabianum. It is also found in various other parts of Europe, especially in Italy. In the United States of America it is met with in various places: that from the shore of Seneca Lake in New York is called Seneca oil. Several of the West India Islands, especially Barbadoes and Trinidad, yield it. The Barbadoes petroleum (Petroleum Barbadosense, L.; Piss cellulum Indicum, Dale) is commonly termed Barbadoes Tar, or Barbadoes Naphtha. Mr. Hughes\(^4\) speaks of two kinds of it; one of a dirty black, inclining to a green, issuing from some hills in St. Andrew’s and St. Joseph’s parishes; and one of a blacker colour, in St. Joseph’s parish. That imported by Mr. Clarke professes to be the produce of the springs on Mount Hall estate, in Barbadoes. In various localities of Asia petroleum is met with in great abundance.

Extraction.—Mr. Hughes says that the mode of procuring the green tar of Barbadoes is to dig a hole or trench in, or very near, the place where it oozes out of the earth. This by degrees becomes filled with water, having a thick film or cream of this liquid bitumen swimming upon the surface; from whence it is skimmed off, and preserved in earthen jars or other vessels.

\(^1\) Melbomene, exev.
\(^2\) Berzelius, Traité de Chim. t. vime.
\(^4\) The Natural History of Barbadoes, p. 50. Lond. 1750.
The most convenient season for gathering it is in the months of January, February, and March.

Properties.—Barbadoes petroleum, at ordinary temperatures, has the consistency of treacle: its colour is reddish brown or blackish; its odour and taste are bituminous. It floats on water: is combustible, yielding a thick black smoke, and leaving a carbonaceous residuum. It is insoluble in water and alcohol.

Composition.—The ultimate constituents of Barbadoes petroleum are carbon and hydrogen, with small quantities of oxygen and nitrogen. The latter probably are accidental.

By distillation, five parts by measure yield rather more than four parts of a yellow oily fluid, somewhat similar in appearance to the liquid carbon-hydrogen obtained in the manufacture of oil-gas, but dissimilar to naphtha. The residuum in the retort is a substance analogous to asphaltum. It yields by destructive distillation traces of ammonia. Some kinds of petroleum contain paraffine and eupion.

Physiological Effects.—Petroleum possesses stimulating properties, which are principally observed in its effects on the organs of secretion (the skin, the kidneys, and the mucous membranes), the activity of which it promotes: hence it has been called sudorific, diuretic, and expectorant. It becomes absorbed, and in this way probably acts topically on the secreting organs; for Mr. Hughes observes, that when a horse "that has been dosed with it begins to be warm upon his journey, the rider will smell the tar strongly." It is said to be an excitant to the lymphatic vessels and glands.

Uses.—As an internal remedy it is employed in chronic pulmonary affections (as winter coughs and old asthmas,) in obstinate skin diseases (as lepra, psoriasis, and impetigo), and against tape-worm. Mr. Hughes says it is used in paralytic and nervous disorders.

As an external agent it is applied to obstinate ulcers, as lupus and cutaneous diseases, and is employed as a stimulating liniment in chronic rheumatism, paralysis, and chilblains.

Administration.—The dose of Barbadoes petroleum is a small tea-spoonful given in any convenient vehicle (as some aromatic water, tea, or spirit). The quantity should be gradually increased. An ounce has been taken in the day without any inconvenience.

312. Succinum, D.—Amber.

(The oil obtained by its destructive distillation, D.)

History.—Amber was known to Thales of Miletus, 600 years before Christ. He was the first who noticed that, when rubbed, it acquired the power of attracting light bodies. Hence arose the term electricity, from σκεπτρον, amber. Theophrastus\(^1\) also mentions this property.

Natural History.—Amber is found in different parts of the world. The

\(^1\) Da Lapidibus.
Composition.

principal portion of that met with in commerce comes from the southern coasts of the Baltic, in Prussia, and is cast on the shore between Königsberg and Memel. It is also found on the shores of Norfolk. It is supposed to be disengaged, by the action of the sea, from beds of lignite. The vegetable origin of amber is shewn by various facts. It is usually associated with substances (bituminous wood, coal, &c.) known to be derived from plants. Externally we observe on it various impressions of the branches and bark of trees; and inclosed in it are insects and parts of plants (as the wood, leaves, flowers, and fruit). According to Sir David Brewster, its optical properties are those of an indurated vegetable juice. From these circumstances, as well as from its chemical composition, amber is supposed to have been a resinous exudation from some tree. As the wood, leaves, blossoms, and fruit of some coniferous plant are found in amber, this plant has been supposed to be the amber tree: and a microscopic examination of the wood leads to the conclusion that the amber tree is a species, though probably an extinct one, of the genus Pinus, closely allied to P. balsamea. On chemical grounds, however, Liebig suggests that it is a product of wax, or of some other substance allied to the fats of fixed oils; since succinic acid is formed by the oxidation of stearic and margaric acids.

Properties.—It occurs in irregularly shaped pieces, usually flat and somewhat rounded at the sides. Its colour is yellowish white (succinum album), yellow (succinum citrinum), or reddish (succinum rubrum). It is usually translucent, sometimes opaque or transparent: it is tasteless and odourless. Its sp. gr. is about 1.07. It is brittle, yields readily to the knife, has a conchoidal vitreous or resinous fracture, and becomes negatively electrical by friction: it contains various insects which, apparently, must have become entangled in it while it was soft and viscid. (For an account of these consult Mr. Hope's paper before quoted; also Burmeister's Manual of Entomology, p. 574).

Heated in the air, amber fuses at about 550° F., then inflames, and burns with a yellow flame, emitting a peculiar odour, and leaving behind a light shiny black coal. It cannot be fused without undergoing some chemical change. It evolves water, volatile oil, and succinic acid: the residual mass is termed colophonium succini. By destructive distillation in a retort or alembic, amber yields first an acid liquor (which contains succinic and acetic acids), then some succinic acid is deposited in the neck of the retort, and an empyreumatic oil (oleum succini) comes over, at first thin and yellowish, afterwards brown and thick: towards the end of the operation a yellow light sublimate is observed in the neck of the retort; this is called, by Berzelius, crystallized pyrètine; by Vogel, volatile resin of amber; by Gmelin, amber-camphor. An inflammable gas is evolved during the whole time of the operation.

Composition.—The ultimate constituents of amber are, carbon, hydro-

3 Turner's Elements of Chemistry, 7th edit. p. 1050.
4 For further details respecting the natural history of amber, consult John's Naturgeschichte d. Succins, Cohn. 1816; and Graftenhauer's Histoire Naturelle, chimique, et technique, du Succin, Paris, 1824.

VOL. II.
gen, and oxygen. The proximate principles are, a volatile oil, two resins, succinic acid, and a bituminous substance.

Ultimate Constituents.

<table>
<thead>
<tr>
<th></th>
<th>Drassier.</th>
<th>Ure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>80·59</td>
<td>70·68</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>7·31</td>
<td>11·62</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6·73</td>
<td>77·7</td>
</tr>
<tr>
<td>Ashes (silica, lime, and alumina)</td>
<td>3·27</td>
<td>—</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>97·90</td>
</tr>
</tbody>
</table>

According to Hunefeldt, hydrochloric acid extracts from amber, besides succinic acid, another acid, very similar to mellite acid.

The volatile oil has a strong but agreeable odour. The resins are soluble in both alcohol and ether: if an alcoholic solution of the two resins be prepared by heat, and then allowed to cool, one of the resins is deposited. The bituminous matter constitutes the principal part of amber: it is insoluble in alcohol, ether, the oils both volatile and fixed, and alkaline solutions.

Characteristics and Purity.—The resins copal and animi are sometimes substituted for amber. They may be distinguished by the difference in their colour and fracture, and by their not emitting the peculiar odour of amber when thrown upon hot iron.¹ They do not yield succinic acid when submitted to distillation. Copal, during its combustion, is constantly falling in drops; and by this character may be distinguished from amber.²

Physiological Effects.—Amber was formerly celebrated as a stimulant and antispasmodic. It probably possesses little or no medicinal power.

Uses.—It is not employed as a medicine in this country. It was formerly used in chronic catarrhs, amenorrhœa, hysteria, &c., and was given either in the form of powder, in doses of from ten grains to a drachm, or in that of tincture, a formula for which is contained both in the French Codex and Prussian Pharmacopœia.

1. **OLEUM SUCCINI, D.**; **Oil of Amber.**—No directions for the preparation of this oil are given in the Dublin Pharmacopœia.

The following mode of preparing this oil I have seen practised by an experienced manufacturer:—The amber is distilled in a large iron still or retort, set in brickwork over a proper fire, and connected with an earthen globe, which opens into an old oil jar for a receiver. Three distilled products are obtained: impure succinic acid, called volatile salt of amber; an aqueous liquor, termed volatile spirit of amber, consisting of water, acetic and succinic acid, and pyrogenous oil; and volatile oil of amber. The residue in the retort is a kind of pitch, and is called English asphalt. The oil is afterwards rectified by distillation in an iron pot, to which an earthen head is adapted. A very gentle heat suffices for re-distillation. Scrapings of Copal and the resin Dammar are frequently substituted for amber. They yield no succinic acid, but a volatile oil scarcely distinguishable from genuine oil of amber.

Volatile oil of amber, when fresh drawn, has a pale yellowish colour, which

¹ United States Dispensatory.
deepens by age, and a strong and remarkable, but agreeable, odour. It is a powerful local irritant. When rubbed on the skin it acts as a rubefacient, and is sometimes employed in liniments in rheumatism and paralysis. Taken internally it operates, like most other empyreumatic oils, on the nervous system, and is used as a stimulant, antispasmodic, and emmenagogue, in hysteria and amenorrhoea. The dose is from ten to fifteen drops. It is a constituent of the Tinctura Ammonia composita, which is made in imitation of Eau de Luce, the history of which has been fully detailed by Beckmann.¹

Artificial Musk (Moschus artificialis; Moschus factitius) is prepared by adding gradually fi. iss. of concentrated nitric acid to f5j. of oil of amber, in a large glass tumbler. When the acid is not of sufficient strength, its action must be assisted by heat. The oil is gradually resinified at the expense of the oxygen of the acid, nitrous fumes being evolved. An orange yellow resin, having a peculiar musky odour, is obtained; which is to be well washed with water to remove all traces of acid. Artificial musk is reputed to be antispasmodic and nervine, and has been employed in hooping-cough, and low nervous fevers. A tincture of it (Tinctura Moschi artificialis) is prepared by dissolving 3j. of artificial musk in f5x. of rectified spirit. The dose is f5j.

2. ACIDUM SUCCINICUM; Succinic Acid, or the Acid of Amber; Sal Succini.—This acid is obtained in the distillation of amber. The mode of purifying it has been already stated. It may also be procured by the oxidation of stearic and margaric acids. It crystallizes in colourless white scales or prisms, which are quite volatile. Anhydrous succinic acid is composed of C₄H₆O₄=50. The sublimed acid is composed of 2S+HO=109. It is soluble in water; scarcely so in cold, but more so in boiling alcohol. It is almost insoluble in oil of turpentine, by which it is distinguished from benzoic acid. Succinate of ammonia produces, with the salts of the sesqui-oxide of iron, a brownish red, flaky precipitate (persuccinate of iron), and with the salts of lead, a white precipitate (succinate of lead). Succinic acid is said to possess stimulant and antispasmodic properties, and to promote perspiration and excretion of urine. It was formerly employed in rheumatism, gout, suppressed or repressed eruptions, and cramps. It is now never used in medicine. The dose in which it was formerly given was grs. v. to grs. xv.

313. OLEUM ANIMALE EMPYREUMATICUM.—EMPYREUMATIC ANIMAL OIL.

When animal substances (as bone or hartshorn) are subjected to destructive distillation, a fetid volatile oil is obtained, which is commonly called Animal or Dipple's Oil. That which is found in commerce is obtained in the manufacture of bone black. It is identical in its nature with the Oleum Cornu Cervi, or Oil of Hartshorn, formerly used in medicine. As usually met with, it is a thick, brown, viscous oil, having a most repulsive odour. By distillation, however, it may be rendered colourless and limpid, but is soon altered by the action of air and light. Its ultimate constituents are Carbon,

¹ History of Inventions and Discoveries, 2d edit. vol. iv. p. 595, Lond. 1814.

Hydrogen, Nitrogen, and Oxygen. It contains ammonia, and therefore has an alkaline reaction. Unverdorben alleges that it contains four oily salifiable bases, to which he has given the names of odorine, animine, odamine, and ammonium. Reichenbach has obtained creasote from it, and ascribes to this principle the supposed virtues of animal oil. Whatever may be its active principle, animal oil is undoubtedly a very powerful agent. In large doses it acts as an energetic poison, operating in two ways, locally as an irritant, remotely as a narcotic. Swallowed in moderate doses, it stimulates the vascular and nervous systems, and is esteemed antispasmodic. It has been employed as a local agent in bruises, gangrene, porriga, and other diseases of the skin. Internally, it has been used to prevent an attack of epilepsy or ague, as a stimulant in low fevers, and as an antispasmodic in hysteria and other affections of the nervous system accompanied with convulsive movements. Bremser used Chabert's oil (prepared by mixing three parts of turpentine with one part Dippel's oil, and distilling three parts) as an anthelmintic in tape-worm. The dose of animal oil is a few drops, cautiously increased.

Order LXX. Guttiferae, Jussieu. —The Mangosteen Tribe.

Clusiaceae, Lindley.

Characters. — Sepals 2 or 6, usually persistent, round, frequently unequal, and coloured; revolution imbricated. Petals hypogynous, 4 to 10. Stamens hypogynous, indefinite or rarely definite, distinct, or variously united to the base; filaments unequal; anthers adnate, introrse or extrorse, sometimes very small, sometimes unilocular, and sometimes opening by a pore. Torus fleshy, occasionally 5-lobed. Ovary solitary, 1- or many-celled; ovules solitary, or several in each cell, erect or ascending, or numerous, and attached to several placenta; style usually 0 or very short, seldom conspicuous; stigmas peltate or radiate. Fruit capsular or fleshy, or drupaceous, 1- or many-celled, valvular and septicidal, or indehiscent. Seeds definite, in a pulp, apertous, often arilate; testa thin and membranous; albumen none; embryo straight; radicle small next the hilum; cotyledons large, thick and fleshy, often cohering.—Trees or shrubs, sometimes parasitical. Juice resinous. Leaves exstipulate, always opposite, coriaceous, with a strong midrib, and many oblique lateral parallel veins. Flowers articulated with their peduncle.—(Wight and Arnott.)

Properties.—The species all abound in a viscid, yellow, acrid, and purgative gum-resinous juice resembling Gamboge (Lindley). Several species of Garcinia yield edible fruits. The fruit G. Mangostana (fig. 391) is the most delicious of East Indian fruits, and is "the only fruit which sick people are allowed to eat without scruple."

1 Christison, Treatise on Poisons.
314. GARCINIA SPECIES INCERTA, \(L. \) — THE GAMBOGE PLANT.

Hebradendron cambogioides, Graham, E. D.—Cambogia Gutta, Linn.—Stalagmitis cambogioides, Moon.

Sex. Syst.\(^1\) Monoeia, Monadelphia.

(Gummi resinæ, \(L. \)—Gummy-resinous exudation, \(E. \) \(D. \))

History.—The first notice of gamboge is by Clusius,\(^2\) in 1605. He received this gum-resin in 1603 from Peter Garet, of Amsterdam. It had been brought from China by Admiral van Neck and his companions, and its oriental name was said to be Ghittaiemou.

Hab.—Ceylon, Indian Archipelago.

The annexed cut represents the plant still adopted in the Edinburgh and Dublin Pharmacopœias as that yielding gamboge. The London College have agreed with Dr. Christison in considering the distinctive characters given by the late Dr. Graham insufficient to authorise a generic distinction, and so to separate the plant described by him from the genus Garcinia. The true gamboge plant appears to have been possessed by Dr. Almeida, of Singapore, who received it from Siam direct. It has not, however, been fully described.—\(\text{Ed.} \)]

The Stalagmitis Cambogioides, Murray,\(^3\) \(L. \); \(S. \) Cambogia, Persoon, D. does not really exist. The specimen, which has been described as such, is in the Banksian Herbarium, and was found by Mr. Brown\(^4\) to consist of two plants (Xanthochymus ovalifolius of Roxburgh, and Hebradendron cambogioides of Graham), the union of which had been concealed by sealing-wax. As it appears, according to Dr. Christison,\(^5\) that the gamboge of Siam is “as nearly as possible identical in composition and properties” with that of Ceylon, it is probable that both are obtained from the same, or some nearly allied species. Indeed it has been suggested that the plant may have been carried from Siam to Ceylon: for the Bhoodist religion is supposed to have passed from the former to the latter country, and with it the practice of painting the temples and holy dresses with gamboge.

Preparation.—The only account which we possess of the method of ob-

\(^1 \) As the female flowers have not yet been examined, the true place of this plant in the sexual system must at present be doubtful. Linnaeus puts his genus Cambogia in Polyandra Monogynæ.

\(^2 \) Exot. ib. iv. cap. viii. p. 82.

\(^3 \) Comm. Göting. ix. 169.

\(^4 \) Graham, Comp. to Bot. Mag. ii. 197.

\(^5 \) Comp. to the Bot. Mag. vol. ii. p. 236.
taining Siam gamboge, is that given to König by a Catholic priest residing at Cochin-China. According to this statement, when the leaves or branchlets are broken, a yellow milky juice issues guttatin (hence the origin of the term Gummi Guttae applied to gamboge), and is received either on the leaves of the tree, or in cocoa-nut shells, and from thence is transferred into large flat earthen vessels, where it is allowed to harden during the summer season, and is afterwards enveloped with leaves. The cylindrical or pipe variety receives its form by being run into the joints of the bamboo while it is in the liquid state. A few years since there was an importation of gamboge in the bamboo cylinders (gamboge in the bamboo). Each cylinder or stem was about twenty-one inches long and one inch and a half in diameter, closed at the lower end by the transverse partition of the nodus, and at the upper by a piece of oil-skin. In Ceylon, gamboge is obtained by wounding the bark of the tree in various places with a sharp stone, when the flowers begin to appear. The cream-like juice which exudes hardens in the sun. According to Mrs. Walker, the Cingalese method of collecting it is "by cutting pieces of the bark completely off, about the size of the palm of the hand, early in the morning. The gamboge oozes out from the pores of the bark in a semi-liquid state, but soon thickens, and is scraped off by the collectors next morning, without injury to the tree, the wounds in the bark readily healing, and becoming fit to undergo the operation again."

Description. — Two kinds of gamboge (cambogia; gummi-guttae) are described by pharmacological writers — viz. the Siam and the Ceylon. Of these the first only is known in commerce.

1. Siam Gamboge (Cambogia Siamensis, Ph. Ed.) — This is the gamboge of the shops. It is brought to this country sometimes direct from Siam; at other times indirectly by way of Singapore, Penang, or Canton. It comes over in boxes, cases, or chests. In 1839, duty (4s. per cwt.) was paid on 15 cwts.; in 1838, on 40 cwts. It presents itself in commerce in three forms:—1st, in rolls or solid cylinders; 2dly, in pipes or hollow cylinders; 3dly, in cakes or amorphous masses. Both the solid and hollow cylinders are known in commerce as pipe gamboge. What is called coarse gamboge consists of the commonest pieces of the above.

a. Pipe gamboge consists of cylindrical pieces, varying in size from one to three inches in diameter. Some of them appear to have been formed by rolling; but many of them are striated, from the impression of the bamboo stems into the hollow of which the gamboge juice has been run, and not unfrequently portions of the stems are still adherent; and on one occasion, as above mentioned, the gamboge was imported in the stems (gamboge in the bamboo). The gamboge cylinders are sometimes distinct, and covered externally with a dirty greenish-yellow dust; at others agglutinated, or even folded, so as to form masses of varying sizes and forms. Pipe gamboge occurs in all qualities,—the finest and the worst specimens of gamboge which I ever saw having this form. Fine gamboge is brittle and odourless: it has very little taste at first, but, after some time, it

1 Murray, App. Med. iv. 656.
2 White, Voy. to the China Seas, Boston, 1823, p. 250, quoted by Dr. A. T. Thomson, in Lond. Disp.
4 Graham, op. supra cit. p. 196.
causes a sensation of acridity in the throat. Its fracture is conchoidal; its
fractured surface is opaque, reddish-yellow, with a glistening lustre. It
is completely dissolved by the successive action of ether and water. Mixed
with a sufficient quantity of water, it forms a yellow emulsion, the films
of which are excellent microscopic objects for observing the active mole-
cules described by Mr. R. Brown. The powder of fine gamboge is bright
yellow. The Edinburgh College gives the following characters of pure
gamboge:

"Fracture somewhat conchoidal, smooth, and glistening: a decoction of its powder,
cooled, is not rendered green by tincture of iodine, but merely somewhat tawny."

The iodine is employed to prove the absence of starch. Inferior qualities
of gamboge are harder, more earthy in fracture; the fractured surface is
brownish- or grayish-yellow, frequently with black spots, from the presence
of foreign bodies which are intermixed. It is not completely dissolved by
the successive action of ether and water. Iodine readily detects, in the
cooled decoction, starch, by the green colour which it gives rise to.

β. Lump or Cake Gamboge occurs in masses of several pounds weight.
Its quality is inferior to the finest pipe kind. Internally we observe frag-
ments of wood, twigs, and air-cells. In most of its characters it agrees with
the inferior qualities of pipe gamboge, and like this contains starch.

2. Ceylon or Cingalese Gamboge (Cambogia Zeylanica, Ph. Ed.)—I am
unacquainted with this kind of gamboge, which is unknown in English com-
erce. Dr. Christison says, that, as he has seen it, it "is usually in small
irregular fragments, but, as originally collected, is in flattish round masses, as
it moulded in shallow bowls, weighing about a pound or upwards; and it
appears to be composed of aggregated irregular tears, with interspaces and
cavities, which are lined with a dark powdery matter, or with a powder of an
earthly appearance. Altogether it seems a very coarse article." It forms,
"with great ease, an emulsion nowise inferior in smoothness, and very little,
if at all, in liveliness of tint, to that of the very best Pipe Gamboge of Siam."

Composition.—Gamboge was analysed, in 1808, by Bracoonot; in 1813,
by John; and in 1836, by Dr. Christison.

<table>
<thead>
<tr>
<th>Siam Gamboge</th>
<th>Ceylon Gamboge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylindrical or Pipe.</td>
<td>Cake or Lump.</td>
</tr>
<tr>
<td>Resin</td>
<td>74.2</td>
</tr>
<tr>
<td>Soluble gum</td>
<td>21.8</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>trace.</td>
</tr>
<tr>
<td>Fecula</td>
<td>—</td>
</tr>
</tbody>
</table>
| Moisture | 4.8 | 4.8 | 4.0 | 4.2 | 7.2 | 10.6 | 4.6 | {not ascer-
tained. | not ascer-
tained. |
| Gamboge | 100.8 | 100.4 | 99.6 | 100.1 | 101.4 | 100.8 | 100.9 | 96.0 | 96.6 |

1 Phil. Mag. for Sept. 1828 and 1829.
2 Ann. de Chim. lxviii. 33.
3 Gmelin, Hand. de Chem. ii. 626.
4 Companion to the Botanical Magazine, ii. 233.
1. Gambogic Acid; Gambogic Acid, Johnston; Resin, Christison.—Obtained by evaporating to dryness the ethereal tincture of the pure gum-resin. It is brittle, in thin layers of a deep orange colour, in thicker masses of a cherry-red tint. It is insoluble in water, but soluble in alcohol, and still more so in ether. It communicates an appreciable yellowness to 10,000 times its weight of spirit. It is soluble in the caustic alkalies, forming dark-red solutions (alkaline gambogiates), which yield, with acids, a yellow precipitate (gambogic acid); with acetate of lead, a yellow (gambogiate of lead); with the salts of iron, a dark-brown (gambogiate of iron), and with sulphate of copper, a brown one (gambogiate of copper). The composition of gambogic acid, according to Johnston, is C₉₀H₇₂O₅. When heated to about 400° F. it undergoes partial decomposition, a resin soluble in cold alcohol being formed, and another insoluble in that liquid. The constitution of the latter seems to be represented by C₉₀H₇₂O₅—in doses of five grains, gambogic acid occasioned profuse watery discharges, without pain or other uncasiness. If the activity of gamboge depended solely on the resin, five, or five and a half, grains of the resin should be equal to seven of gamboge; but, according to Dr. Christison, this is not the case. Hence, either it is not the sole active ingredient, or it becomes somewhat altered in the process for procuring it: the latter supposition is the more probable.

2. Gum (Arabine?)—The gum of gamboge is soluble in water, like gum arabic.

2. Starch or Fecula.—This substance, which is found in common gamboge, is doubtless an adulterating substance.

Chemical Characteristics.—Gamboge emulsion becomes transparent and deep red on the addition of potash, forming gambogiate of potash. Digested in alcohol or ether, gamboge yields orange-red tinctures (solutions of gambogic acid). The ethereal tincture dropped on water yields, on the evaporation of the ether, a thin, bright yellow, opaque film or scum (gambogic acid), soluble in caustic potash. The alcoholic tincture dropped into water yields a bright, opaque, yellow emulsion, which becomes clear, deep red, and transparent, on the addition of caustic potash. The gambogiate of potash (obtained by any of the above processes) gives, if the alkali be not in excess, with acids, a yellow precipitate (gambogic acid); with acetate of lead, a yellow precipitate (gambogiate of lead); with sulphate of copper, brown (gambogiate of copper); and with the salts of iron, dark brown (gambogiate of iron).

The detection of gamboge in pills has become, on some occasions, an important object of medico-legal research.² Spurious extraction colocynthidis compositum, and the pill cochie of the shops, sometimes contain gamboge. The mode of detection, in all these cases, is simple:—Digest one portion of the suspected substance in alcohol, and another in ether. Then subject the alcoholic and ethereal tinctures to the tests above mentioned.

In external appearance the resin of Xanthorrhoea hastilis is the only substance that could, by a remote possibility, be confounded with gamboge. But the above chemical characters readily distinguish gamboge. They would also prevent the yellow colouring matter of saffron, of turmeric, and of rhubarb, from being confounded with that of gamboge.

Physiological Effects. a. On Animals generally.—The animals on which the effects of gamboge have been tried, are dogs, horses, oxen, sheep, and rabbits. From his experiments on dogs, Orfila³ inferred that it is a powerful local irritant: and that when applied to any of the animal tissues, its fatal operation depends, not on its absorption, but on its powerful local action, and on the sympathetic irritation of the nervous system. It appears to be an uncertain and dangerous medicine for herbivorous animals, and is, therefore, never employed by veterinarians. Daubenton states, that two drachms killed a sheep.⁴ Two ounces and a half have been found to produce

¹ Phil. Trans. 1839.
² Trial of Joseph Webb, at York Summer Assizes, 1834, taken by Mr. Frazer. Lond. 1834.
³ Toxicol. Gén.
very little effect on a cow; while twice that quantity caused dysentery, which continued seventeen days. On the horse, from six to twelve drachms have merely rendered the stools somewhat softer and more frequent, although shivering, loss of appetite, irregularity of pulse, great anxiety, and other alarming constitutional symptoms, were brought on.\(^1\) On the other hand, Viborg\(^2\) has given an ounce to the horse without any remarkable effect.

3. On Man.—Taken in small doses, gamboge promotes the secretions of the alimentary canal and of the kidneys, and causes more frequent and liquid stools than natural. In larger doses it occasions nausea, oftentimes vomiting, griping pains of the bowels, watery stools, and increased discharge of urine. When the action is very violent, there is great depression of the vascular system. In excessive doses it acts as an acrid poison. A drachm caused horrible vomiting and purging, followed by syncope and death.\(^3\) The deaths which have occurred from the use of enormous quantities of Morison’s pills\(^4\) are mainly ascribable to the gamboge contained in these medicines. In these cases the symptoms were, violent vomiting and purging, abdominal pain and tenderness, cold extremities, and sinking pulse. On post-mortem examination, inflammation, ulceration, and mortification of the intestines, were found.

Gamboge belongs to the active hydragogues and drastic purgatives. Its activity is inferior to elaterium and croton oil. In acridity it exceeds jalap, scammony, and even colocynth. In its mode of operation it is allied to, though scarcely so acrid as, euphorbium. It is exceedingly apt to irritate the stomach, and to occasion nausea and vomiting. This arises from its ready solubility in the gastric juices. As this action on the stomach is exceedingly objectionable, we sometimes endeavour to lessen it by conjoining aloes, or some other substance which diminishes the solubility of gamboge in aqueous fluids, and by giving the medicine in the form of pill. Sundelin\(^5\) ascribes to gamboge an especial power of exciting the vascular system (arteries and veins) of the pelvic organs, in virtue of which, he says, it readily gives rise to the hemorrhoidal flux and uterine hemorrhage. Furthermore, he regards it as powerfully irritating and exciting to the abdominal nerves, especially the sacral and pelvic divisions.

Uses.—From the foregoing account of the effects of gamboge, it is very evident that it is a remedy well adapted for acting as a stimulus to the abdominal and pelvic viscera, either to rouse them when in a torpid state, or to give them preternatural activity, and thereby to relieve some distant organ, on the principle of counter-irritation. On the other hand, the use of gamboge is highly objectionable when there is an irritable or inflammatory condition of the stomach or bowels, a tendency to abortion, or to uterine hemorrhage, and also when we do not want to promote or increase the hemorrhoidal discharge. The following are some of the cases in which we employ it:

5. *Heilmittel*, ii. 28, 3te Aufl.
1. In constipation, where an active cathartic of small bulk is required, gamboge is employed. It is, however, not given alone, as the necessary dose would be very apt to create nausea and vomiting. It is, therefore, usually conjoined with other and milder purgatives, the operation of which it increases and quickens, while they, by diminishing its solubility in the juices of the stomach, lessen its tendency to create nausea or vomiting. The Pilulæ cathartice composite, Ph. U.S., and the Pilulæ gambogie composite, L.D., may be referred to as preparations in which these objects have been kept in view.

2. In cerebral affections, as apoplexy, or a tendency thereto, gamboge, usually associated with other purgatives as above stated, is a highly valuable counter-irritant purgative. By stimulating and rousing the nerves, blood-vessels, and secretory apparatus of the abdomen, it is often calculated to relieve determinations of blood to other parts.

3. In dropsies gamboge has been employed, on account of its hydragogue operation, where the use of drastic purgatives is indicated. To its efficacy numerous practitioners have borne testimony. It is, however, rarely given alone, but usually in combination with other and milder remedies (as jalap and bitartrate of potash) of the same class. If it be desirable to act also on the kidneys, an alkaline solution of gamboge has been recommended. Gamboge has been thought more especially serviceable in those forms of dropsy connected with hepatic obstruction.

4. As an anthelmintic.—Gamboge has been frequently employed as a remedy for tape-worm, and not unfrequently with considerable success. Several empirical anthelmintic remedies1 are said to owe their efficacy to this substance. It is an important constituent of Madame Nouffer’s specific.

Administration.—On account of its tendency to occasion vomiting and griping, gamboge is usually given in small doses, as from one to three or four grains, in the form of pill, and repeated every four or six hours. In this way it may be given with safety and without inconvenience. The full dose of it is said to be from ten to fifteen grains. An alkaline solution of gamboge has been long known on the continent under the name of tincture of gamboge (tinctura gummi guttae),2 and has been employed as a powerful diuretic in dropsy. It consists of gamboge, in powder, 3ss.; carbonate of potash, 5j. (intimately mixed with the gamboge); and brandy, 5xij. Digest with a gentle heat for four days.—Dose, 15ss. to 1f5j.

Antidote.—In poisoning by gamboge our chief reliance must be placed on the palliatives already mentioned for poisoning by euphorbium and elate-rum. I am acquainted with no well-ascertained antidote, though the alkalies (carbonate of potash, according to Hahmemann3) have been said to diminish the violence of the topical action of gamboge.

PILULÆ CAMBOGIE COMPOSITEÆ, L.; Pilulæ Gambogie, E.; Gamboge Pills.—(Gamboge, bruised, 5ij. [one part, E.]; Socotrine or Hepatic Aloes, bruised, 5ij. [East Indian or Barbadoes Aloes, one part, E.]; Ginger, bruised, 5j. [Aromatic powder, one part, E.]; Soft Soap, 5ss. [Castile Soap,

1 See Murray, App. Med. iv. 121, et seq.
two parts, E.] Mix the powders together, then add the soap [and then a sufficiency of syrup, E.], and beat them into one mass).—Cathartic; considerably more active than the Pilulae Aloës composite. Employed in obstinate constipation.—Dose, grs. x. to grs. xv.—The aloes, by diminishing the solubility of the gamboge, renders the latter less likely to irritate the stomach. The formula is said to be a simplification of one proposed by Dr. George Fordyce.

315. CANELLA ALBA, Murray, L. E. D.—LAUREL-LEAVED CANELLA, OR WILD CINNAMON.

Sex. Syst. Dodecandria, Monogynia.

(Cortex, L.—Bark, E. D.)

History.—The bark of this tree has been frequently confounded with that of Drimys Winteri, hereafter to be described. Clusius describes both barks, and notices two kinds of canella bark.

Botany. Gen. Char.—Sepals 5. Petals 5; somewhat coriaceous, glaucous-blue, contorted in aestivation. Stamens united to form a tube; anthers 15, resembling furrows. Stigmas 3. Berry 3-celled, or by abortion 1-celled; cells 1- or 2-seeded. Embryo (according to Gaertner, but perhaps an error) surrounded by fleshy albumen, curved, with linear cotyledons (De Cand.)

Sp. Char.—The only species.

A tree, growing from 10 to 50 feet high. Leaves alternate, shining, obvate, cuneate at the base, coriaceous and opaque when old, dotted when young. Flowers small, clustered, purple. Berry the size of a pea, fleshy, smooth, blue or black.

Hab.—West Indies and continent of America.

Description.—The canella bark of the shops (cortex canelle albe), sometimes termed on the continent costus dulcis, or costus corticosus, is the inner bark of the stem and branches. It occurs in quills or broken pieces, which are hard, somewhat twisted, of a yellowish-white or pale orange-colour, somewhat lighter on the internal surface, and have an aromatic clove-like odour, an acrid peppery taste, and a white granular fracture.

J. Bauhin and others have confounded it with Winter's bark; hence it has been denominated spurious Winter's bark (cortex Winteranus spurious). The pale colour of its inner surface is one out of several physical characters by which the two barks may be distinguished. Chemically they may be distinguished by nitrate of baryta and sulphate of iron, both of which cause precipitates in the infusion of Winter's bark, but not in that of canella.

Composition.—Canella bark was analysed, in 1820, by Henry; and in 1823, by Petroz and Robinet.

1 Exot. lib. iv. cap. i. p. 75, and cap. iii. p. 78.
2 Swartz, Trans. Linn. Soc. i. 96.
3 Jour. de Pharm. t. v. p. 451.
4 Ibid.
Henry’s Analysis.	Petroz and Robinel’s Analysis.
Volatile oil. | Volatile oil.
Aromatic resin. | Resin.
Brownish yellow colouring matter. | Bitter extractive.
Extractive. | Canella.
Gum. | Gum.
Starch. | Starch.
Albemen. | Albemen.
Lignin. | Lignin.
Salts. | Salts.

Canellin Bark. | Canella Bark.

1. Volatile Oil of Canella Bark.—According to Cartheuser it is dark yellow, fluid, and heavier than water. It has an acrid taste.

2. Resin.—Henry found this constituent to be aromatic, but not acrid.

3. Bitter Extractive.—Brown, very bitter, not crystallizable. Soluble in alcohol, ether, and slightly in water.

4. Canellin (Manitie?)—A crystallizable, saccharine substance, incapable of undergoing the vinous fermentation.

Physiological Effects.—Canella bark is an aromatic stimulant and tonic. Its aromatic qualities depend on the oil and resin; its tonic properties on its bitter principle. As an aromatic it ranks between cinnamon and cloves.

Uses.—In this country it is employed principally as an aromatic addition to purgatives and tonics, as Vinum aloës, and Tinctura gentianae composita, E., and Vinum gentiana, E.; and is well adapted for debilitated conditions of the digestive organs. [The Pulvis aloës cum canella, of former pharmacopoeias, was, and still is, a very favourite popular remedy.—Ed.]

By the Caribs (the ancient natives of the Antilles) and the negroes of the West Indies it is employed as a condiment. It has been considered useful in scurvy.

Administration.—Dose of the powder, grs. x. to 5ss.

VINUM GENTIANAE, E.; Wine of Gentian.—(Gentian, in coarse powder, 3ss.; Yellow Bark, in coarse powder, 3j.; Bitter Orange-peel, dried and sliced, 5j.; Canella, in coarse powder, 5j.; Proof Spirit, 15ivss.; Sherry, Oj. and 15xvij. Digest the root and barks for twenty-four hours in the spirit; add the wine, and digest for seven days more; strain and express the residuum strongly, and filter the liquors.)—Wine of gentian is an aromatic tonic, useful in dyspepsia and anorexia. It is apt to become acaceous by keeping.—The dose of it is 15ss. to 15j.

Order LXXI. AURANTIACEÆ, Corréa.—THE ORANGE TRIBE.

Characters.—Calyx urceolate or campanulate, somewhat adhering to the disk, short, 3- or 5-toothed, withering. Petals 3 to 5, broad at the base, sometimes distinct, sometimes slightly combined, inserted upon the outside of a hypogynous disk, slightly imbricated at the edges. Stamens equal in number to the petals, or twice as many, or some multiple of their number, inserted upon a hypogynous disk; filaments flattened at the base, sometimes distinct, sometimes combined in one or several parcels; anthers ter-
minal, innate. *Ovary* many-celled; *style* l, taper; *stigma* slightly divided, thickish. *Fruit* pulpy, many-celled, with a leathery rind, replete with receptacles of volatile oil, and sometimes separable from the cells; *cells* often filled with pulp. *Seeds* attached to the axis, sometimes numerous, sometimes solitary, usually pendulous, occasionally containing more embryos than one; *raphe* and *chalaza* usually very distinctly marked; *embryo* straight; *cotyledons* thick, fleshy; *plumule* conspicuous.—*Trees* or *shrubs*, almost always smooth, and filled everywhere with little transparent receptacles of volatile oil. *Leaves* alternate, often compound, always articulated with the petiole, which is frequently winged. *Spines*, if present, axillary (Lindley).

Properties.—In the bark, leaves, flowers, and rind of the fruit, are numerous vesicular or rounded reservoirs, which contain a highly fragrant volatile oil. Pulp of the fruit acidulous and refrigerant.

316. CITRUS MEDICA, Risso, E.—THE CITRON TREE.

Sex. Syst. Polyadelphtia, Polyandria.

History.—The fruit of this species is supposed to be the μῆλον μέικόν of Theophrastus. Pliny calls it *malum citreum*. It is probable the citron is referred to in the Old Testament on several occasions, where, in our translation, the word apple has been employed.

Botany. Gen. Char.—*Flowers* usually with a quinary proportion of parts. *Calyx* urceolate, 3- to 5-cleft. *Petals* 5 to 8. *Stamens* 20 to 60; *filaments* compressed, more or less united at the base, polyadelphous; *anthers* oblong. *Style* terete; *stigma* hemispherical. *Fruit* baccate, 7- to 12-celled; *cells* many-seeded, pulpy. *Spermodesmus* (seed coats) membranous; *auricles* of the *cotyledons* very short (De Cand.)—*Trees* or *shrubs*, with axillary spines. *Leaves* reduced to one terminal leaflet at the apex of the petiole, often winged. The *rind* of the fruit is regarded by De Candolle as a kind of torus, by Dr. Lindley as the union of the epicarp and sarcocarp. In the external yellow portion (*flavedo* or *zeste*) of it are the rounded or vesicular receptacles containing volatile oil; the inner white portion is spongy. The *cells* of the fruit are filled with small pulpy bags, readily separable from each other, and containing the acid juice. *Seeds* exalbuminous, marked externally with the raphe; inner coat stained at one extremity, indicating the place of the chalaza.

Sp. Char.—*Petioles* naked. *Leaves* oblong, acute. *Flowers* with 40 anthers, often without pistils. *Fruit* oblong, rugous, with a thick rind and acidulous pulp (De Cand.)—*Tree*. Young *branches* violet. *Leaves* sub serrate. *Petals* ex-

![Citrus medica.](image)

1. In the Edinburgh Pharmacopoeia of 1839, and also in that of 1841, *Lemons* are referred to *Citrus medica*, Risso (De Cand.) This is an error.
2. Hist. Plant. i. 22, and iv. 4.
4. Cant. ii., viii., and xii. ; Joel, i.
ternally purplish. Fruit large, violet-red when young, fine yellow when mature; its rind adherent, with an agreeable odour. Risso enumerates three varieties.

Hab.—A native of Asia. Cultivated in the South of Europe.

Description, &c.—The fruit of this tree is the *citron* (*malum citreum*). It sometimes attains a weight of more than 20 lbs. Those fruits which preserve their pistilla are called *pitima*. Risso says they are sought after by the Jews, who suspend them to palms at the Feast of the Tabernacle. The flavedo of the citron abounds in volatile oil, which may be obtained either by expression or distillation. The leaves, as also the flowers, of the citron-tree, yield a volatile oil by distillation. The leaves are interposed between linen, to which they communicate a fragrant odour: moreover, they are said to keep away insects.

Two volatile oils, known respectively as the *essence or essential oil of citron*, and the *essence or essential oil of cedra*, are employed in perfumery. Both are highly fragrant, almost colourless, and lighter than water. They are distinguished by their odour: that of the essence of cedra combining the odours of citron and bergamot. These two oils are usually confounded by pharmacological writers. From their apparent freedom from mucilage I presume both have been procured by distillation. The composition of one of these has been ascertained by Dumas to be identical with that of the essential oil of lemons, viz. CvH2.

Physiological Effects and Uses.—Analogous to those of the orange and lemon. The fruit is seldom brought to the table in the raw state, but it yields some excellent preserves and sweetmeats. The juice is employed to flavour punch and negus. It forms, with sugar and water, a refreshing refrigerant beverage. The essential oil is used in perfumery, and may be employed in medicine for scenting.

317. CITRUS BERGAMIA, Risso.—THE BERGAMOT CITRUS.

Citrus limetta, E.

Sex. Syst. Polyadelphia, Polyandria.

(Volatile oil of the rind of the fruit, *E.*)

Botany. Gen. Char.—See *Citrus medica*.

Sp. Char.—Leaves oblong, more or less elongated, acute or obtuse, underside somewhat pale. Petiole more or less winged or margined. Flowers usually small, white. Fruit pale yellow, pyriform or depressed; rind with concave receptacles of oil; pulp more or less acid (Wight and Arnott).

Hab.—Cultivated in the South of Europe.

Description.—The volatile oil or *essence of bergamot* (*oleum bergamii, oleum bergamotae*), imported from the South of Europe, is procured from the rind of the fruit. It may be obtained either by expression (as the vola-

tile oil of lemons) or by distillation.\(^1\) It is pale greenish yellow, with a re-markable odour, and a sp. gr. of 0.885. Its composition is identical with that of oil of lemons, being \(\text{C}_{10}\text{H}_{16}\).

Uses.—Oil of bergamot is employed as a perfume only. It is a useful odoriferous adjunct to unguents.

318. CITRUS LIMONUM, Risso, L. E. D.\(^2\)—THE LEMON TREE.

(\textit{Fructus} cortex exterior; Oleum volatile \(\textit{fructus} cortice expressum\); Succus reeens et exsiccatus, \(L.\).

\textit{Fruit;} Rind of the fruit; Volatile oil of the rind of the fruit, \(E.\)

\textit{Fructus} succus, tunica exterior et eus oleum volatile, \(D.\)

History.—It is supposed that the Greeks and Romans were unacquainted with the orange and lemon, which only became known to Europeans at the time of the Crusades.\(^3\) This supposition receives confirmation from the fact, "that the Persian and Arabian authors do not, as is their wont, give any Greek synonyme of either, but of the citron, which is supposed to have been known to the Romans."\(^4\)

Botany. **Gen. Char.**—See \textit{Citrus medica.}

Sp. Char.—Young branches flexible. Leaves oval or oblong, usually toothed. Petiole simply margined. Flowers white, tinged with red. Fruit yellow, ovoid or rarely globular; terminated by a more or less elongated knob; rind with convex vesicles of oil; pulp acid (Wight and Arnott).

Hab.—A native of Asia (Himalaya, Royle; Persia, Risso). Cultivated in the South of Europe.

Description, Composition, Properties, and Uses.—Lemons (\textit{limones}) are imported from Spain, Portugal, Italy, and the Azores, packed in chests, each lemon being separately rolled in paper. The Spanish lemons are most esteemed. We employ in medicine both the rind and the juice.

1. **Lemon Peel** (\textit{Cortex Limonum}, L. E. D.)—The flavedo (\textit{flavedo corticis limonum}) is pale yellow and rough. By drying, its colour deepens. Its taste is aromatic and bitter; its odour, which is owing to the volatile oil lodged in appropriate receptacles, is strong and peculiar. The inner portion of the cortex is white, spongy, and almost both odourless and tasteless. The flavedo yields, both by distillation and expression, a volatile oil (\textit{essential oil of lemons}). A watery infusion of lemon peel becomes greenish-brown on the addition of the sesquichloride of iron.

Lemon peel has not been regularly analysed, though some of its consti-

\(^1\) Raybaud, \textit{Journ. de Pharm.} Aout 1884.

\(^2\) In the Edinburgh Pharmacopoeia limes are erroneously referred to this species.

\(^3\) Macfadyn, in Hooker's \textit{Bot. Miscel.} vol. i. p. 299.

tuents have been examined. It contains volatile oil, hesperidin, a bitter principle, and gallic acid.

1. Volatile Oil.—(See p. 2036.)

2. Hesperidin.—A crystallizable, neutral, resinous (?) principle, which resides in the white portion of the rind of the fruit of the genus Citrus. It has the form of silky needles, which are odourless and tasteless, when pure, though they usually possess slight bitterness, probably from the presence of another principle. It is fusible, slightly soluble in water, but more so in alcohol; insoluble in ether, and the oils both fixed and volatile. Oil of vitriol reddens it.

3. Bitter Matter (Aurantia).—This is referred to the class of substances vaguely denominated extractive. It is the presence of this substance which enables an aqueous solution of impure hesperidin to form a reddish-brown precipitate with the persulphates of iron. It frequently contains traces of gallic acid.

Lemon peel is a grateful stomachic and aromatic. It is employed more as a flavouring ingredient than for its own proper effects. It is a constituent of the Infusum gentianae compositum, and of the Infusum aurantii compositum. Candied lemon peel (cortex limonum conditus) is an agreeable stomachic, and is employed as a dessert and in confectionary.

2. Lemon Juice (Success Limonum, L.)—A slightly turbid, very sour liquor, with a grateful flavour, obtained from lemons by expression and straining. Owing to the mucilage and extractive which it contains, it readily undergoes decomposition, though various methods have been proposed of preserving it. On this account an artificial lemon juice has been proposed as a substitute. The juice both of lemons and limes (the fruit of Citrus Lima, Macfadyen, or C. acida, Roxburgh) is extensively imported. In 1839, duty of one halfpenny per gallon was paid on 57,338 gallons of these juices. In the West Indies lime juice is preferred to lemon juice.

According to Proust, lemon juice consists of citric acid, 1.77; malic acid, gum, and bitter extractive, 0.72; and water, 97.51. Lime juice contains the same ingredients, in somewhat different proportions: the quantity of citric acid in it is larger, while that of mucilage, &c. is less.

Citric Acid.—(See ante, p. 1999.)

Lemon juice furnishes a most agreeable and refreshing beverage, and proves refrigerant and antiseborrhetic. It is employed for several purposes, as follows:—

a. In the preparation of refrigerant drinks.—It may be either added to barley-water, or mixed with sugar and water to form lemonade. The latter may be extemporaneously made, by adding two lemons sliced, and two ounces of sugar, to two pints of boiling water, and digesting until cold. A similar beverage is called, by Mr. Brande,2 King’s Cup. These acidulated drinks are exceedingly useful for allaying thirst, and as refrigerants in febrile and inflammatory complaints, and in hemorrhages. In the latter maladies iced lemonade should be preferred. Where there is nausea or a tendency to sickness, effervescent lemonade is useful. “Lemonade, as a beverage in putrid diseases, was first introduced by the French physicians in the beginning of the seventeenth century; and about the year 1660, an Italian from

1 Hebrton, Journ. de Pharm. xiv. 377.
2 Dict. of Pharm. 341.
Florence, having learnt a process of freezing confectionary, conceived the happy idea of converting such beverage into ice. This found a ready sale, and was the occasion of so great an increase in the number of sellers of lemonade, that in the year 1660 the Lemonadiers of Paris were formed into a company, and received a patent from the Government.2

3. In the formation of the effervescing draught.—The effervescing draught, made with lemon juice (or citric acid) and bicarbonate of potash, is one of the best remedies we possess for allaying sickness and vomiting. The citrate of potash, which is formed, is a mild diaphoretic and diuretic, and often allays restlessness and watchfulness in fever. It is adapted for lithic acid deposits; but, like other remedies of the same class, is sometimes objectionable in phosphatic deposits. When our object is to determine to the skin, an effervescing draught, composed of lemon juice or citric acid and sesquicarbonate of ammonia, is to be preferred. The relative proportions of the alkaline carbonates, and of lemon juice or citric acid, for the formation of effervescing draughts, is as follows:

<table>
<thead>
<tr>
<th>Citric Acid.</th>
<th>Lemon Juice.</th>
<th>A Scruple of the Alkali.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grains 14 or (\frac{1}{2}) of an invariable quantity of citric acid</td>
<td>Bicarbonate of Potash.</td>
<td></td>
</tr>
<tr>
<td>Grains 17 or (\frac{1}{2})iv.</td>
<td>Carbonate of Potash.</td>
<td></td>
</tr>
<tr>
<td>Grains 24 or (\frac{3}{4})iv.</td>
<td>Sesquicarbonate of Ammonia.</td>
<td></td>
</tr>
</tbody>
</table>

Effervescing draughts are exceedingly valuable vehicles for the exhibition of other remedies.

γ. As an Antiscorbutic.—Lemon juice has long been regarded as an invaluable antiscorbutic; but on account of the difficulty of preserving it, crystallized citric acid is usually substituted. "Those only," says Sir Gilbert Blane,2 "who have made themselves acquainted with the early part of the naval history of this country, or those who have perused the interesting, popular, and eloquent narrative of Commodore Anson's voyage, can duly appreciate the value of this simple remedy." Yet, on hypothetical grounds, Dr. Stevens3 ventures to assert that citric acid produces scurvy!

δ. As an Antidote.—In poisoning by the alkalies and their carbonates, the vegetable acids are the antidotes; and the most convenient easily procurable acidulous substances are, in general, vinegar and lemon juice.

ε. As an Anti-narcotic.—In poisoning by narcotic substances, as opium, lemon juice may be administered, after the poison has been removed from the stomach, to counteract the effects.

[In Rheumatism.—Lemon juice has been recommended as a remedy in acute rheumatism and gout by Dr. Owen Rees, and has been used with success by many practitioners, not only in this country, but in Italy, France, and America. Dr. Rees considers the citric acid to undergo changes in the stomach, and to supply oxygen to such elements as tend to produce uric acid, and thereby to induce the formation of urea and carbonic acid instead.—Ed.]

ζ. Other uses.—Several of the medicinal uses of lemon juice can only receive a passing notice. Such are, the employment of it, with common salt, in dysentery, remittent fever, bellyache, and putrid sore-throat, as recom-

1 Dr. Paris, Pharmacol. 6th ed. ii. 301.
2 Select Dissert. p. 8, 1822; see also Observ. on the Diseases incident to Seamen.
3 On the Blood.
mended by Dr. Wright; its use in cardialgia, by Dr. Dewees; and in syphilis, by Dr. Rollo. As a topical remedy for uterine hemorrhage after delivery, Dr. Evrart recommends that a cut peeled lemon be introduced into the uterus, and the juice there expressed. It causes uterine contractions, by which the juice is expelled and the hemorrhage stopped. In hospital gan-grene, Dr. Werneck applied, with good effect, in the first stage of the disease, either lint soaked in lemon juice, or segments of lemons.

Administration.—The mode of employing lemons will be obvious from the preceding remarks.

1. Oleum limonum, L. E. D.; Essential Oil of Lemon Peel; Essence of Lemons.—This oil is usually procured by expression, as follows:—The flavedo of the lemons is removed by rasping, and is afterwards expressed in hair sacks. The oil which is thus procured is received in flasks, where it deposits some of its impurities, and is then decanted and filtered. Baumé says the rasped flavedo is pressed between glass plates. Expressed oil of lemons is somewhat turbid, and liable to undergo change by keeping, owing to the mucilaginous matter which it contains in solution. Oil of lemons may be procured also by distillation; and the oil thus procured is pure, not disposed to undergo change by keeping, and is employed, under the name of scouring drops, for removing grease spots from silks and other textures; but its flavour is less pleasant and sweet. The greater part of the oil of commerce is brought from Portugal and Italy; some, however, is procured from France. When quite pure, it is colourless, limpid, and of a fragrant odour, like that of lemons. Its sp. gr. at 70° F. is 0.847. It is soluble in all proportions in anhydrous alcohol, and it boils at about 145° F. When the commercial oil is exposed to a temperature of −4° F. it deposits white crystals, the nature of which is not known: the rectified oil remains perfectly liquid and transparent at this temperature. Oil of lemons is composed of two isomeric oils,—one (citrene, Dumas; citronyle, Blanchet and Sell) capable of forming, with hydrochloric acid, a crystalline compound (composed of C10H8 + HCl); the other (citryle) not forming any crystalline compound with this acid. The composition of the oil of lemons is C10H8: i.e. it is identical with that of the oil of turpentine, savin, copaiva, bergamot, and citron.

Oil or essence of lemons possesses the stimulant properties of the milder volatile oils, and is denominated carminative and diaphoretic. In full doses it is said to be apt to occasion headache and giddiness. Its principal use is for communicating an agreeable odour and flavour to other medicines. It may be taken as a carminative, in the dose of a few drops, on sugar (eleosaccharum limonum). As a perfume, it is an exceedingly useful adjunct to sulphur ointment, and to evaporating lotions. To this, as to some other volatile oils (see oleum rosmarini), has been ascribed the power of promoting the growth of the hair, and, in consequence, it has been added to

1 Memoir of the late Dr. Wright, p. 322.
4 Henry and Guibourt, Pharm. Raison. 2ème édit. t. i. p. 284.
5 Elém. de Pharm. t. i. p. 486.
6 For some interesting observations on this and some other oils of this order, see Soubeiran and Capitaine, Journ. de Pharm. xxvi. 1 and 66.
pomatum. More recently it has been employed as a stimulant application in various external inflammations of the eye. It was first used in these diseases by Dr. Worlitz, who applied it by squeezing the little drops of oil from the rind of the lemon into the eye. He used it with good effect in rheumatic, catarrhal, and scrofulous inflammations of the eye, in pannus and pterygium, and in opacity and some other consequences of inflammation of the cornea. It has since been tried by Mr. Foote, at the Ophthalmic Hospital, who dropped the oil into the eye in the same way that the vinum opii is applied. In some cases it caused excessive pain. He thinks it preferable to the vinum opii, in all cases where a stimulant is required.

2. SYRUPUS LIMONUM, L. E.; Syrup of Lemons. (Lemon juice strained [and freed from impurities by subsidence, E.]; Sugar, lbs. iiss. [Rectified Spirit, 5iiss. L.] [Boil the juice for ten minutes, and strain; add the sugar to this, and dissolve. Lastly, when the syrup is cold, add the spirit.—The Edinburgh College dissolves the sugar in the juice, allows subsidence, skims, and pours off the clear liquor.—The Dublin College has now a substitute for this syrup, which is called Syrupus Acidii Citrici, made as follows:—Citric Acid in powder, Distilled Water, of each, 5iiss.; Tincture of Lemon Peel, 5v.; Simple Syrup, Oiiij. The acid is dissolved in the water, and the solution added to the syrup and tincture.—Ed.] Refrigerant. An agreeable adjunct to diluent drinks, as barley-water, in febrile and inflammatory complaints, and to gargles.—Dose, $\frac{1}{2}j$. to $\frac{1}{3}jiv$.

319. CITRUS AURANTIIUM, Rissa, L. E. D.—THE COMMON OR SWEET ORANGE TREE.

Sex. Syst. Polyadelphia, Polyandria.

(Fructus; Fructus cortex exterior; Flores; Oleum floribus destillatum, L.—Distilled water of the (flowers; Volatile oil of the flowers, E.—Fructus sucus et tunica exterior; Flores; Folia, D.)

History.—It is somewhat uncertain when the sweet orange became known to Europe. The bitter orange, as well as the lemon, was known during the middle ages, but the sweet orange is supposed not to have been introduced until a period after this.3

Sp. Char. — Leaves oval, elongated, acute, sometimes slightly toothed; petiole more or less dilated and winged. Flowers white, large. Fruit orange-coloured, roundish or ovoid, usually depressed, rarely terminated by a small knob; rind with convex vesicles of oil; pulp sweet (Wight and Arnott). — A

2 Trans. of the Med.-Bot. Soc. for 1832-3, p. 73.
3 Mac'adyen, Bot. Miscell. i. 302.
great number of sorts is known to gardeners. The China orange is the common orange of the markets and of the Portuguese. The St. Michael's orange is a small seedless variety. The blood-red orange has a reddish yellow fruit, with a pulp irregularly mottled with crimson.

Hab.—Asia; probably China. Cultivated in the South of Europe, the Azores, and the West Indies.

Description.—Orange leaves (folia aurantii) are feebly bitter. Their watery infusion is greenish and somewhat bitter. They contain a fragrant volatile oil, which is procured by distillation, and is called, in the shops, essence de petit grain. Orange flowers (flores aurantii seu napthae), when fresh, are white. They are sometimes exported from the South of Europe, stratified with common salt, in barrels (Risso). Dried orange flowers are yellowish, and have an agreeable odour, which is less powerful than that of the fresh flowers. By distillation, orange flowers yield a fragrant volatile oil (oleum Neroli; oleum aurantii). The small green fruits (fructus immaturns aurantii) which fall during the great heats of the summer, are carefully collected and dried. They, as well as the unripe fruit of the next species [citrus vulgaris] form the orange berries (bacce aurantii) of the shops. Their size does not exceed that of a cherry; their colour is dark greyish or greenish brown; they have an aromatic odour and a bitter taste. They are used for flavouring Curacoa. When smoothed by a lathe, they constitute the issue peas of the shops: they are preferred to ordinary peas for keeping up the discharge of an issue, on account of their pleasant odour. An infusion of orange berries is rendered green by the sesquichloride of iron. By distillation these berries yield a fragrant oil (the original essence de petit grain). The ripe fruit, or the orange (aurantium; poma aurantiorum), is imported in chests and boxes, each orange being separately packed in paper. The best come from the Azores and Spain; very good ones are also brought from Portugal, Italy, and other places. The rind is sometimes employed as a substitute for the rind of the bitter orange. It yields, by distillation, a fragrant volatile oil (essential oil of sweet orange).

Composition.—1. Orange Flowers were analysed by Boullay,¹ and found to contain volatile oil, bitter extractive, gum, acetic acid, and acetate of lime.

2. Orange Berries were analysed, in 1828, by Lebreton,² who found their constituents to be as follows:—Volatile oil, sulphur, chlorophylle, fatty matter, hesperidin, bitter astringent matter, with some traces of gallic acid, citric and malic acids, citrates and malates of lime and potash, gum, albumen, lignin, mineral salts, and traces of iron and silica. Widemann³ obtained a crystalline substance analogous to, but yet different from, hesperidin.

3. Orange Peel has not been analysed; but its composition is, doubtless, analogous to that of lemon peel.

4. Orange Juice consists of citric acid, malic acid, mucilage, albumen, sugar, citrate of lime, and water.

1. Volatile Oils from the Sweet Orange Tree.—The volatile oils obtained from

¹ Bull. de Pharm. i. 337.
² Journ. de Pharm. xiv. 377.
³ Ibid. xvi. 707.
the leaves, flowers, and fruit rind of the sweet orange tree, agree, in their essential chemical characters, with each other, with the corresponding oils obtained from the bitter orange, and with the volatile oil of lemons. They differ principally in their odour.

The oil of sweet orange kept in the perfumers' shops is obtained by distillation with water, from the rind of the fruit.

The other volatile oils of this species are not distinguished in English commerce from those of the next species.

2. Hesperidin.

4. Widemann's crystalline matter.—Obtained from unripe oranges. Is distinguished from Hesperidin by its very distinct prismatic crystallization, by its insolvility in water, and by its not forming oxalic acid with nitric acid.

Physiological Effects and Uses.—Sweet Orange Peel is an aromatic stimulant and tonic analogous to lemon peel, and is occasionally employed as a substitute for the bitter orange peel. "Large quantities of it are sometimes productive of mischief, especially in children, in whom colic, and even convulsions, are sometimes induced by it. We have known the case of a child, in which death resulted from eating the rind of an orange." ¹

Orange Juice is a refreshing and grateful beverage, and is extensively used at the table. In febrile and inflammatory complaints it is a valuable refrigerant;—allaying thirst and diminishing preternatural heat.

320. CITRUS BIGARADIA, Risso, L. E. D.—THE BIGARADE OR BITTER ORANGE TREE.

Sex. Syst. Polyadelpheia, Polyanandra.

(Fructus cortex exterior, L.—Distilled water of the flowers; Rind of the Fruit; Volatile oil of the flowers, E. D.)

History.—The bitter orange became known to Europe during the middle ages. All the old established orange groves of Spain, as those at Seville, planted by the Moors, are of the bitter orange.²

Sp. Char.—Leaves elliptical, acute or acuminate, slightly toothed. Petiole more or less winged. Flowers large, white. Fruit orange-coloured, roundish or slightly elongated or depressed; rind with concave vesicles of oil; pulp acid and bitter (Wight and Arnott).

Numerous varieties of this are cultivated. One of these yields the fruit known in the English market as the Seville Orange.

Hab.—Asia. Cultivated in Europe.

Description.—The leaves of this species, when rubbed, emit a very agreeable odour. Distilled with water they yield a bitter aromatic

¹ United States Dispensatory.
² Macfadyen, in Hooker's Bot. Miscell. i. 302.
water, known in Languedoc as _eau de naphre_ (aqua naphe). At the same operation is procured a volatile oil, called the _essence de petit grain_, of finer quality than that obtained from the leaves of the sweet orange. The flowers yield by distillation with water, orange-flower water (_aqua aurantii_, Ph. Ed.) and _oil of Neroli_ (_oleum aurantii_, Ph. Ed.) of finer quality than the corresponding preparations obtained from the flowers of the sweet orange. The unripe fruits, like those of the sweet orange, are called orange berries, and are employed for the purposes before mentioned. The Seville orange is round and dark, and has an uneven, rugged, very bitter rind (_bitter orange peel; cortex aurantii_, Ph. L. and Ed.), which is employed for medical purposes as well as in the preparation of candied orange peel, and for flavouring the liqueur called _Curacao_.

Composition.—The composition of the leaves, flowers, and fruit of the bitter orange is doubletless analogous to that of the corresponding parts of the sweet orange.

1. Oil of Orange-leaf; _Essence de petit grain._—The term _essence de petit grain_ was originally applied to the volatile oil of the orange berry, which, however, readily underwent decomposition. It is now used to indicate the volatile oil obtained from the leaves both of the bitter and sweet orange. That procured from the bitter orange is of better quality than that from the sweet.

2. Oil of Orange-flower; _Oil of Neroli_ (_Oleum Aurantii_)._—Procured from the flowers of both the bitter and sweet orange; but that from the former is preferred. It is obtained by submitting the flowers, with water, to distillation; and it is found floating on the water in the receiver. It has an aromatic and fragrant odour, somewhat different from that of the flower. "It appears to me," says Soubiran,¹ "to be a product of the alteration of the natural essential oil. The latter is more soluble than the neroli oil, and remains in solution in the water. Its presence may be demonstrated by agitating the distilled water with ether deprived of alcohol. By spontaneous evaporation the ethereal solution leaves behind an essential oil, which has absolutely the same odour as the flowers, and which dissolves in water." Oil of neroli, furnished me by one of the most respectable importers as genuine oil, has a reddish colour. I am informed that the _essence de petit grain_ is frequently substituted for it.

3. Oil of the Rind of the Bitter Orange.—This is sold by perfumers as essential oil of bitter orange. It has a considerable resemblance to the oil of the sweet orange.

Physiological Effects and Uses.—The rind of the Seville orange being considerably more bitter than that of the sweet orange, is to be regarded as more stomachic and tonic. Its uses are the same. Its principal value is as a flavouring agent.

1. **Infusum Auranti Compositum,** L. D.; _Infusum Aurantii_, D.; Compound Infusion of Orange Peel. (Bitter Orange Peel, dried, ʒʒs. [ʒʒj. D.]; [Lemon Peel, ʒj. L.]; Cloves, bruised, ʒj. [ʒʒs. D.]; Boiling [distilled] Water, Oj. [Oss. D.]) Digest for a quarter of an hour in a vessel lightly covered, and strain [through linen or calico, E.; infuse for half an hour, D.].—An agreeable stomachic. It is an excellent vehicle for the exhibition of various other medicines, as saline purgatives, ammonia, bitter tinctures, &c.—_Dose_, ʒj. to ʒʒj.

2. **Confectio Auranti,** L.; _Consera Aurantii_, E.; _Confection of Orange Peel._ (Orange Peel separated by a rasp, lb. j.; Sugar, lbs. ĳ.)

¹ _Nouv. Traité de Pharm._ i. 154.
Beat the rind in a stone mortar with a wooden pestle; then, the sugar being added, again beat them until they are thoroughly incorporated, L.—Grate off the rind of bitter oranges, and beat it into a pulp, adding gradually thrice its weight of white sugar, E.)—An agreeable stomachic. Employed as an adjunct to bitter and purgative powders, which are to be formed into electuaries. It is a good vehicle for the exhibition of the sesquioxide of iron.

3. Syrupus Auranti, L. E. D.; Syrup of Orange Peel. (Dried Bitter Orange Peel, 3iiss.; Boiling Water, Oj.; Pure Sugar, lbs. iiij. [Rectified Spirit, 3iiss. L.] Macerate the peel in the water for twelve hours, in a vessel lightly covered; boil for ten minutes, strain the liquor, and proceed as for the Syrupus Althaeæ, L. [add the sugar, and dissolve with the aid of heat, E.])

To avoid the volatilization of the essential oil, as little heat as possible should be employed in the process. The Dublin College orders as much sugar as may be necessary. An equally agreeable and efficacious syrup may be prepared by adding 3ij. of tincture of orange peel to Oj. of simple syrup. Syrup of orange peel is stomachic, but its principal use is for flavouring.—Dose, f3ij. to f3ij.

4. Tinctura Auranti, L. E. D.; Tincture of Orange Peel. (Bitter Orange Peel, dried, 3iiss. [3iv. D.]; Proof Spirit, Oj. Macerate for seven [fourteen, D.] days [and express strongly, E.], and filter the liquor. "This tincture may be prepared by percolation, by cutting the peel into small fragments, macerating it in a little of the spirit for twelve hours, and beating the mass into a coarse pulp before putting it into the percolator," E.)—This tincture is an agreeable stomachic, and is principally employed as a flavouring adjunct to decoctions and infusions (tonic or purgative), effervescing mixtures, &c.—Dose, f3ij. to f3ij.

5. Aqua Floris Auranti, L.; Aqua Auranti, E.; Orange-flower Water.—[This preparation is now removed to the Materia Medica of the London Pharmacopœia.—Ed.] Orange-flower water is usually imported. That prepared from the flowers of the bitter orange possesses the most fragrant odour, but it is sometimes prepared from the flowers of the sweet orange. It contains free acetic acid, derived from the flowers; hence, if kept in a vessel of lead or copper, it acquires a metallic impregnation. The presence of lead in it has recently been pointed out by Mr. Squire.1 The following are the characters of the pure orange-flower water:—

"Nearly colourless: unaffected by sulphuretted hydrogen.—Ph. Ed.

Sulphuretted hydrogen produces, with either lead or copper, a dark-coloured precipitate. Orange-flower water is employed in medicine, as well as in perfumery, on account of its agreeable odour.

Aqua Coloniensis; Eau de Cologne; Cologne Water.—A much-admired perfume. Two varieties are known in the shops—the French and the German; the latter fetches the highest price. Both profess to be made by Farina. The recipes for making it are numerous. I subjoin one, which is said, by Trommsdorff,2 to be followed in the Cologne manufactories:—Oil of Neroli; Oil of Citron; Oil of Bergamot; Oil of Orange; Oil of

2 Journ. d. Pharm. xviii. 79.
Rosemary: of each twelve drops; Malabar Cardamons, 3i.; Rectified Spirit, Oj. Distil.—Eau de Cologne forms an agreeable evaporating lotion in headache, fever, &c. It should be applied by means of a single layer of linen.

OTHER MEDICINAL AURANTIACEÆ.

The Feronia Elephantum, a large tree growing in most parts of India, yields a gum which is used for medicinal purposes by the practitioners of Lower India. It is an exudation of the stem, and closely resembles gum Arabic. It is not improbable that part of the East India gum brought to this country may be the produce of this tree.

ORDER LXXII. TERNSTRÖMIACEÆ, Lindley.—THE TEA TRIBE.

Though unable to do more than bestow a passing notice on Tea, I cannot wholly omit all reference to this important and interesting substance. Two kinds of Tea plant are cultivated in our green-houses; the one called Thea viridis or Green Tea, the other Thea Bohea or Black Tea. Great discrepancy of opinion exists as to whether the different varieties of tea of commerce are obtained from one or from two species. The well-known differences between green and black teas lend great support to the assertions of those who contend that these teas are obtained from different plants growing in different provinces of China. Mr. Reeves’s observations on this point appear to me exceedingly apposite. In commerce, two principal kinds of tea are distinguished,—the Black and Green: to the first belong Bohea, Congou, Campoi, Souchong, Caper, and Pekoe; to the latter, Twarilcay, Hyson-skin, Hyson, Imperial, and Gunpowder. Frank analysed both black and green teas, and obtained the following results:

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>40·6</td>
<td>34·6</td>
</tr>
<tr>
<td>Gum</td>
<td>6·3</td>
<td>5·9</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>44·8</td>
<td>51·3</td>
</tr>
<tr>
<td>Glaucinos matter</td>
<td>6·3</td>
<td>5·7</td>
</tr>
<tr>
<td>Volatile matter, and loss</td>
<td>2·0</td>
<td>2·5</td>
</tr>
<tr>
<td>Tea</td>
<td>100·0</td>
<td>100·0</td>
</tr>
</tbody>
</table>

Sir H. Davy also found more tannin in black than in green tea, in the proportion of

1 Ainslie, Mat. Ind. i. 161.
2 See Royle’s Illutr. p. 109; and Hooker, Bot. Mag. t. 3148.
3 See Royle, op. cit.
4 For some interesting observations on Assam Tea, see Royle’s Essay on the Productive Resources of India, Lond. 1840; and Bruce’s Report on the Manufacture of Tea, and on the Extent and Produce of the Tea Plantations in Assam, in Jameson’s Journal, xxviii. 126, 1840.
6 Phil. Trans. for 1803, p. 268.
The Dipterocarpus Tribe.

48 to 41. But these results are opposed to our daily experience, as derived from flavour, which indicates the greater astringency in the green tea, and to the experiments of Mr. Brande. The difference in the quantity of tannin in the two kinds of tea is, however, not very great. A few years ago, Oudry announced the existence in tea of a crystalline, salifiable base, to which he gave the name of theina; but more recently Jobst has asserted its identity with caffeine, already noticed. Dr. R. D. Thomson has described a fixed oil (Tea Oil) obtained from the tea plant. It is composed of elaine and stearine. Notwithstanding the extensive employment of tea as an article of diet, yet it is no easy matter to ascertain correctly its precise effects on the constitution. Its astringency is proved by its chemical properties: and hence tea may be resorted to as an easily accessible antidote in cases of poisoning by substances containing vegetable alkalies or by emetic tartar. Another quality possessed, especially by green tea, is that of diminishing the tendency to sleep. Hence, like coffee, tea is often resorted to by those who desire nocturnal study. Moreover, it may be employed as an antispasmodic to counteract the effects of opium and intoxicating liquors; and Dr. Clutterbuck has suggested its application to the relief of the stuper of fever, which he considers to be nearly allied to intoxication. Tea appears to possess a sedative influence with regard to the vascular system: and in this, as well as in the watchfulness which it produces, tea somewhat resembles foxglove. On account of its sedative power, Dr. T. Percival recommends its use in feverish and inflammatory diseases, and I can speak from frequent observation of its good effects in these maladies. To this power should also be referred the relief of headache experienced by the use of tea. In colds, catarrhs, rheumatism, &c. warm infusion of tea is frequently employed as a diuretic, diaphoretic, and diuretic. Strong green tea taken in large quantities is capable, in some constitutions, of producing most distressing feelings; and of operating as a narcotic. Dr. Lettsom found that a strong infusion of tea introduced into the abdomen of a frog caused paralysis of the hind extremities of the animal.

Order LXXIII. Dipteraceae, Lindley. — The Dipterocarpus Tribe.

Dipterocarpus, Blume.

Dryobalanops aromatica, Gaertner (D. Camphora, Colebrooke; Shorea camphorifera, Roxb.) is a large tree growing in Sumatra and Borneo. From its stem are obtained a liquid called Camphor oil, and a crystalline solid denominated Sumatra or Borneo Camphor.

1. Liquid Camphor; Camphor Oil.—Is obtained by making deep incisions into the tree with an axe. The oil gushes out, and is received in bamboos or other convenient utensils. It is occasionally imported into this country in tin canisters. It is sometimes perfectly limpid, transparent, and colourless; but more usually it is more or less coloured, being yellow or brownish. Its odour is somewhat analogous to that of oil of cajuputi, combined with the odour of camphor and cardamoms. Some samples have a strong odour of turpentine. This oil has been analysed by Martin. The mean of three analyses gave him for its constituents carbon, 83.129, hydrogen 11.346, and oxygen 5.25: or C₈H₁₀O₂.

1 Quart. Journ. xii. 201.
3 Ann. d. Pharm. xxv. 63, 1838.
5 Inquiry into the Seat and Nature of Fever, 2d edit. p. 434.
6 Essays, vol. i.
7 Dr. E. Percival, Dublin Hosp. Rep. i. 219.
8 Natural History of the Tea Tree, 1772.
9 For some interesting information on Tea, see Dr. Sigmund’s work, entitled Tea, Its Effects, Medicinal and Moral, 1830.
10 Prince, Roxb. Pl. Ind. ii. 616.
Recently Pelouze has analysed it. He regards it as a hydrocarbon, whose formula is C_{20}H_{36}. By exposure to the air it rapidly oxidises and becomes C_{20}H_{36}O_{4}. Hence, therefore, it would appear that Martius must have analysed an oxidised oil. Camphor oil has been employed in the preparation of scented soap. Sixty pounds of dark brown oil yielded forty pounds of colourless liquid oil, and twenty pounds of crystalline camphor.

2. Sumatra or Borneo Camphor. By the natives of Sumatra it is termed Kapurbarus (i.e. Baroos Camphor).—It is found in the natural fissures or crevices of the wood, and is obtained by cutting down the tree, dividing it transversely into several blocks, which are split with wedges into small pieces, from the interstices of which the camphor, if there be any, is extracted. After being separated from impurities, it is packed in catties. Being much esteemed by the Chinese, it fetches a very high price. According to Mr. Crawford its value is 78 times that of Japan camphor! It rarely comes to this country as a commercial article. For some of the samples in my museum I am indebted to the late Mr. Gibson (of the firm of Howard, Jewell, and Gibson, of Stratford), who stated that "they are part of two very small boxes imported about twenty years ago, which were bought by me at the common price of camphor at the time, but which it was afterwards discovered were invoiced at an enormous price. Our firm gave them up to the importers, reserving samples, and they were re-shipped for India. I never on any other occasion except one saw a small specimen of what I have named native camphor."

Sumatra or Borneo Camphor occurs in small white fragments of crystals. They are transparent, brittle, and have a camphoraceous odour and a hot taste. According to Pelouze its crystalline form is a prism with six regular faces, and derived from the rhombohedric system. It is lighter than water, very slightly soluble only in water; but is very soluble in alcohol and ether. It is fusible and volatile. Its composition, according to Pelouze, is C_{20}H_{36}O_{2}.

Sumatra Camphor is distinguished from Common or Laurel Camphor by several characters; such as the form of the crystals above mentioned; their greater hardness, so that when shaken in a bottle they produce a ringing sound; they are more brittle, and do not so readily sublime and condense in crystals in the upper parts of the bottle.

Its medicinal properties are probably similar to those of ordinary or laurel camphor. But in the East, especially by the Chinese, the most extravagant virtues are assigned to it, and it is accordingly highly valued. In the Puntsaou it is called Lung Naou Hceang, or "Dragon's Brain perfume."

Order LXXIV. Byttneriaceæ, De Candolle.—The Cacao Tribe.

The Theobroma Cacao is a native of the West Indies and of Continental America.

Its seeds (nuclei cacao) when torrefied, and with various additions (sugar, and usually either cinnamon or vanilla), made into a paste, constitute chocolate (chocolata), which furnishes a very nourishing beverage, devoid of the ill properties possessed by both tea and coffee, but which, on account of the contained oil, is apt to disagree with dyspeptics. Cocoa is another preparation of these seeds. It is said to be made from the fragments of the seed-coats mixed with portions of the kernels. It is somewhat astringent, and is adapted for persons with relaxed bowels.

1. Jour. de Pharm. xxvi. 646.
3. History of the Indian Archipelago, iii. 418.
4. For particulars respecting the manufacture of chocolate, see Ure, Dictionary of Arts, p. 292; and Soubeiran, Traité de Pharm. i. 447.
ORDER LXXV. MALVACEÆ, R. Brown.— THE MALLOW TRIBE.

Characters.—Calyx of 5 (rarely 3 or 4) sepals, more or less coherent at the base, valvate in estivation, often with bracts or external sepals forming an involucre or outer calyx. Petals as many as the sepals, and alternate with them; hypogynous, equal; spirally contorted in estivation, generally adnate to (but sometimes distinct from) the lower part of the tube of the stamens. Stamens equal in number, or more commonly a multiple of the petals; generally indefinite (rarely definite), hypogynous. Filaments united into a tube, and unequal in length, the outer ones being shorter. Anthers 1-celled, uniform, dehiscing by a transverse chink. Ovary of many carpels, generally verticillated round the axis, and coherent (sometimes free). Styles as many as the carpels, either distinct or united. Stigmas as many as the carpels, more or less distinct. Carpels either 1- or 2-seeded, or dehiscing inward by a chink, or polyspermyous, with a loculicidal dehiscence, or having a septum in the middle which bears the seeds on the inner side; in some cases nearly free, in others united into a many-celled capsule or an anomalous berry. Albumen none. Embryo straight. Radicle terete. Cotyledons twisted like a chrysalis.—Herbs, shrubs, or trees. Leaves alternate, generally petiolate, and with stipules (De Cand.)

Properties.—"The uniform character is to abound in mucilage, and to be totally destitute of all unwholesome qualities" (Lindley).

321. MALVA SYLVESTRIS, Linn. E.—COMMON MALLOW.

Sex. Syst. Monadelphia, Polyandria.

(Herb, E)

History.—According to Dr. Sibthorp,¹ the Maláχαν χερσαία of Dioscorides² is the Malva sylvestris.

Botany. Gen. Char.—Calyx 5-cleft, persistent, surrounded by an involucre of usually 3, rarely 1 or 2, or 5 or 6, more or less oblong or setaceous bracteoles. Ovary with many cells, each with 1 ovule. Styles as many as the cells. Carpels several (rarely only 5), capsular, indehiscent, 1-seeded, circularly arranged around the axis. Radicle inferior (Wight and Arnott).

Sp. Char.—Stem erect. Leaves 5- to 7-lobed, acute. Pedicels and petioles hairy (De Cand.)

Root perennial, tapering, branching, whitish. Stem 2 or 3 feet or more high, branched. Leaves deep green, soft and downy. Flowers large, three or four together, axillary. Petals obcordate, purplish-rose coloured, with deeper veins, combined by the base of their claws.

Hab.—Indigenous; hedges and road sides. Flowers from June to August.

Description.—Common Mallow (herba malve sylvestris) is odourless, and has merely a mucilaginous herbaceous taste. Its watery infusion is deepened in colour by the sesquichloride of iron, and forms a precipitate with acetate of lead. Dwarf mallow (herba malve rotundifolia) possesses similar properties.

¹ Prodr. Fl. Gree. ii. 45,
² Lib. ii. cap. 144.
Composition.—I am unacquainted with any analysis of this plant. The constituents are probably similar to those of Althæa officinalis. Mucilage is the prevailing principle. Extractive also is another constituent. The colouring matter of the flower is an exceedingly delicate test of alkalies, which render it green.

Physiological Effects and Uses.—Emollient and demulcent. Employed in the form of decoction, in irritation of the alimentary canal, and of the pulmonary and urinary organs. In tenesmus, the decoction is used in the form of enema. In external inflammations, emollient fomentations and cataplasms of mallow are sometimes employed.

322. ALTHÆA OFFICINALIS, Linn. L. E.—COMMON MARSH-MALLOW.

Sex. Syst. Monadelphia, Polyandria.

(Folia; Radix, L.—Leaves; Root, E.)

History.—According to Dr. Sibthorp¹ this plant is the Ἀλθαία of Dioscorides.²

Botany. Gen. Char.—Calyx surrounded by a 6- to 9-cleft involucel. Carpels numerous, capsular, closely and circularly arranged around the axis (Wight and Arnott).

Sp. Char.—Leaves softly tomentose on both sides, cordate or ovate, toothed, undivided, or somewhat 3-lobed. Peduncles axillary, many-flowered, much shorter than the leaf (De Cand.).

Root perennial, tap-shaped, rather woody. Stem 2 or 3 feet high. Leaves hoary green, peculiarly soft and downy, with a fine starry pubescence. Flowers 3 or 4 together, on axillary stalks, large pale rose coloured.

Hab.—Indigenous; marshes, especially near the sea.

Description.—The leaves of Marsh-mallow (folia althææ) are odourless, and have a mucilaginous taste. The root (radix althææ) is long, cylindrical, branched, about the thickness of the finger, plump, mucilaginous, white internally, and covered with a yellowish epidermis. That which is imported from France has been deprived of its epidermis, and is white (decorticated root of marsh-mallow). Its odour is feeble; its taste sweet and mucilaginous. Iodine colours it dark blue. Sesquichloride of iron forms with the concentrated decoction, a brown semi-transparent gelatinous mass.

Composition.—Marsh-mallow root has been analysed by Bacon,³ by L. Meyer,⁴ by Wittstock,⁵ and by Buchner.⁶ The results of the latter chemist are as follows:—Fatty oil 1·26, glutinous matter 1·81, uncrystallizable sugar and althein 8·29, mucilage 35·64, starch 37·51, phosphate of lime 8·29, vegetable medulla 11·05, and woody fibre 7·50 [excess 11·35].

¹ Prodr. Pl. Græc. ii. 42.
² Lib. iii. cap. 163.
⁴ Gmelin, Handb. d. Chem. ii. 1251.
⁵ Pharm. Central-Blatt für 1831, S. 277.
⁶ Ibid. für 1832, S. 511.
ASPARAGIN; ASPARAMIDE; ALTHEA.—The substance which has been called \textit{althein} is identical with \textit{asparagin}. It is crystallisable, odourless, and almost tasteless. It is soluble in water and alcohol, sp. gr. 0.837; but it is insoluble in absolute alcohol and in ether. It consists of $\text{C}_6\text{H}_5\text{NO}_2$. Acted on by the watery solutions of the alkalies, it evolves ammonia, and is converted into \textit{aspartic acid} ($\text{C}_6\text{H}_5\text{NO}_2$); hence it is called \textit{asparamid}, as it is an aspartite of ammonia ($\text{C}_6\text{H}_5\text{NO}_2 + \text{H}_2\text{N}$), minus an atom of water. It has an influence on the therapeutic properties of the root.

\textbf{Physiological Effects and Uses.}—Similar to those of common mallow, already stated. On the continent it is a favourite demulcent. The \textit{pastilles} and \textit{pate de guimauve} are used as pectorals. The powder of marshmallow root is used in France to envelope pills. "The simple decoction is recommended as an injection, to be thrown into the vagina, in cases of difficult labour, arising from rigidity of the soft parts."71

1. \textbf{MISTURA ALTHEÆ, E.; Marshmallow Mixture.} (Root of Althæa, \textit{Siv.}; Raisins, stoned, \textit{Sij.}; Boiling Water, \textit{Ov.}) Boil down to three pints; strain through linen or calico, and when the sediment has subsided, pour off the clear liquor for use.—An agreeable diluent and demulcent. Employed in visceral inflammation and irritation; as nepluritis, calculous affections, gonorrhcea, strangury, &c. From one to three pints may be taken in the course of the day.

2. \textbf{SYRUPUS ALTHEÆ, L. E.; Syrup of Marsh-mallows.} (Althæa Root, sliced, \textit{Siss.}; Pure Sugar, lbs. \textit{iiss.}; Water [boiling, \textit{E.}]) Boil down the water with the root to one half [strain, \textit{E.}], and express [strongly through calico, \textit{E.}] the liquor when cold, \textit{L}. Set aside for twenty-four hours, that the impurities may subside; then pour off the liquor, and the sugar being added, boil down to a proper consistence).—Demulcent, employed as an adjunct to cough mixtures, and as a pectoral for children. It readily ferments, and becomes ropy.—Dose, \textit{f}5j. to \textit{f}3ss.

\textbf{323. GOSSYPION HERBACEUM, Linn. E.—Common Cotton.}

\textit{Sex. Syst. Monadelphia, Polyandria.}

(\textit{Hairs attached to the seed, \textit{E.}})

\textbf{History.}—It is somewhat doubtful who first mentioned cotton. There is some reason for supposing that cotton cloth is referred to in the Old Testament.2 Cotton (\textit{βύσσος}), is mentioned by Herodotus;3 but he or his translators are in error, in stating4 that the Egyptians, in embalming, wrapped the body in cotton cloth; since all mummy cloths are found, on a microscopic examination, to be linen.5 Pliny6 speaks of the cotton plant (\textit{Gossypion})

1 Montgomery, \textit{Obs. on the Dobl. Pharn.}
2 Harris, \textit{Natural History of the Bible; Carpenter, Scripture Natural History.}
3 Thalia, \textit{cv.}
4 Enterpe, lxvii.
5 Dutrochet, in Jameson’s \textit{Journal}, vol. xxiii. p. 320. This author suggests that the \textit{βύσσος} of Herodotus was the filamentous weavable matter which lint \textit{[flax]} supplied.
and of the cloth (Xyline) made of the woolly substance which envelopes the seeds.

Botany.
Gen. Char.—Calyx cup-shaped, obtusely 5-toothed, surrounded by a 3-leaved involucel, with the leaves united and cordate at the base, and deeply cut or toothed irregularly.
Style simple, marked with 3 or 5 furrows towards the apex.
Stigmas usually 3, sometimes 5.
Capsules 3- to 5-celled, 3- to 5-valved at the apex, loculicidal.
Seeds numerous, imbedded in cotton.
Young branches and leaves more or less conspicuously covered with little black dots; nerves below usually with one or more glands (Wight and Arnott).

Sp. Char.—Bi-tri-ennial; young parts hairy.
Leaves hoary, palmate, with sub-lanceolate, rather acute lobes.
Stipules falcate-lanceolate.
Leaves of the exterior calyx dentate.
Capsules ovate pointed.
Seeds free, clothed with firmly adhering white down under the long white wool (Roxburgh).—**Petals** of a lively yellow colour, with a purple spot near the claw.
Dr. Roxburgh particularly distinguishes three varieties cultivated in India—viz. the Dacca, the Berar, and the China cottons.

Hab.—Asia.
Cultivated in India, Syria, Asia Minor, the Mediterranean, and America.

Description.—The filamentous substance, called cotton (gossypium), consists of tubular hairs, which arise from the surface of the seed-coat.
By drying, they become flattened; and in this state, if they be immersed in water and examined by the microscope, they appear like distinct, flat, narrow ribands, with only occasional appearances of joints, which are indicated by a line at a right angle, or nearly so, to the side of the tube.
Cotton is distinguished (under the microscope) from the vegetable fibre which constitutes linen by the tubes of the latter being in bundles, round, tapering at the extremities, and, when jointed, having oblique articulations.
Cotton which has undergone no preparation is denominated raw cotton.

Composition.—Cotton is a modification of lignin, and consists, therefore, of carbon, hydrogen, and oxygen; but the precise relative proportions of its constituents have not been ascertained.
In all its essential chemical properties it agrees with ordinary woody fibre.
It is completely insoluble in water, alcohol, ether, oils, and vegetable acids.
Strong alkaline leys dissolve it.
The strong mineral acids decompose it.
With nitric acid it yields oxalic acid.

Physiological Effects and Uses.—Raw cotton, or cotton wool, has been employed with apparently good effect in the treatment of burns.
It allays pain and irritation, apparently by forming, with the discharges, a sub-

1 For further historical details, see Royle’s *Illustr.* p. 84, et seq.
2 *Fl. Ind.* iii. 184.
3 For much interesting information regarding Cotton, but which is unsuited to this work, consult Royle, *op. cit.*; M’Culloch, *Dictionary of Commerce*; and Ure, *Dictionary of Arts*.
stitute for the epidermis, under the protection of which the process for the formation of the new cuticle takes place, undisturbed by external irritation. The exclusion of the air seems to be a most important part of the treatment; and, of course, to effect this, many other agents (as lint) will answer in the place of cotton. The following is the method of employing cotton:—The cotton should be carded in narrow fleeces, thin enough to be translucent, and applied in successive layers, so as completely to protect the injured parts from the effects of motion and pressure. When the skin is severely scorched, a spirituous or turpentine wash may be applied previously to the application of the cotton. As complete repose of the part is necessary, the first dressing should be allowed to remain as long as possible undisturbed. Raw cotton has also been used as a topical application in erysipelas.¹

Cotton-wool, impregnated with nitre or chlorate of potash, has been employed as moxa.

The well-known superiority of linen to cotton, as a dressing for wounds and ulcers, is usually ascribed to the triangular shape of the cotton fibres, the sharp angles of which are supposed to cut and irritate the flesh. But this shape of the fibres exists only in the imagination of those who have never examined them by the microscope. Raspail² ascribes the superiority of linen for surgical purposes to the hollow condition of the tubular fibrille, by which they are enabled to absorb into their interior the blood or purulent secretion. The tubes of cotton, on the other hand, are filled with an organizing substance, and, therefore, can imbibe nothing into their interior.

Order LXXVI. LINACEÆ, Lindley.—The Flax Tribe.

Linææ, De Candolle.

Characters.—Calyx 3- or 4-, generally 5-sepaled. Sepals coherent only at the base, imbricate in aestivation, continuous with the peduncle, and therefore persistent. Petals as many as the sepals; hypogynous, unguiculate at the base, slightly united together, and to the ring of the stamens; alternate with the sepals, twisted in aestivation. Stamens equal in number, and alternate with the petals, cohering into a monadelphous ring at the base, and having an abortive filament, or tooth, between each. Anthers innate, bilocular, bi-rimose. Ovaries subglobose, with as many cells as there are sepals, rarely fewer. Styles as numerous as the cells of the ovary. Capsule globose, crowned by the permanent bases of the styles, composed of carpels having induplicate margins and dehiscing at the apex by two valves, and which are divided into partial cells, by an incomplete dissepiment arising from the centre. Seeds in each cell two inverted. Albumen generally none, but in its stead there is a tumid, fleshy endopleura. Embryo straight, with the radicle turned towards the hilum.—Herbs or shrubs with entire exstipulate leaves (De Cand.)

Properties.—The fibres of Linaceæ have great tenacity. The seeds abound in oil and mucilage, and are in consequence emollient.

² Chim. Organ.
324. LINUM USITATISSIMUM, Linna. L. E. D.—COMMON FLAX.

Sex. Syst. Pentandria, Pentagynia.

(Semina; Oleum e seminibus expressum, L. D.—Seeds; Meal of the seeds deprived of their fixed oil by expression; Expressed oil of the seeds, E.)

History.—From time immemorial flax has been employed in the manufacture of cloth; and it appears from our most ancient records that Egypt was celebrated for its production.¹ Dutrochet² asserts that mummy cloth is made of flax.

Botany. Gen. Char.—Sepals 5, distinct, quite entire or serrated. Petals 5. Stamens 5. Styles 3 to 5, distinct from the base, or combined to the middle or apex (Wight and Arnott).

Sp. Char.—Smooth, erect. Leaves lanceolate or linear. Panicle corymbose. Sepals ovate, acute, with membranous margins. Petals somewhat cre- nate, larger by three times than the calyx (De Cand.)—Annual. One or two feet high. Leaves distant. Flowers large, purplish-blue. Capsule globular, about the size of a small pea.

Hab.—Indigenous; corn fields; not unfrequent. Extensively cultivated in this, as well as in other European countries, both for its fibre for making thread, and for its oil obtained from the seeds.

Description.—The seed of the flax, commonly termed linseed or lintseed (semina lini), is small (about a line long), oval, oblong, flattened on the sides with acute edges, pointed at one extremity, smooth, glossy, brown externally, yellowish-white internally, odourless, and has an oily mucilaginous taste. The seed-coat is mucilaginous; the nucleus oily. The cake (placenta lini) left after the expression of the oil, is usually denomi- nated oil cake; it forms, when ground to a fine powder, linseed meal (fa- rina lini). The best oil cake for the preparation of linseed meal is the English, fresh made. Foreign cake is of inferior quality. The colour of linseed meal is greyish-brown. It abounds in mucilage. The meal prepared by grinding the unpressed seeds yields a considerable quantity of oil.

The substance termed flax is prepared from the fibrous portions of the bark of the plant.³ The short fibres which are removed in heckling constitute tow (stupa), which is employed both in pharmacy and surgery. Of flax is made linen (linteum), which, when scraped, constitutes lint (linteum carptum; linamentum), an important agent to the surgeon.⁴

Composition.—Linseed has been analysed by L. Meyer.⁵ Its constituents

¹ Exodus, ix. 31: Herodotus, Enterpe, ev.
² Jameson’s Journal, xxiii. 221.
³ See Ure’s Dictionary of Arts, p. 482.
⁴ [A microscopical examination shows that much of the Lint now sold consists of scraped cotton. —Ed.]
⁵ Gmelin, Handb. d. Chem. ii. 1251.
he found to be as follows:—fat oil (in the nucleus) 11·265, wax (in the husk principally) 0·146, acrid soft resin (in the husk principally) 2·488, resinous colouring matter 0·550, yellow extractive with tannin and salts (nitre and the chlorides of potassium and calcium) 1·917, sweet extractive with malic acid and some salts 10·884, gum (in the nucleus) 6·154, nitrogenous mucilage with acetic acid and salts (in the husk principally) 15·120, starch with salts (in the husk) 1·480, albumen (in the nucleus) 2·782, gluten (in the nucleus) 2·932, husk and emulsion (?) 44·382. The ashes contained oxide of copper.

1. Fixed Oil.—(See p. 2052).

2. Mucilage of Linseed.—Has been examined by Bostock,¹ by Vauquelin,² and by Guerin-Varry.³ Resides in the seed coats. Is extracted by hot water. When the solution is mixed with alcohol, white mucilaginous flocks are precipitated. Diacetate of lead forms a precipitate in it. Neither infusion of nutgalls nor chlorine have any effect on it. It is not coloured blue by iodine. It reddens litmus (owing to the free acetic acid). It consists of two parts: one soluble, the other insoluble in water. Its ashes contain carbonates of potash and lime, phosphate of lime, chloride of potassium, sulphate of potash, oxide of iron, alumina, and silica.

<table>
<thead>
<tr>
<th>Proximate Analysis</th>
<th>Ultimate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble part</td>
<td>52·70 Carbon</td>
</tr>
<tr>
<td>Insoluble part</td>
<td>29·89 Hydrogen</td>
</tr>
<tr>
<td>Ashes</td>
<td>7·11 Nitrogen</td>
</tr>
<tr>
<td>Water</td>
<td>10·30 Oxygen</td>
</tr>
</tbody>
</table>

Mucilage of Linseed.... 100·00

a. Soluble part (Arabine?) soluble in cold water. Treated with nitric acid, yields 14·25 per cent. of mucic acid, besides some oxalic acid.

b. Insoluble part. A nitrogenous substance, not soluble in water, and not yielding mucic acid by the action of nitric acid. Properly speaking, therefore, it is not a gummy substance.

Physiological Effects.—Linseed is emollient and demulcent. It also possesses nutritive qualities; for, in the form of a thick mucilage (or jelly, as it is termed), it is employed for fattening cattle. Linseed cake is also employed for a similar purpose. Linseed oil is a mild laxative.

Uses.—Employed, to allay irritation, in the form of infusion or tea, expressed oil, and meal.

4. Infusum Lini Compositum, L.; Infusum Lini, E.; Linseed Tea. (Linseed, bruised, 3 j.; Liquorice Root, bruised, 5 j.; Boiling [distilled, L.] Water, Oj. Digest near the fire, in a lightly covered vessel, and strain [through linen or calico, E.])—Employed as an emollient and demulcent in irritation and inflammation of the pulmonary and urinary organs, and of the mucous membranes generally; as gonorrhoea, dysentery, alvine irritation, and pulmonary affections. It is rendered more palatable by the addition of sliced lemon and sugar-candy.—Dose, f 3 j. to f 3 iv. or ad libitum.

[2. Decoctum Lini Compositum, D.; Compound Dcoction of Lin-
seed.—(Take of Linseed, 3j.; Liquorice Root, bruised, 5ss.; Water, Oiss. Boil for ten minutes in a covered vessel, and strain while hot.)—Ed.]

3. OLEUM LINI, L. E. D.; Linseed Oil.—To prepare this oil, the seeds are first bruised or crushed, then ground, and afterwards subjected to pressure in the hydraulic or screw press.\(^1\) Cold-drawn linseed oil (oleum lini sincere) is paler coloured, less odorous, and has less taste, than linseed oil prepared by the aid of a steam heat of about 200° F. (oleum lini, offic.) ; but, according to Mr. Brande,\(^2\) it “soon becomes rancid and more disagreeable than that expressed at a higher temperature.” The seeds yield by cold expression 18 or 20 per cent. of oil; but by the aid of heat from 22 to 27 per cent. Linseed oil is usually amber-coloured; but it may be rendered quite colourless. For a fine sample of colourless oil I am indebted to Mr. Whipple. Linseed oil has a peculiar odour and taste; it is soluble in alcohol, but more readily so in ether. When exposed to the air it dries into a hard, transparent varnish. This change is greatly accelerated by boiling the oil, either alone or with litharge, with sugar of lead or with common white vitriol. The resulting oil is called drying oil or boiled oil. The efficacy of the process is ascribed by Liebig\(^3\) to the elimination of substances which oppose the oxidation of the oil. The ultimate composition of linseed oil, according to Sauussure, is carbon 76.014, hydrogen 11.351, and oxygen 12.635. Its proximate constituents are oleic acid (chiefly), margaric acid, and glycerin.

—Rarely employed internally. Its most ordinary use is for the preparation of Linimentum calcis, already (Vol. I. p. 583) described.\(^4\)

4. FARINA LINI, E.; Linseed Meal. (The meal of the seeds deprived of their fixed oil by expression, E.)—Emollient. Employed in the preparation of the linseed-meal poultice. It is a constituent of the putvis pro cataplasmate, D., already noticed.—The farina of the unpressed linseed is preferred to the powder of linseed-cake, on account of its oleaginous quality. What is usually sold as such has been prepared from recently pressed English oil cake.

5. CATAPLASMA LINI, L.; Linseed Meal Poultice. (Boiling Water, 3x.; Linseed, powdered, 3ivss., or as much as may be sufficient. Add the water by degrees to the linseed, stirring constantly that a poultice be made.)—A valuable emollient poultice.

325. LINUM CATHARTICUM, Linn. E.—PURGING FLAX.

Sex. Syst. Pentandria, Pentagynia.

(Herb, E.)

History.—First mentioned by Thalius in the sixteenth century.\(^5\)

1. See Ure’s Dictionary of Arts, p. 899.
2. Dict. of Pharm.
4. [Since the publication of the first volume of this work, the Linimentum Calcis has been introduced into the London Pharmacopoeia.—Take of Solution of Lime and Olive Oil, each ten fluidounces: shake them together. The Dublin College orders of Lime Water and Olive Oil, each two fluidounces.—Ed.]
5. Sprengel, Hist. Rei Herb. i. 35.

Sp. Char.—Smooth, erect. Leaves opposite, obovate-lanceolate. Stem above dichotomous (De Cand.)

Annual. Stem slender, 2 to 6 inches high. Flowers drooping before expansion, white, small.

Hab.—Indigenous; pastures: common.

Description.—Purring flax (herba lini cathartica) is odourless, but has a very bitter taste. Probably its purgative principle is bitter extractive.

Physiological Effects and Uses.—Cathartic and occasionally diuretic; but somewhat uncertain in its operation. Formerly used in rheumatism. Now almost obsolete.—Dose, 3 j. of the dried plant; or an infusion of a handful of the fresh plant may be employed.

Order LXXVII. Caryophyllaceæ.—The Chick-weed Tribe.

Caryophyllæ, Jussieu; De Candolle.

Characters.—Calyx generally persistent, of 4 or oftener 5 sepals, which are continuous with the pedicel, and either free or coherent into a 4- or 5-dentate tube, imbricate in aestivation. Petals as many as the sepals (very rarely 0), inserted on the torus, which is more or less elevated on a pedicel (anthophorus), alternate with the sepals, unguliculate, having the fæces sometimes crowned with petaloid scales. Stamens as many as, or double the number of, the petals inserted in the torus. Filaments subulate, sometimes submonadelphous at the base. Anthers 2-celled. Ovary simple, 2- to 5-valved, inserted at the apex of the torus, and crowned by an equal number of styles. Capsule of 2 to 5 valves, united at the base, dehiscing at the apex, generally 1-celled, sometimes 2- to 5-celled. Septa protruding from the middle of the valves, incomplete or continuous to the axis. Placenta central. Seeds numerous (very seldom few or definite); albumen farinaceous, generally central; embryo usually peripheral, more or less incurved (seldom central and straight); radicle directed towards the hilum.—Herbs or under-shrubs, with opposite entire leaves. Stems jointed (De Cand.)

Properties.—Remarkable, for the most part, for their insipidity and consequent inactivity.

326. Dianthus Caryophyllus, Linna.—Clove Pink; Carnation, or Clove Gillyflower.

Sex. Syst. Decandria, Digynia.

(Flores.)

History.—First noticed by Manfredus de Monte Imperiali.¹

Botany. Gen. Char.—Calyx tubular, 5-toothed, imbricated at the base with 2 to 4 opposite scales. Petals 5, with long claws. Stamens 10,

¹ Sprengel, op. supra cit. i. 298.

Vegetables.

Capsule 1-celled. Seeds compressed, convex on one side, concave on the other; peltate. Embryo scarcely curved (De Cand.)

Sp. Char.—Stem branched. Flowers solitary. Scales of the calyx 4, very short, ovate, somewhat mucronate. Petals very broad, beardless. Leaves linear-awl-shaped, channelled, glaucous (De Cand.)

A perennial plant; the origin of the fine carnations of the gardens. Flowers pink, purple, white, or variegated; double, semi-double, or single.¹

Hab.—Indigenous. Cultivated in gardens.

Description.—The red or deep crimson gilly-flowers (flores dianthi caryophylli; flores caryophylli rubri; flores tunice) were formerly employed in medicine on account of their colour. They have a pleasant aromatic smell, and a bitterish sub-astringent taste. They communicate to water their smell and colour.²

Composition.—I am unacquainted with any analysis of them. They obviously contain a volatile oil, colouring matter, and an astringent principle.

Physiological Effects and Uses.—Formerly supposed to have an influence over the nervous system to raise the spirits, &c. Simon Pauli³ recommended them in various nervous and spasmodic affections, and in malignant fever. They have also been used as flavouring and colouring agents; and a syrup of them was formerly contained in the British pharmacopoeias.

Order LXXVIII. Polygaleæ, De Candolle.—The Milk-Wort Tribe.

Polygaleæ, and Krameriaee, Lindley.

Characters.—Sepals 5, imbricate in aestivation, the two interior generally petaliform, the three exterior smaller; two of them are interior and sometimes united, the third is posterior. Petals 3 to 5, hypogynous, more or less united by means of the tube of the stamens (rarely distinct). Filaments of stamens adherent to the petals, monadelphous, divided at the apex into two opposite equal phalanges. Anthers 8, 1-celled, innate, dehiscing by pores at the apex. Ovary 1, free, 2-celled, rarely 1- or 3-celled. Style 1. Stigma 1. Pericarp capsular or drupaceous, 2- or 1-celled. Valves septigerous in the middle. Seeds pendulous, solitary, often with a carunculate arillus at the base; embryo straight, generally in the axis of a fleshy albumen, (or rarely) exalbuminous, in which case the endopleura is tumid. Herbs or shrubs. Leaves entire, generally alternate, articulated on the stem (De Cand.)

Properties.—Leaves and roots for the most part bitter and astringent.

327. Polygala Senega, Linn. L. E. D.—The Seneka.

Sex. Syst. Diadelphia, Octandria.

(Radix, L.—Root, L. D.)

History.—The root of this plant was introduced into medicine as a

¹ For horticultural information respecting them, consult Loudon's *Encyclopædia of Gardening.*

remedy for the bites of venomous animals, in the early part of the last century, by Dr. Tennant, a Scotch physician, residing in Pennsylvania.1

BOTANY. Gen. Char.—*Sepals* persistent, the two inner ones wing-like. *Petals* 3 to 5, adnate to the tube of the stamen; the inferior one keel-shaped (perhaps composed of two united). *Capsule* compressed, elliptical, or obcordate. *Seeds* pubescent, carunculated at the hilum, destitute of a coma (De Cand.)

Root perennial, branching. *Stems* annual, from 9 to 12 inches high, occasionally tinged at their lower part with red or purple. *Leaves* alternate, sessile, or on very short stalks, paler beneath. *Flowers* small, white. *Ate* of the calyx white, with green veins. *Capsule* small, containing two blackish *seeds*.

Hab.—United States of America: most abundant in the southern and western parts.

DESCRIPTION.—*Senega* or *Seneka* root (*radix senega* seu *seneka*), sometimes called the *seneca-snakeroot* or the *cattlesnake root*, is imported from the United States in bales. It varies in size from that of a writing-quill to that of the little finger; it is contorted, presents a number of eminences, and terminates superiorly in an irregular tuberosity, which exhibits traces of numerous stems; a projecting line extends the whole length of the root. The cortical portion is corrugated, transversely cracked, thick, of a greyish-yellow colour. The central portion (*medullium*) is woody and white. The taste of the root is at first sweetish and mucilaginous, afterwards acrid and pungent, exciting cough and a flow of saliva: its odour is peculiar and nauseous.

COMPOSITION.—*Senega* root has been repeatedly made the subject of chemical investigation. In the last century it was examined by Burekhard, by Keilhorn, and by Helmuth.2 In 1804 it was analysed by Gehlen;3 and in 1811 by Fougeron.4 Peschier5 also published an analysis of it. In 1826 it was analysed by Fencuille,6 in 1827 both by Dulong d’Astafor7 and by Folchi,8 in 1832 by Trommsdorff,9 and in 1836 by Quevénne.10 I subjoin three of these analyses:

1. *An Epistle to Dr. Mead*, 1742.
7. *Journ. de Pharm.* xii. 567.
1. Polygalic Acid, in the impure state, was first procured by Gehlen, who called it Senegin. It is the active principle, and resides in the cortical part of the root. When pure it is a white odourless powder, which is at first tasteless, but afterwards communicates an acid feeling to the mouth, and a sense of constriction to the fauces. It irritates the nostrils, and excites sneezing. It is volatile, and, when decomposed by heat in a glass tube, evolves no ammonia, and hence contains no nitrogen. It is soluble in water and in alcohol, especially when aided by heat; but it is insoluble in ether, acetic acid, and the oils. Its solution forms white precipitates (polygalates) with diacetate of lead and protonitrate of mercury. Sulphuric acid has a characteristic effect on polygalic acid: it renders polygalic acid yellow, then rose-red, and afterwards dissolves it, forming a violet-coloured solution, which becomes decolorised in twenty-four hours. The alkaline polygalates are not crystallizable. Polygalic acid consists of carbon 55·704, hydrogen 7·529, and oxygen 36·767; or C\(_{52}\)H\(_{18}\)O\(_{71}\). It has considerable resemblance to esculic acid. Given to dogs in doses of six or eight grains, it causes vomiting, embarrassed respiration, and death in three hours. Two grains thrown into the jugular vein caused vomiting, and, in two hours and a half, death.

5. Virgineic Acid.—A volatile fatty acid, analogous to valerianic, phocenic, and butyric acids. It is an oily liquid, of a reddish colour, a strong, penetrating, disagreeable odour, and an acrid taste. It is soluble in alcohol, ether, and caustic potash, but scarcely so in water.

Physiological Effects.—Senega possesses acid and stimulant properties. In small doses it is diaphoretic, diuretic, and expectorant; in larger doses, emetic and purgative. Sundelin\(^2\) took a scruple of powdered senega root every two hours for six hours: it caused irritation of the back part of the tongue and throat, and gave rise to an increased flow of saliva. These effects were soon followed by considerable burning in the stomach, nausea, and vomiting. The skin became warmer and moister; there was gripping pain of the bowels, followed by watery evacuations; the secretion of urine was increased, and a feeling of heat was experienced in the urinary passages. For some days after there was gastric un easiness, with loss of appetite. In larger doses it caused burning pain in the stomach and bowels, violent vomiting, purging, anxiety, and giddiness.

It appears to excite moderately the vascular system, to promote the secretions (at least those of the kidneys, skin, uterus, and bronchial membrane), and to exert a specific influence over the nervous system. It has been principally celebrated for its expectorant effects.

1. *Journ. de Pharm.* xxiii. 270.
In its operation on the nervous system it has considerable resemblance to Arnica; but its influence over the secreting organs is much greater. It is somewhat analogous to Helenium in its action.

Uses.—In this country Senega is comparatively but little employed. It is an exceedingly valuable remedy in the latter stages of bronchial or pulmonary inflammation, when this disease occurs in aged, debilitated, and torpid constitutions, and when the use of depletives is no longer admissible. It appears to re-establish a healthy condition of the secreting organs, to promote the resolution of the morbid deposits, and to give strength to the system. I usually administer it in combination with ammonia, which appears to me to promote its beneficial operation. Frequency of pulse, and a febrile condition of the system, are by no means to be regarded as impediments to the use of this medicine.

In chronic catarrh and humoral asthma it has also been used. It has been extravagantly praised by Dr. Archer, of Maryland, as a remedy for croup. He represents it as being capable, without the aid of any other means, of removing this alarming disease. Few practitioners, I suspect, would venture to trust it. Yet it might be a useful addition to emetics. As a stimulant and promoter of the secretions, it has been used with advantage in the latter stage of low fever accompanied with torpidity. It has also been used as an emetic, purgative, and diaphoretic, in rheumatism, as a diuretic in dropsy, and as an emmenagogue in amenorrhœa. It was introduced into practice as a remedy against the bite of venomous animals,—as the rattlesnake.

Administration.—The dose of the powder is from grs. x. to 3j. But the infusion or decoction is the best form of exhibition.

1. Decoctum Senegē, L.; Decoction of Senega. (Senega Root, 5x.; Distilled Water, two pints. Boil down to a pint, and strain.)—Stimulating, expectorant, and diuretic.—Dose f5j. to f5ij. three or four times daily. Ammonia is often a valuable addition to it.

2. Infusum Polygala, D. (Polygala Root, bruised, 5ss.; Boiling Water, 5ix. Digest for one hour in a covered vessel, and strain.) The product should measure about eight ounces.—Ed.]

3. Infusum Senegē, E.; Infusion of Senega. (Take of Senega, 5x.; Boiling Water, one pint. Infuse for four hours in a covered vessel, and strain.)—Ed.]

328. KRAMERIA TRIANDRA, Ruiz and Pavon, L. E. D.—THE RHATANY.

See Syst. Tetrandria, Monogynia, Willd.

(Radix, L.—Root, E. D.)

History.—This plant was discovered by Ruiz and Pavon, in 1779, in South America. It was introduced to notice into this country, as a medicine, by Dr. Reece, in 1808. In 1813, Ruiz's dissertation on it appeared in an English dress.

1 Eberle, Mat. Med.
2 Eckard, Diss. Inaug. de Rad. Rhataniiæ, Berol. 1822.
Botany. Gen. Char.—Sepals 4 or 5, irregular, coloured, spreading, deciduous. Petals 4 or 5, irregular, smaller than the calyx, the 3 inner unguiculate. Stamens 1, 3, or 4, hypogynous, unequal. Ovary 1-celled, or incompletely 2-celled; style terminal; stigma simple; ovules in pairs, suspended. Fruit between hairy and leathery, globose, covered with hooked prickles, by abortion 1-seeded, indehiscent.—Spreading, many-stemmed undershrubs. Leaves alternate, simple, entire or 3-foliate, spreading. Racemes simple, spiked (Lindley).

Sp. Char.—Leaves oblong, somewhat acute, villous-silky. Pedicels somewhat longer than the leaf, bracteate, forming a short raceme (De Cand.)

Hab.—Peru; growing abundantly in Huanuco, Huamalies, and Canta.

Description.—Rhatany root (radix Krameriae seu rhatanhia) is brought from Peru. It consists of numerous woody, cylindrical, long branches, varying in thickness from that of a writing quill upwards. These pieces consist of a slightly fibrous, reddish-brown bark, having an intensely astringent and slightly bitter taste,—and of a very hard, ligneous medullium, of a yellowish or pale red colour. The largest quantity of astringent matter resides in the bark, and therefore the smaller branches (which have a larger proportion of bark) are to be preferred.

Foreign or South American extract of rhatany (extractum Krameriae seu rhatanhiae Americanum) is occasionally imported.

Composition.—Rhatany root has been analysed by Trommsdorff, Vogel, C. G. Gmelin, and Peschier.

<table>
<thead>
<tr>
<th>C. G. Gmelin.</th>
<th>Peschier.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin 38·3</td>
<td>Dried watery extract 31·25</td>
</tr>
<tr>
<td>Sweet matter ... 6·7</td>
<td>Insoluble matters ... 66·75</td>
</tr>
<tr>
<td>Mucilage 8·3</td>
<td>Rhatany Root ... 100·00</td>
</tr>
<tr>
<td>Nitrogenous ditto 2·5</td>
<td></td>
</tr>
<tr>
<td>Lignin 43·3</td>
<td>Gum, extractive, and colouring matter 56·7</td>
</tr>
<tr>
<td>[Loss 0·9]</td>
<td>Krameric acid 0·4</td>
</tr>
<tr>
<td>Rhatany Root ... 100·0</td>
<td>Dried Watery Extract of Rhatany Root ... 100·0</td>
</tr>
</tbody>
</table>

1. TANNIC ACID.—To this, as well as in part to a minute proportion of gallic acid, rhatany root owes its astringent qualities. It is this acid which enables an infusion of rhatany root to form, with a solution of gelatine, a precipitate (tannate of gelatine), and with sesquichloride of iron a brownish grey precipitate (tannate of iron). The properties of tannic acid have been already described.

2. KRAMERIC ACID.—Peschier ascribes the stypticity of rhatany to this acid, the properties of which are at present imperfectly known.

Physiological Effects.—A powerful astringent, and, like other agents of this class, tonic also. (See the effects of astringents, ante.)

Uses.—Rhatany root is adapted to all those cases requiring the employment of astringents: such as profuse mucous discharges (as humid catarrh, old diarrhoeas, fluor albus, &c.), passive hemorrhages (especially metrorrhagia),

1 L. Gmelin, Haadb. d. Chem. ii. 125.
and relaxation and debility of the solids. It is sometimes used as a tooth powder (as with equal parts of orris root and charcoal). Dentists sometimes employ tincture of rhatany diluted with water as an astringent mouth wash.

Administration.—The powder may be given in doses of from grs. x. to 3j.s. The infusion or extract is more commonly employed. Compound tincture of rhatany is prepared by digesting 3ij. of bruised rhatany root, and 3ij. of orange peel, in Oj. of proof spirit. Sometimes 5ss. of serpentine root and 3j. of saffron are added. It is an efficacious astringent and stomachic.—Dose, 1ij. to 3ij.

2. EXTRACTUM KRAMERII, E.; Extract of Rhatany.—Prepared as extract of liquorice. Astringent.—Dose, grs. x. to 3j.

Order LXXIX. Violaceae, Lindley.—The Violet Tribe.

Violarieæ, De Candolle.

Characters.—Sepals 5, persistent, with an imbricate aestivation, usually elongated at the base. Petals 5, hypogynous, equal or unequal, usually withering, and with an obliquely convolute aestivation. Stamens 5, alternate with the petals, usually opposite them, inserted on a hypogynous disk, often unequal: anthers bilocular, bursting inwards, either separate or cohering, and lying close upon the ovary; filaments dilated, elongated beyond the anthers; two, in the regular flowers, generally furnished with an appendage or gland at their base. Ovary 1-celled, many-seeded, or rarely 1-seeded, with 3 parietal placentae opposite the three outer sepals; style single, usually declined, with an oblique hooded stigma. Capsule of 3 valves, bearing the placenta in their axis. Seeds often with a tumour at their base; embryo straight, erect, in the axis of fleshy albumen.—Herbaceous plants or shrubs. Leaves simple, usually alternate, sometimes opposite, stipulate, entire, with an involute vernation. Inflorescence various. (Lindley.)

Properties.—Roots more or less emetic.

329. VIOLA ODORATA, Linn. L. E.—The Sweet Violet.

Sex. Syst. Pentandria, Monogynia.

(Petalum recens, L.—Flowers, E.)

History.—According to Dr. Sibthorp,¹ this is the Ἰούν πορφυρόν (purple violet) of Dioscorides.² It was employed in medicine by Hippocrates.

Botany. Gen. Char.—Sepals 5, unequal, prolonged into appendages at the base. Corolla unequal, 2-lipped, of 5 petals, the lower calcarate.

¹ Prodr. Fl. Grec. i, 147.
² Lib. iv, cap. 122.
Capsule bursting with elasticity, many-seeded, 3-valved.—Herbaceous plants (Lindley).

Perennial. Flowers fragrant, deep purple, often white, occasionally lilac. Bracts inserted above the middle of the seape.

Hab.—Indigenous. Flowers in March and April. Cultivated on account of the odour and colour of the flowers.

Description.—Violets (flores violæ odoratae) should be gathered immediately they are expanded, as they subsequently become purplish. Their delightful fragrance is well known. The root of the violet (radix violæ odoratae) has been used in medicine.

Composition.—In 1822, Pagenstecher detected the following substances in an infusion of the flowers:—odorous principle, blue colouring matter, sugar both crystallizable and uncrystallizable, gum, albumen, and salts of potash and lime. Boullay obtained from the root, leaves, flowers, and seeds, an acrid principle, which he has termed violine.

1. Odorous Principle.—This has not been isolated. It is supposed, however, to be of the nature of volatile oil. By digesting violets in olive oil, the latter dissolves the odorous matter, and acquires the smell of violets: this preparation is the oil of violets,—the huile de violette of perfumers. The eau or esprit de violette is nothing more than an alcoholic tincture of the rhizome of the Florentine orris, which has an odour similar to that of the violet.

2. Colouring Matter.—It is soluble in water, but not in alcohol. It is changed to red by the strong acids, and to green by the alkalies: hence the expressed juice and syrup are valuable as tests for discovering the existence of either acids or alkalies. An infusion of violets has been said to contain three kinds of colouring matter; namely, a blue colouring matter, not precipitable by the acetate of lead, but which is completely decolorised by sulphuretted hydrogen; secondly, a bright-red acid colouring matter, which causes a bluish-green precipitate with the solution of acetate of lead; thirdly, a violet-red colouring matter, which does not precipitate the neutral acetate of lead, but throws down a greenish-yellow precipitate with the subacetate of lead.

3. Violine (Emétique indigène).—It was at first mistaken for Emetina (p. 1594). Its nature requires further investigation. It is a white powder, of a bitter acid taste, slightly soluble in water, and insoluble in ether. It is precipitated from its solution by infusion of nutgalls. Its operation is similar to that of emetine.

Physiological Effects.—The odorous emanations of violets, like those of some other flowers, are said to have occasionally proved dangerous, and in one case were supposed to have brought on apoplexy. Dr. Lindley has known them cause faintness and giddiness. Taken internally, violets act as laxatives. The seeds possess similar properties. The root, in doses of from 3ss. to 5ij., proves emetic and purgative.
Uses.—Violets are employed in the preparation of the officinal syrup. They are useful as a test for acids and alkalies, and are much sought after for bouquets. The root might be employed as a substitute for ipecacuanha.

SYRUPUS VIOLE, L. E.; *Syrup of Violets.* (Of the Violet, 3ix.; Boiling Distilled Water, Oj.; Sugar, lb. iiij. or a sufficiency; Rectified Spirit, 3iiss. or a sufficiency. Macerate the violet in water for twelve hours, then express and strain.—Set aside that the dregs subside, and proceed as directed for the Syrupus Althææ, L. (Fresh Violets, L. lb. j.; Boiling Water, Oiiss; Pure Sugar, lb. viiss. Infuse the flowers for twenty-four hours in the water [in a covered glass or earthenware vessel, E.]; strain without squeezing, and dissolve the sugar in the filtered liquor, E.)—The colour of this preparation is improved by making it in a tin or pewter vessel. No satisfactory explanation of this has been offered. The Edinburgh College, fearful, I presume, of metallic impregnation, direct glass or earthenware vessels to be employed.—Genuine syrup of violets is readily distinguished from any counterfeit by its being reddened by an acid, and made green by an alkali. Hence it is employed as a test.—As a medicine it is used as a mild laxative for new-born infants. Thus, a mixture of equal parts of oil of almonds and syrup of violets is often administered, in the dose of one or two teaspoonfuls, for the purpose mentioned.

OTHER MEDICINAL VIOLACEÆ.

The roots of several species of *Ionidium* possess emetic qualities, and have been employed as substitutes for our officinal ipecacuanha (*Cephaelis Ipecacuanha*).

The root of *IONIDIUM IPECACUANHA*, a native of the Brazil, is termed *False Brazilian Ipecacuanha*. It yielded Pelletier five per cent. of emetine. The dose of it, as an emetic, is 3ss. to 3j. infused in water.

The root of the *IONIDIUM MICROPHYLLUM*, or the *Cuichunchully*, a native of Quito, possesses similar properties.

Dr. Bancroft¹ speaks favourably of it in Elephantiasis tuberculata. But the specimens which he sent home as Cuichunchully are said by Sir W. Hooker to be identical with *Ionidium parviflorum*, Vent. Dr. Lindley,² however, received from the Hon. W. F. Strangways the “Cuichunchully de Cuença,” which was the *I. microphyllum* of

¹ Comp. to Bot. Mag. i. 278.
² Flora Medica, p. 98.
Order LXXX. CISTACEÆ, Lindley.—THE ROCK-ROSE TRIBE.

The substance called Ladanum is a resinous exudation from the Cistus creticus, growing, as its name implies, in Crete. In the time of Dioscorides it was collected by combing the beards of the goats which browse on the plant. According to Tournefort and Sieber, it is now collected by a kind of whip or rake, with a double row of leathern thongs. With this the countrymen brush the plants, and when the whips are sufficiently laden with the juice, it is scraped off by knives, and made into cakes. Pure ladanum consists of resin and volatile oil 86, wax 7, aqueous extract 1, and earthy matters and hairs 7 (Guibourt). Pelletier found 72 per cent. of sand in it. It possesses stimulant properties, and was formerly a constituent of some plasters. Its use is now obsolete.

Order LXXXI. CRUCIFERÆ, Jussieu.—THE CABBAGE OR CRUCIFEROUS TRIBE.

Brassicaceæ, Lindley.

Characters.—Sepals 4, deciduous cruciate. Petals 4, cruciate, alternate with the sepals. Stamens 6, of which two are shorter, solitary, opposite the lateral sepals, and occasionally toothed; and four larger, in pairs, opposite the anterior and posterior sepals, generally distinct, sometimes connate, or furnished with a tooth on the inside. Disk with various green glands between the petals and the stamens and ovary. Ovary superior, unilocular, with parietal placentae usually meeting in the middle, and forming a spurious dissepiment. Stigmas 2, opposite the placenta. Fruit a silique or silicule, 1-celled, or spuriously 2-celled; 1- or many-seeded; dehiscing by two valves separating from the replum; or indehiscent. Seeds attached in a single row by a funiculus to each side of the placenta, generally pendulous. Albumen none. Embryo with the radicle folded upon the cotyledons.—Herbaceous plants, annual, biennial, perennial, very seldom suffruticosæ. Leaves alternate. Flowers usually yellow or white, seldom purple (Lindley).

Properties.—Pungent stimuli. They furnish nutritive condimentary and antiscorbutic substances. Their pungency depends on an acrid volatile oil, composed of carbon, nitrogen, hydrogen, sulphur, and oxygen. This oil becomes absorbed, and in some cases is detectable in the secretions. The nutritive properties of cruciferæ arise from their mucilaginous, saccharine, and extractive constituents. Cakile maritima is purgative. Cheiranthus lividus is said to be dangerous to goats; while Lepidium pescidium we are told stupifies fish. These statements, however, require further proof. With these doubtful exceptions one of the cruciferæ are poisonous.

1 Voyage into the Levant, i. 79, 1741.
330. CARDAMINE PRATENSIS, Linn.—CUCKOO-FLOWER.

Sex. Syst. Tetradynamia, Siliculosa.

History.—Brunfels and Tragus are the earliest writers in whose works an undoubted notice of this plant appears. ¹

Botany. Gen. Char.—Silique linear, with flat, nerveless valves, which often separate elastically. Seeds ovate, not bordered (O =). Umbilical cords slender (De Cand.)

Sp. Char.—Leaves pinnatisect; segments of the radical ones somewhat rounded—of the cauline ones, linear or lanceolate, entire. Style very short, scarcely more slender than the silique; stigma capitate (De Cand.)

Root perennial. Stem about a foot high. Flowers light purple, flesh-coloured, or white.

Hab.—Indigenous; meadows and moist pastures. Flowers in April and May.

Description.—The flowers (flores cardamines) are somewhat bitter and pungent, and have a slight odour. By drying they become inodorous and almost insipid. The leaves possess a flavour analogous to, though less agreeable than, the common water-cress.

Composition.—I am unacquainted with any analysis of the plant worth quoting. The pungency depends on volatile oil, the bitterness on extractive matter. A few experiments on this plant are mentioned by Gronhert. ²

Physiological Effects and Uses.—The flowers of cardamine are said to be stimulant, diaphoretic, diuretic, and nerveine. They were formerly used in epilepsy, especially when it occurred in children, but have now fallen into almost total disuse. They were recommended by Sir George Baker ³ in cholera and spasmodic asthma.—Dose of the dried flowers, ⁴ iii. or ⁵ iiij.

331. COCHLEARIA ARMORACIA, Linn. L. E.—HORSE-RADISH.

Sex. Syst. Tetradynamia, Siliculosa.

(Radix recens, L.—Fresh root, E.)

History.—Sprengel ⁴ considers this plant to be the ἡπαρίς ἀγρία of Dioscorides; ⁵ and Dierbach ⁶ suggests that it was known to Hippocrates. But these opinions are by no means well established.

¹ Sprengel, Hist. Rei Herb.
³ Med. Trans. i. 442.
⁴ Hist. Rei Herb. i. 182.
⁵ Lib. ii. 138.

Petals, entire. Stamens not toothed.—(O =). Flowers white. Leaves often somewhat fleshy (De Cand.)

Sp. Char.—Silicules ellipsoid. Radical leaves oblong, crenate; cauline ones elongated, lanceolate, dentate, or incised. Root fleshy, large (De Cand.)

Root perennial, long, cylindrical white, very pungent. Stems two feet high. Leaves much veined. Flowers white.

Hab.—Indigenous; extensively cultivated. Flowers in May.

Description.—Horse-radish root (radix armoracæ; radix raphani rusticani) evolves, when scraped into shreds, a highly penetrating acrid vapour. Its taste is very pungent. It is coloured blue by tincture of iodine. An infusion of it is tinged reddish yellow by the sesquisalts of iron.

Composition.—Horse-radish root was analysed by Gutret,¹ who found its constituents to be—acrid volatile oil, bitter resin, extractive sugar, gum, starch, woody fibre, vegetable albumen, acetic acid, and acetate and sulphate of lime.

Volatile Oil (Oleum Armoracæ).—Obtained by distillation without water. It is pale yellow, heavier than water, and very volatile. Its odour is exceedingly powerful, and like that of horse-radish. One drop is sufficient to infect a whole room. Its taste is at first sweetish, then burning and acrid. It causes inflammation and vesication when applied to the skin. It is slightly soluble in water, easily so in alcohol. The watery solution yields, with acetate of lead, a brown precipitate (sulphuret of lead); with nitrate of silver, a black one (sulphuret of silver). [It contains sulphur and nitrogen, but no oxygen. It has lately been shown to be identical with Volatile Oil of Mustard.—Ed.]

Physiological Effects.—Horse-radish is a well-known pungent, acrid stimulant, capable of producing vesication when applied to the skin, and of causing vomiting, when taken, in the form of infusion, into the stomach. Its odorous emanations readily excite a copious flow of tears. On the general system it operates as a stimulant, and promotes both urine and perspiration.

Uses.—Scraped in shreds, it is used at the table as a condimentary accompaniment to roast beef. It is not much employed as a medicine. Chewed, it serves as an excellent masticatory. Taken in this way, or in the form of syrup, it may be serviceable in some forms of hoarseness. An infusion of it may be taken to excite vomiting, or to promote the operation of other emetics, as in poisoning by narcotic substances. As a general stimulant, diaphoretic, and diuretic, it has been used in palsy, chronic rheumatism, and dropsy. It is one of the remedies deemed antiscorbutic.

Administration.—Dose, 5ss. or more, scraped into shreds.

1. Infusum Armoracæ Compositum, L.; Compound Infusion of Horse-radish.—(Horse-radish, sliced; Mustard-seeds, bruised, of each 3ij.; Compound Spirit of Horse-radish, f5ij.; Boiling Distilled Water, Oj. Macerate the root and seeds in the water for two hours in a lightly covered vessel, and strain. Then add the compound spirit of Horse-radish.)—This preparation soon undergoes decomposition. It is stimulant and diuretic, and has been employed in chronic rheumatism, paralysis, dropsies, and scurvy.—Dose, f5ij. to f3ij.

2. Spiritus Armoracæ Compositus, L.; Compound Spirit of Horse-

¹ Gnelin, Handb. d. Chem. ii. 1248.
radish. (Horse-radish, sliced; Dried Orange Peel, of each 3xx.; Nutmegs, bruised, 3v.; Proof Spirit, Cong. j.; Water, Oij. Mix, and let a gallon distil, by a gentle heat.)—Usually employed as a stimulating adjunct to other medicines, especially to diuretic infusions.—Dose, f3j. to f3iv.

332. COCHLEARIA OFFICINALIS, Linn.—COMMON SCURVY-GRASS.

Sex. Syst. Tetradynamia, Siliculosa.

(Herba.)

History.—This plant does not appear to have been known to the ancients.

Sp. Char.—Silicules ovate-globose, twice as short as their pedicels. Radical leaves stalked, cordate; cauline ones ovate dentate-angular (De Cand.)—Annual. Stem about a foot high. Flowers pure white.

Hab.—Indigenous; on the sea-coast, and in watering places on the Welsh and Scottish mountains. Cultivated in gardens.—Flowers in April and May.

Description—Scurvy-grass (herba cochleariae) evolves, when rubbed, a somewhat pungent odour. Its taste is penetrating and acrid.

Composition.—The inspissated juice was examined by Braconnot,1 and the fresh herb by Gutret.2 The latter obtained from it the following constituents:—volatile oil, bitter resin, bitter extractive, gum, green fecula, vegetable albumen, hydrochlorate and sulphate of ammonia, nitrate and sulphate of lime.

Volatile Oil (Oleum Cochleariae).—This oil is identical with the oil of horse-radish (ante, p. 2064).

Physiological Effects and Uses.—A gentle stimulant, aperient, and diuretic. It has long been esteemed as an antiscorbutic.3 It has also been used in visceral obstructions. It is occasionally eaten with bread and butter, like the water-cress. [Formerly introduced into the Dublin Pharmacopoeia, now omitted.—Ed.]

333. SINAPIS NIGRA, Linn. L. E. D.—COMMON OR BLACK MUSTARD.

Sex. Syst. Tetradynamia, Siliquosa.

(Semen, L.—Flour of the seeds, generally mixed with those of Sinapis alba, and deprived of fixed oil by expression, E.—The flour of the seeds, D.)

History.—Mustard (νάπον) was employed in medicine by Hippocrates.

Botany. Gen. Char.—Silique somewhat terete; the valves nerved. Style

1 Journ. Phys. lxxxiv. 278.
3 See Valentinus, Cochlearia curiosa, by Shirley, 1676.
small, short, acute. Seeds in one row, somewhat globose. Calyx spreading (De Cand.)

Sp. Char.—Silique smooth, even, somewhat tetragonal, pressed close to the peduncle. Lower leaves lyrate; upper ones lanceolate, quite entire, stalked.—Annual. Stem 3 or 4 feet high. Flowers yellow.

Hab.—Indigenous; hedges and waste places. Cultivated in fields, especially in Durham and Yorkshire.

Description.—Black mustard seeds (*semina sinapis nigra*) are small and roundish. Externally they are beautifully veined, and of a reddish or blackish-brown colour, though sometimes whitish. Internally they are yellow. They are inodorous, but have an acrid, bitter, oleaginous taste.

Manufacture of Mustard.—The following method of preparing flour of mustard (*farina sinapis*) was kindly furnished me by a manufacturer:—The seeds of both black and white mustard are first crushed between rollers, and then pounded in mortars. The pounded seeds are then sifted. The residue in the sieve is called dressings or siftings: what passes through is impure flour of mustard. The latter by a second sifting yields pure flour of mustard, and a second quantity of dressings. The common flour of mustard of the shops is adulterated with flour (wheaten), coloured by turmeric, and rendered hot by pod pepper. By pressure the dressings or siftings yield a fixed oil (*fixed oil of mustard*), which is used for mixing with rape and other oils. The whole seeds are never pressed. Mustard cake is employed as a manure, being too hot for cattle.

Composition.—Black mustard seed was analysed by Thibierge. Some of its constituents have subsequently been examined by Henry fils and Garot; by Pelouze; by Robiquet and Boutron; by Fauré; by Simon; by Bussy; and by Boutron and Fremy. From their labours we learn that black mustard seed contains myronate of potash, myrosine, fixed oil, a pearly fatty matter, gummy matter, sugar, colouring matter, sinapisin, free acid, peculiar green matter, salts.

1. Myronic Acid.—So called by Bussy, its discoverer, from μορον, an odorous oil. It is an inodorous, non-volatile, bitter, non-crystallizable acid. It is soluble in water and alcohol, but not in ether. It is composed of carbon, sulphur, hydrogen, nitrogen, and oxygen. The alkaline myronates are crystallizable. Myronate of potash yields no precipitate with nitrate of silver, nitrate of baryta, acetate of lead, corrosive sublimate or

chloride of calcium. The characteristic property of myronic acid is, to yield the volatile oil of mustard when mixed with myrosine and water. [This acid in mustard seed is combined with potash, forming myronate of potash, which is identical with the sulpho-sinapisin of Henry.—Ed.]

Myrosine; Emulsion of Black Mustard.—Bussy called it myrosine, from μύρος, odorous oil, and σῦρ, with, because it yields, with myronic acid and water, the volatile oil of mustard. It has considerable resemblance to vegetable albumen and emulsion; but as it cannot be replaced by either of these substances, in the development of the volatile oil, it must be regarded as a substance sui generis. It is soluble in water; but is coagulated by heat, alcohol, and acids, and in this state it loses the power of acting on the myronates, and of yielding the volatile oil.

3. Sinapisine.—This term has been given, by Simon, to a substance which he procured from black mustard seeds, and which he states possesses the following properties:—It presents itself in the form of white, brilliant, micaceous, volatile crystals, which are soluble in alcohol, ether, and the oils, but are insoluble in acids and alkalis. When mixed with the albumen (myrosine) of the mustard seed, it yields the volatile oil of mustard. Bussy ascribes this last property to myronic acid. It is highly improbable that two constituents of mustard should possess it. Analogy would lead us to suppose that the oil is generated by non-acid substances. Simon says sinapisine contains no sulphur. Myronic acid contains sulphur.

4. Volatile Oil of Mustard.—This does not pre-exist in the seeds; but is formed when water is added to the farina, by the mutual action of the contained myrosine and myronate of potash (sinapisine?), just as the volatile oil of bitter almonds is generated by the mutual action of emulsion, amygdalin, and water (see p. 1770). Alcohol extracts from the farina no volatile oil; but, by coagulating the myrosine, renders the farina incapable of developing the oil by the subsequent action of water. Sulphuric acid and the other mineral acids, as well as carbonate of potash, check the formation of the oil. But when the oil is once formed, the acids have no power to prevent its effects. Volatile oil of mustard is colourless or pale yellow; it has a most penetrating odour, and a most acrid burning taste. Its sp. gr. at 68° F. is 1.015 (1.038). It boils at 290° F. It is slightly soluble in water, but readily so in alcohol and ether. By the action of ammonia on this oil, a white, odourless, crystallizable substance (an amide?) is produced, which consists of one atom of the oil and one atom of ammonia, C\(\text{H}_2\text{NS}_2+\text{NH}_2\). These crystals are decomposed with the greatest facility by binoxide of mercury. [Volatile oil of mustard is represented by the formula C\(\text{H}_8\text{NS}_2\). According to Wertheim this oil is the sulphocyanide of allyl (All=C\(\text{H}_2\)). This is theoretically consistent with the constitution above given, for C\(\text{H}_8\text{C}_2\text{NS}_2\)=C\(\text{H}_8\text{NS}_2\)=All,Cys\(\text{S}_2\).—Ed.] It is powerfully acrid, rubefacient, and vesicant. It has been proposed as a rubefacient in paralysis, and as a vesicant. The distilled water of mustard has been employed against the itch.

5. Fixed Oil of Mustard.—Usually procured from the dressings or siftings of mustard above referred to. It constitutes about 28 per cent. of the seeds. Its colour is reddish or brownish yellow. It has a faint odour of mustard, and a mild oily taste. It does not readily become rancid. It has been used as a purgative and anthelmintic.

Physiological Effects.—Mustard is an acrid stimulant belonging to the group of the volatile pungent stimuli. It holds an intermediate rank between horse-radish and pepper. Its topical action is that of a powerful acrid, and depends on the volatile oil developed by the action of water. The irritant operation, on the eyes, of the vapour arising from a mixture of hot water and flour of mustard, is familiarly known. Mustard cataplasm causes redness and burning pain, which, if the application be continued, becomes almost insupportable. A prolonged application causes vesication, with even

1 This constitution differs from that formerly given by Dumas and Pelouze, Journ. de Chim. Méd. ixi. 645.
2 Robiquet and Bussy, Journ. de Pharm. xxvi. 119.
3 Julia Fontenelle, Journ. de Chim. Méd. i. 131.
4 Fontenelle, op. supra cit. 131.
ulceration and gangrene. Compared with those of cantharides, the topical effects of mustard on the skin sooner subside when the application is discontinued. When swallowed, mustard evinces the same stimulant operation on the stomach and bowels. Taken in moderate quantities, with the food, it promotes the appetite, and assists the assimilation of substances which are difficult of digestion. In somewhat larger doses (as one or two tea-spoonfuls) it rouses the gastric susceptibility, and operates as an emetic. In excessive quantities it gives rise to vomiting, purging, and gastro-enteritis. The effects of mustard on the general system are those of a stimulant. It quickens the pulse, and promotes the secretions (especially the urine) and the exhalations.

Uses.—The dietetical uses of mustard are well known. It is well adapted for cold, phlegmatic individuals, with a torpid or atomic condition of the digestive organs. It is an excellent condimentary adjunct to heavy and difficulty digestible foods, as fatty matters.

As a medicinal agent, mustard is employed for several purposes. As an emetic it is useful where we want to rouse the gastric sensibility, as in narcotic poisoning, malignant cholera, and some forms of paralysis. As a stimulant to the digestive organs it is applicable in atomic or torpid conditions of these parts, with dyspepsia, loss of appetite, and hepatic torpor. As a diuretic it has been employed with some benefit in dropsy. As a febrifuge in intermittent, it has been employed either alone or in conjunction with cinchona. But the principal use of mustard is as a rubefacient (see Cataplasma Sinapis). Flour of mustard, or bruised mustard seed, is sometimes added to pediluvia.

Administration.—As an emetic, the dose is from a tea-spoonful to a table-spoonful of the flour of mustard in a tumblerful of water. As a diuretic in dropsies, and for some other purposes, mustard whey (serum lactis sinapinum) is a convenient form of exhibition. It is prepared by boiling half an ounce of the bruised seeds or powder in a pint of milk, and straining: the dose is 1/3iv. twice or thrice a day.

CATAPLASMA SINAPIS, L.; Sinapismus; Mustard Poultice or Sinapism.

(Linseed; Mustard-seed, of each, powdered, 5iiss.; Boiling Water, 3xi. Add the powders, previously mixed, to the water by degrees, stirring so that a poultice be made.) Crumb of bread may be often conveniently substituted for linseed meal. Vinegar and other acids check the formation of the acrid oil. Boiling water also has an injurious effect. Hence water whose temperature does not exceed 100° F. is to be preferred for making the mustard poultice. Aetius was acquainted with the injurious influence exercised by vinegar on mustard; and he observes,—"sed et hoc noscendum est: si in aceto maceretur sinapi inefficatus redditur: Acetum enim sinapis vim discutit." Several experiments on this subject have been made by Trousseau and Pidoux. They found that a sinapism made with flour of black mustard and

1 On the use of mustard emetics in cholera, see Lond. Med. Gaz. ix. 519, 592, and 795.
2 Mead, Works, p. 514, 1762.
3 Bergius, Mut. Med. 2d edit. ii. 618.
4 Sermo iii. cap. 181.
5 Traité de Thérap. i. 692.
water produced as much effect in six minutes as one made with the flour of black mustard and vinegar did in fifty. Curiously enough, however, they state that vinegar did not diminish the activity of English flour of mustard. This, perhaps, is referable to the fact that common English flour of mustard contains pod pepper, the active principle (capsicin) of which is soluble in vinegar. The London College formerly ordered vinegar.—The mustard cataplasm is a powerful local irritant. It readily excites inflammation, and, when allowed to remain applied sufficiently long, causes vesication. It proves, in many cases, a most painful application. In various affections of the brain (as in the stupor and delirium of low fever, in apoplexy, and in poisoning by opium) it is a most valuable application to the feet and ankles. In pulmonary and cardiac diseases it is occasionally applied to the chest with excellent effects. Dr. Blackall\(^1\) speaks in high terms of the mustard cataplasm, quickened with oil of turpentine, in typhoid pneumonia. Of course, in all these cases, it operates on the principle of a blister, over which its speedy effect gives it a great advantage. It is applied spread on linen or calico. Great caution is necessary in its application to persons who are insensible to pain; for if it be continued too long it may occasion ulceration and sloughing, though no pain be manifested. Hence its effects should be examined at short intervals. In one case death had nearly resulted from the neglect of this caution. Four sinapisms were applied to the wrists and insteps of a female lying in a comatose condition following puerperal convulsions. As no manifestation of pain occurred, the application was continued for three hours. Sloughing followed, which nearly proved fatal.\(^2\)

334. SINAPIS ALBA, Linn. L. E. D.—WHITE MUSTARD.

Sex. Syst. Tetradyinia, Silicuosa.

(Semen, L.—Semina, D.—Flour of the seeds of Sinapis nigra, generally mixed with those of Sinapis alba, and deprived of fixed oil by expression, E.)

Botany. Gen. Char.—See Sinapis nigra.

Sp. Char.—Siliques hispid, spreading, somewhat narrower than the ensiform beak. Leaves lyrate, and, as well as the stem, nearly smooth (De Cand.)

Annual. Stem 1 or 1\(\frac{1}{2}\) foot high. Flowers large, yellow. Beak longer than the pod.

Hab.—Indigenous; in waste places. Cultivated in both fields and gardens. Flowers in June.

Description.—White mustard seeds (**semina sinapis alba**) are larger and somewhat less acrid to the taste than the black ones. They consist of rounded-elliptical yellow grains, composed of a yellow nucleus enveloped in a thin semi-transparent shell. The hilum is at one extremity of the ellipse.

Composition.—According to the analysis of John,\(^3\) white mustard seeds consist of an acid volatile oil, yellow fatty oil, brown mild resin, extrac-

\(^1\) *Observ. on Dropsies*, 4th edit. p. 339, 1824.

\(^2\) Trousseau and Pitoux, op. *supra* cit. i. 700.

tive (very small quantity), gum (small quantity), woody fibre, albumen, free phosphoric acid, and salts.

Robiquet and Boutron, however, have proved that white mustard contains neither volatile oil nor any substance capable of producing it; and that it owes its activity to a non-volatile acrid substance which does not pre-exist in the seeds, but is readily formed in them under certain conditions. Another chemical peculiarity of white mustard seed is, that it contains sulpho-sinapisin.² Hence, while sesquichloride of iron strikes a deep red colour in an infusion of white mustard, it merely communicates an orange tint to the infusion of black mustard. Moreover, the thick mucilaginous liquor obtained by digesting the seeds of white mustard in cold water is peculiar to them.³ Simon⁴ has announced the existence of a new principle, which he calls erucin.

1. Sulphosinapisin.—It was at first supposed to be an acid, and was in consequence called, by Henry and Garot,⁵ sulphosinapinic acid. But they subsequently established its non-acid properties. It is a white, crystallizable, odourless, bitter substance, soluble in water, alcohol, and ether. Under the influence of various agents (acids, oxidises, and salts) it readily yields hydrosulphoephanylic acid. To this acid is probably to be ascribed the red colour developed when a persalt of iron is added to an aqueous infusion of white mustard. Its aqueous solution forms, with nitrate of silver, a white precipitate. Boutron and Frémy state that sinapisin [sulphosinapisin], under the influence of emulsin [myrosine], is converted into an acrid substance and hydrosulphoephanylic acid. Sulphosinapisin consists of carbon 57·920, hydrogen 7·795, nitrogen 4·940, sulphur 9·657, and oxygen 19·688; or C₃₃H₂₂NSO₇. [This statement of its composition requires revision. — Ed.]

2. Non-volatile Acrid Principle.—This does not pre-exist in white mustard, but is readily developed in it by cold water. As before mentioned, Boutron and Frémy⁶ ascribe its formation to the action of the emulsin of the seed on the sulpho-sinapisin, by which hydrosulphoephanylic acid and this acrid matter are produced. The latter substance is an unctuous, reddish, odourless liquid, which has the pungent hot taste of horse-radish. It contains sulphur as one of its constituents.

[From recent researches it appears that myrosine is contained both in black and white mustard; it is found to be precisely similar, and to possess similar properties, in the two varieties of seeds; but the products are different. Thus white mustard does not yield with myrosine and water the volatile oil of mustard, but a pungent oil of a different kind; hence it may be inferred that white mustard does not contain myronate of potash, but some other substance of an analogous kind. This different result on the two seeds is not owing to any peculiarity in the myrosine of white mustard, because when this is added to the residue of black mustard deprived of its myrosine, it yields the volatile oil, just as the emulsine of the sweet almond produces the essential oil of almonds on mixture with the amygdaline of the bitter almond and water. Myrosine acts on amygdaline like emulsine, but the latter cannot develop volatile oil of mustard by its action on myronate of potash.—Ed.]

3. Erucin.—A yellowish-white substance, which is very soluble in ether, carburet of sulphur, and turpentine. It dissolves in boiling alcohol, but is insoluble in water and solution of ammonia. It does not redden the salts of iron, and contains no sulphur.

Physiological Effects.—Similar to, though milder than, those produced by black mustard. Swallowed whole, the seeds prove stomachic, laxative,
and diuretic. But their use in large quantities in which they have been recommended is by no means free from danger. Gastro-enteritic inflammation of a fatal kind has been induced by them. The danger of their accumulation in the appendix ceci is obvious. Mr. J. L. Wheeler has known them retained in the bowels for seven weeks.

Uses.—Dr. Cullen first mentions the practice of giving half an ounce, or an ordinary table-spoonful, of entire and unbruised mustard seeds. A few years ago it was again brought forward, as if new. It has been advocated in a long list of diseases attended with torpor or atony of the digestive organs; and at one time it was fashionable and popular. Sir John Sinclair recommended mustard seeds for the preservation of the health of old people especially. The seed-leaves of white mustard and of Lepidium sativum are used at table under the name of mustard and cress or corn salad.

Administration.—From two or three large tea-spoonfuls to a table-spoonful of the whole unbruised seed have been recommended to be swallowed three or four times daily.

Order LXXXII. Papaveraceae, Jussieu.—The Poppy Tribe.

Characters.—Sepals 2, deciduous. Petals hypogynous, either 4 or some multiple of, that number, placed in a cruciate manner. Stamens hypogynous, either 8, or some multiple of 4, generally very numerous, often in four parcels, one of which adheres to the base of each petal; anthers 2-celled innate. Ovary solitary; style short or none, stigmas alternate with the placenta, 2 or many; in the latter case stellate upon the flat apex of the ovary. Fruit 1-celled, either pod-shaped, with two parietal placenta, or capsular, with several placenta. Seeds numerous; albumen between fleshy and oily; embryo minute, straight at the base of the albumen, with plano-convex cotyledons.—Herbaceous plants or shrubs, with a milky juice. Leaves alternate, more or less divided. Peduncles long, 1-flowered; flowers never blue (Lindley).

Properties.—The plants of this order possess narcotic and acrid properties. At the head of the narcotic papaveraceae stands the genus Papaver, from which opium is procured. The acrid papaveraceae usually possess narcotic properties also. Sanguinaria canadensis is one of the best known acrod narcotics of this order. In doses of from ten to twenty grains it operates as an emetic. In larger doses it causes depression of pulse, faintness, dimness of vision, and alarming prostration of strength. Its active principle is an alkali called sanguinaria. Chelidonium majus is another acrid of this order.

2 Mat. Med. ii. 171.
3 C. T. Cooke, Obs. on the Efficiency of White Mustard-seed, 3d ed. 1826.
335. PAPAVER RHŒAS, Linn. L. E. D.—COMMON RED OR CORN POPPY.

Sex. Syst. Polyandria, Monogynia.

(Petalum recens, L.—Petals, E. D.)

History.—Theophrastus\(^1\) calls the red poppy ροξίς. Dr. Sibthorp\(^2\) considers the μικρό ροξίς of Dioscorides\(^3\) to be the red poppy.

Botany. Gen. Char.—Sepals 2, convex, deciduous Petals 4. Stamens numerous. Style 0. Stigmas 4 to 20, radiating, sessile upon the disk crowning the ovary. Capsule obovate, 1-celled, composed of from 4 to 20 carpels enclosed in a membranous production of the thalamus, dehiscing by short valves under the crown of the stigmas. Placenta between the valves, produced internally, forming complete disseipments (DeCand.)—Herbs, with a white juice. Peduncles inflexed at the apex before flowering.

Sp. Char.—Capsule smooth, obovate. Sepals hairy. Stem many-flowered, rough, with spreading setæ. Leaves pinnatifid; lobes elongated, incised-dentate, acute (De Caud.)

Annual. Petals rich scarlet. This plant is distinguished from Papaver dubium by, 1st, the wide-spreading hairs of the flower-stalks; 2ndly, a shorter capsule; 3rdly, its stigma of eight to ten rays.

Hab.—Indigenous. A troublesome weed common in fields. Flowers in June or July.

Description.—The petals of the red poppy (petala rhœados seu papa-veris erratici) have a rich scarlet colour, a slightly opiate odour, and a bitterish taste. By drying they become violet red and odourless.

Composition.—The flowers of the red poppy have been analysed by Beetz and Ludewig,\(^4\) and by Riffard.\(^5\) The latter chemist obtained yellow fatty matter 12, red-coloured matter 40, gum 20, lignin 28. It is not improbable that this plant may contain morphia in very minute quantity.

Red Colouring Matter.—Riffard obtained it, in the impure state, by first macerating the petals in ether to remove a fatty matter, and then in alcohol. By distilling the alcoholic tincture to dryness, a dark-red colouring matter was obtained, which in thin layers was bright red. It was deliquescent in the air, soluble in alcohol and in water, but insoluble in ether. Acids diminished the intensity of its colour. Chlorine decolourised it. The alkalies blackened it. By the last character it is distinguished from the colouring matter of the red cabbage, &c., which becomes green by alkalies. Sesquichloride of iron gives it a dark violet or brown tinge.

Physiological Effects and Uses.—The red poppy is valued medicinally as a colouring ingredient only. It probably possesses a narcotic property in a very slight degree, but which is scarcely sensible in the ordinary doses in

\(^1\) Hist. Plant. ix. 13.
\(^2\) Prod. Fl. Græc. i. 359.
\(^3\) Lib. iv. cap. 64.
\(^4\) Gmelin, Handb. d. Chem. ii. 1246.
\(^5\) Journ. d. Pharm. xii. 412.
which this medicine is employed. Navier\(^1\) says that the continued use of the tincture or syrup by dogs gave the stomach a bluish-red tinge.

Syrupus Rhexados, L. E.; Syrup of Red Poppies; Syrup of Corn Poppy. (Of the Red Poppy, lb. j.; Boiling Distilled Water, Oj.; Sugar, lb. nij., or a sufficiency; Rectified Spirit, 3iss. or a sufficiency. Add the red poppy gradually to the water heated in a water-bath [vapour-bath, E.], frequently stirring them; then, the vessels being removed, macerate for twelve hours; afterwards [strain and, E.] express the liquor by hand [through calico, E.], and [proceed as ordered for the Syrupus Althææ, L.] [add the sugar and dissolve with the aid of heat, E.]} — Employed only as a colouring ingredient, especially in conjunction with acids, which brighten it. It readily ferments and spoils.

336. Papaver Somniferum, Linn. L. E. D. — The Somniferous or White Poppy.

Sex. Syst. Polyandria, Monogynia.

(Capsulae mature; Capsulae immaturee succus concretus, L.—Capsules not quite ripe; Concrete juice from the unripe capsules, E.—Capsularum succus proprius concretus; Capsule mature, D.)

History. — This is one of the most anciently known and described plants. Homer speaks of the poppy (μίκων) growing in gardens;\(^2\) so that it appears to have been in cultivation even at that early period. It was employed in medicine by Hippocrates, and is mentioned by Theophrastus, Dioscorides, and Pliny. Hippocrates\(^3\) speaks of two kinds—the black and white poppy: the former, he says, confines the bowels more than the latter.

It is uncertain at what period opium was first known or introduced into medicine. Hippocrates\(^4\) recommends the μικών, or poppy juice, in a disease of the uterus; and Dioscorides,\(^5\) on the authority of Erasistratus, tells us that Diagoras (who was contemporary, it is supposed, with Hippocrates) condemned the use of opium. These are, I believe, the most ancient Greek authorities who speak of this substance; and it is impossible, I think, to arrive at any accurate conclusion from their remarks, whether opium had or had not been known long before their time, though Alston\(^6\) infers, from the little use made of it by Hippocrates, as well as from Diagoras condemning its use in diseases of the eyes, that its virtues were not known long before him. Dioscorides and Pliny\(^7\) mention that the expressed juice of the heads and leaves is termed Meconium, and that it is much weaker than opium. Theodore Zwinger, Sprengel,\(^8\) and others, have supposed that the nepenthes

2 *It. viii. 306.*
3 *De vict. rat.* lib. ii. p. 337, ed. Fes.
5 Lib. iv. cap. 65.
8 *Hist. Rei Herb.* i. 25.
(μπετρ) of Homer\(^1\) was opium. Dr. Royle,\(^2\) however, has suggested that the substance referred to by Homer may have been a preparation of *Cannabis sativa*, the remarkable effects of which have been recently pointed out by Dr. O'Shaughnessy.\(^3\)

The word *opium* is derived from ὀπίς, *the juice*, and signifies that it is *the juice par excellence*;—just as the flower of the rosemary has been called *anthos*, or *the flower*,—and the cortex cinchonæ, *the bark*.

Botany. Gen. Char.—See Papaver Rhoeads.

Sp. Char.—Capsules obovate or globose, and, as well as the calyces, smooth. *Stem* smooth, glaucous. *Leaves* amplexicaul, cut-repand, dentate, somewhat obtuse (De Cand.)

There are two well-marked varieties, which, by some botanists, are considered to be distinct species:

a. *nigrum*; P. somniferum, Gmelin.—*Capsules* globose, opening by foramina under the stigma. *Seeds* black.\(^4\) *Peduncles* many. *Flowers* usually violet or red, of different tints, though sometimes white.

b. *album*; P. officinale, Gmelin.—*Capsules* ovate-globose; foramina under the stigma either none or obliterated. *Peduncles* solitary. *Seeds* and *petals* white.

Hab.—Asia and Egypt. Grows apparently wild in some parts of England, but has probably escaped from gardens. Cultivated in Hindostan, Persia, Asia Minor, and Egypt, on account of the opium obtained from it. According to Dr. Royle, var. *b album* is cultivated in the plains of India; and var. *a nigrum* in the Himalayás. In Europe the poppy is cultivated for the capsules, either as medicinal agents or for the oil (*poppy oil*) obtained from the seeds, and which is employed in painting. The London market is principally supplied with poppy heads from the neighbourhood of Mitcham, in Surrey.

Description. 1. Of Poppy Heads.—Poppy heads (*Capsulae seu Capita Papaveris*) are usually collected when quite ripe, as ordered by the London and Dublin Colleges, but they would be more active as medicinal agents if they were gathered while still green; and the Edinburgh College very properly directs the immature capsule to be employed. As met with in commerce, poppy heads vary somewhat in size, from that of a hen's egg to that of the fist. Their texture is papyraceous: on the top of them is the star-like stigma. They are yellowish or yellowish-brown, and, if they have been collected before they were quite ripe, have a bitterish taste. When fresh, they have a slightly opiate odour, which they lose by drying. A decoction of the dried poppy capsule is rendered, by the sesquichloride of iron, brownish red (*meconate of iron*). Nitric acid makes the decoction trans-

\(^1\) Od. iv. 220.
\(^2\) Illustr. p. 334.
\(^3\) On the Prepar. of the Indian Hemp, Calcutta, 1839.
\(^4\) *Maw seed* is the seed of a variety of garden poppy (*Papaver somniferum*) of a greyish blue colour. It is eagerly eaten by birds, and is used as a medicine for them.—**Ed.**
parent, and communicates a slightly orange-red tinge, indicative of the presence of morphia.

2. Opium. Preparation.—The mode of extracting opium is, to a certain extent, similar in all countries, and consists in making incisions into the half-ripe poppy capsules, and collecting the exuded juice. According to Dioscorides,1 Kämpfer,2 Kerr,3 and Texier, this juice is worked up into a homogeneous mass: whereas Bellonius4 and Olivier5 speak of the juice concreting on the poppy; and the first of these writers describes opium as consisting of agglomerated granules. Now Guibourt,6 by examining the opiums of commerce by means of a magnifier, thinks he has discovered that the Smyrna and Persian (or Trebizond) opium is composed of small agglutinated tears (opium with a grain); whereas the Egyptian, and I would add the Indian, opium, is a homogeneous mass, and therefore must have been worked up in the manner described by Dioscorides, Kämpfer, and others (homogeneous opium). M. Ch. Texier7 thus describes the process of obtaining opium followed in Asia Minor:—“A few days after the flower has fallen, men and women repair to the fields and cut the head of the poppy horizontally, taking care that the incisions do not penetrate the internal cavity of the shell. A white substance immediately flows out, and collects in tears on the edges of the cuts. In this state the field is left for twenty-four hours, and on the following day the opium is collected by large blunt knives. Each head furnishes opium once only, and that to an extent of a few grains. The first sophistication which it receives is that practised by the peasants who collect it, and who lightly scrape the epidermis from the shell to augment the weight. This operation adds about one-twelfth of foreign matters. Thus collected, opium has the form of a glutinous and granular jelly. It is deposited in small earthen vessels, and beat up with saliva. When asked why water was not employed in the place of saliva, the answer was that water caused it to spoil. It is afterwards enveloped in dry leaves, and in this state it is sold. The seeds of those poppies which have yielded opium are equally good for sowing the following year.”

Some little variation will be found in the description of other writers of the methods practised in other parts of the East. Kämpfer says that in Persia the incisions are made crosswise by a five-edged knife. Kerr states that in the province of Behar “two longitudinal double incisions” are made “upon each half-ripe capsule, passing from below upwards;” care being taken that the internal cavity of the capsule is not penetrated.

[The most complete history of the cultivation and preparation of opium in our Indian possessions has been published by Dr. Eatwell. An abstract of his paper was published in the eleventh and twelfth volumes of the Pharmaceutical Journal, in 1852. We have selected from this,

1 Lib. iv. cap. 64.
4 Observ. lib. iii. cap. 15.
5 Voy. dans l’Empire Ottoman.
6 Hist. abrégé. ii. 3me. éd. 1836.
7 Journ. de Pharm. xxi. 196.
this, such portions as appeared to possess any interest in reference to the history of this most important article of Materia Medica.—Ed.]

The cultivation of the poppy in British India is confined to the large central Gangetic tract, about six hundred miles in length, and two hundred miles in depth, which is bounded on the north by Goruckpore, on the south by Hazarcebaugh, on the east by Dingeopore, and on the west by Agra. This large extent of country is divided into two agencies, the Behar and the Benares, the former being presided over by an agent stationed at Patna, at which station is the central or sunder factory of the agency, the latter being under the control of an agent residing at Ghazeopore, which station contains the sunder factory of the Benares agency. Finally, the control of the entire department is vested in the Board of Customs, Salt, and Opium, located in Calcutta. Of the two agencies, the Behar is the larger and more important, sending to the market about treble the quantity of drug turned out by the Benares agency. The Benares agency comprises eight divisions, namely, the Benares and Mirzapore, the Ghazeopore, the Azimgur, the Juapore, the Selimpore, the Goruckpore, the Cawnpore, and the Futtehpore. In these eight divisions, the aggregate amount of land under poppy cultivation, in the season 1849-50, was 1,07,823 beegahs.

The lands selected for poppy cultivation are generally situated in the vicinity of villages where the facilities for manuring and irrigation are greatest. In such situations, and when the soil is rich, it is frequently the practice with the cultivators to take a crop of Indian corn, maize, or vegetables, off the ground during the rainy season, and after the removal of this in September, to dress and manure the ground for the subsequent poppy sowings. In other situations, however, and when the soil is not rich, the poppy crop is the only one taken off the ground during the year, and from the commencement of the rains in June or July until October, the ground is dressed and cleaned by successive ploughings and weedings, and manured to the extent which the means of the cultivator will permit. In the final preparation of the land in October and November, the soil, after being well loosened and turned up by the plough, is crushed and broken down by the passage of a heavy log of wood over its surface, and it is in this state ready for sowing. The amount of produce from various lands differs considerably. Under very favourable circumstances of soil and season as much as 12 or even 13 seers (26 lbs.) of standard opium may be obtained from each beegah of 27,225 square feet. Under less favourable conditions the out-turn may not exceed three or four seers, but the usual amount of produce varies from 6 to 8 seers per beegah.

The chemical examination of different soils in connection with their opium-producing powers presents a field for very profitable and interesting inquiry; nor is the least important part of the investigation that which has reference to the variations in the proportions of the alkaloids (especially the morphia and narcotine) which occur in opium produced in various localities. That atmospheric causes exert a certain influence in determining these variations is probable; that they influence the amount of produce and cause alterations in the physical appearance of the drug are facts well known to every cultivator. Thus, the effect of dews is to facilitate the flow of the juice from the wounded capsule, rendering it abundant in quantity, but causing it at the same time to be dark and liquid. An easterly wind (which in this part of the country is always concomitant with a damp state of atmosphere) retards the flow of the juice, and renders it dark and liquid. A moderate westerly wind, with dew at night, form the atmospheric conditions most favourable for collections, both as regards the quantity and the quality of the exudation. If, however, the westerly wind (which is an extremely dry wind) blow violently, the exudation from the capsules is sparing. Whilst the effects of the meteorological phenomena in producing the above results are well marked, their action in altering the relative proportions of the chemical constituents of the juice of the poppy plant is more obscure; and it is highly probable that the chemical composition of the soil plays a most important part in this respect. Dr. O'Shaughnessy is certainly the most accomplished chemist who has ever in India turned his attention to the subject, and he has published the results of his analysis of specimens of opium from the different divisions of the Behar agency,

1 A Beegah is 27,225 square feet.
which are worthy of much attention. In the opium from eight divisions of the agency, he found the quantity of morphia to range from $\frac{1}{12}$ grains to $\frac{3}{12}$ grains per cent., and the amount of the narcotine to vary from $\frac{3}{12}$ grain to $\frac{3}{2}$ grains per cent. the consistency of the various specimens being between 75 and 79 per cent. In the opium from the Hazarebaugh district (the consistence of the drug being 77) he found $\frac{4}{5}$ per cent. of morphia and 4 per cent. of narcotine, whilst from a specimen of Patna garden opium he extracted no less than 10\% per cent. of morphia and 6 per cent. of narcotine, the consistence of the drug being 87. With respect to this last specimen, Dr. O'Shaughnessy mentions that the poppies which produced it were irrigated three times during the season, and that no manure was employed upon the soil. It is much to be regretted that these interesting results were not coupled with an analysis of the soils from which the specimens were produced, for to chemical variations in it must be attributed the widely different results recorded above. The climate in which the Patna garden opium was produced (and which is equal in narcotic excellence to the best opium of Turkey or Egypt) was precisely the same as that in which the comparatively poor specimens of the eight divisions above alluded to were collected, and therefore could not have exerted any influence in producing the chemical differences which the drug from the different localities presented.

The poppy cultivated in the Benares and Behar agencies is exclusively the white variety (papaver somniferum album). In situations favourable to its growth, it vegetates luxuriantly, attaining usually a height about four feet. The stem is branched, and is terminated by from two to five ovate-globose capsules, averaging in size a duck's egg. The plant takes about three months and a half in reaching maturity, and the time for its cultivation is exclusively the cold season, extending from November to March. It has been found advantageous to change the seed employed in the different divisions every two or three years, and there are certain districts which produce seed of generally acknowledged superiority, and from which the supplies are therefore drawn, and distributed to the cultivators of distant agencies. The soil having been prepared in the manner described above, the sowing is effected by throwing the seed broad-cast over the land, and this takes place between the 1st and 15th of November. In three or four days the plough is again passed over the land to bury the seed; and the soil is afterwards again levelled by means of the log of wood before allotted to. The whole surface is then divided into square compartments, the sides of which are about ten feet in length, and are raised and converted into little channels for the purpose of irrigation. The number of times the plant may require irrigation depends in a great measure upon the nature of the season; if some heavy showers fall in December, January, and February, two irrigations may be sufficient; whereas, if the cold season pass over with little or no rain, the operation may be required to be repeated five or six times. Ten or twelve days are sufficient for the germination of the seed. and after the little plants have attained a height of two or three inches they are carefully weeded and thinned.

In its progress towards maturity the poppy plant is liable to injury in various ways. It may be nipped by unusually severe frosts, or the plant may become stunted and never fairly reach maturity, owing to the first sowings failing and subsequent late ones being required, or owing to unusual heat and deficient moisture. Portions of cultivation sometimes droop and wither from causes which are not obvious, or are attacked by blight; and finally, considerable injury is frequently inflicted upon the poppy plants by a parasitical species of broom rape (the Orobanche indica) which attaching itself to the roots of the plants causes them to wither. In February the plant is generally in full flower, and towards the middle of the month, and just before the time for the fall of the petals, these latter are all carefully stripped off and collected. They are then formed into circular cakes from ten to fourteen inches in diameter, and about $\frac{1}{4}$ of an inch in thickness. The manner in which these leaf cakes are formed is the following: A circular shallow earthen vessel is heated to the requisite degree, by being placed inverted over a slow fire. A few petals are then spread upon its heated convex surface, and as soon as the glutinous juice which they contain is seen to exude, others are added to the moist surface and are pressed down by means of a cloth. As soon as these latter become moist in turn, they receive a similar addition of petals, and in this manner the cake is extended circularly by successive and continuous additions, until it has reached the required dimensions. Instead of the earthen vessel, a shallow or nearly flat iron cooking utensil is sometimes used. The cakes of petals (known in the department under the name of "leaves"), when they reach the sudden factory at Ghazeeppore, are carefully sorted and separated into three classes, accord-
ing to their size and colour. The smaller and dark-coloured “leaves” are used in forming the inner portions of the shells of the opium cakes, whilst the largest and least discoloured ones are kept for furnishing their outside coverings. In a few days after the removal of the petals the capsules have reached their utmost state of development when the process of collection commences, which extends from about the 20th of February to the 25th of March.

The mode of collecting the juice is the following:—At about three or four o’clock in the afternoon individuals repair to the fields and scarify the poppy capsules with sharp iron instruments called nushiturs. The nushitur consists of four narrow bars of iron, each of which is about six inches in length, and of about the thickness of the blade of a pen-knife. At one extremity, each bar does not exceed a quarter of an inch in breadth; but it gradually expands, until it has acquired the breadth of about one inch at the opposite end, where it is deeply notched. The sides of the notch are somewhat curved and ground to sharp edges, and the external angles are brought to sharp points. The four little bars, being placed side by side, are bound firmly together by means of strong cotton thread; and the points, at their cutting extremities, are kept separated from each other, to the extent of about $\frac{1}{15}$ of an inch, by means of the cotton thread which is passed between each pair of contiguous blades. Thus prepared, the instrument presents four pairs of curved, pointed, diverging blades, somewhat similar in shape to the lancet blades of a cupping scarificator. In employing the nushitur, only one set of points is brought into use at a time, and the capsule is scarified longitudinally from its base to its summit, the incisions generally passing more or less along one of the longitudinal eminences, observable on the outside of the capsule, which mark the attachment of the internal dissepiments. The scarifications thus made are very superficial, and do no more than traverse the thin pericarp of the capsule. If a horizontal section be made of the capsule of a vegetating poppy plant, the milky juice will after a few seconds be perceived to exude first and in greatest quantity from those portions of the sarcocarp which correspond to the bases of the dissepiments. It does not, however, exude only from these points, but ultimately from the entire surface of the cut sarcocarp. It moreover does not appear in dots as if poured out from longitudinal vessels, but exudes gradually from the meshes of the cellular tissue. If a thin segment of the capsule be examined under a high magnifying power, no longitudinal vessels are observable, but a confused mass of cellular tissue is observed occupying the interspace between the epicarp and endocarp, and opposite to the duplicatures of the endocarp, which go to form the dissepiments, the meshes of the cellular tissue are perceived to be much larger than in other situations; hence the free exudation of juice at these points. It therefore appears that the mode of making the scarifications as actually practised is the most effectual that could be adopted. Each capsule is scarified from two to six times, according to its dimensions; an interval of either two or three days being allowed after each operation.

The capsules having been scarified in the manner above described, the collection of the juice is made at an early hour in the following morning. This is effected by means of instruments called sectoools, which are made of sheet iron, and resemble concave trowels; and with these the juice is scraped from the surface of the scarifications, until the instruments become filled, when their contents are emptied into an earthen pot which the collector carries by his side. After the plant has ceased to yield any more juice, its utility is still unexhausted. The capsules are then collected, and from the seeds an oil is extracted, which is used by the natives for domestic purposes, both for burning in lamps and for certain culinary purposes. Of the entire seed a comfit is made, resembling in appearance caraway comfits. Of the dry cake remaining after the extraction of the oil, a coarse description of unleavened bread is sometimes prepared by the very indigent, or it is given to cattle, or used medicinally for poultices. The capsules, deprived of their seeds, are still available for preparing emollient and anodyne decoctions, which the natives use both internally in coughs, and externally as fomentations. The stems and leaves are left standing, until they have become perfectly dry, under the influence of the hot winds of April and May, when they are removed, and crushed and broken up into a coarse powder, known, in the department, under the name of “poppy trash,” and which is employed in packing the opium cakes. When fresh collected, the juice from the capsules presents the appearance of a wet granular mass, of a pinkish colour, and in the bottom of the vessel which contains it is found collected a dark fluid resembling infusion of coffee, to which the name of pussewah is given. The recent juice reddens strongly litmus paper, and acts rapidly upon metallic iron, covering it speedily with an
The temperature and if is aard pussewah the made a in its in the actual specimen tion.

The actual specimen to be received is made to adhere to it as strictly as possible, and this is likewise the standard by which the price paid to the cultivators is regulated. If the cultivator deliver his drug of standard consistence, he receives for it the regulated price: if it be above standard, he receives a pro rata increase of payment; whereas, if it be below standard, he is subjected to a corresponding deduction in price. The opium, on its arrival at the Ghazeeapore factory, is turned out of the confined earthen pots in which it is received, and is weighed in wide tin vessels called tagars, care being taken that no larger quantity than 10 seers (20 lbs.) is ever brought to the scale at a time. This weight is made under the eye of the gomasha (or of his accredited agent) of the kotee to which the opium belongs, and in the case of the neighbouring or "home" kotees the cultivators attend in person with their produce. This weighment is verified by an European officer stationed at a check-scale in another room, and the tagar with its contents passes on at once to a table at which are seated the opium examiner, or an experienced sub-deputy agent, and the native opium examiner, called the purkhea. The purkhea now plunges his hand into the centre and to the bottom of the drug, stirs it about, and grasps it in various directions to feel for impurities, and then withdraws a handful, which he manipulates between his fingers, revealing its colour, texture, and mode of fracture, and finally ascertains its aroma.

He then throws upon a plate a small portion as a specimen, and estimates its consistence. This estimate is written down on a ticket by the European officer, and it is sent with the specimen to the laboratory, where a fixed weight of drug is accurately weighed, evaporated to dryness in a plate placed on a metallic table heated by steam, and the weight of the residue carefully determined. It rarely happens that the purkhea’s guess differs from the actual assay by more than one or two grains, and it serves to check the actual assay in cases of evident mistake or accident, which occasionally must occur when a multitude of delicate operations are rapidly carried on. The number of specimens which leave the examinier’s table daily amounts to little short of two thousand. In the examination which the drug undergoes at this stage, the quantity of pussewah which it may contain is made the subject of special remark; and a pussewah fine or batta, as it is termed, is levied, proportionate to the quantity apparently present in the drug. The reason for this is, that pussewah injures the physical qualities of opium, causing it to look black and liquid, whilst at the same time it gives to the drug a high assay when tested by evaporation.

The tactus eruditus possessed by the purkhea is very remarkable; he rarely fails to detect even small quantities of the grosser and more tangible impurities, whilst he is no less delicately alive to the slightest variation in colour and smell. In the event of a specimen appearing to be adulterated, it is at once set aside to be carefully examined by the opium examiner, who makes a special report respecting it for the information of the agent, who, should he see sufficient grounds for doing so, confiscates it, when the whole of the drug is destroyed, and the cultivator gets nothing for it. Should the adulterations be less extensive, and the drug such as to be not altogether useless, it is taken at half price, or is subjected to such smaller penalty as the examining officer may think fit to inflict; and it is employed in making the lewah, or paste, used in forming the shells of the opium cakes. The great probability of detection, and the risk of confiscation, act as very efficient checks to the prevalence of adulteration, and the quantity of opium confiscated yearly is comparatively small. The nature of the adulterations practised by the cultivators is very various.

The grosser impurities usually mixed with the drug to increase its weight are mud, sand, powdered charcoal, soot, cow-dung, pounded poppy petals, and pounded seeds of
various descriptions. All of these substances are readily discoverable in breaking up the drug in cold water, removing the soluble and lighter portions of the diffused mass by decantation, and carefully examining the sediment. By this means impurities of the above nature usually become physically apparent. Flour is a very favourite article of adulteration, but is readily detected; opium so adulterated speedily becomes sour, it breaks with a peculiar short, ragged fracture, the sharp edges of which are dull, and not pink and translucent as they should be; and, on squeezing a mass of the drug after immersion in water, the starch may be seen oozing from its surface. The application of the iodine test, however, furnishes conclusive evidence of its presence, or at least of that of some anyamele compound. The farina of the boiled potato is not unfrequently made use of; ghee and goor (an impure treacle) are also occasionally used, as being articles at the command of most of the cultivators. Their presence is revealed by the peculiar odour and consistence which they impart to the drug. In addition to the above, a variety of vegetable juices, extracts, pulps, and colouring matters, are occasionally fraudulently mixed with the opium; such are the impissated juice of the common prickly pear (Cactus dillenii), the extracts prepared from the tobacco plant (Nicotiana tabacum), the Datura stramonium, and the Indian hemp (Cannabis indica), &c. The gummy exudations from various plants are frequently used; and of pulps, the most frequently employed are those of the tamarind and of the Baal fruit (agelae marmelos). To impart colour to the drug, various substances are employed, as catechu, turmeric, the pounded flowers of the mowha tree (bassia latifolia), &c.

In the case of so complex a substance as opium, it is useless to look for a single test which shall reveal at once, with chemical precision, the purity of the drug; morphometry would be the most accurate test to put in force, but the process would be too tedious and expensive to be of practical utility. Moreover, the colour, aroma, and texture are the commercial criterions of the excellence of the drug; and opium rich in morphia, but deficient in the above qualities from careless preparation, would probably be regarded with suspicion in the market, despite its intrinsic narcotic excellence; and for this reason, whenever the drug is received deficient in the above sensible qualities (as sometimes arises from careless treatment) but not adulterated in any way, it is subjected to a certain fine, and employed only in making lewah. The colour of well-prepared opium is a deep dull brown when viewed in mass, which becomes a bright chestnut brown when a small portion of drug is spread in a thin layer upon a white surface. It adheres to the fingers and draws out to a moderate extent, breaking with a ragged fracture; should it, however, contain much pussewah, its ductility is much increased, and it is more glutinous.

Its smell is peculiar, and perfectly sui generis: it is not unpleasant, and in the recent well-prepared drug somewhat fruity. In cold water it breaks down readily into curdy flakes of the colour of pease soup, which gradually subsides, leaving the supernatant liquid of a deep brownish-yellow colour. When broken under water by the hand, the drug adheres moderately to the fingers at first, but is soon entirely diffused. Should it contain gum fraudulently mixed, this latter adheres pertinaciously to the hands, and is with difficulty removed; and in this manner I have frequently detected the presence of a substance similar to birdlime, probably the tenacious juice of the banyan tree (Ficus indica). If to a portion of the cold watery infusion in a test-tube, a few drops of a solution of diacetate of lead be added, a dirty grey precipitate (meconate of lead) falls, so copious as to equal nearly in bulk the amount of fluid in the tube. Ammonia throws down a very similar and almost equally abundant precipitate, composed of resin and the alkaloids, which, on exposure to the air, speedily assumes a black colour. Tincture of iodine throws down a brick-red precipitate, and tincture of sesquisalicylic of iron occasions a similar precipitate of somewhat darker colour. These tests may be applied in a few seconds, and the comparative bulk of the precipitates thrown down may enable us to form a rude estimate of the amount of opium contained in a given specimen. In very largely adulterated specimens, the evidence afforded by the above means is sufficiently marked. A solution of gelatine for the detection of tannic acid, and strong alcohol for the precipitation of gum, form the only other chemical reagents likely to be required.

After having been duly weighed into store, the opium receives but little treatment in the factory. It is kept in large wooden boxes, capable of containing about 14 mds. (10 cwt.) each, in which it is (if below the manufacturing standard) occasionally stirred up from the bottom, until it has acquired the necessary consistence. Whilst remaining in these boxes it speedily becomes covered with a thin blackish crust (ulmine), and deepens in colour according to the amount of exposure to air and light which it undergoes.
Should the drug be of very low consistence, it is placed in shallow wooden drawers, instead of in boxes, in which it is constantly turned over, until its consistence has approximated to 70 per cent. From the general store or malkhana the drug is exported daily in quantities equaling about 250 maunds, for the purpose of being manufactured or made up into balls or "cakes," as they are termed in the department.

In exporting opium for this purpose, the officer who performs the duty selects for the most part opium which is exactly at standard, or very close to it, whilst to compensate for any drug which may have risen higher than the prescribed consistence, a certain proportion of opium of low consistence is exported, the consistences of the various proportions of drug selected for export being determined by a certain number of test assays. The portions of drug thus selected are then weighed out with exactitude, in portions of 10 seers (20 lbs.) each, and are thrown promiscuously into shallow wooden drawers, in which men mix them up together, rapidly and thoroughly thrusting their arms into the drug and kneading it in various directions. From these drawers the opium is transferred as mixed to boxes, all of which are of the same size, and from each of which a specimen is drawn and assayed. The mean of the assays of these boxes gives the average consistence of the export of the day, and serves as a guide as to whether the drug be of the proper consistence for caking. The above operations are generally completed by about 4 P.M., and before evening the drug is removed from the boxes to large wooden vats, 20 feet long, 3½ feet wide, and 1½ feet deep, situated in the caking room. In these vats it undergoes a further kneading and admixture by men who wade knee-deep through the opium from one end of the vats to the other, until their contents appear to be of uniform consistence. Two specimens are, on the following morning, drawn from each vat, and assayed; and should the consistence have reached the factory standard, caking immediately commences.

Down either side of the room in which the vats are placed, are ranged the cake makers, numbering usually about one hundred and ten individuals; each man being seated upon a wooden stand, and being furnished with a brass cup, forming the half of a hollow sphere, and with another tin vessel graduated so as to hold a determinate quantity of fluid. On the previous evening the leaves requisite for forming the shells of the cakes have been weighed out and tied up in bundles of prescribed weight, and have been damped to render them supple. Down the centre of the room are placed a certain number of small scales, at which the quantity of opium intended for each cake is separately weighed; and beside the scales are boxes filled with lewah, for the agglutination of the leaves which form the shells of the cakes. In forming the lewah, all opium of inferior quality is used, and all the pussewah received is also employed for this purpose; but in addition to these, a considerable quantity of unexceptionable drug is also expended. These are broken down in the washings of the various pots and vessels which have contained opium, and a thin semi-fluid paste is formed of such a consistence that 100 grains of it, when evaporated to dryness at a temperature of 200° F., shall leave 53 grains of residue.

Matters being thus arranged, the cake-maker receives in his graduated measure from the lewah box the prescribed quantity of lewah for making a single cake, and having by his side a bundle of leaves previously weighed, he rapidly forms in his brass cup the lower segment of the shell of the opium cake, pasting leaf over leaf, until the thickness of half an inch has been obtained, and allowing a certain free portion of the most external leaves to hang down all round over the sides of the brass cup. This accomplished, a boy is in waiting with the opium to be put into the cake, which he has just brought from the caking scales, and which he throws into the shell so far prepared to receive it. The cake-maker, holding the opium away from the sides of the shell with the left hand, then tucks in round the sides leaf after leaf, well smeared with lewah, imbricating one over the other, until he has completed the entire circle: the free edges of the leaves, which had hitherto hung over the sides of the cup, are now drawn up tightly, and the opium well compressed within its bag of leaves:

A small portion at the top now only remains, which is speedily closed by laying on leaf after leaf; and finally the work is completed by the application of a single large leaf, which covers the entire exposed half of the cake. As thus formed, the well-finished cake is a pretty regular sphere, not unlike, in size and appearance, a 24 lb. shot. It is now rolled in a little finely-pounded poppy trash, which adheres to its surface, is at once placed in a small earthen cup, of precisely the same dimensions as the brass mould in which it was made, and is carried out into the open air and exposed to the direct in-
fluence of the sun. It is so exposed for three days, during which time it is frequently turned and examined; and if (as is frequently the case) it should have become distended and puffy, it is at once torn open, the extricated gas allowed to escape, and the cake again tightly closed. On the evening of the third day it is placed (still contained in its cup) in the cake-frames, which are formed of open battens, and allow of a free circulation of air about the cakes. The average number of cakes made by a single man in one day is about 70; but there are cake-makers who will turn out as many as 90 or 100 cakes, between 9 A.M. and 3 P.M. The number of cakes made daily in the factory, during the manufacturing season, is from 6500 to 7000, and the total number of cakes manufactured, in one season, has been 426,800.

By the end of July the manufacturing is finished, but the cakes still require much attention; they are constantly turned over in their cups, and as mildew collects on their surfaces, it is removed by rolling and rubbing them in dry poppy trash. They are, moreover, individually examined, and those which present weak points are strengthened by the application of extra leaves; and their appearance is moreover improved by the application of a single leaf of the first quality, which being of large dimensions, and carefully and equally made, covers the greater portion of the surface of the cake, and gives to it a smooth and finished appearance.

By October the cakes have become perfectly dry to the touch, and have acquired considerable solidity; and they are now packed in chests, each of which is furnished with a double tier of wooden partitions, each tier presenting twenty square compartments, for the reception of so many cakes, and in which the cakes are steadied by means of loose poppy trash, with which all the interstices are filled.

It might be supposed that so fragile a structure as the poppy petal would furnish but an insecure packing envelope; but the shells of the opium cakes are possessed of more resistance than might be imagined, and owing apparently to some antiseptic property in the lewah, they are capable (after once being thoroughly dried) of being preserved for a great length of time. For three or four months after manufacture the shells require constant care and attention; and even after being packed, any exposure to damp or moisture subjects them to injury. After a certain lapse of time, however, the opium contained in the cake ceases to yield any more moisture to the shell, and this latter acquires extreme solidity. There are three specimen cakes in the Ghazeepore factory which are some fifteen years old; they are as solid as balls of wood, and may be thrown from a height upon a stone floor without injury.

The above process of manufacture applies to the opium which is put up for the China market, and which includes the great bulk of the entire provision. With the drug intended for internal consumption, and called abkaree opium, a different process is followed. The opium intended for abkaree purposes is brought to a consistence of 90 per cent. by direct exposure to the sun, in which state it is as firm and as easily moulded as wax. It is then formed, by means of a mould, into square bricks of one seer weight each, and these are wrapped in oiled Nepaul paper, and packed in boxes furnished with compartments for their reception. The opium put up in this way has not the same powerful aroma as is possessed by that put up in balls: but this is its only deficiency, whilst it has the great advantage of containing a large amount of drug in a very limited space, and in a state very manageable for packing.

The manufacture for the season being finally concluded, six cakes are selected promiscuously from the provision, by the magistrate of Ghazeepore, for examination and chemical analysis. Of these, two are forwarded to the opium examiner at Calcutta, two to the examiner of the Behar agency, and two are reserved for examination by the examiner of the Benares agency.

The examination which these cakes undergo has reference to the following points:

1. The gross weight of the cake.
2. The weight of the shell, detached as clearly as possible from the contained opium.
3. The weight of the opium contained in the shell.
4. The condition of the shell.
5. The physical character of the drug.
6. Its consistence.
7. The amount of extract taken up from it by cold distilled water.
8. The quantity of morphia present.
9. The quantity of narcotine present.
The following table will show the chemical results of the examination of the opium of the Benares agency from 1845 to 1849:

<table>
<thead>
<tr>
<th>Season</th>
<th>Residue from 100 grains exposed to a temp. 200° F.</th>
<th>Extract taken up by cold distilled water from 100 grs.</th>
<th>Morphia per cent.</th>
<th>Narcotine per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1845-46.</td>
<td>73</td>
<td>52.33</td>
<td>2.76</td>
<td>5.33</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>50.26</td>
<td>2.20</td>
<td>5.20</td>
</tr>
<tr>
<td>Average...</td>
<td>74</td>
<td>51.29</td>
<td>2.48</td>
<td>5.26</td>
</tr>
<tr>
<td>1846-47.</td>
<td>72</td>
<td>43.25</td>
<td>2.46</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>42.25</td>
<td>2.30</td>
<td>4.75</td>
</tr>
<tr>
<td>Average...</td>
<td>72</td>
<td>42.75</td>
<td>2.38</td>
<td>4.52</td>
</tr>
<tr>
<td>1847-48.</td>
<td>71</td>
<td>44.43</td>
<td>2.23</td>
<td>5.66</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>39.26</td>
<td>2.17</td>
<td>5.70</td>
</tr>
<tr>
<td>Average...</td>
<td>70.5</td>
<td>41.84</td>
<td>2.20</td>
<td>5.68</td>
</tr>
<tr>
<td>1848-49.</td>
<td>75.5</td>
<td>47.37</td>
<td>2.75</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>75.5</td>
<td>48.62</td>
<td>3.67</td>
<td>4.27</td>
</tr>
<tr>
<td>Average...</td>
<td>75.5</td>
<td>47.99</td>
<td>3.21</td>
<td>4.06</td>
</tr>
</tbody>
</table>

A chief chemical feature which distinguishes Bengal opium from that of Turkey and Egypt, is the large proportion which the narcotine in the former bears to the morphia; and this proportion is shown by the above analysis to be constant in all seasons. It is a matter of importance to ascertain whether the treatment which the juice receives after its collection can influence in any way the amount of the alkaloids, or of the other principles contained in opium. In Turkey, it is the custom to beat up the juice with saliva; in Malwa it is immersed as collected, in linseed oil; whilst in Bengal it is brought to the required consistence by mere exposure to the air in the shade, though at the same time all the watery part of the juice that will separate is drained off, and used, as has already been explained, in making lewah.

The following are the results which I obtained from the analysis of fresh juice, collected in February, 1850, and from which none of the pussewah was separated. The analyses have a special reference to the amount of the alkaloids, morphia and narcotine, present in the drug, no attempts having been made to separate any of the other principles in a state of purity.

I.

Analysis of 2000 grains of freshly collected juice, subjected to experiment in the day of collection.

<table>
<thead>
<tr>
<th>Grains</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>11.1</td>
</tr>
<tr>
<td>Narcotine</td>
<td>82.7</td>
</tr>
<tr>
<td>Other matters soluble in alcohol, codeia, narcsea, meconic acid, resin, &c. &c.</td>
<td>521.0</td>
</tr>
<tr>
<td>Dry marc insoluble in alcohol, lignin, caoutchoue, &c &c</td>
<td>225.2</td>
</tr>
<tr>
<td>Water and volatile matter separable at a heat of 200° Fah.</td>
<td>1210.0</td>
</tr>
<tr>
<td>Total</td>
<td>2000.0</td>
</tr>
</tbody>
</table>

VOL. II. 4 G
In the following experiment, the juice, instead of being subjected at once in its crude state to analysis, was exposed in an evaporating basin to a temperature of 200° F., until it was judged to have reached about the factory standard consistence; and of the opium so prepared, 1000 grains were analysed.

II.

<table>
<thead>
<tr>
<th>Morphia</th>
<th>24:9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotine</td>
<td>30:9</td>
</tr>
<tr>
<td>Other matters soluble in alcohol, codeia, narceia, meconic acid, resin, &c. &c.</td>
<td>546:7</td>
</tr>
<tr>
<td>Dry marc insoluble in alcohol, lignin, caoutchouc, &c. &c.</td>
<td>213:0</td>
</tr>
<tr>
<td>Water and volatile matter, separable at 200° Fah.</td>
<td>182:5</td>
</tr>
</tbody>
</table>

Total | 1000:0 |

In Experiment III. a portion of freshly collected juice was placed in an open porcelain basin, on the 23d February, and occasionally stirred with a glass rod, until it had acquired solidity, no attempt being made to separate any pussewah from it. On the 7th May it was found to have acquired a consistence of 90:3 per cent., and its analysis gave the following results:—

III.

<table>
<thead>
<tr>
<th>Morphia</th>
<th>26:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotine</td>
<td>32:8</td>
</tr>
<tr>
<td>Other matters soluble in alcohol, codeia, narceia, meconic acid, resin, &c. &c.</td>
<td>630:4</td>
</tr>
<tr>
<td>Dry marc insoluble in alcohol, lignin, caoutchouc, &c. &c.</td>
<td>213:7</td>
</tr>
<tr>
<td>Water and volatile matter, separable at a heat of 200° Fah.</td>
<td>97:0</td>
</tr>
</tbody>
</table>

Total | 1000:0 |

In order to be able to compare these results one with another, we will suppose, in each case, the drug to have been reduced to a similar state of dryness, by exposure to a heat of 200° F., when the composition of the three different specimens will appear as follows:—

I. II. III.

<table>
<thead>
<tr>
<th>Morphia</th>
<th>1:405</th>
<th>3:061</th>
<th>2:890</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotine</td>
<td>4:012</td>
<td>3:795</td>
<td>3:632</td>
</tr>
<tr>
<td>Dry marc insoluble in alcohol</td>
<td>28:506</td>
<td>26:301</td>
<td>23:665</td>
</tr>
</tbody>
</table>

Total | 99:872 | 100:031 | 99:998 |

The agreement of the results in these three sets of experiments is tolerably close, except in the case of the drug subjected to analysis on the day of collection, in which the quantity of morphia present is extremely small; but, as if to compensate for the deficiency to a certain amount, the quantity of narcotine present is larger than in either of the other two specimens. The suggestion which this arrangement naturally prompts is, whether it be possible that narcotine, by parting with a portion of its carbon, hydrogen, and oxygen, during the process of analysis, or during the changes which occur in the juice after its extraction from the plant, can be converted into morphia. The proposition is, however, quite speculative, and could only be satisfactorily demonstrated by a careful set of minute experiments, having reference to the proportions of all the principles entering into the composition of opium, at different periods, from the date of the extraction of the juice until the cessation of all fermentative action, which takes place until the drug has reached a certain degree of spissitude. The results of the second analysis are worthy of remark; they seem to indicate that the employment of artificial heat in bringing the drug rapidly to the required consistence is not detrimental to the narcotic excellence of the resulting opium; on the contrary, the experiment, so far as it
Recently collected pussewah is a dark fluid, resembling strong infusion of coffee, and having a peculiar smell. It reddens litmus paper strongly; a solution of disecate of lead causes in it a most copious grey precipitate (meconate of lead), and lime water has the same effect. Ammonia throws down a copious precipitate, of a mottled grey colour, which soon becomes uniformly black; and copious dilution with water likewise occasions in it a deep brown precipitate. I found the specific gravity of some recently collected pussewah to be 1·120, the temperature of the atmosphere being 83°; and 100 grains, on evaporation to dryness, were found to yield 30 grains of a brownish-yellow residue, emitting an odour somewhat resembling that of heated Burgundy pitch. After pussewah has become concentrated to about one-third of its original volume, it acquires the consistence of treacle; and, as the process of drying goes on still further, it gradually becomes solid. During the hot and dry months this solid residue acquires a resinous hardness, becoming brittle, and breaking with a resinous fracture; but as soon as the weather becomes damp it rapidly absorbs moisture from the atmosphere, becomes jetty black, and polished on the surface, and acquires a consistence similar to that of cobbler’s wax. Pussewah (as might be supposed) contains some of the most valuable constituents of opium; its principal components are meconic acid, resin, morphia, and nucotine. From 500 grains of solid pussewah, which, on evaporation to dryness, left 88·9 grains of residue, I extracted 12 grains of pure nucotine, but only a trace of morphia. I, however, am inclined to attribute this latter result to an accident in the analysis; as in a second analysis of 500 grains of solid pussewah, which, on evaporation, yielded 85·5 grains of residue, I obtained 10·6 grains of morphia, and 16·4 grains of nucotine. In order to form an idea of the precise extent to which the composition of Bengal opium is affected by the practice of draining from it the pussewah, it is requisite to ascertain, with some approach to accuracy, the quantity of pussewah usually furnished by a given amount of opium. The quantity of standard opium received at the sudder factory of the Benares agency during the season of 1849-50, was 18,191 maunds; whilst the quantity of pussewah delivered amounted to 100 maunds, being at the rate of one maund of pussewah to nearly 182 maunds of drug, the pussewah containing, on an average, say 50 per cent. of solid matter. This pussewah, be it observed, although separated from the drug, is not lost to the provision, being employed in the formation of the shells of the cakes; and, as the Chinese form a watery extract of the drug for the purpose of smoking, the whole of the constituents of the pussewah are thus recovered on boiling the shells in water, as is practised in China.

Amongst the thousands of individuals, cultivators and employés, with whom the factory is filled during the receiving and manufacturing seasons, no complaints are ever heard of any injurious effects resulting from the influence of the drug, whilst they all remain quite as free from general sickness as persons unconnected with the general establishment,—in fact, if anything, more so. It occasionally happens that a casual visitor to the factory complains of giddiness or headache, but the European officers employed in the department, who pass the greater part of the day with the thermometer between 95° and 105° Fah. amongst tons of the drug, never experience any bad effects from it. The native purkhwa sits usually from six A.M. to three P.M. daily, with his hand and arm immersed nearly the whole time in the drug, which he is constantly smelling, and yet he feels no inconvenience from it. He has informed me that at the commencement of the season he experiences usually a sensation of numbness in the fingers, but I believe this to be more the result of fatigue, consequent upon the incessant use of the arm and fingers, than of any effect of the opium. In the large baking vats, men are employed to wade knee-deep through the drug for several hours during the morning, and they remain standing in it during the greater part of the rest of the day, serving out the opium by arnafs, their bodies being naked, with the exception of a cloth about the loins. These men complain of a sensation of drowsiness towards the end of their daily labours, and declare that they are overpowered early in the evening by sleep, but they do not complain of the effect as being either unpleasant or injurious. Infants, of a few months old, may be frequently seen

lying on the opium-besmeared floor under the vats, in which dangerous position they are left by their thoughtless mothers; but, strange to say, without any accident ever occurring. Here are abundant facts to show that the health of those employed in the opium factory, and in the manipulation of the drug, is not exposed to any risk whatever, whilst the impunity with which the drug is handled, by hundreds of individuals, for hours together, proves that it has no endemnic action, for I am inclined to consider the soporific effect experienced by the vat-traders as produced through the lungs, and not through the skin.

[We subjoin the following remarks, by the late Dr. Pereira, on the cultivation and manufacture of Patna Opium, from a paper published by him in the Pharmaceutical Journal for Nov. 1851.—Ed.]

The India section of the Great Exhibition contained a most complete collection of specimens, drawings, and implements illustrative of the cultivation and manufacture of Patna opium. Unfortunately, however, no description of the processes accompanied the illustrations, and therefore I have been obliged to obtain information on this subject from various sources. The drawings which were sent over were fifteen in number. Several of them, however, rather illustrated the general processes of agriculture followed in India, than anything peculiar to the cultivation of the poppy. The first of the series represented a native engaged in thinning and weeding the poppy plants. "The poppy," says Mr. W. B. Johnson, "requires a good, rich, dark soil, well prepared with manure, and divided into small oblong plots, of about six by four feet, for the convenience of weeding and patching. The sowings commence early in November. The day the seed is sown, the land is well watered; on the next day the ryot breaks all the lumps with his khoorpi. The plant soon shoots up, and, when about six inches high, it is thinned and weeded; it is kept well watered until the capsules are nearly ripe, and the petals falling off. The watering then depends upon the state of the weather: if mild, the irrigation is continued; if there should be strong winds, it is discontinued, for fear of (the capsules?) being blown off." "The poppy," according to Mr. Impey, "takes three months and a half to arrive at perfection, at least to the transitory and half-ripe state, between the fall of the petal and the dehiscing of the pericarp, which is the period most favourable to the extraction of the juice; and it grows to the height of four feet and upwards when well attended to. Its erect stem is divided into from four to fourteen branches, which strike off at various heights, the lowest usually two and a half feet from the ground. The capsule, in a full-grown state, measures frequently three and a half inches long by two in diameter." A second drawing represented a native woman pulling off the poppy petals for the purpose of making leaves for the envelope of the opium for the China market. Each cake or ball of opium is calculated to consume five chittacks of these leaves.

Speaking of the cultivation of the poppy in Malwa, Mr. Impey says:—

2 A chittack, or chitak, is equal to 1 oz. 17 dwt. 12 grs. English troy weight.
"The petals and leaves, which are in other districts kept to form the covering for the cakes, are permitted to fall off, and not applied to any purpose, nor even sold by the ryot; but poor people gather them, and, when a sufficient quantity is collected and pounded, dispose of them at six rupees per mound to the Buahs and opium-dealers, who require them for packing and wrapping the cakes."

The next operation is that of tapping or bleeding the poppy capsules. This is effected by making a series of parallel wounds in the exterior surface of the capsule with the instrument called a *nushtur*. This consists of several (three, four, or five) heart-shaped lancets or blades, tied together with some cotton thread. In one of these nushturs or incising instruments there were three lancets, while in another there were four,—in both cases bound together by cotton. Mr. Johnson says that the wounds in the capsules ought to be made diagonally, in order to prevent the juice falling off in the night, when the dews are heavy; and Mr. Impey states that in Bengal they are made so. But in some cases the incisions are made perpendicularly. Speaking of the nushtur, Mr. Impey states that so much only of the points is allowed to protrude "as is actually necessary, so that no discretion or latitude in manipulation is left to the labourer: the length of the point which protrudes externally is one-twelfth of an inch, and the distance between each blade is one-eighth of an inch. The area of the beegah is at this time imaginarily divided into three or four compartments, and the labour apportioned accordingly, the different processes of bleeding or gathering the juice going on separately in each, when the previous one has been finished: three men are employed, and in this way each plot is bled every three or four days. Twelve days are required to complete the operation, so that each capsule becomes wounded three, and occasionally four and six times, if the heads are large; but this is not of frequent occurrence.

"The mode of wounding the capsule is as follows:—Being depressed and held almost horizontally to admit of greater facility and steadiness in cutting, the incisions are made longitudinally, and from below upwards, about 3 p.m., or in the hottest part of the day, and after the collections from former incisions have terminated. A small quantity of white milky juice exudes almost immediately upon the incision being made, of the consistence of cream, on the surface of which after a short time a slight pellicle is formed by the power of the solar rays. The object of making the incisions at this hour is to obtain this result. By the continued force of the solar influence, a greater degree of evaporation and insipissation takes place (but not sufficiently to close the orifices of the wounds), which prevents the juice falling off the capsule, although, when the night dews are heavy, or the juice very plentiful, this cannot altogether be avoided. The greatest exudation occurs in the night-time, from the dew washing and clearing the incisions, and favouring the escape of the juice. During the night the juice continues to ooze out gradually, and in the morning it is fit for removal. By this time it has altered its appearance. Instead of the white milky character which it had before, it assumes a thick gummy consistence, and exhales a powerfully narcotic smell; it is much darker, of a light drab colour, and streaked with deeper shades of the same and red and black striae, the latter known as *pasewá,*—a term, as the meaning implies (perspiration or exudation), literally applicable to the
whole mass, but used to denote this especial appearance (see ante, p. 2085). The nature of the juice is perhaps best understood by the native name applied to it in Central India, viz. (Anglice) slime."

A third drawing represented the natives engaged in scraping off the exuded juice. "Scraping, the next process," says Mr. Impey, "is commenced on the following morning at sunrise, and executed with rude blunt iron scrapers, resembling a cleaver in miniature. A small piece of cotton soaked in linseed oil is stuck on the upper part of the blade, and both the thumb and edge of the scraper are occasionally smeared with it, to guard against the glutinous effects of the juice, which would otherwise adhere strongly to the fingers. Towards the point of the scraper the most pure juice is gathered, for there the first scrape is made; the second is done more with the heel of the instrument, near the handle, and the juice is much lighter in colour. It is during this operation that the first sophistication occurs, the scraper being carried heavily over the capsules, taking with it a considerable part of the beard or pubescence. The manner in which scraping is performed is by grasping the capsule between the thumb and fore-finger of the left hand, inclining it gently as in bleeding; the thumb of the right hand being then placed on the top of it, the scraper is drawn briskly upwards, almost similar to the making of a pen. This is repeated twice: every head is of course submitted to the process, and each is considered to yield a weight of juice equivalent to about 13 grains troy. In full-grown fruitful fields each man will collect upwards of half a pound of chick per day, at least, by 10 A.M., by which time this part of the work is over."

Dr. Butter, in his account of the preparation of opium for the China market, observes that "the goodness of the soil, and the management of the irrigation, are circumstances which powerfully affect the strength of the juice at the time of its collection; but a third agent, still less amenable than these to control, now comes into play,—the precipitation of dew on the surface of the capsule. When a current of wind, or a cloudy sky, prevents the formation of dew, it is found that the scarifications made in the capsule about the middle of the preceding day are sealed up by the slight oozing of juice which had immediately followed the incisions, and the quantity of opium obtained is small. When, again, the dew is abundant, it washes open the wounds in the capsule, and thus facilitates the flow of the milk, which in heavy dews is apt to drop off the capsule entirely, and be wasted. But when the dew is in moderate quantity, it allows the milk to thicken by evaporation, and to collect in irregular tiers (averaging one grain of solid opium from each quadruple incision), which on examination will be found to have a greater constancy, and a 'rosy-red' colour towards the external surface, while the interior is semi-fluid, and of a 'reddish-white' colour. This inequality of consistence constitutes the grain of raw opium, of which I shall have to speak hereafter."

"In the collection of these drops of half-dried juice, it is very apt to get mixed with the dew, which, in the earlier hours of collection, continues to besprinkle the capsules, and which here does a double mischief,—first, by retarding the inspissation of the general mass of the juice; and, secondly, by separating its two most remarkable constituent parts—that which is soluble, and that which is insoluble in water. So little aware, or so reckless even
under the most favourable construction of their conduct, are the *koérís* of the injury thus caused by the dew, that many of them are in the habit of occasionally washing their scrapers with water, and of adding the washings to the collection of the morning. In Malwa, *oil* is used for this purpose, to the irremediable injury of the flavour of the opium. On examining the juice thus mixed with water, it will be found that it has separated, as above mentioned, into two parts,—a fluid, and a more consistent portion; the latter containing most of the resin, gluten, caoutchouc, and other less soluble constituents of opium, with part of the super-meconiate of morphia; and the former containing the gum, some resin, and much of the super-meconiate of morphia, and much of the colouring principle, which, though pale at first, is rapidly affected by light, and acquires a very deep ‘reddish or blackish brown’ colour. Many *koérís* are in the habit of draining off this fluid portion into a separate vessel, and of bringing it, under the name of *paséwá*, for sale, at half the price of opium, to the Benares agency, where it is used as *léwá* (paste for the petal envelopes of the cakes). Others, after allowing the soluble principles to become thus changed into an acescent, blackened, sluggish fluid, mix it up with the more consistent part of their opium, and bring the whole for sale in this mixed state; the consequence of which is, that they are subjected to a penalty, called *battá upon paséwá*, and regulated by the estimate of the opium-examiner of the quantity of *paséwá* contained. This penalty is the only efficient check upon this most pernicious practice of the *koérís*, for on the generality of the *gomashtas* it is difficult to impress the necessity of their looking after the *koérís* during the collecting season.”

Mr. Impéry, alluding to the practice in Malwa, says:—“When the capsules crack and turn brown they are pull’d off the stalks, and the seed shaken out: the heads are then thrown away. In poor districts, where the people cannot afford the indulgence and luxury of opium for smoking and chewing, the poppy heads are made into a decoction, and the liquid drunk in its stead. This liquid, from the Persian name of the capsule, is termed ‘Post.’ But another and more useful application of the capsules is also exercised: they are ground into fine powder, and, like the leaves, sold, under the name of *boosa*, to the retailers, and sprinkled over the *battees* of opium, both to prevent their adhesion and to form a covering for them.

“The seeds are a very useful part of the plant, and very plentiful. From two to five maunds are procurable from a beegah, which obtains ready sale at 12 to 16 seers for a rupee: a very small quantity being required for seed, the rest is converted into oil, which, according to the native mode of expression, gives one-third in weight. According to Dr. O’Shaughnessy, it yields 56 per 100. It is of a pale yellow colour, clear, burns well, but is not adapted for lamps, on account of the smoke and smell which it gives out. The oil is very cheap, selling at eight seers per rupee; and the refuse is an extremely wholesome and nutritious food for cows, termed here *Khari*: it sells at the low rate of eight annas per maund. Lastly, the stalks, which might be made use of for fire-wood, are left in the ground untouched and unheeded.”

The juice which is scraped off the poppy-heads is collected in shallow earthen pans, and is removed in these from the fields. A fourth drawing represented a native engaged in this operation.

A fifth represented two natives engaged in manipulating the opium, with a
view to its introduction into the earthen vessels or bottles (called gumtahs). The lower half of each is surrounded with wicker-work, to protect the vessels. The native dealers judge of the consistence of opium by the feel. Dr. O'Shaunnessy says that the opium brought to the factories contains from 64 to 68 per cent. of solid matter, but that by evaporation it reaches the consistence of 70,—the standard of the factory for the Chinese investment.

Dr. Butter observes, that "in the Benares shells the léwá, or paste for uniting the poppy petals, remains visibly interstratified with them, dark-coloured, and tenacious; while in the Behárá it is in a great measure absorbed by the petals, which are apparently in intimate contact with each other, and is not to be distinguished from them." He further observes, that "any strong cheap mucilage or farinaceous paste, or perhaps some indigenous imitation of birdlime, would answer for the inner portion of the shell; and an exterior coating of a resinous, waxy, or oily nature, impervious to water, would defend this from the moisture of the air." In reference to the shape of the cakes, he says:—"The shape ought to be as nearly spherical as possible, that being the geometrical form which, under the smallest surface, contains the greatest quantity of matter, and which, consequently, affords the least scope for the extrication of air, and ultimate injury to the shape of the cake when that air escapes. Greater attention to boring the earthen cups, in which the cakes are dried perfectly hemispherical, instead of parabolical, as they now are, would contribute to the desired sphericity."

Description.—In commerce, several varieties of opium are known. The principal kind, however, is that brought from Smyrna. But the recent events which have occurred in China will probably throw a considerable quantity of Indian opium into European commerce.

1. Smyrna Opium (Opium Smyrneum).—This is the Turkey or Levant opium of commerce. It occurs in irregular rounded or flattened masses of various sizes, rarely exceeding two lbs. in weight, enveloped in leaves, and usually surrounded with the reddish capsules of some species of Rumex (R. orientalis, according to Koch; 1 but R. Patientia, according to Merat). 2 Some of the flat cakes are without these capsules, and somewhat resemble Constantinople opium. When first imported, the masses are soft, and of a reddish brown colour; but, by keeping, they become hard and blackish. Its Justre is waxy; its odour is strong and unpleasant; its taste is bitter, acrid, nauseous, and persistent. M. Guibourt regards the masses as being made up of agglutinated tears, and on this account as being the purest met with. It is, however, frequently found largely adulterated. From one sample, weighing 10 ounces, I obtained 10 drachms of stone and gravel. Not withstanding occasional frauds of this kind, Smyrna opium forms the best commercial opium. It yields more morphia and meconic acid than either Constantinople or Egyptian opium. 3 The quantity of morphia which

1 T. W. C. Martinus's Pharmakogn. S. 322.
2 Dict. Mat. Méd. t. v. p. 50.
3 Berthemot, Journ. de Pharm. xxiv. 444.
can be obtained from it is, perhaps, on the average, about eight per cent. Pelletier,1 in an operation on about two ounces of this opium, procured a quantity of morphia equal to 7·08 per cent. - From a pound he calculates that eight or nine per cent. could be obtained. On an average, 12 per cent. of hydrochlorate of morphia may be procured from it. Dr. Christison obtained two drachms of narcotine from half a pound of the best Turkey opium: hence we may estimate the quantity at about four per cent. Hydrochlorate of morphia, prepared by Gregory's process from Turkey opium, contains, according to Dr. Gregory,2 one-twelfth of codeia. Merck3 examined five kinds of Smyrna opium: from the worst he procured 3 to 4 per cent. of morphia; from the best 13 to 13·5 per cent. In the latter variety he found 0·25 per cent. of codeia.4

2. Constantinople Opium (Opium Bizantinum seu Constantinopolitum).—I am indebted to Professor Guibourt for an authentic sample of this. His description of it is as follows:—"There are two sorts of it: one in very large irregular cakes, which are flattened like the Smyrna opium. This is of very good quality. The other is in small, flattened, regular cakes, of a lenticular form, from two to two and a half inches in diameter, and covered with a poppy leaf, the median nerves of which divide the disk into two parts. It has an odour similar to the preceding kind, but more feeble; it blackens and dries in the air. It is more mucilaginous than Smyrna opium." To this account I may add, that the cakes are never covered with the Rumex capsules, as those of Smyrna opium are. Berthemot describes two kinds of it: one soft, the other hard and brittle. Constantinople opium is inferior to the Smyrna kind, but superior to Egyptian opium. Professor Guibourt says that this kind of opium yields only half the morphia procurable from the Smyrna opium. Berthemot also states that though it yields more morphia than the Egyptian opium, it gives less than the Smyrna kind. This, however, does not agree with the experience of Mr. Duncan, of Edinburgh, who has never failed to obtain an extraordinary quantity of hydrochlorate of morphia from it. From an experiment of Dr. Christison's he calculates the quantity of hydrochlorate of morphia obtainable from it at 14 per cent.5 Merck6 procured 15 per cent. of pure morphia, but scarcely a trace of codeia. It is obvious, therefore, that Constantinople opium is of unequal quality. It is probable that opium of unequal qualities, and produced in several parts of the Turkish empire, is carried to the capital, and, being exported from thence, bears the name of Constantinople opium.

3. Egyptian Opium (Opium Ægyptiacum).—It occurs in round flattened

1 Ibid. xxi. 572.
2 Ibid. xxi. 246.
3 Pharm. Central-Blatt für 1836, S. 491.
4 [Smyrna opium rasper, then mixed with common filtered water and allowed to remain in the liquor, yields a solution which powerfully retards the putrefaction of any animal matter placed therein. Dr. Pereira in Pharm. Journ. vol. xi. p. 135.—Ed.]
5 Journ. de Pharm. xxi. 547.
6 Pharm. Central-Blatt für 1836, S. 491.
cakes of about three inches diameter, covered externally with the vestiges of some leaf. It is usually very dry. It is distinguished from the two preceding varieties by its reddish colour, analogous to that of Socotrine or hepatic aloes. Some very inferior qualities are sometimes offered for sale, and which appear to the sight and touch to be largely adulterated. By keeping, it does not blacken like the other kinds; its odour is less strong, and somewhat musty. Guibourt says, that by exposure to the air it becomes soft. Egyptian opium is, for the most part, inferior to either of the preceding kinds; but its quality is by no means uniform. Some kinds become damp by keeping. Guibourt tells us it yields only five-sevenths of the morphia obtained from Smyrna opium. Berthemot also states that it contains less morphia than either of the preceding kinds of opium, and that the morphia is more mixed with narcotine. He further adds, that the morphia which it yields is purified with great difficulty. The watery infusion of Egyptian opium has a distinct odour of acetic acid. Dr. Christison obtained about 10½ per cent. of pure white hydrochlorate of morphia from it, which, he says, is about the quantity procured from good Turkey opium. Merck¹ procured only from 6 to 7 per cent. of morphia, but much meconic acid.

4. Trebizond Opium (Persian Opium).—Some years since a quantity of opium was imported into this country from Trebizond, in the form of cylindrical sticks, which, by pressure, have become somewhat angular. Their length is about six inches; their diameter about half an inch, a little more or less. Each one is enveloped in a smooth shiny paper, and tied with cotton; its colour is similar to that of Socotrine aloes. It has the opiate odour stronger than that of the Egyptian kind, but less than Smyrna opium, and mixed somewhat with a musty odour; its taste is intensely bitter. It is commonly termed in commerce Persian opium, but the specimens I received came from Trebizond. It is a very inferior kind. Merck² could obtain no morphia from it by the ordinary mode of proceeding. He, however, afterwards succeeded in obtaining about 1 per cent. It gave only a trace of narcotina. There must, I suspect, be some error in these statements, as this opium is certainly richer in morphia than is here stated.

5. Indian Opium (Opium Indicum).—Three varieties of Indian opium are known in commerce, viz. :—Malwa, Benares, and Patna Opium. As the two latter kinds are undistinguishable, I shall include them under one head of Bengal Opium.

a. Bengal Opium (Benares and Patna Opium).—Its preparation is fully described by Dr. Butter.³ I have been kindly furnished with samples of the Benares and Patna kinds, of the growth of the years 1835-36, and 1837-38, by Mr. Maitland, of the India House.

Bengal opium is imported in balls, each weighing about three lbs. and a

¹ Op. supra cit.
² Pharm. Central-Blatt für 1836, S. 493.
³ On the Prepar. of Opium for the China Market, in Journ. Asiat. Soc. of Beng. v. 165. 1836. [See also the author's account of the manufacture, ante, p. 2086.—Ed.]
half, and packed in chests, each containing about forty balls. The balls are hard, round like cannon-balls, and about the size of a child's head. Externally each ball is made of poppy petals, firmly agglutinated by a paste called lewah, to form a firm but laminated envelope weighing about 14 oz. On cutting through this, the opium is found to be quite soft, homogeneous, apparently quite pure, and to have the consistence of a soft extract. Its colour is blackish brown. Its odour and taste are strong, and purely opiate. On exposure to the air this opium speedily becomes covered with mouldiness. Both Bahar or Patna and Benares Opium are exported from Calcutta. Bahar and Benares are the only districts of Bengal where opium is produced. Benares is most valued by the Chinese (Butter). Further experiments are required ere we can speak with confidence as to the per-centage quantity of morphia and narcotina obtainable from Bengal opium. Dr. Smytten\(^1\) procured only 2\(\frac{1}{2}\) or 3 per cent. of morphia. But from some experiments which I have made, I consider this quantity to be considerably below the truth. Mr. Morson informs me that Benares opium contains rather more than half the quantity of morphia contained in good average Turkey opium.

Garden Patna Opium.—For a sample of this opium I am indebted to Dr. Christison. It is imported in square cakes (enclosed in thin plates of mica), about three inches in length and breadth, and one inch thick. It has the appearance, as Professor Guibourt describes it, of a well-prepared, shiny, dry, pharmaceutical extract. Its colour is blackish brown. Its odour is less powerful than that of Smyrna opium.

In the first edition of this work I described this kind of opium as fine Malwa opium. The following extract of a letter which I received from Dr. Christison will explain the cause of this error:—"The common ball opium of Patna and Benares (which are all but identical) was long known in India to be inferior in quality. During the inspectorship of Mr. Fleming, of Barrochan, he instituted inquiries, along with his assistant Captain Jeremie, as to the causes of its inferiority, and, among other reasons, was led to suppose it owed its softness, tarriness, and general low quality, to the 'ryots' storing the juice in bottles till it accumulated to a sufficient extent to be made up, and to fermentation consequently taking place. Means were therefore taken to get this juice before being long kept, and it was made up into square cakes, of which I sent you one under the incorrect name of Malwa opium,—the name by which I got it." Mr. Fleming subsequently recognised the cakes in Dr. Christison's laboratory with his official stamp on them. Dr. Christison obtained 9:5 per cent. of muriate of morphia (snow white) from it, a considerable portion of narcotine, and so large a proportion as one-twelfth or 8 per cent. of codeia.

This I presume is the opium employed by Merck\(^2\) under the name of Bengal opium, and which, he says, was enclosed in plates of mica. In 100 parts he found morphia 8, narcotine 3, codeia 0:5, thebaina 1, meconine traces,

1 Trans. of the Med. and Phys. Soc. of Calcutta, vi.
and porphyrochin 0.5. Another sample of Indian opium, in round balls of half a pound each, and of the consistence of Calabrian extract of liquorice, yielded him 10 per cent. of morphia.

β. Malwa Opium.—A few years since this ranked among the inferior kinds of Indian opium, but it has been gradually rising in value, and is now highly esteemed. I have received two varieties of opium under this denomination. They were brought to me from India by former pupils of mine.

αa. One kind consists of a round flattened cake or ball, weighing ten ounces. It seems to have been packed in a coarse kind of dust, composed of broken poppy petals. Its consistence is about that of moderately firm Smyrna opium. When cut into, it presents a homogeneous texture. Its colour is dark brown; its odour similar to that of Smyrna opium.

βα. The other kind (described in the first edition of this work as inferior Malwa opium) is in flattened cakes without any exterior covering. It is dull, opaque, blackish brown externally; internally somewhat darker and soft. Its odour is somewhat like that of Smyrna opium, but less powerful, and combined with a slight smoky smell. Guibourt says it yields as much extract as Levant opium; but its insoluble residue wants the vinous odour and glutinous consistence of the latter. It furnishes only one-third the quantity of morphia yielded by Smyrna opium. From common Malwa opium Dr. Smytten procured only from 3 to 5 per cent. of morphia; but, from fine samples, from 7 to 8 per cent.

Mr. E. Solly states that he found "occasional minute cavities full of a pale yellow oil" in a specimen of Malwa opium. This opium yielded him 80 per cent. of soluble matter.

γ. Cutch Opium.—Under this name I have received from Bombay a small cake of opium, rather more than an inch in diameter, and apparently enveloped by the remnants of leaves. Its odour is much less powerful than that of Smyrna opium.

δ. Kandesh Opium.—In round flattened cakes, weighing about half a pound each. It is nearly black, is hard, brittle, and presents a gritty or granular fracture. It yielded Mr. E. Solly 72 per cent. of soluble matter, and about 7 per cent. of morphia.

6. English Opium (Opium Anglicum).—It is in flat cakes or balls, enveloped with leaves. It resembles fine Egyptian opium more than any other kind; its colour is that of hepatic aloes; it has a moderately strong opiate odour. Mr. Hennell procured from 700 grains of English opium, prepared by Messrs. Cowley and Staines, 53 grains, or 7.57 per cent. of morphia; while from the

1 Pharm. Central-Blatt f. 1836, 493.
4 I must refer those interested in the cultivation of the poppy, and production of British opium, to the papers of Mr. Ball, in Trans. Soc. of Arts, xiv. 253; of Mr. Jones, ibid. xvii. 161; of Mr. Young, ibid. xxxvii. 23; of Messrs. Cowley and Staines, ibid. xi. 9; and of the Rev. G. Swayne, Quart. Journ., vols. viii. and ix.
same quantity of Turkey opium he obtained only 48 grains, or nearly 7 per cent. of morphia.\(^1\) Mr. Morson,\(^2\) from 20 oz. avoided. of the same British opium, procured only 384 grains, or about 4.4 per cent of morphia, and 222 grains, or about 2.53 per cent. of narcotina. Probably the morphia obtained by Mr. Hennell was not freed from narcotina. Mr. Young declares British opium to be stronger than the commercial opium; six ounces of the former being equal to eight of the latter.\(^3\)

7. **French Opium (Opium Gallicum).**—I have not seen any samples of this. Pelletier\(^4\) describes it as being of a deep reddish brown colour, and brittle when dry. Its taste was somewhat different to that of Smyrna opium. It left a less insoluble residuum than Eastern opium. Pelletier procured more morphia from it than from Smyrna opium. In an experiment on about two ounces of each, he obtained about 10.38 per cent. from the former, and only 7.08 per cent. from the latter. It contained no narcotina. He obtained sensible traces of codeia, but none of nacreine, meconine, or thebaina, perhaps because the quantity of opium experimented on was too small. The disappearance of one immediate principle (narcotina), and the augmentation of another (morphia), caused by climate, are interesting facts. Petit\(^5\) got from 16 to 18 per cent of morphia; and Caventou (quoted by Christison) obtained from 22 to 28 per cent. from French opium; but I presume the morphia was very impure.

8. **German Opium (Opium Germanicum).**—Biltz, of Erfurt, obtained from indigenous German opium 16\(\frac{1}{2}\) and even 20 per cent. of morphia, where the opium had been procured from the *P. somniferum a. nigrum*; and between 6\(\frac{1}{4}\) and 9\(\frac{1}{2}\) narcotina. But from opium made from *P. somniferum b. album* he got conversely 6.8 per cent. of morphia, and 33 per cent of narcotina.

Commerce of Opium.—The quantities of opium on which duty was paid during six years were as follows:\(^6\)

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>27,253 lbs.</td>
</tr>
<tr>
<td>1835</td>
<td>30,398</td>
</tr>
<tr>
<td>1836</td>
<td>38,553</td>
</tr>
<tr>
<td>1837</td>
<td>36,833</td>
</tr>
<tr>
<td>1838</td>
<td>30,824 lbs.</td>
</tr>
<tr>
<td>1839</td>
<td>40,784</td>
</tr>
<tr>
<td>1840</td>
<td>45,589</td>
</tr>
<tr>
<td>1841</td>
<td>37,960</td>
</tr>
</tbody>
</table>

Since August 13, 1836, the duty has been 1s. per lb.; previous to that and from 1828 it was 4s. per lb. Of the above quantities the greater part was imported from Turkey. The quantity of opium produced in Hindostan is enormous. In Patna and Benares its cultivation is a monopoly in the hands of government; and a revenue is derived from the Malwa opium, by a system of passes on shipment from Bombay. Of the whole quantity raised in

Hindostan, it is calculated that about two-thirds have been sent to Canton, and the remainder to the Eastern Islands. The following table is from Mr. R. Montgomery Martin’s Statistics of the Colonies of the British Empire, Lond. 1839 (p. 366).

<table>
<thead>
<tr>
<th>Years</th>
<th>Patna</th>
<th>Benares</th>
<th>Malwa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827–28</td>
<td>4006</td>
<td>1128</td>
<td>4401</td>
<td>9535</td>
</tr>
<tr>
<td>1828–29</td>
<td>4831</td>
<td>1390</td>
<td>7171</td>
<td>13132</td>
</tr>
<tr>
<td>1829–30</td>
<td>5504</td>
<td>1579</td>
<td>6857</td>
<td>14000</td>
</tr>
<tr>
<td>1830–31</td>
<td>5085</td>
<td>1757</td>
<td>12100</td>
<td>18760</td>
</tr>
<tr>
<td>1831–32</td>
<td>4442</td>
<td>1518</td>
<td>8265</td>
<td>14225</td>
</tr>
<tr>
<td>1832–33</td>
<td>6410</td>
<td>1880</td>
<td>15403</td>
<td>23693</td>
</tr>
</tbody>
</table>

All the world knows that these enormous quantities of opium were smuggled into China (by the connivance of the local authorities) for the purpose of smoking. The vessels anchored at Lintin, about 70 miles from Canton, and delivered the opium to the boats of the Chinese buyers. “Malwa opium is considered by the Chinese as having a higher touch, but not so mellow nor so pleasant in flavour as the Patna opium. The smokeable extract, which each quantity of opium contains, is thus intimated by the Chinese,—(who use opium as we do wine or spirits):—Patna and Benares opium 45 to 50 touch; average 48: Malwa 70 to 75; average 72½; Turkey 53 to 57: average touch 55.” The smokeable extract here referred to is an aqueous extract of opium prepared by the Chinese. A detail of the important events which have resulted from the active and extraordinary steps taken by this remarkable people to put a stop to the trade in opium, would be out of place in this work. Sufficient to say, that, in 1839, no less than 20,283 chests of opium, valued at nearly £3,000,000 sterling, were delivered up to the Chinese, and by them destroyed by immersing the opium in water with lime and salt, and, when the whole had become a fetid mud, allowing it to escape into the river.

Composition.—Few substances have been so repeatedly submitted to chemical investigation as opium. The mere reference to the different labours which have been bestowed on it would occupy more space than I can devote to the subject. I must, therefore, content myself with brief notices of the most important epochs in its chemical history, and a reference to some of the analyses which have been made of it.

In 1803 Derosne⁴ discovered narcotina. In 1804 Serttiner⁵ announced

1. *Evid. taken before the Committee of the House of Lords on the Affairs of the East India Company*, No. 646, 1830, p. 25.
3. See *Asiatic Journal*, vol. xxx. part ii. p. 310; also *Parliamentary Reports on the Trade with China*, No. 359, 1840; and *Corresp. relating to China*, 1840.
the existence of meconic acid and morphia. Seguin\(^1\) appears to have discovered them about the same time. Robiquet\(^2\) confirmed these discoveries in 1814. In 1826 meconine was discovered by Dublanc jeune, and again in 1830 by Couerbe.\(^3\) In 1832 Pelletier\(^4\) discovered narceina; and, in the same year, Robiquet\(^5\) announced the existence of codeia. In 1837 Merck\(^6\) announced the existence, in opium, of a new substance, which he called porphyroxin; but his statement requires confirmation.

Analyses of opium have been published, in 1800 by Bucholz,\(^7\) in 1804 by Sertiirner, in 1814 by Seguin, in 1817 by Braunnot,\(^8\) in 1818 by Buchner,\(^9\) in 1819 by John,\(^10\) in 1823 by Pfendler,\(^11\) in 1824 by Lindbergson,\(^12\) in 1826 by Merck,\(^13\) in 1826 by Geiger,\(^14\) in 1831 by Biltz,\(^15\) in 1832 by Pelletier,\(^16\) 1834 by Schindler,\(^17\) and in 1836 by Mulder.\(^18\)

<table>
<thead>
<tr>
<th>Mulder's Analysis</th>
<th>Smyrna Opium.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3. Codeia</td>
<td>0.678</td>
</tr>
<tr>
<td>5. Meconine</td>
<td>0.504</td>
</tr>
<tr>
<td>7. Fat</td>
<td>2.166</td>
</tr>
<tr>
<td>9. Resin</td>
<td>3.582</td>
</tr>
<tr>
<td>11. Gum</td>
<td>1.042</td>
</tr>
<tr>
<td>12. Mucus</td>
<td>19.086</td>
</tr>
<tr>
<td>Loss</td>
<td>2.148</td>
</tr>
</tbody>
</table>

| Smyrna Opium | 100.000 | 100.000 | 100.000 | 99.000 | 99.998 |

2. Ibid. v. 275.
3. Ibid. l. 337.
4. Ibid. l. 262.
5. Ibid. li. 259.
9. Quoted by Schwartz, Pharm. Tab.
13. Ibid.
14. Ibid.
17. Pharm. Central-Blatt für 1834, S. 754.
18. Ibid. für 1837, S. 574.
<table>
<thead>
<tr>
<th>Schindler's Analyses.</th>
<th>Biltz's Analyses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrinx Opium.</td>
<td>Oriental Opium.</td>
</tr>
<tr>
<td>Constantine Opium.</td>
<td>From a. nigrum.</td>
</tr>
<tr>
<td>Egyptian Opium.</td>
<td></td>
</tr>
<tr>
<td>Morphia</td>
<td>9'25</td>
</tr>
<tr>
<td>Narcotina</td>
<td>7'50</td>
</tr>
<tr>
<td>Codeia</td>
<td>4'75</td>
</tr>
<tr>
<td>Narceia</td>
<td>2'38</td>
</tr>
<tr>
<td>Meconine</td>
<td>0'71</td>
</tr>
<tr>
<td>Meconic acid</td>
<td>0'98</td>
</tr>
<tr>
<td>Resin</td>
<td>8'10</td>
</tr>
<tr>
<td>Bassorin, caoutchouc, fat, and lignin</td>
<td>17'18</td>
</tr>
<tr>
<td>Salts and volatile oil</td>
<td>3'60</td>
</tr>
<tr>
<td>Lime & magnesia</td>
<td>0'42</td>
</tr>
<tr>
<td>Alumina, oxide of iron, silica, and phosphate of lime</td>
<td>0'24</td>
</tr>
<tr>
<td>Brown acid, soluble in alcohol and water</td>
<td>1'04</td>
</tr>
<tr>
<td>Brown acid, soluble in water; gum and loss</td>
<td>56'49</td>
</tr>
<tr>
<td>Total</td>
<td>100'00</td>
</tr>
</tbody>
</table>

The following substances may be regarded as the constituents of opium:—
Morphia, narcotina, codeia, narceia, meconine, thebaina, or paramorphia, pseudomorphia, meconic acid, *brown acid extractive, sulphuric acid, resin, fat oil, gummy matter, caoutchouc, albumen, odorous principle (volatile oil)*, and lignin.

1. **Volatile Odorous Principles (Volatile Oil?).**—The distilled water of opium has the peculiar odour of this drug, and by keeping deposits a ropy substance. Hitherto, however, all attempts to isolate the volatile odorous principle of opium have failed, and its nature, therefore, is as yet unknown. Nysten swallowed two ounces of the distilled water without any sensible effect; and Orfila injected a like quantity of it into the jugular vein of a dog without apparently causing any inconvenience to the animal. The volatile principle cannot, therefore, possess much activity; but Nysten concludes that "the distilled water of opium, strongly saturated with the aromatic principle, is capable of producing drunkenness and sleep, when taken in a strong dose."

2. **Morphia.**—(This will be described hereafter.)

3. **Codeia (Codeine).**—So called from κόδεια, a poppy head. It is a white, crystalline solid, soluble in cold, and still more so in boiling water. It is soluble in alcohol and ether. It is insoluble in a cold weak solution of potash. If more codeia be added to boiling water than this liquid can dissolve, the excess melts and forms an oily layer at the

1 Orfila, *Toxicol. Gén.*
bottom of the vessel; and, by cooling, a crystalline mass is obtained. It reacts as an alkali on test papers, and unites with acids to form crystalline salts. From morphia, codeia is distinguished by its not becoming blue on the addition of a persalt of iron. It is also said not to redden nitric acid like morphia (Turner). All the specimens of codeia which I have met with became orange yellow on the addition of nitric acid. Moreover, ammonia does not precipitate it from its very diluted solution in hydrochloric acid, on account of its solubility in water; and this affords a means of separating morphia from codeia. The separation may be more easily effected by ether, which readily dissolves codeia; or by alcalies (potash or soda), which dissolve morphia, but leave codeia. From meconine it is distinguished by its aqueous solution possessing marked alcaline properties, as manifested by its action on test papers. Tincture of nutgalls produces a copious precipitate (tannate of codeia) in solutions of codeia.

[We have, like the author, observed that-codeia and its salts acquire an orange yellow colour on the addition of nitric acid, and further that it decomposes iodoe acid like morphia, and sets free iodine. The specimen examined was considered to be pure, although it is possible that traces of morphia may be retained, and account for the reactions observed. Codeia is so soluble in water that the solution has a strong alcaline reaction. It readily yields well-defined prismatic crystals by the evaporation of its aqueous solution. These are larger, but have the same form under the microscope as those of morphia, viz. quadrangular prisms. When strong sulphuric acid is added to codeia it is somewhat reddened. On dropping into this mixture one drop of a solution of bichromate of potash there is an immediate decomposition, with change of colour, the liquid becoming rapidly green, from the liberation of green oxide of chrome. In this respect codeia resembles morphia. In fact, the chief chemical difference is that pointed out by the author, viz. the non-colouration on the addition of a persalt of iron.—Ed.]

Anhydrous codeia consists of $C_{20}H_{20}NO_4$, Symbol Cd. It, therefore, contains an atom less of oxygen than morphia does. [There is the same relation between the formulae of Morphia and Codeia as between those of Cinchonia and Quina.—Ed.] Its atomic weight is 254. Crystallized in ether it contains no water; but crystallized in water it retains two atoms of water of crystallization. The salts of codeia have not been much studied. The nitrate readily crystallizes. The tannate is insoluble in water. The double hydrochlorate of morphia and codeia is the salt at one time sold as hydrochlorate of morphia, by those who prepared it by Gregory’s process. Hence it has been termed by the French pharmacologists sel de Gregory.

The effects of codeia and its salts have been imperfectly examined by Kunkel, Gregory, Barbier, and Magendie, but the results are very conflicting. Kunkel¹ says it is a local irritant, becomes absorbed, excites the circulation, and produces convulsions; but that none of the animals on which the codeia was tried were either stupified or paralysed. Magendie,² however, says it causes sleep, and when exhibited in large doses, stupor. He considers one grain of codeia equivalent to half a grain of morphia: two grains excite nausea and vomiting. Barbier³ also states that it produces sleep. Dr. W. Gregory⁴ says that, in doses of five or six grains, it causes an excitement like that of intoxication, followed in a few hours by depression, nausea, and sometimes vomiting. Magendie proposes to use it as a substitute for morphia, to procure sleep and allay pain, in doses of from one to three grains. A syrup of codeia (composed of codeia, grs. xxiv.; distilled water, 3xiv.; sugar, 3yij.) has been used in hoopings-cough. The dose for a child of about seven years of age is a tea-spoonful. It has been given in irritation of the gastric mucous membrane.⁵

4. Narcotina (Narcotice).—So called from ναρκωτικός, narcotic. The greater part of the narcotina of opium is in a free state, as it is removable by ether without the aid of either acids or alcalies. It is a white, inodorous substance, crystallizing in prisms, which are fluted or striated,—distinguished from morphia by being insipid, very soluble in ether, insoluble in alcalies, by its not becoming blue on the addition of the sesquichloride of iron,

¹ Journ. de Chim. Méd. ix. 223.
² Formulæ e, 8me, éd. 87.
⁴ Ibid. p. 219.
⁵ Journ. de Pharm. xxiv. 144.
by its not decomposing iodic acid, and, when quite pure, by its not yielding a brown colour when treated by chloride and ammouia. Heated on paper over a candle it gives a greasy-looking stain to the paper. Nitric acid dissolves it, and acquires an orange tint. [Sulphuric acid turns it yellow, and on adding bichromate of potash green oxide of chrome is slowly set free.—Ed.] It does not affect vegetable colours, and by this character is readily distinguished from both morphia and codeia. It is insoluble in cold water, but dissolves in 400 parts of boiling water,—in 100 parts of cold alcohol,—or in 24 parts of boiling alcohol. The volatile oils also dissolve it; it is soluble in ether. It consists of $C_6H_3NO_4^+$. The salts of narcotina have been but little examined. They are more bitter than those of morphin, reddens litmus, and are precipitated from their solutions by infusion of nutgalls and by the alkalies. The hydrochlorate is crystallizable. Both this and the sulphate are very soluble in water.

[Orfila has suggested a test for narcotina, which produces very striking results. If to the mixture of strong sulphuric acid and narcotina, a small fragment of nitrate of potash, or any nitrate, be added, the liquid speedily acquires a deep blood red colour. Morphia treated in the same way gives a dingy brown or olive green colour. Conversely a mixture of narcotine and sulphuric acid has been proposed as a test for nitric acid or a nitrate. It is the nitric acid which here operates, and the presence of a trace of nitric acid in sulphuric acid may be often revealed by the fact that when the latter is added to narcotina it acquires a reddish tint.—Ed.]

Narcotina is extracted from the residue of the opium which has been subjected to the action of cold water. This is treated with water acidulated with either acetic or hydrochloric acid, and to the filtered solution ammonia is added. The precipitate treated with boiling alcohol yields narcotina, which is deposited as the liquor cools. Narcotina may be separated from morphia by ether, which dissolves the narcotina, but leaves the morphia, or by a solution of potash, which dissolves the morphia, but leaves the narcotina, or by the cautious addition of weak acetic acid, which dissolves the morphia, and, unless the acid be greatly in excess, does not dissolve the narcotina.

When narcotina was first discovered, it was said to be the stimulant principle of opium; and Magendie states, a grain of it, dissolved in olive oil, produced the death of a dog in twenty-four hours, while twenty-four times this quantity was given, dissolved in acetic acid, with impunity. Orfila, at one time, declared it was inert, then that it acted like morphia, and subsequently that its operation was remarkable and peculiar. Bally asserts that, in a solid state, it is inert; for 129 grains may be given, at one dose, without exciting any obvious effect. The truth is, I believe, that narcotina possesses but little activity; and I presume, therefore, that the first experimenters with it employed an impure substance. Dr. Roots gave gradually increased doses of it, up to a scruple, without the least injury. The bitterness of its sulphuric solution led him to employ it in intermittent, as a substitute for sulphate of quina. More recently attention has been drawn to it in India, by Dr. O'Shaugnessy, as an Indian indigenous substitute for quina; and nearly 200 cases of intermittent and remittent fevers, treated by it with success, have been published.

[The proportion of Narcotina contained in the different varieties of opium is, according to Dr. O'Shaugnessy, for 100 parts of Bengal Opium, 3 parts, the same for Malwah opium, while Turkey opium yields only one per cent (from notes).—Ed.] One of the products of the oxidation of Narcotine is Opianic acid; of the mode of procuring and properties of which we subjoin the following remarks, from the author's notes.

Opianic Acid.—This substance is most readily obtained, according to Liebig and Wohler, by the oxidation of narcotine in the following manner:—Dissolve narcotine in an excess of dilute sulphuric acid, add to the solution finely powdered binoxide of manganese, and apply heat. It will soon assume a yellow saffron-like colour, and evolve carbonic acid gas. Heat to boiling, which is to be kept up until no more carbonic acid gas escapes. Both the manganese and sulphuric acid must be in excess; test for these, and then filter whilst boiling. In cooling, the fluid will nearly wholly coagulate, and form a magma of fine needle-like crystals of opianic acid. The mass is to be placed on a filter to allow the yellow-coloured fluid to pass off: wash several times with cold water, press as finely as possible, and remove impurities by treating with animal charcoal, and repeated recrystallization from boiling water.

Opianic acid crystallizes in very small shining silicy prisms of indefinite form. It is but slightly soluble in cold water, but more so in hot; so that a saturated solution, in cooling, nearly wholly crystallizes, like a solution of benzoic acid. It is also soluble in alcohol. It re-acts as an acid, though it has but a faintly sour and bitter taste. It readily melts, and forms a clear oil, which crystallizes on cooling, but remains amorphous if heated beyond the point of melting. It does not appear to be volatile, although it may be distilled over, a circumstance referrible to its adhesion to the sides of the retort. Heated in the air it emits an aromatic odour, (similar to narcotine, which it resembles in combustion,) with a vivid flame and deposition of carbon. Opianic acid expels carbone acid, and forms soluble salts, with bases. The salts of silver and oxide of lead crystallize in thin shining prisms and flakes. It contains no nitrogen.

5. Narceine (Narcceina).—So called from νάρκη, stuper. It is a white, inodorous solid, crystallized in long, fine, silicy needles, radiating in tufts from a centre, with a slightly bitter, and even somewhat metallic, taste. It dissolves in 230 parts of boiling water, or 375 parts of water at 60°. It fuses at about 198°, and at a higher temperature is decomposed. Narceine has several very striking properties by which it is distinguished from other substances. The first of these deserving of notice is the action of mineral acids on it. Thus the sulphure, nitric, and muriatic acids, so diluted with water that they cannot alter the elementary composition of narceine, give this substance a fine light-blue colour, immediately on coming in contact with it. This alteration of colour does not appear to depend on any change in the elementary composition of narceine, since, by saturating the acids with ammonia, the narceine is precipitated unchanged. When much water is added, the blue colour disappears. Another peculiar trait of narceine is, that it forms a blue compound (iodide of narceine) with iodine: heat and alkalies destroy the colour. These characters are sufficient to distinguish narceine from all other known substances. In addition, I may add, that it does not form a blue colour with the sesquichloride of iron, as morphia does.

Narceine was at first supposed to be a vegetable alkali; but as it does not affect vegetable colours, nor combine with nor saturate acids, it is now regarded as a neutral principle. Narceine is composed of C\(^5\)H\(^3\)NO\(^3\).

Two grains have been several times thrown into the jugular vein of a dog, without producing any appreciable effect. It is presumed, therefore, to be inert.

6. Meconine.—So called from μηκος, a poppy. It is a white, crystalline, odourless solid. Its taste, which at first is scarcely perceptible, is afterwards sensibly acrid. The crystals are six-sided prisms, with dihedral summits. It fuses at 194°; and becomes a colourless, limpid fluid. At a higher temperature it may be distilled. It dissolves in 265 parts of cold water, or in eighteen parts of boiling water. It is soluble in alcohol and in ether. It is distinguished from morphia and codein by its not possessing alkaline properties. From morphia it is further distinguished by its great fusibility, its greater solubility in water, and its not becoming blue on the addition of sesquichloride of iron. Cold sulphure acid dissolves meconine, the solution being limpid and colourless. If heat be applied, the liquid becomes dark. If the quantity of sulphure acid be small in proportion to that of meconine, the liquid assumes a green colour. If chlorine gas be passed over fused meconine, the latter becomes blood-red, and on cooling forms crystals. The compound thus formed is composed of chlorine and some organic base: if the first be removed by oxide of silver, a white acid is obtained, which Couerbe calls mecklose acid (C\(^4\)H\(^7\)O\(^9\)). By the action of nitric acid on meconine we obtain hyponitromeconic acid, composed of one atom of meconine and half an atom of hyponitrous acid. Meconine is remarkable for not containing nitrogen. Its composition is C\(^3\)H\(^4\)O\(^4\). A grain dissolved in water, and injected into the jugular vein of a dog, produced no remarkable effect. Further experiments, however, are required before we can positively declare it to be an inert substance.

7. Thebaina (Paramorplia).—So called from Thebes, an ancient city of Egypt. It is a white, crystalline, fusible solid, having an acid, styptic taste, very soluble in alcohol and ether, but hardly at all soluble in water. It possesses alkaline properties, and dissolves in weak acids. From these solutions it is precipitated by alkalies. An excess of alkali.

cannot dissolve it, unless, indeed, the alkaline solution be very concentrated. It fuses at 302°, but does not volatilize at any temperature. It is distinguished from morphia by not becoming blue on the addition of the perchloride of iron, and by not forming crystallizable salts with acids. From codeia it differs in not crystallizing in large crystals, and in not forming crystallizable salts. With meconine and narcine it has no analogy, and from them it is distinguished by the want of the peculiar properties which characterize these bodies. It resembles narcotina more than any other substance, but is distinguished by the crystals being shorter or granular, and wanting the pearly brilliancy possessed by those of narcotina; by its acid taste; by its fusibility at 302°; by its greater solubility in alcohol; and by nitric acid when dropped on it converting it into a substance like a soft resin, before dissolving it. Pelletier considered it to be isomeric with morphia;—hence he called it parasmorphia. According to Dr. Kane's analysis it consists of C₂₇H₄₈NO₉; and its atomic weight is 202. Couche's analysis gives another atom of oxygen. The last-mentioned chemist says that, by fusion, the crystals lose two atoms of water. Magendie states that one grain injected into the jugular vein, or placed in the pleura, acts like brucia or strychnia, and causes tetanus, and death in a few minutes.

8. Pseudomorpha.—This is a substance which Pelletier has occasionally met with in opium. It is a whitish solid, which, like morphia, dissolves in caustic alkalies, is reddened by nitric acid, and made blue by contact with the sesquichloride of iron. But it does not decompose iodic acid, and cannot form salts with acids. It consists of C₂₇H₄₈NO₁₄. It is not poisonous; at least, nearly eight grains, given to a rabbit, produced no effect. Pelletier thinks that pseudomorpha must be some combination of morphia, in which this substance has lost its poisonous properties.

9. Porphyrin.?—This name has been given by Merek1 to a supposed new principle found in Bengal opium. It is described as crystallizable, fusible, soluble in alcohol, ether, and weak acids. Alkalies precipitate it from its acid solution. Further experiments are required to determine its existence and precise nature.

10. Resin.—Brown, insipid, inodorous, softened by heat, insoluble in water and other, but soluble in alcohol and in alkaline leys. Nitrogen is a constituent of it.

11. Extractive.—The substance usually denominated the extractive of opium is probably a heterogeneous body. It is brown and acid, and has been supposed to be one of the active principles of opium. The reasons for this opinion are the following:—In the first place, it has been asserted that after the morphia has been separated from an infusion of opium by magnesia, the filtered liquor gives by evaporation an extract which produces the same kind of narcotic effect that opium does.2 Secondly, the effects of the known active principles of opium are not sufficiently powerful to authorize us to refer the whole of the active properties of opium to them. Thus on an average 100 parts of opium yield from 8 to 10 parts of morphia (the most active of the known constituents of opium), and, therefore, if this alkali were the only active principle, it ought to be 10 or 12 times as powerful as opium is. Now we know that morphia is but little, if at all, more active than opium, and, therefore, this last-mentioned substance either contains some other active principle, or the activity of morphia is surprisingly increased by the principle or principles with which it is naturally in combination. Butter3 says the insoluble residuum possesses considerable narcotic qualities.

12. Fatty Matter.—Yellow or brownish. Probably colourless when pure. It reddens litmus, and unites with alkalies to form soaps, from which acids disengage it apparently unchanged.

13. Meconic Acid.—Hitherto found in the poppy tribe only. It is usually procured from meconant of lime by acting on it, in hot water, with hydrochloric acid. The meconic acid crystallises on cooling. The formula of the anhydrous acid is C₄H₇O₄. The crystallised acid contains 9 equivalents of water; and the acid dried at 212° contains 9 equivalents of water. [The symbol of meconic acid is Me. The formula of the anhydrous acid is C₄H₇O₄=Me; of the acid dried at 212°, C₄H₇O₄=Me+3 aq.; of the crys-

1 Pharm. Centr.-Blatt für 1837, S. 342; and Brit. Ann. of Med. ii. 82.
2 Berzelius, Traité de Chim. t. v. p. 136; and t. vi. p. 152.
<table>
<thead>
<tr>
<th>Characters</th>
<th>Morphia</th>
<th>Pseudomorphia</th>
<th>Codeia</th>
<th>Narcotina</th>
<th>Thebaina</th>
<th>Narceine</th>
<th>Meconine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taste</td>
<td>Very bitter</td>
<td>... ?</td>
<td>Bitter</td>
<td>Insipid; the salts bitter</td>
<td>Rather acrid and metallic</td>
<td>Slightly bitter</td>
<td>Rather acrid</td>
</tr>
<tr>
<td>Fusibility</td>
<td>Fusible</td>
<td>Infusible?</td>
<td>Fusible at 302°</td>
<td>Fusible at 338°</td>
<td>Fusible at 226°</td>
<td>Fusible at 195°</td>
<td>Fusible</td>
</tr>
<tr>
<td>Ditto in Boiling Water</td>
<td>Cold Water</td>
<td>Insoluble, or</td>
<td>Fusible</td>
<td>Fusible at 338°</td>
<td>Very slightly soluble</td>
<td>Fusible at 226°</td>
<td>Fusible</td>
</tr>
<tr>
<td>Boiling Water</td>
<td>Soluble in 100 pts.</td>
<td>nearly so</td>
<td>Soluble in 80 pts.</td>
<td>Insoluble</td>
<td>Soluble in 100 pts.</td>
<td>Soluble in 100 pts.</td>
<td>Fusible</td>
</tr>
<tr>
<td>Cold Alcohol</td>
<td>Soluble in 40 pts.</td>
<td>Soluble in 17 pts.</td>
<td>Soluble in 375 pts.</td>
<td>Soluble</td>
<td>Soluble in 100 pts.</td>
<td>Soluble in 230 pts.</td>
<td>Fusible</td>
</tr>
<tr>
<td>Ditto in Alcohol</td>
<td>Less soluble</td>
<td>Very soluble</td>
<td>Soluble</td>
<td>Very soluble</td>
<td>Soluble in 100 pts.</td>
<td>Soluble in 230 pts.</td>
<td>Fusible</td>
</tr>
<tr>
<td>Cold Ether</td>
<td>Scarcely soluble</td>
<td>Insoluble in the cold ley</td>
<td>Insoluble, or nearly so</td>
<td>Nearly soluble</td>
<td>Soluble</td>
<td>Soluble</td>
<td>Fusible</td>
</tr>
<tr>
<td>Potash or Soda Lye</td>
<td>Soluble</td>
<td>Alkaline</td>
<td>Alkaline</td>
<td>Neutral</td>
<td>Alkaline</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Basic (Action on Test paper quality)</td>
<td>Salifiable</td>
<td>Salifiable</td>
<td>Salifiable</td>
<td>Salifiable</td>
<td>Salifiable</td>
<td>Salifiable</td>
<td>Salifiable</td>
</tr>
<tr>
<td>Action of Nitric Acid</td>
<td>Reddened; solution red</td>
<td>Reddened</td>
<td>Solution not red</td>
<td>Made yellow; solution yellow</td>
<td>Gives it a resinous appearance, and dissolves it</td>
<td>Made yellow; solution yellow</td>
<td>Colourless red</td>
</tr>
<tr>
<td>Coloured blue by Hydrochloric Acid</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>Ditto by Sesquichloride of Iron</td>
<td>Coloured blue</td>
<td>Coloured blue</td>
<td>Coloured blue</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>Coloured blue by Iodine</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>Decomposes Iodide Acid</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>Precipitated by Infusion of Nutgalls</td>
<td>Not</td>
<td>Precipitated</td>
<td>Precipitated</td>
<td>Precipitated</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>When fused, reddened by Chlorine Gas</td>
<td>C₅₇ H₂₀ N₂ O₆</td>
<td>C₅₇ H₸ N₈ O₁₄</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
<tr>
<td>Composition</td>
<td>306</td>
<td>284</td>
<td>306</td>
<td>C₅₇ H₂₄ N₁ O₁₄</td>
<td>C₅₂ H₁₄ N₁ O₁₄</td>
<td>C₅₂ H₁₄ N₁ O₁₂</td>
<td>C₁₀ H₈ O₄</td>
</tr>
<tr>
<td>Equivalent</td>
<td>2 atoms</td>
<td>2 atoms</td>
<td>2 atoms</td>
<td>2 or 3 per cent.</td>
<td>1 atom</td>
<td>298</td>
<td>Blood-red.</td>
</tr>
<tr>
<td>Water of Crystallization</td>
<td>Poisonous</td>
<td>Poisonous</td>
<td>Poisonous</td>
<td>Poisonous</td>
<td>Poisonous</td>
<td>Poisonous</td>
<td>Poisonous</td>
</tr>
<tr>
<td>Poisonous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: I have had no opportunity of verifying the statements in this column.
tallized acid, $C_4H_8O_4 + 3H_2O + 6aq = Me + 9aq$. It is admitted by chemists to be a tribasic acid.—Ed. When pure it is in the form of white, transparent, micaceous scales, which are soluble in four times their weight of boiling water. But at this temperature water decomposes it; carbonic acid is evolved, and a solution of kome nic acid ($C_6H_3O_4 + 2aq$) is obtained. Cold water dissolves a smaller quantity of meconic acid. Alcohol is also a solvent for meconic acid. By the dry distillation of meconic acid it loses carbonic acid and water, and becomes pyromeconic acid ($C_6H_3O_4 + aq$).

The characteristics of meconic acid are as follows:—1st. It reddens the neutral sesquisalts of iron, forming the meconate of the sesquisalts of iron. Alkalies, protochloride of tin, and nitric acid, assisted by heat, destroy this red colour. A solution of corrosive sublimate, which destroys the red colour of sulpho cyanide of iron, does not decolorize a red solution of meconate of iron. 2dly. It forms, with a weak solution of ammoniated sulphate of copper, a green precipitate (meconate of copper). 3dly. It yields white precipitates (meconates) which are soluble in nitric acid, with acetate of lead, nitrate of silver, and chloride of baryum. The acetates which, like meconic acid, redden the sesquisalts of iron, and might, therefore, be confounded with it, do not occasion precipitates with the salts of lead and of baryum. [Besides, the meconate of lead is insoluble in acetic acid.—Ed.] 4thly. It is not reddened by chloride of gold, which reddens hydrosulphocyanic acid and the sulpho cyanides.

It deserves especial notice that many substances enjoy equally with meconic acid the power of communicating a red colour to the sesquisalts of iron. The following are some of them:—the acetates, hydrosulphocyanic acid, and the sulpho cyanides, the saliva of man and of the sheep, the urine of man (frequently), infusion of white mustard, kome nic, pyro meconic, and indigotica acids, the liquid obtained by the action of hydrochloric acid on detonating silver, the decoctions of Cetraria islandica and of Gigartina Helvintothecorton.

Meconic acid is believed to be an inert substance. Sertürner swallowed five grains of it without observing any effect. Sömmering gave ten grains to a dog; Fenegho and Blengini gave eight grains to dogs, crows, and frogs, and four grains to various men: in all cases no effects were observed. Combined with bases, it doubtless modifies their action. Meconate of soda, however, is not active, as Sertürner asserted. It is supposed that the effect of the morphia in opium is modified by its combination with meconic acid. I have already mentioned that this acid is said to be an antidote in cases of poisoning by corrosive sublimate. If, however, the statement be true, the fact is of little practical value, on account of the scarcity of the acid; for neither opium nor laudanum can be given in quantity sufficient to neutralize the effect of this salt, without proving deleterious. Moreover, we have other good and easily accessible antidotes. Anthelmintic properties have been ascribed to the acid and some of its salts.

Chemical Characteristics.—Litmus paper is reddened by a watery infusion of opium (or tincture of opium diluted with water), owing to a free acid (meconic). Sesquichloride of iron gives it a deep red colour (meconate of iron). Acetate and diacetate of lead occasion a copious grey precipitate (meconate and sulphate of lead, with colouring matter), which, treated by sulphuric acid or sulphuretted hydrogen, yields free meconic acid. Chloride of baryum also causes a precipitate (meconate and sulphate of baryta). Ammonia renders the infusion turbid (precipitated morphia and narco tina). Tincture of nutgalls causes a precipitate (tannates of morphia and codeia). Nitric acid communicates to the infusion a red colour (oxidized ? morphia). Iodic acid and starch cause, after some hours, a blue precipitate (iodide of starch). This last test does not always succeed. Chloride of gold causes a deep fawn-coloured precipitate.

Application to Medico-legal Purposes.—On examining the alimentary canal of persons destroyed by opium, it not unfrequently happens that no traces of the poison can be obtained. I have met with several instances of this, and others are referred to by Dr. Christison. Either, therefore, opium is rapidly absorbed, and its unassimilated

1 Richter, Anst. Arbeneim, Bd. ii. S. 616.
2 On Poisons.
parts are thrown out of the system by the excretories, or the constituents of this substance are digestible and assimilable.

The characters available for the detection of opium are two-fold, physical and chemical.

1. Physical Characteristics.—Whether in the solid state, or dissolved in water or spirit, opium possesses three physical properties, by one or more of which it may be frequently recognized. These are, a more or less brown colour, a remarkable peculiar odour; and a bitter taste. Of these the odour is the only characteristic one. In the alimentary canal it is strongest when the stomach is just oped, or when the opiate liquor is just reaching the boiling point. Other odours, however, frequently mask it. The analogy between the odours of lacticarium and opium deserves notice.

2. Chemical Characteristics.—The chemical tests of opium are those for meconic acid and morphia above mentioned. In a case of suspected poisoning, the stomach and duodenum (cut into small pieces), with their contents, are to be digested in distilled water, and the solution filtered successively through a sieve, muslin, and paper. A little acetic acid added to the water coagulates any caseum, and is thought to facilitate the solution of the morphia. Its presence in large quantity is objectionable, on account of the red colour produced by the action of the acetates on the ferruginous salts: this resembles the colour developed with these salts by meconic acid.

a. Application of trial tests.—To a small portion of the filtered liquid apply the following tests:—

1. A few drops of tincture of chloride of iron, which produces a red colour (meconate of iron) in an opiate solution.
2. Apply excess of strong nitric acid, which also reddens (oxidizes? morphia) opiate liquors.
3. Add iodic acid and starch, and set aside for twenty-four hours. Blue iodide of starch is sometimes formed if morphia be present (unless, indeed, the quantity be very minute).—The fallacies of these tests have been already stated (see Morphia).

The success or failure of these tests is not to be considered as absolutely decisive as to the presence or absence of opium.

b. Separation of the Morphia and Meconic Acid.—Add to the filtered liquor a considerable excess of a solution of acetate of lead, and set aside in a tall vessel for the precipitate (meconate and sulphate of lead, with colouring matter) to subside, leaving a clear liquor (acetates of morphia and lead, &c.) Pour off the latter, and collect the precipitate on a filter. Before adding the acetate of lead, it may be sometimes necessary to evaporate the liquor, in a water-bath, to the consistence of syrup, which is to be digested and boiled in alcohol, and the alcoholic tincture evaporated, and the residuum dissolved in water. To the filtered solution add the acetate of lead. This complication of the process is not usually necessary. Furthermore, by boiling with water, meconic acid is decomposed.

The above-mentioned clear liquor and the lead-precipitate are then to be tested (the first for morphia, the second for meconic acid), as follows:—

Proceeding with the lead precipitate (meconate and sulphate of lead, and colouring matter).

Suspend the lead-precipitate in water contained in a conical glass, and pass a stream of sulphuretted hydrogen through it, to convert the lead into a sulpharet, which is to be removed by filtration. The clear liquor is then to be gently heated (to expel the excess of sulphuretted hydrogen), and, if necessary, concentrated, by evaporation. Or add a few drops of diluted sulphuric acid to the meconate of lead, by which an insoluble sulphate of lead is formed, and meconic acid held in solution. Boiling decomposes the meconic acid. The tests for meconic acid are then to be applied, viz.:—

a. Tincture of chloride of iron.

b. Ammoniacal sulphate of copper.

c. Chloride of gold.

d. Acetate of lead.

2. Proceeding with the clear liquor (solution of the acetates of morphia and lead).

Place the clear liquor in a conical glass, and pass through it a stream of sulphuretted hydrogen, to precipitate the lead, and then filter. Then boil the filtered liquor, and, if necessary, concentrate by evaporation. To the clear liquor apply the tests for morphia, viz.

a. Strong nitric acid in excess.

b. Iodic acid and starch (several hours may be necessary for the success of this test).

c. Tincture of chloride of iron (this test will only succeed with solid morphia, or very concentrated solutions).

d. Ammonia.

e. Infusion of nutgalls (this test will not answer if much free acid be in the liquor).

f. Chlorine, and afterwards ammonia.
Dr. Christison observes, that “it will often happen, in actual practice, that the only indication of opium to be procured by the process consists in the deep red colour struck by permuriate of iron with the meconic acid. Now, will this alone constitute sufficient proof of the presence of opium? On the whole, I am inclined to reply in the affirmative.” I regret I cannot agree with him in this conclusion, since several other substances produce the same colour, and three of these are very likely to be met with in the alimentary canal, namely the acetates (thus acetate of ammonia or acetate of potash administered medicinally,) mustard and saliva. [It is also to be remarked that the colour of the acetate of iron is not destroyed by a solution of corrosive sublimate.—Ed.] In regard to saliva, he remarks, “it is seldom possible to procure a distinct blood-red colouration from the saliva, except by evaporating a large quantity to dryness, and re-dissolving the residue in a small quantity of water; and I question whether it can be separated at all after the saliva is mixed with the complex contents of the stomach.” I am sorry again to be at issue with so high an authority, but our results being discordant, it is but right I should state my experience. In a large majority of cases, I find saliva is distinctly and unequivocally reddened by the persalts of iron. In some few cases only have I observed this test indistinct. I have several times obtained from the stomach of subjects in the dissecting-room a liquor which reddened the salts of iron.”

Estimation of the Purity and Strength of Opium.—Opium is brought into the market of very unequal degrees of purity, in consequence of its having been subjected to adulteration; and partly, perhaps, from the employment of different methods of preparation. Moreover, its consistence is by no means uniform; that of some kinds being quite soft (as the Patna and Benares), and of others quite hard (as some of the Egyptian opium). As this difference depends on the presence of unequal quantities of water, an obvious variation of strength is the consequence. Moreover, the quantity of morphia in good opium of different or even of the same localities is by no means constant. Furthermore, opium, from which the morphia has been extracted, has been fraudulently introduced into commerce. It is highly desirable, therefore, to have a ready, easy, accurate, and precise method of determining the purity and strength of opium. I regret to state that such a method is still a desideratum.

1. **Of the Estimation of the Water.**—This will be readily judged of by the consistence, but still better by observing the loss on drying a given weight of the opium at 212°.

2. **Of the Detection of Foreign Bodies.**—A physical examination of opium will frequently detect impurities (as leaves, bullets, stones, fruit, &c.) If a decoction of the suspected opium be made and strained, various foreign matters are left on the sieve. In this way I obtained 10 drachms of small stones and gravel from 10 ounces of opium. On another occasion I detected a gelatiniform substance, which was insoluble in both water and alcohol, in an opium (Egyptian?), the tincture of which could not be rendered clear by filtration. A decoction of opium, when cold, should not give a blue precipitate (iodide of starch) on the addition of tincture of iodine: if it do, the presence of starch or flour is obvious.

3. **Of the Estimation of the Quantity of Morphia in Opium.** (Morphiometry.)—This is a subject of no slight difficulty. A remark connected with it, which deserves notice, is, that there is no constant ratio between the quantity of morphia in a given sample of opium and that of any other constituent. Berthemot, however, is of opinion that it is in the ratio of that of the meconic acid. The correctness of this opinion is not borne out by my own observation, and was positively denied by Robiquet. It follows, therefore, that the extraction of the morphia is the only true morphimetrical method of proceeding. Several methods of effecting this have been proposed.

2. *Journ. de Pharm.* xxiv. 445
a. Process of the Edinburgh Pharmacopoeia.—"A solution of 100 grains, macerated 24 hours in two fluidounces of water, filtered, and strongly squeezed in a cloth, if precipitated by a cold solution of half an ounce of carbonate of soda in two waters, and heated till the precipitate shrinks and fuses, will yield a solid mass on cooling, which weighs, when dry, at least 11 grains, and, if pulverised, dissolves entirely in solution of oxalic acid."—Ph. Ed. 1839. This is a modification of the process for procuring disulphate of quina, and of estimating the quality of yellow bark. The fused mass obtained by the process is morphia, narcotine, and resinosus extractive. From the trials I have made of this process, I am inclined to speak very doubtfully of its value. Morphia is soluble in a solution of carbonate of soda, and, therefore, variations in the degree of heat applied to the liquor, as well as in the time during which it is subjected to heat, will be attended with corresponding variations in the results. Nay, if the heat be maintained too long, the whole of the morphia will be dissolved! Hence, therefore, to prove successful, this process requires more precautions than the directions of the College would lead one to imagine.

β. Thiboumarf's process.—Prepare an aqueous extract of the opium to be examined, and dissolve it in water. Add ammonia to the boiling liquor, [taking care not to add much excess] and, when cool, filter. Wash the precipitate on the filter first with cold water, then with proof spirit, and afterwards dry it. Then boil it with animal charcoal in rectified spirit, and evaporate the filtered liquor, by which crystals of morphia are procured. 1 The following modifications of the process will be found valuable. After the precipitate on the filter has been washed with water, dry it, mix it with proof spirit, and add drop by drop acetic acid until the solution slightly reddens litmus. By this means the morphia, and not the narcotina, will be dissolved. Precipitate the morphia from the filtered solution by ammonia. This perhaps is the best process for determining the goodness of opium at present known.

γ. Berthemot's process.—To a filtered infusion of opium add chloride of calcium, boil, filter (to get rid of the meconate and sulphate of lime), and evaporate to the consistence of syrup. The residuum should form a granular crystalline mass (principally hydrochlorate of morphia), which is to be separated from the mother-water, and purified by re-solution in water. 2 This is an application of Gregory's process, hereafter to be described. It appears to be an objectionable method, as a considerable portion of the morphia will be left in the mother-liquor.

δ. Couerbe's process.—Boil an infusion of opium with lime (which dissolves the morphia) and filter through paper. Saturate the filtered liquor with an acid, and precipitate the morphia by ammonia. This, perhaps, is the most speedy process for the detection of opium.

[As a summary of the characters of good opium we subjoin the following paragraph, which we find among the author's notes:—

1. Treated with cold water it ought to completely divide itself. The extractive matter should be dissolved, and the resinoid matter should be separated.
2. The liquor, which is at first turbid, should become clear by repose, and assume a more or less deep brown colour.
 a. It should give a wine red colour with perversals of iron (meconic acid).
 b. It should give a whitish precipitate with chloride of calcium by the aid of heat (meconate and sulphate of lime). The supernatant liquor, filtered and concentrated by evaporation, should deposit crystals of muriate of morphia.
 c. It should give with ammonia dropped into the boiling liquor, a precipitate, especially after cooling, consisting of coloured morphia mixed with resin, narcotine, and a little meconate of lime.

Some of the peculiar ingredients of opium are not discoverable in the infusion or decoction; such as narcotina, codeia, meconine, narcine, and thebaina.—Ed.]

Physiological Effects. a. On Vegetables.—The effects of opium on

1 Journ. de Chim. Méd, iv. 405, 2e Sér.
2 Journ. de Pharm. xxiv. 448.
plants have been principally examined by Marcet\(^1\) and Macaire.\(^2\) The latter writer states, that the stamens of the barberry (*Berberis vulgaris*) and the leaves of the sensitive plant lost their contractility, and soon died, when the stems of these vegetables were immersed in an aqueous solution of opium. But I have tried this experiment with a different result. I immersed a flowering stem of the barberry in water, to which the tincture of opium had been added. In thirty hours I could not perceive any effect on the plant. The stamens, even in the overblown flowers, still retained their contractility. Charvet states that he watered a sensitive plant with a moderately strong infusion of opium forty-eight days, without affecting the irritability of the plant. By immersing a portion of Chara in a solution of opium, the circulation of this plant becomes slower, is soon suspended, and is ultimately stopped.\(^3\)

3. On Animals generally.—The operation of opium on animals has repeatedly been the subject of physiological investigation. An abstract of a considerable number of experiments made by various individuals has been published by Wibmer.\(^4\) The most complete and extended series of experiments is that made by Charvet,\(^5\) on the different classes of animals, for the purpose of determining its comparative action. While on all it has been found to act as a poison, its effects are observed to vary somewhat, according to the degree of development of the nervous system.

In the invertebrated animals opium causes weakness or paralysis of the contractile tissues, with gradual sinking, and death. Thus in the *polygastricia* and the annelides, it first accelerates the animal movements, but afterwards paralyses them. Now in the lower invertebrata, a central nervous apparatus is altogether wanting; while in the higher animals of this class it is not sufficiently developed to exercise that influence over the whole individual which we observe it to possess in the vertebrated classes.

In the vertebrated animals we have a high development of the central organs of the nervous system, and a consequent increase in the number of symptoms caused by opium. Thus in *fishes*, *amphibials*, and *reptiles*, we observe, in addition to the weakened and paralytic condition of the contractile tissues, convulsions. In fish, the convulsive contractions bend the body laterally; whereas, in the other vertebrata, the superior dorsal muscles are affected, and hence the head and tail are elevated. These differences obviously depend on the disposition of the muscles. Proceeding in the ascending order, we observe in *birds* and *mammals*, besides the paralysis and convulsions, stupor. The last-mentioned symptom, however, is principally manifested in the highest of the mammals, man,—that is, in that animal which has the most highly developed brain, while, in some of the lower mammals, as the ruminants, it is scarcely observed; and even in the carnivora, as dogs, it is very slight. It is somewhat remarkable that the stupor is more manifest in birds than in the lower mammals. Moreover, it is not undeserving of notice, that the operation of opium on the different races of

\(^1\) *Ann. de Chim. et Phys.* xxix. 20.

\(^5\) *De l’Action comp. de l’Opium*, Paris, 1826.
man is not uniform. On the negro, the Malay, and the Javanese, it more frequently acts as an excitant, causing furious madness, or delirium and convulsions. Are we to ascribe the less frequent occurrence of these symptoms in the Caucasian variety to the greater development of his brain? In conclusion, then, it appears that the effects of opium on the animal kingdom have a relation to the degree of development and influence of the nervous system.

γ. On Man.—I propose to examine the effects of opium under three heads or subdivisions:—first, the effects of one or a few doses employed medicinally; secondly, the effects of the habitual employment of opium, either by chewing or smoking it; and thirdly, its effects on the different systems of organs.

1. Effects of one or a few doses.—We may consider these under three degrees of operation.

First degree of operation.—In small doses, as from a quarter of a grain to one grain, opium generally acts as a stimulant, though in this respect the symptoms are not uniform. Usually the vascular system is somewhat excited, and a sensation of fulness is experienced about the head. Dr. Crumpe took one grain of opium when his pulse was at 70, and the alteration in the number of beats was as follows:

<table>
<thead>
<tr>
<th>In</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60 minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse beat 70</td>
<td>74</td>
<td>76</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>72</td>
<td>72</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

The excitement in the cerebral vascular system is accompanied by alterations in the condition of the nervous functions. The mind is usually exhilarated; the ideas flow more quickly; a pleasurable or comfortable condition of the whole system is experienced, difficult to describe; there is a capability of greater exertion than usual. These symptoms are followed by a diminution of muscular power, and of susceptiblity to the impression of external objects; a desire of repose is experienced, with a tendency to sleep. While these effects are taking place, the mouth and throat become dry, and hunger is diminished, though the thirst is increased; and slight constipation usually follows. Such are the ordinary effects of a small dose of opium on persons unaccustomed to its use. By repetition, however, its influence becomes considerably diminished; and those, therefore, who resort to it for the purpose of producing a pleasurable excitement, are obliged to augment the dose to keep up an equal effect.

Second degree of operation.—Given in a full medicinal dose (as from two to four grains), the stage of excitement is soon followed by that of depression. The pulse, which at first is increased in fulness and frequency, is afterwards reduced below the natural standard. The effect of two grains and a half on Dr. Crumpe (when his pulse was beating at 70) was as follows:—

<table>
<thead>
<tr>
<th>In</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>75</th>
<th>90 minutes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse beat 74</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>76</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>72</td>
<td>70</td>
<td>64</td>
<td>64</td>
<td>66</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

1. *Inq. into the Nat. and Prop. of Opium*, p. 33, 1793.
The skin becomes hot; the mouth and throat dry; the appetite diminished; the thirst increased; and frequently nausea, or even vomiting, is induced. The symptoms of excitement soon pass away, and a state of torpor succeeds: the individual seems indisposed to exertion; the muscular system appears enfeebled; the force of external impressions on the organs of the senses is diminished; and the ideas become confused. This state is followed by an almost irresistible desire of sleep, which is frequently attended by dreams—sometimes of a pleasing, at others of a rightful nature. These effects are usually succeeded by constipation (which may continue for several days), by nausea, furred tongue, headache, and listlessness.

Third degree of operation: poisonous effects of opium.—Dr. Christison has so briefly summed up the effects of a poisonous dose of opium, that I cannot do better than quote his statement:—"The symptoms of poisoning with opium, when it is administered at once in a dangerous dose, begin with giddiness and stupor, generally without any previous stimulus. The stupor rapidly increasing, the person becomes motionless and insensible to external impressions; he breathes very slowly, generally lies quite still, with his eyes shut and the pupils contracted; and the whole expression of the countenance is that of deep and perfect repose. As the poisoning advances, the features become ghastly, the pulse feeble and imperceptible, the muscles exceedingly relaxed, and, unless assistance is speedily procured, death ensues. If the person recovers, the sopor is succeeded by prolonged sleep, which commonly ends in twenty-four or thirty-six hours, and is followed by nausea, vomiting, giddiness, and loathing of food."

2. Habitual use of Opium.—Of those who habitually employ opium as an intoxicant, some chew, or eat it; others smoke it.

Opium-eating.—The ill-effects of opium-eating have been described by most travellers in Turkey and Persia, where this practice is carried to a greater extent than in any other part of the world. In the writings of Dr. Russell,1 Chardin,2 the Baron de Tott,3 Pouqueville,4 and Madden,5 will be found notices of these effects. The following extract is from one of the latest accounts, that of Dr. Oppenheim:6

"The causes leading to the use of opium are many, and among them may be reckoned the following:—long-continued diarrhoea, as a remedy for which opium is used in the first instance, and its use afterwards continued from habit; chronic coughs, in which opium is also used as a popular remedy; habitual drunkards also frequently have recourse to opium as a new stimulus, after they have abjured wine in some fit of repentance. Persons holding high offices or dignities in the state have also recourse to opium, when the preservation of their character forbids them the use of wine: some very strict believers also take opium as a restorative in cases of great exertion, as the Tartars (couriers), who travel with astonishing celerity. Opium-eaters generally begin with doses of from half a grain to two grains, and gradually increase the quantity till it amounts to two drachms and sometimes more a day: they usually take the opium in pills, but avoid drinking any water after having swallowed them, as this is said to produce violent colic: to make it

1 Nat. Hist. of Aleppo, i. 126, 1794.
2 Voy. en Perse et autres Lieux de l'Orient.
3 Mém. sur les Turcs et les Tart. 1785.
5 Travels in Turkey, &c. vol. i. p. 23, 1829.
more palatable, it is sometimes mixed with syrups or thickened juices; but in this form it is less intoxicating, and resembles mead; it is then taken with a spoon, or is dried in small cakes with the words 'Mash Allah,' 'the work of God,' imprinted on them. The effect of the opium manifests itself one or two hours after it has been taken, and lasts for five or six hours, according to the dose taken and the idiosyncrasy of the subject. In persons accustomed to take it, it produces a high degree of animation, which the Theriaki (opium-eaters) represent as the acme of happiness.

"The habitual opium eater is instantly recognised by his appearance. A total attenuation of body, a withered, yellow countenance, a lame gait, a bending of the spine, frequently to such a degree as to assume a circular form, and glossy, deep-sunken eyes, betray him at the first glance. The digestive organs are in the highest degree disturbed, the sufferer eats scarcely anything, and has hardly one evacuation in a week: his mental and bodily powers are destroyed.—he is impotent. By degrees, as the habit becomes more confirmed, his strength continues decreasing, the craving for the stimulus becomes even greater, and, to produce the desired effect, the dose must constantly be augmented. When the dose of two or three draehms a day no longer produces the beatific intoxication so eagerly sought by the Opiophagi, they mix the opium with [corrosive] sublimate, increasing the quantity till it reaches to ten grains a day; it then acts as a stimulant. After long indulgence the opium-eater becomes subject to nervous or neuralgic pains, to which opium itself brings no relief. These people seldom attain the age of forty, if they have begun to use opium at an early age. The fasts in the month of Ramsan are for them fraught with the most dreadful tortures, as during the whole of that month they are not allowed to take any thing during the day. It is said that, to assuage their sufferings, they swallow before the morning prayer, besides the usual dose, a certain number of other doses, each wrapped up in its particular paper, having previously calculated the time when each envelope shall be unfolded, and allow the pill to produce the effects of their usual allowance. When this baneful habit has become confirmed, it is almost impossible to break it off; the torments of the opium-eater, when deprived of this stimulant, are as dreadful as his bliss is complete when he has taken it; to him night brings the torments of hell, day the bliss of paradise. Those who do make the attempt to discontinue the use of opium, usually mix it with wax, and daily diminishing the quantity of the opium, the pill at last contains nothing but wax."

For an account of the effects produced on English opium-eaters I may refer to the well-known confessions of Mr. De Quincey" and of the late Mr. S. T. Coleridge. Numerous instances of the enormous quantities of opium which, by habit, may be taken with impunity, have been published. Dr. Chapman tells us that he knew a wine-glassful of laudanum to be given several times in the twenty-four hours. "But what is still more extraordinary," says this author, "in a case of cancer of the uterus, which was under the care of two highly respectable physicians (Drs. Monges and La Roche) of Philadelphia, the quantity of laudanum was gradually increased to three pints, besides a considerable quantity of solid opium in the same period." Pinel mentions a lady who required 120 grains of opium to give her ease in cancer of the uterus.

Some doubt has been entertained as to the alleged injurious effects of opium-eating on the health, and its tendency to shorten life; and it must be confessed that in several known cases which have occurred in this country no ill effects have been observable. Dr. Christison has given abstracts of eleven cases, the general result of whose histories "would rather tend to

1 Confessions of an English Opium-eater.
3 Elem. of Therap, ii. 199.
4 Treat. on Poisons.
throw doubt over the popular opinion." A few years ago, a Life-Assurance Company, acting on this general opinion, resisted payment of a sum of money, on the ground that the insurer (the late Earl of Mar) had concealed from them a habit which tends to shorten life. But the case was ultimately compromised. Dr. Burnes1 asserts that the natives of Cutch do not suffer much from opium-eating.

In those cases of disease (usually cancerous) in which enormous doses of opium are taken to alleviate pain, I have usually observed constipation produced; but Dr. Christison says, "constipation is by no means a general effect of the continued use of opium. In some of the cases mentioned above, no laxatives have been required; in others, a gentle laxative once a week is sufficient."

In 1841 an opium-eater aged 26, was admitted into the London Hospital. He was accustomed to take two or three and a half drachms of solid opium daily. He originally began its use to relieve the attacks of angina pectoris. He was now most anxious to leave off this habit; though the difficulty of doing so was extreme. It did not diminish, but, according to his assertion, augmented his appetite; for, after each dose, he ate voraciously. At first when he commenced its use it caused dryness of the mouth and throat and constipation, but latterly his bowels were regular as before he commenced the use of this drug. His pulse ranged from 88 to 96. His urine was somewhat less than natural. The condition of his skin varied; in general it was dry, but occasionally was covered with profuse perspiration. He described the effect of the opium on his mental faculties as those of calmness, comfort, and serenity. Under its use he was able to support great bodily and mental fatigue. He never experienced the exhilarating and pleasurable sensations described by De Quincey. His feelings, when not under the influence of opium, were most distressing. Mr. Davies (an intelligent pupil) described his condition at this time as follows:—eyes hollow, dark, and sunken; features haggard; hands trembling; voice and manner anxious; mouth parched; appetite wanting; sleeplessness. Unable to sleep for want of his accustomed dose, he used to pace the ward of the hospital at night almost frantic, though quite sensible of his miserable condition, and anxious to abandon the practice.

[There is great reason to believe that the practice of opium-eating is very common in this country among the lower as well as the middle classes. The consumption of opium is very great, and wholly disproportioned to the quantity required for medicinal purposes. From an official report just published (July 1853) it appears that during the last five months the enormous quantity of 63,354 lb. of opium have been imported into this country; the quantity for the last month was 9,699 lb.—Ed.]

Opium-smoking.—I have already referred to the enormous quantities of opium consumed in China and the islands of the Indian Archipelago by smoking. The smokeable extract, called chandoo, is made into pills about the size of a pea. "One of these being put into the small tube that projects from the side of the opium-pipe, that tube is applied to a lamp, and the pill being lighted, is consumed at one whiff or inflation of the lungs, attended with a whistling noise. The smoke is never emitted by the mouth, but usually receives vent through the nostrils, and sometimes, by adepts, through the passage of the ears and eyes."2 The residue in the pipe is called Tyechoandoo, or facial opium, and is used by poor persons and servants.

1 Sketch of Hist. of Cutch, p. 9, Edinb. 1839.
2 Marsden, Hist. of Sumatra, 3rd ed. p. 278.
The mode of using the pipe has been depicted by Mr. Davies. Some details respecting the mode of smoking opium have been given by Dr. Hill.

In the first edition of this work I stated that though the immoderate practice of opium-smoking must be highly detrimental to health, yet that I believed the statements of Medhurst and others applied to cases in which this practice was carried to excess; and I observed that an account of the effects of opium-smoking by an unbiassed and professional witness was a desideratum. My opinion was founded on the statements of Botta and Marsden. The latter, a most accurate writer, observes that "the Limn and Batang Assei gold-traders, who are an active and laborious class of men, but yet indulge as freely in opium as any others whatever, are, notwithstanding, the most healthy and vigorous people to be met with on the island." This desideratum has been recently supplied by Mr. Smith, surgeon, of Pulo Penang, whose statements fully confirm my opinion. For though the practice is most destructive to those who live in poverty and distress, and who carry it to excess, yet it does not appear that the Chinese, in easy circumstances, and who have the comforts of life about them, are materially affected, in respect to longevity, by the private addiction to this vice. "There are many persons," observes Mr. Smith, "within my own observation, who have attained the age of sixty, seventy, or more, and who are well known as habitual opium-smokers for more than thirty years past."

The first effect of this drug on the Chinese smokers is to render them more loquacious and animated. Gradually the conversation drops, laughter is occasionally produced by the most trifling causes, and to these effects succeed vacancy of countenance, pallor, shrinking of the features, so that the smokers resemble people convalescing from fever, followed by deep sleep for half an hour to three or four hours. An inordinate quantity causes headache, vertigo, and nausea. The Malays are rendered outrageous and quarrelsome by the opium-pipe.

It is extremely difficult to discontinue the vice of opium-smoking, yet there are many instances of its being done. The continuance of this destructive practice deteriorates the physical constitution and moral character of the individual, especially among the lower classes. Its powerful effects on the system are manifested by stupor, forgetfulness, deterioration of the mental faculties, emaciation, debility, sallow complexion, lividity of lips and eyelids, languor and laeklustre of the eye, appetite either destroyed or depraved, sweetmeats or sugar-cane being the articles that are most relished. "In the morning these creatures have a most wretched appearance, evincing no symptoms of being refreshed or invigorated by sleep, however profound. There is a remarkable dryness or burning in the throat, which urges them to repeat the opium-smoking. If the dose be not taken at the usual time, there is great prostration, vertigo, torpor, discharge of water from the eyes, and in some an involuntary discharge of semen, even when wide awake. If the

2 The Times newspaper for Dec. 3rd, 1841.
3 China, 1838.
4 Froriep's Notizen, xxvi.
5 Op. supra cit. p. 278.
6 Lancet, February 19, 1842.
privation be complete, a still more formidable train of phenomena takes place. Coldness is felt over the whole body, with aching pains in all parts. Diarrhoea occurs; the most horrid feelings of wretchedness come on; and, if the poison be withhold, death terminates the victim's existence." The offspring of opium-smokers are weak, stunted, and decrepit.

[Dr. Eatwell's paper on opium contains some remarks on the subject of opium-smoking, which we here subjoin.—Ed.]

"It has been too much the practice with narrators who have treated on the subject, to content themselves with drawing the sad picture of the confirmed opium debauchee, plunged in the last state of moral and physical exhaustion, and having formed the premises of their argument of this exception, to proceed at once to involve the whole practice in one sweeping condemnation. But this is not the way in which the subject can be treated; as rational would it be to paint the horrors of delirium tremens, and upon that evidence to condemn at once the entire use of alcoholic liquors. The question for determination is not what are the effects of opium used to excess, but what are its effects on the moral and physical constitution of the mass of the individuals who use it habitually, and in moderation, either as a stimulant, to sustain the frame under fatigue, or as a restorative and sedative after labour, bodily or mental. Having passed three years in China, I may be allowed to state the results of my observation, and I can affirm thus far, that the effects of the abuse of the drug do not come very frequently under observation, and that when cases do occur the habit is very frequently found to have been induced by the presence of some painful chronic disease, to escape from the sufferings of which the patient has fled to this resource. That this is not always the case, however, I am perfectly ready to admit, and there are, doubtless, many who indulge in the habit to a pernicious extent, led by the same morbid impulses which induce men to become drunkards in even the most civilised countries; but these cases do not at all events come before the public eye. It requires no laborious research in civilised England to discover evidences of the pernicious effects of the abuse of alcoholic liquors; our open and thronged gin palaces, and our streets, afford abundant testimony on the subject; but in China this open evidence of the evil effects of opium is at least wanting. As regards the effects of the habitual use of the drug on the mass of the people, I must affirm that no injurious results are visible. The people generally are a muscular and well-formed race, the labouring portion being capable of great and prolonged exertion under a fierce sun, in an unhealthy climate. Their disposition is cheerful and peaceable, and quarrels and brawls are rarely heard amongst even the lower orders; whilst in general intelligence they rank deservedly high amongst orientals. Proofs are still wanting to show that the moderate use of opium produces more pernicious effects upon the constitution than does the moderate use of spirituous liquors, whilst at the same time it is certain that the consequences of the abuse of the former are less appalling in their effect upon the victim, and less disastrous to society at large, than are the consequences of the abuse of the latter. Compare the furious madman, the subject of delirium tremens, with the prostrate debauchee, the victim of opium; the violent drunkard with the dreaming sensualist intoxicated with opium; the latter is at least harmless to all except to his wretched self, whilst the former is but too frequently a dangerous nuisance, and an openly bad example to the community at large."

4. Action of Opium on the different organs.—In discussing this subject, it will be convenient to consider the organs arranged in groups or systems devoted to some common functions.

a. On the Cerebro-spinal System.—Taken in small or moderate doses, opium first produces excitement of the vascular system of the brain, accompanied with corresponding excitement in the cerebro-spinal functions, as already stated. This state, however, is succeeded by that of depression. The effect of opium-eating and opium-smoking on the intellectual faculties has been already described. In large or poisonous doses the leading symptom is sopor; that is, a state analogous to profound sleep, from which the patient can be roused, though with difficulty. In the latter stage of poison-
White Poppy:—Physiological Effects of Opium.

...ing this symptom is succeeded by coma—that is, profound sleep, from which the patient cannot be roused. Sopor is usually accompanied either with actual paralysis of the muscular fibres, or with a diminished power almost amounting to it; both of which states doubtless arise from the same condition of the cerebro-spinal system which produces sopor or coma. This state is usually supposed to be sanguineous (venous) congestion. The pupil is usually contracted,—a circumstance deserving of especial notice. In some cases there is delirium in the place of sopor or coma, and convulsions instead of paralysis. These are to be regarded as exceptions to the general rule, and are accounted for, pathologically, by supposing that they depend on a state of irritation or excitement set up in the nervous centres, and which usually, though not invariably, terminates in congestion. Another effect of opium is diminished sensibility. Thus the whole body becomes less susceptible of painful impressions; in dangerous and fatal cases, the eyes are insensible to light,—the ears to sound. This state has been accounted for by supposing that the functions of the sensitive nerves are diminished or suspended by the congested condition of the brain.

From these effects of opium on the cerebro-spinal system the following inferences may be drawn:—

1. That it is an objectionable agent in apoplexy, phrenitis, and paralysis.

2. That under proper regulations it is a remedy which may be used to stimulate the cerebro-vascular system, to promote sleep, to diminish inordinate muscular contraction, to diminish the sensibility of the body, and thereby to alleviate pain.

b. On the Digestive System.—The usual effects of opium on the organs of digestion are the following:—It diminishes secretion and exhalation from the whole canal; thus it causes dryness of the mouth and throat, and diminishes the liquidity of the stools: it excites thirst, lessens hunger, checks the digestive process (for in some animals poisoned by opium, food which they had taken previously has been found in the stomach unchanged); and in some cases it excites vomiting. Mr. Kerr tells us, that in the famine which prevailed in the East Indies in the year 1770, opium was purchased by the unhappy sufferers, at extraordinary prices, to allay the cravings of hunger, and to banish the dreadful prospect of death. The Tartar couriers, who travel immense distances in a short period of time, take opium only during the journey, to support them. It diminishes the sensibility and contractility of the digestive organs: hence the difficulty, in severe cases of poisoning, of producing vomiting. The constipation which follows the use of opium depends partly on the same cause, and in part also on the diminished excretion of bile, and diminished secretion from the gastro-intestinal mucous membrane. Sproegel found the choledic ducts of animals, to which opium had been given, filled with bile; yet it had not passed into the intestines, for

¹ [We subjoin a note by the author in reference to the contra-indications for the use of opium in certain forms of hysteria.—Ed.] I have seen, in two cases, serious effects follow the use of small doses of opium in hysteria. Both patients were females at or about the age of twenty, weak and thin, and subject to hysteria. In the first there was insensitivity apparently of an hysterical kind. The patient had several fits. On her recovery from these she complained of headache, and there was great irritability. Only one grain of opium was administered, but this caused sopor and death.

³ Quoted by Christen, Opium hist. chem. and pharm. inv. p. 66, 1820.
the faeces were scarcely tinged by it, but had the same appearance which we observe them to have in jaundiced patients.

From these effects of opium on the digestive organs, we may draw the following inferences:

1. That in diminished secretion from the gastro-intestinal membrane, in extreme thirst, in loss of appetite and weak digestion, in obstinate costiveness, and in diminished excretion of bile, opium is an objectionable remedy.

2. That under proper regulations opium is an admissible remedy for the following purposes:—To diminish excessive hunger; to allay pain, when unaccompanied by inflammation; to diminish the sensibility of the digestive organs, in cases of acrid poisoning, and in the passage of biliary calculi; to produce relaxation of the muscular fibres of the alimentary canal (in colic and diarrhoea), and of the gall ducts (in the passage of calculi), and to diminish excessive secretion from the intestinal canal, in diarrhoea.

By continued use (as by opium-eaters) this drug frequently ceases to cause dryness of the mouth, to pall the appetite, or to confine the bowels, as I have already mentioned.

γ. On the Vascular System.—Opium certainly influences the movements of the heart and arteries; but the effect is by no means uniform, since in some cases we see the pulse increased, in others diminished in frequency; and a like variation is noticed in its fullness. Moreover, these variations occur in the same case at different stages. From Dr. Crumpe’s experiments, before referred to, it appears that, after the use of a moderate dose of opium, the frequency of the pulse is first increased, then decreased. The diameter of the artery, and the force and regularity with which the pulsations are effected, are properties of the pulse, readily, but by no means uniformly, affected by opium. To a certain extent we perceive a relation between the condition of the pulse and that of the cerebro-spinal functions. Thus, when convulsions occur, we usually have a hurried pulse,—whereas, when sopor or coma supervenes, the pulse becomes weaker or slower, or both, than natural. But these conditions are by no means uniform. A frequent pulse, with a feverish condition of the body, are common consequences of the use of small or moderate doses of opium; and in poisoning by this drug, a quick pulse, even though no convulsive movements are observed, is by no means rare. A poisonous dose of opium usually enfeebles the pulse, sometimes makes it fuller, often renders it irregular, and towards death always renders it feble, and often imperceptible. We can easily believe that the muscular fibres of the heart must experience, from the use of a large dose of opium, a diminution of power in common with other muscular fibres, and hence the contractions become weaker. It is also probable that the contractile coat of the arteries and capillaries equally suffers. Now Wirtensohn¹ supposes that the fullness of the pulse sometimes observed in poisoning by opium, arises from the insufficient power of the heart to propel the blood through this paralysed or weakened capillary system. The accumulation of blood observed in the large venous trunks and cavities of the right side of the heart is supposed to arise from the obstruction experienced to its passage through the pulmonary vessels.

In attempting to lay down indications and contraindications for the use of opium as a remedy for morbid conditions of the circulation, two difficulties present themselves:—

¹ Quoted by Barbier, Traité Elém. de Mat. Méd. t. ii. 2me éd.
White Poppy:—Physiological Effects.

first, the same condition of the vascular system may be induced by various and even opposite causes, for some of which opium may be an appropriate remedy, while for others it may prove an injurious agent; secondly, the effects of opium on the circulation are not uniform, and hence not to be relied on. The following conclusions, therefore, are submitted with considerable hesitation as to the universality of their application:

1. That in increased activity of the vascular system with considerable power, or with diminished secretions and exhalations, and in morbid conditions of the vascular system with a tendency to sopor or coma, opium is an objectionable remedy.

2. That in vascular excitement with great diminution of power, as after hemorrhage, and in various morbid conditions of the pulse attended with acute pain, spasm, or profuse secretion and exhalation, but without visceral inflammation, opium often proves a serviceable agent.

3. On the Respiratory System.—In studying the effects of opium on the respiration, we must remember that the mechanical part of this function is effected by muscular agency; and as the contractility of the muscular fibre is powerfully influenced by opium, so the respiratory movements are also necessarily modified. Occasionally the primary effect is a slight increase in their frequency; but the secondary effect is almost always of an opposite kind, the respiration being slower than usual; and when coma is present, the breathing is usually gentle, so as scarcely to be perceived; but in some cases it is stertorous. In fact, a paralytic condition of the respiratory muscles takes place, in consequence of which inspiration becomes gradually more and more difficult, until eventually asphyxia is induced, which is usually the immediate cause of death. Another effect ascribed to opium is, that it checks the arterialization of the blood, by diminishing the supply of nervous agency, without which the decarbonization or oxygenization of this fluid cannot take place. It is difficult, however, to distinguish the consequences of this effect from those of asphyxia produced by paralysis of the respiratory muscles.

The third point of view under which we have to examine the influence of opium on the respiratory system is, its effect on the membrane lining the trachea and bronchial tubes and cells. In the first place, it diminishes the sensibility of this, in common with other parts of the body; and, secondly, it checks exhalation and mucous secretion.

A knowledge of these effects of opium on the organs of respiration leads to the following conclusions:—

1. That this agent is contra-indicated in difficulty of breathing arising from a deficient supply of nervous energy, as in apoplectic cases; that it is improper where the venous is imperfectly converted into arterial blood; and, lastly, that it is improper in the first stage of catarrh and peripneumony, both from its checking secretion, and from its influence over the process of arterialization.

2. That in cases of poisoning by opium, artificial respiration is indicated to prevent asphyxia.

3. That opium may, under proper regulations, be useful to diminish the contractility of the muscles of respiration, or of the muscular fibres of the air-tubes, as in spasmodic asthma; to diminish the sensibility of the bronchia, in the second stage of catarrh, and thereby to allay cough by lessening the influence of the cold air; and lastly, to counteract excessive bronchial secretion.

4. On the Urinary System.—Authors are not agreed as to the effect of opium on the kidneys; some asserting that it increases, others that it diminishes, the quantity of urine secreted. Thus, Dr. Michaelis\(^1\) asserts, that in

\(^1\) Med. Comm. i. p. 307, 1784.
giving opium in venereal cases, he has sometimes found the secretion of urine exceeding in quantity all the fluids drank. It cannot, however, be doubted, that in most cases a moderate quantity of opium diminishes the excretion, while at the same time it makes this fluid turbid and thick. This does not, however, prove that the kidneys are the parts affected. Sprægel\(^1\) tells us, that when he gave two scruples of opium to dogs, no urine was passed for two days; and, under the influence of two drachms of this medicine, the urine was retained for three days. But dissection showed that the kidneys had not ceased to secrete urine, since the bladder was found distended with this secretion, and its parietes without the least sign of contractility on the application of nitric acid; so that it would appear the non-evacuation of the urine was referable to the insensible and paralysed condition of the vesical coats, and not to the diminished urinary secretion. Charvet\(^2\) has also noticed in dogs, cats, and hares, that the urinary bladder was distended. As, however, in man opium usually increases the cutaneous exhalation, while in other mammals this effect was not observed, we must be careful in transferring our conclusions with respect to the influence of opium on one order of animals to another order. But I ought to add, that Welper, of Berlin, always found the bladder filled with urine both in man and animals. In some morbid conditions of system, opium certainly checks the urinary secretion. This is decidedly the case in diabetes.\(^3\)

The ureters and bladder have their sensibility and contractility diminished by opium. With respect to the effect on the first of these parts, the statement seems proved by the well-known beneficial influence of opium in cases where calculi are descending along these tubes. The acute pain is frequently relieved, and the ureters relaxed, so that large calculi are sometimes allowed to descend from the kidneys along them.

Besides the observations of Sprægel, before referred to, we have other evidence of the paralysing and benumbing effect of opium on the bladder. In some cases of poisoning by this substance the bladder has been found to be unable to contract on its contents. In some other instances the sphincter of the bladder has been paralysed, and in consequence the urine was voided involuntarily.\(^4\) Barbier has also noticed the same thing, and quotes the experience of Dr. Bally to the same effect. The effect of morphia on the bladder is more marked than that of opium.

These remarks on the effects of opium on the urinary organs lead to the following conclusions:

1. That in diminished sensibility or contractility, or both, of the ureters or bladder, the use of opium is objectionable.

2. That, under proper regulations, opium may be a valuable remedy to dull the sensibility of the pelvis of the kidney, in cases of renal calculi; to allay pain and produce relaxation of the ureters when calculi are passing along these tubes; and, lastly, to diminish irritation of the bladder, whether produced by cantharides or other causes.

\(^{\S}\) On the Sexual System. \textit{aa. Of Men.}—Opium has long been celebrated as an aphrodisiac; and we are told that the Japanese, Chinese,\

\(^1\) Cited by Christen, \textit{op. supra cit.} p. 68.

\(^2\) \textit{Op. supra cit.} p. 221.

\(^3\) Prout, \textit{Iq. into the Nat. and Treat. of Affect. of the Urin.} \textit{Org.} p. 74, 2nd ed.

Indians, Persians, Egyptians, and Turks, use it as such. Among other symptoms of excitement produced by the habitual use of large doses of opium, it is not improbable that there may be a heightened condition of the venereal feelings, in consequence of an increased determination of blood to that part of the brain supposed to be devoted to the sexual function, which part the phrenologists assert to be the cerebellum. Moreover it is said to produce erection; and in support of this statement the following strange story is told:—“Turcae ad Levenzinum, 1664, contra Comitem Lud. Souches pugnantes, opio exaltati, turpiter caset et octo mille numero occisi mentulas rigidas tulere.”1 Cabanis2 adopts this story, and ascribes the above-mentioned condition to the convulsive movements which affect the body in articulo mortis, and not to an aphrodisiac operation. The effect alluded to, if it really do take place, is probably to be referred to the accumulation of blood in the erectile tissues, arising from a disordered state of the circulation. Impotence is ascribed by some to opium-eating, and is a more probable effect. I am unacquainted with any facts on which to ground any well-founded opinion as to the power of opium to diminish or increase the spermatic secretion.

ββ. Of Women.—We have little positive information as to the effects of opium on the reproductive organs of women. It is said that the catamenia, lochia, and secretion of milk, are unaffected by it, but that it causes intumescence of the nipples. Under its use the milk acquires a narcotic property. Furthermore, at times it has appeared to have an injurious effect on the fetus in utero.3 Opium appears to act on the uterus as on most other contractile parts of the body; that is, it diminishes the contractility and sensibility of this viscus.

From these observations it follows:—

1. That wet nurses and pregnant women must employ opium with great caution, as its use by them may endanger the life of the child.
2. That opium may be employed to allay pain, spasm, and morbid irritation of the sexual organs in either sex; and that its use in the female is not likely to be attended with retention of the uterine or mammary secretions.
3. That the influence of opium on the venereal appetite is not sufficiently and satisfactorily determined to permit us to make any practical application of it.

η. On the Cutaneous System.—Considered as an organ of sense, the cutaneous system is affected by opium in an analogous way to the other organs of sense; that is, its sensibility is diminished. But the skin has another function—that of excretion, and which does not appear to be at all diminished, nay, to be increased, by the use of opium; one of the usual effects of this medicine being perspiration, which is in some cases attended with a prickling or itching of the skin, and occasionally with an eruption. In fact, taken medicinally, opium is a powerful sudorific, and often proves so even when acting as a poison. “In a fatal case, which I examined judicially,” says Dr. Christison, “the sheets were completely soaked to a considerable distance round the body.”

1 Christison, op. suprana cit. p. 53.
From these remarks it follows:—

1. That opium is not likely to relieve loss of feeling or excessive perspiration; but may, on the other hand, under some conditions of the system, prove injurious.

2. That opium is adapted to the relief of pain or excessive sensibility of the skin, and for provoking perspiration; but the propriety of its use for these purposes must be determined by reference to the condition of the system generally. Experience proves that when the skin is very hot, and especially if it be also dry, opium is seldom beneficial, but often hurtful.

6. Topical effects.—The local effects of opium are, compared with the general effects, very slight. Applied to the eye, the internal membrane of the nose, urethra, cutis vera, wounds or ulcers, it first causes pain, a sense of heat, and inflammation; but these effects subside, and are followed by a weakened or a paralytic condition of the sensitive and motor nerves. Several physiologists have proved that opium causes a local paralysis of the nerves; and Müller has shown that the narcotic action is not propagated from the trunk of a nerve to its branches. Crumpe showed, that, at the end of thirty minutes, the eye to which opium had been applied was somewhat less susceptible of the action of alcohol. Scarcely any obvious effect results from the application of opium to the ordinary integument, on account of the barrier presented by the cuticle. Employed eudermically the effects are much more powerful.

Post-mortem appearances.—The most important appearances are those observed in the nervous system; such as turgescence of vessels, effusion of water or of coagulable lymph, and occasionally, though rarely, extravasation of blood.

Whenever redness of the digestive canal is observed, I believe it is referable to the use of some irritants (such as spirits, ammonia, or emetics) taken either with, or after the use of, opium.

Modus operandi.—Under this head I propose to examine several points not hitherto noticed, which involve the theory of the operation of opium on the system.

1. The Odorous and Active Principles of Opium are absorbed.—This assertion is proved by the following facts:—

a. The odour of opium is sometimes recognisable in the secretions and exhalations: thus it is well known that the opiate odour is frequently detected in the breath of persons poisoned by this drug; and Barbier states, it may be also noticed in the urine and sweat.

β. The secretions, in some cases, appear to possess narcotic properties. Barbier mentions the case of an infant who was thrown into a state of narcotism of several hours' duration, in consequence of having sucked a nurse who had previously swallowed a dose of laudanum to relieve a cramp of the stomach.

γ. Barruel asserts that he detected morphia in the blood and urine of a person under the influence of a poisonous dose of laudanum. As, however, these results have not been obtained by Dublanc or Lsssaigne, the statement is not to be absolutely relied on.

1 Phys. by Baly, vol. i. p. 630.
2 Op. supra cit.
3 Tracté Elem. de Mat. Méd. ii. 732, 2de ed.
4 On one occasion I at first supposed that I had detected morphia and meconic acid in the urine of a man poisoned by opium; for both nitric acid and the sesquisalts of iron gave a red colour to this secretion. I have since found, however, that the urine of healthy individuals often yields the same results.
2. The Constitutional Effects of Opium depend in great part, if not wholly, on the absorption of its active principles.—The facts on which this assumption rests are:

a. The active principles of opium are absorbed.
b. The constitutional effects of it are found to be proportionate to the absorbing powers of the part.
c. The effect of opium, when thrown into the jugular vein, is similar to, though more powerful than, that produced by its application to other parts of the body.
d. "The narcotic action does not react from a particular point of a nerve on the brain."

3. The Essential and Primary Operation of Opium is on the Nervous System (the Brain and Spinal Cord chiefly).—This axiom is proved by reference to the already-described effects of opium. An examination of them shows that:

a. The most important effects of opium are direct and obvious lesions of the nervous functions.
b. The other effects of opium appear, for the most part, to be secondary,—that is, they arise out of the nervous lesions just referred to.

4. Opium acts on the Nervous System as an Alternative.—There are but three kinds of changes, compatible with life, which medicines can effect in the vital actions of an organ,—viz. an increase, a diminution, or an alter- ration of activity. A change in the intensity or energy merely of the vital actions of the nervous system, would not give a satisfactory explanation of the effects of opium. We are obliged, therefore, to assume that opium changes the quality of the actions. This is what is meant by the term alternative.

The inquiry into the nature and kind of influence exercised by opium over the system, presents an extensive field for speculation and hypothesis. Galen declared opium to be cold in the fourth degree, and his authority long prevailed in the schools. It was first opposed by the intro-chemists, who declared opium to be of a hot nature. Some, however, adopted a middle course, and asserted that it possessed both hot and cold particles. The intro-mechanists endeavoured to explain the operation of opium on mechanical principles. By some expansion, by others condensation, of the blood, was supposed to be produced by the mechanical properties of the opiate particles acting on the nerves. Dr. Cullen considered opium to be a sedative, and referred its effects to its power of "diminishing the mobility, and in a certain manner suspending the motion, of the nervous fluid." Several later writers, Barbier for example, also call opium a sedative. Brown declared it to be a stimulant, and his opinion has been adopted by Crumpe, Murray, and Dr. A. T. Thomson, in this country, and of course by the continental Brunonians, as well as by the partisans of the Italian theory of contra-stimulus. Fontana ascribed

1 Müller, Phys. by Baly, i. 631.
4 See Crumpe, op. supra cit. p. 91.
5 See an account of these opinions by Tralles, Usus Opis, Sect. 1, 1757.
6 Mat. Med. ii. 225.
7 Traité Elem. de Mat. Méd. ii. 2nde éd.
8 Elementa Medicinae.
10 Syst. of Mat. Med. and Therap. Edinb.
11 Elem. of Mat. and Therap.
13 Treat. on the Venom of the Viper, iii. 199.
the operation of opium to changes which it induces in the blood. Mayer\(^1\) declared opium to be both stimulant and sediment,—viz: stimulant to the nerves and vascular system, but sedative to the muscles and digestive organs. Lastly, Orfila\(^2\) asserts that "opium, employed in strong doses, ought not to be ranked among the narcotics or the stimulants; it exerts a peculiar mode of action which cannot be designated by any of the terms at this moment employed in the Materia Medica." These examples, selected out of many opinions, will be sufficient to prove how little is really known of the real action of opium; and I believe we shall save ourselves much time and useless speculation by at once confessing our ignorance on this point.

5. The operation of Opium, compared with that of other cerebro-spinants or narcotics, is distinguished by both positive and negative characteristics.—The symptoms constituting the positive characters, are relaxation or paralysis of the contractile tissues, a tendency to sleep or stupor, a contracted pupil, and constipation. The symptoms whose absence furnishes the negative characters, are tetanic convulsions, delirium or inebriation, dilated pupil, syncope, gastro-intestinal irritation, and topical numbness.

These are the general characteristics of the opiate medication. To some of them occasional, or perhaps frequent, exceptions exist.

I have already pointed out the distinguishing effects of hyoscyamus, belladonna, and stramonium. The topical numbness caused by aconite distinguishes its operation from that of opium. Moreover, in three cases of poisoning by this substance, which came under my notice, there was no stupor. Tobacco and foxglove enfeebles the vascular system, causing syncope; and they also produce gastro-intestinal irritation. Furthermore, they have not that tendency to induce sleep which we observe after the use of opium. The speedy operation, short period of influence, and, usually, the presence of convulsions, distinguish the operation of hydrocyanic acid. Indian hemp induces a cataleptic state.\(^3\) Vinous liquids cause their well-known peculiar inebriation. Their effects in small doses agree to a certain extent with those of small doses of opium; but they are not equally available as antispasmodics. The peculiarities of the operation of conia have been pointed out.

Uses.—Opium is undoubtedly the most important and valuable remedy of the whole Materia Medica. For other medicines we have one or more substitutes; but for opium, none,—at least in the large majority of cases in which its peculiar and beneficial influence is required. Its good effects are not, as is the case with some valuable medicines, remote and contingent, but they are immediate, direct, and obvious; and its operation is not attended with pain or discomfort. Furthermore, it is applied, and with the greatest success, to the relief of maladies of every day's occurrence, some of which are attended with the most acute human suffering. These circumstances, with others not necessary here to enumerate, conspire to give to opium an interest not possessed by any other article of the Materia Medica.

We employ it to fulfill various indications; some of which have been already noticed. Thus we exhibit it, under certain regulations, to mitigate pain, to allay spasm, to promote sleep, to relieve nervous restlessness, to produce perspiration, and to check profuse mucous discharges from the bronchial tubes and gastro-intestinal canal. But experience has proved its value in relieving some diseases in which not one of these indications can be at all times distinctly traced.

1 Quoted by Orfila, Toxicol. Générale.
2 Ibid.
3 See Dr. O'Shaughnessy, On the Prep. of the Indian Hemp. Cal. 1839.
1. In Fevers.—The consideration of the use of opium in fever presents peculiar difficulties. Though certain symptoms which occur in the course of this disease, are, under some circumstances, most advantageously treated by opium, yet, with one or more of these symptoms present, opium may, notwithstanding, be a very inappropriate remedy. The propriety or impropriety of its use, in such cases, must be determined by other circumstances, which, however, are exceedingly difficult to define and characterise. It should always be employed with great caution, giving it in small doses, and carefully watching its effects. The symptoms for which it has been resorted to are, watchfulness, great restlessness, delirium, tremor, and diarrhoea. When watchfulness and great restlessness are disproportionate, from first to last, to the disorder of the vascular system or of the constitution at large; or when these symptoms continue after excitement of the vascular system has been subdued by appropriate depletives, opium frequently proves a highly valuable remedy: nay, the safety of the patient often arises from its judicious employment.¹ The same remarks also apply to the employment of opium for the relief of delirium; but it may be added, that in patients who have been addicted to the use of spirituous liquors, the efficacy of opium in allaying delirium is greatest. Yet I have seen opium fail to relieve the delirium of fever, even when given apparently under favourable circumstances; and I have known opium restore the consciousness of a delirious patient, and yet the case has terminated fatally. If the skin be damp and the tongue moist, it rarely, I think, proves injurious. The absence, however, of these favourable conditions by no means precludes the employment of opium; but its efficacy is more doubtful. Dr. Holland² suggests that the condition of the pupil may serve as a guide in some doubtful cases;—where it is contracted, opium being contra-indicated. A similar suggestion with respect to the use of belladonna was made by Dr. Graves, to which I have offered some objections. When sopor or coma supervenes in fever, the use of opium generally proves injurious. Recently the combination of opium and emetic tartar has been strongly recommended in fever with much cerebral disturbance, by Dr. Law,³ and Dr. Graves.⁴

2. In Inflammatory Diseases.—Opium has long been regarded as an objectionable remedy in inflammation; but it is one we frequently resort to, either for the purpose of palliating particular symptoms, or even as a powerful auxiliary antiphlogistic remedy. The statement of Dr. Young,⁵ "that opium was improper in all those diseases in which bleeding was necessary," is, therefore, by no means correct in a very considerable number of instances. The objects for which opium is usually exhibited in inflammatory diseases are to mitigate excessive pain, to allay spasm, to relieve great restlessness, to check excessive secretion, and to act as an antiphlogistic. In employing it as an anodyne, we are to bear in mind that it is applicable to those cases only in which the pain is disproportionate to the local vascular excitement;

¹ See some interesting observations on this subject, by Dr. P. M. Latham, Lond. Med. Gaz. vol. x. pp. 11, 12.
⁴ Ibid. xx. 538.
⁵ Treatise on Opium, p. 169, Lond. 1755.
and even then it must be employed with considerable caution; for to "stupify the sensibility to pain, or to suspend any particular disorder of function, unless we can simultaneously lessen or remove the causes which create it, is often but to interpose a veil between our judgment and the impending danger." As an antiphlogistic, it is best given in conjunction with calomel, as recommended by Dr. R. Hamilton, of Lynn. The practice, however, does not prove equally successful in all forms of inflammation. It is best adapted for the disease when it affects membranous parts; and is much less beneficial in inflammation of the parenchymatous structure of organs. In gastritis and enteritis the use of opium has been strongly recommended by the late Dr. Armstrong. After bleeding the patient to syncope, a full opiate (as 80 or 100 drops of the tincture, or three grains of soft opium) is to be administered; and if the stomach reject it, we may give it by injection. It acts on the skin, induces quiet and refreshing sleep, and prevents what is called the hemorrhagic reaction. If the urgent symptoms return when the patient awakes, the same mode of treatment is to be followed, but combining calomel with the opium. A third venesection is seldom required. In peritonitis, the same plan of treatment is to be adopted; but warm moist applications are on no account to be omitted. Of the great value of opiates in puerperal fever abundant evidence has been adduced by Dr. Ferguson. In cystitis, opium, preceded and accompanied by blood-letting and the warm bath, is a valuable remedy; it relieves the scalding pain, by diminishing the sensibility of this viscus to the presence of the urine, and also counteracts the spasmodic contractions. In inflammation of the walls of the pelvis of the kidney, and also of the ureters, especially when brought on by the presence of a calculus, opium is a most valuable remedy; it diminishes the sensibility of these parts, and prevents spasm: furthermore, it relaxes the ureters, and thereby facilitates the passage of the calculus. In inflammation of the gall ducts, produced by calculus, opium is likewise serviceable; but, as in the last-mentioned case, blood-letting and the warm bath should be employed simultaneously with it. In inflammation of the mucous membranes, attended with increased secretion, opium is a most valuable remedy. Thus, in pulmonary catarrh, when the first stage of the disease has passed by, and the mucous secretion is fully established, opium is frequently very beneficial: it diminishes the sensibility of the bronchial membrane to cold air, and thereby prevents cough. In severe forms of the disease, blood-letting ought to be premised. Given at the commencement of the disease Dr. Holland says, that twenty or thirty drops of laudanum will often arrest it altogether. In diarrhoea, opium, in mild cases, is often sufficient of itself to cure the disease; it diminishes the increased muscular contractions and increased sensibility (thereby relieving pain), and at the same time checks excessive secretion. Aromatics and chalk arc advantageously combined with it. In violent cases blood-letting should precede

1 Holland, op. supra cit. p. 424.
3 See Brachet, De l'Emploi de l'Opium dans les Phlegm. des Membr. muq. ser. et fbr. 1828.
4 Transactions of the Association of Apothecaries, 1823.
5 Essays on the most Important Diseases of Women, Part i. 1839.
or accompany it. *Mild or English cholera*, the disease which has been so long known in this country, and which consists in irritation or inflammation of the mucous lining of the stomach, is generally most successfully treated by the use of opium: two or three doses will, in slight cases, be sufficient to effect a cure. When opium fails, the hydrocyanic acid is occasionally most effective. In *dysentery*, opium has been found very serviceable: it is best given in combination with either ipecacuanha or calomel. I have already stated that in inflammation of the parenchymatous tissues of organs the use of opium is less frequently beneficial, but often injurious. Thus in inflammation of the cerebral substance it is highly objectionable, since it increases the determination of blood to the head, and disposes to coma. In *peripneumonia* it is for the most part injurious; partly by its increasing the febrile symptoms, partly by its diminishing the bronchial secretion, and probably also, by retarding the arterialization of the blood, and thereby increasing the general disorder of system. It must be admitted, however, that there are circumstances under which its use, in this disease, is justifiable. Thus, in acute peripneumonia, when blood-letting has been carried as far as the safety of the patient will admit, but without the subsidence of the disease, I have seen the repeated use of opium and calomel of essential service. Again, in the advanced stages of pneumonic inflammation, when the difficulty of breathing has abated, opium is sometimes beneficially employed to allay painful cough, and produce sleep. In inflammation of the substance of the liver, opium is seldom beneficial: it checks the excretion, if not the secretion, of bile, and increases costiveness. In *rheumatism*, opium frequently evinces its happiest effects. In acute forms of the disease it is given in combination with calomel, as recommended by Dr. R. Hamilton,—blood-letting being usually premised. From half a grain to two grains of opium should be given at a dose. Dr. Hope recommends gr. vij. or gr. x. of calomel to be combined with each dose of opium. It is not necessary, or even proper, in ordinary cases, to affect the mouth by the calomel; though to this statement exceptions exist. The use of mercury may even, in some cases, be objectionable; and in such, Dover’s powder will be found the best form of exhibition. This plan of treatment is well adapted for the diffuse or fibrous form of acute rheumatism; but it does not prove equally successful in the synovial forms of the disease. It is also valuable in chronic rheumatism.

3. **In diseases of the Brain and Spinal Cord.** — In some cerebro-spinal diseases great benefit arises from the use of opium; while in other cases injury only can result from its employment. The latter effect is to be expected in inflammation of the brain, and in apoplectic cases. In other words, in those cerebral maladies obviously connected with, or dependent on, an excited condition of the vascular system of the brain, opium acts injuriously. But there are many disordered conditions of the cerebro-spinal functions, the intensity of which bears no proportion to that of the derangement of the vascular system of the brain; and there are other deviations from the healthy functions in which no change in the cerebral circulation can be detected. In these cases opium or morphia frequently evinces its

best effects. In insanity its value has been properly insisted on by Dr. Seymour. He, as well as Messrs. Beverley and Phillips, employed the acetate of morphia. Its good effects were manifested rather in the low, desponding, or melancholic forms of the disease, than in the excited conditions; though I have seen great relief obtained in the latter form of the disease by full doses. Opium is sometimes employed by drunkards to relieve intoxication. I knew a medical man addicted to drinking, and who, for many years, was accustomed to take a large dose of laudanum whenever he was intoxicated and was called to see a patient. On one occasion, being more than ordinarily inebriated, he swallowed an excessive dose of laudanum, and died in a few hours of apoplexy.

In delirium tremens the efficacy of opium is almost universally admitted. Its effects, however, require to be carefully watched; for large doses of it, frequently repeated, sometimes hasten coma and other bad symptoms. If there be much fever, or evident marks of determination of blood to the head, it should be used with great caution, and ought to be preceded by loss of blood, cold applications to the head, and other antiphlogistic measures. Though opium is to be looked on as a chief remedy in this disease, yet it is not to be regarded as a specific. Dr. Law speaks in high terms of its association with emetic tartar. I have before noticed the use of opium in alleviating some of the cerebral symptoms which occur during fever.

In spasmodic and convulsive diseases opium is a most important remedy. In local spasms produced by topical irritants, it is a most valuable agent, as I have already stated: for example, in spasm of the gall ducts or of the ureters, brought on by the presence of calculi; in colic, and in painful spasmodic contractions of the bladder, or rectum, or uterus. In spasmodic stricture opium is sometimes useful. In genuine spasmodic asthma, which probably depends on a spasmodic condition of the muscular fibres investing the brouchial tubes, a full dose of opium generally gives temporary relief; but the recurrence of the paroxysms is seldom influenced by opium. There are several reasons for believing that one effect of narcotics in dyspnœa is to diminish the necessity for respiration. Laennec states, that when given to relieve the extreme dyspnœa of mucous catarrh, it frequently produces a speedy but temporary cessation of the disease; and if we explore the respiration by the stethoscope, we find it the same as during the paroxysm,—a proof that the benefit obtained consists simply in a diminution of the necessity for respiration. That the necessities of the system for atmospheric air vary at different periods, and from different circumstances, is sufficiently established by the experiments of Dr. Prout; and it appears that they are diminished during sleep, at which time, according to Dr. Edwards, the transpiration is increased. Moreover, the phenomena of hibernating animals also bear on this point; for during their state of torpidity, or hibernation, their respiration is proportionally diminished.

In the convulsive diseases (chorea, epilepsy, and tetanus), opium has

4. Ann. of Phil. ii. 330; and iv. 331.
been used, but with variable success: in fact, the conditions of system under which these affections occur, may be, at different times, of an opposite nature; so that a remedy which is proper in one case is often improper in another. In tetanus, opium was at one time a favourite remedy, and is undoubtedly at times a remedy of considerable value. But it is remarkable that the susceptibility of the system to its influence is greatly diminished during tetanus. I have already referred to the enormous quantities which may, at this time, be taken with impunity. In 128 cases noticed by Mr. Curling, opium in various forms, and in conjunction with other remedies, was employed in 84 cases; and of these, 45 recovered. Notwithstanding, however, the confidence of the profession in its efficacy is greatly diminished.

Lastly, opium occasionally proves serviceable in several forms of headache, especially after loss of blood. I have seen it give great relief in some cases of what are commonly termed nervous headaches; while in others, with apparently the same indications, it has proved injurious. Chomel applied, with good effect, opium cerate to a blistered surface of the scalp, to relieve headache.

4. In diseases of the chest.—In some affections of the heart and of the organs of respiration opium is beneficial. I have already alluded to its employment in catarrh, peripneumonia, and spasmodic asthma. In the first of these maladies caution is often requisite in its use. "In an aged person, for example, suffering under chronic bronchitis or catarrhal influenza—and gasping, it may be, under the difficulties of cough and expectoration—an opiate, by suspending these very struggles, may become the cause of danger and death. The effort here is needed for the recovery of free respiration; and if suppressed too long, mucus accumulates in the bronchial cells, its extrication thence becomes impossible, and breathing ceases altogether."3

5. In maladies of the digestive organs.—I have already referred to the use of opium in gastritis, enteritis, peritonitis, diarrhoea, dysentery, colic, the passage of gall-stones, and in hepatitis. With respect to the use of opium in hepatic affections, I am disposed to think with Dr. Holland, that, with the exception of the painful passage of a gall-stone through the ducts, there is scarcely a complaint of the liver and its appendages "where opium may not be said to be hurtful, though occasionally and indirectly useful when combined with other means."4 In poisoning by acrid substances opium is used with advantage to lessen the susceptibility of the alimentary canal, and thereby to diminish the violence of the operation of these local irritants. Caustharides, all the drastic purgatives, when taken in excessive doses (as elaterium, colocynth, gamboge, scammony, and croton oil or seeds), and Arum maculatum, may be mentioned as examples of the substances alluded to. Besides the above-mentioned beneficial operation, opium allays the spasmodic contractions of the bowels, relieves pain, and checks inordinate secretion and exhalation.

1 Treat. on Tetanus, p. 151, 1836.
3 Holland, op. supra cit. p. 425.
In poisoning by corrosives (the strong mineral acids and alkalies, for example), opium diminishes the sensibility of the alimentary canal: it cannot, of course, alter the chemical influence of the poisons, but it may prove useful by allaying the consequences of inflammation.

As meconic acid is said to be an antidote, in cases of poisoning by corrosive sublimate, opium, in full doses, may perhaps be administered with some advantage, when other antidotes cannot be procured.

In poisoning by the preparations of arsenic, of lead, and of copper, opium is sometimes found useful.

6. In maladies of the urino-genital apparatus opium is a most valuable remedy. It mitigates pain, allays spasmodic action, checks copious mucous secretion, and diminishes irritation. Its use for one or more of these purposes in nephritis, cystitis, the passage of urinary calculi, and spasmodic stricture, has been already pointed out. In irritable bladder it is an invaluable remedy, especially in conjunction with liquor potassae. In irritation and various painful affections of the uterus, and in choree, the value of opium is well known. In the treatment of the phospathic diathesis it is the only remedy that can be employed, according to Dr. Prout, to diminish the unnatural irritability of the system.

Of all remedies for that hitherto intractable malady, diabetes, opium has been found to give the most relief. Under its use the specific gravity, saccharine quality, and quantity of urine, have been diminished. It has not, however, hitherto succeeded in permanently curing this disease. Dr. Prout has also found it serviceable when there is an excess of urea in the urine.

7. As an anodyne.—To relieve pain by dulling the sensibility of the body, opium is, of all substances, the most useful, and the most to be relied on for internal exhibition. We sometimes use it to alleviate the pain of inflammation, as already mentioned; to diminish spasm and the sensibility of the part in calculi of the gall ducts, in the ureters, and even when in the urinary bladder; to relieve pain in the various forms of scirrhus and carcinoma, in which diseases opium is our sheet-anchor; to allay the pain arising from the presence of foreign bodies in wounds; to prevent or relieve after-pains; to diminish the pain of menstruation; and, lastly, as an anodyne in neuralgia. As a benumber or topical anodyne it is greatly inferior to aconite. Hence in neuralgia the latter is much more successful than opium. (See Aconitum.)

8. In hemorrhages.—Opium is at times serviceable to obviate certain ill effects of hemorrhages; as when there is great irritability attended with a small and frequent pulse, and also to relieve that painful throbbing about the head so often observed after large evacuations of blood. In or immediately after uterine hemorrhage the use of opium has been objected to, on the ground that it might prevent the contraction of the womb; but where the employment of opium is otherwise indicated, this theoretical objection deserves no weight. In bronchial hemorrhage it is at times a valuable remedy, and may be associated with acetate of lead (notwithstanding the chemical objections to the mixture) with good effect.

9. In mortification.—When mortification is attended with excessive pain,
opium is resorted to. In that kind of mortification called *gangrena senilis*,
which commences without any visible cause, by a small purple spot on the
toes, heels, or other parts of the extremities, and which sometimes arises from
an ossified condition of the arteries, Mr. Pott strongly recommended opium,
in conjunction with a stimulating plan of treatment, and experience has
fully proved its great efficacy.

10. In venereal diseases.—Opium is frequently employed in venereal
diseases to prevent the action of mercurials on the bowels during salivation;
also to allay the pain of certain venereal sores, and venereal diseases of the
bones. By some it has in addition been employed as an anti-venereal remedy;
and, according to Michaelis and others, with success. Moreover, it is stated
by Dr. Ananian, who practised at Constantinople, that those persons who
were in the habit of taking opium rarely contracted the venereal disease.
But opium possesses no specific anti-venereal powers. It has appeared to
me, on several occasions, to promote the healing of venereal sores.

11. In various forms of ulcers and in granulating wounds, the efficacy of
opium has been satisfactorily established by Mr. Skey, Richter, and others,
had already noticed its good effects; but their statements had attracted little
attention. Mr. Grant, in 1785, pointed out the efficacy of opium in the
treatment of foul ulcers, attended with a bad discharge, and much pain. He
ascribed these symptoms to "morbid irritability," which the opium removed.
Its use is prejudicial in ulcers attended with inflammation, in the florid or
sanguineous temperament, and in childhood. But in the chronic or callous
ulcer, in the so-called varicose ulcer, in recent ulcers (from wounds) in which
granulation proceeds slowly, or in other cases, the efficacy of opium, adminis-
tered in small doses, (as ten drops of laudanum three times daily), is most
manifest, especially in elderly persons, and in those whose constitutions have
been debilitated by disease, labour, spirituous liquors, &c. It appears to
promote the most genial warmth, to give energy to the extreme arteries, and
thereby to maintain an equal balance of the circulation throughout every
part of the body, and to animate the dormant energies of healthy action.

12. The external application of opium is comparatively but little resorted to,
and for two reasons: in the first place, its topical effects are slight; and,
secondly, its specific effects on the brain and general system are not readily
produced through the skin. Aconite and belladonna greatly exceed opium
in their topical effects. The following are some of the local uses of opium:—
In ophthalmia, the wine of opium is dropped into the eye when there is
excessive pain (see *Vinum Opii*). In painful and foul sores, opiates are
used with occasional good effects. Mr. Grant applied the tincture twice
a-day, in an oatmeal poultice, to irritable sores. Opiate frictions have been
employed as topical anodynes, and to affect the general system. Thus, in

1 Chir. Obs. 1775.
2 Med. Communications, vol. i.
3 Pearson, Observ. on the Effects of various Art. of the Mat. Med. in Lues Ven. p. 57, 1800.
4 On a new Method of Treatment employed in the Cure of various forms of Ulcer and
Granulating Wounds, Lond. 1837.
8 Op. supra cit.
chronic rheumatism and sprains, the opium liniment proves a useful application. In maniacal delirium, as well as some other cerebral disorders, Mr. Ward employed, with apparently beneficial effects, opiate frictions; for example, \frac{3}{8} ss. of opium, mixed with gr. iv. of camphor, \text{Griv.} of lard, and \frac{1}{2} j. of olive oil. In neuralgic affections, an opiate erate, or finely powdered hydrochlorate of morphia, applied to a blistered surface, occasionally gives relief. In gastrodynia, it may be applied in the same way to the epigastrium (Holland). In gonorrhoea and gleet, opium injections have been used. In spasmodic stricture, diseases of the prostate gland, and in gonorrhoea to prevent chordee, an opiate suppository is a useful form of employing opium, especially where it is apt to disagree with the stomach. In nerves and spasmodic affections (as some forms of asthma), the endermic application of opium or morphia, applied along the course of the spine, is often singularly beneficial, when all methods of depletion and counter-irritation have proved utterly unavailing (Holland). In tooth-ache, opium is applied to the hollow of a carious tooth. Dr. Bow speaks in the highest terms of the efficacy of the external application of opium in inflammatory diseases, but especially brouchetis and croup.

Administration.—Opium is given, in substance, in the form of pill, powder, lozenge, or electuary. The dose is subject to great variation, depending on the age and habits of the patient, the nature of the disease, and the particular object for which we wish to employ it. In a general way, we consider from an eighth of a grain to half a grain a small dose for an adult. We give it to this extent in persons unaccustomed to its use, when we require its stimulant effects, and in mild catarrhs and diarrhoeas. From half a grain to two grains we term a medium dose, and employ it in this quantity as an ordinary anodyne and soporific. From two to five grains we denominate a full or large dose, and give it to relieve excessive pain, violent spasm, in some inflammatory diseases after blood-letting, in tetanus, &c. These are by no means to be regarded as the limits of the use of opium. Opium pills (\textit{pillulae opii}) may be prepared either with crude or powdered opium. The latter has the advantage of a more speedy operation, in consequence of its more ready solution in the gastric liquor. Employed as a suppository, opium is used in larger doses than when given by the stomach. Five grains, made into a cylindrical mass with soap, may be introduced into the rectum, to allay irritation in the urino-genital organs.

Antidotes.—In a case of poisoning by opium, the first indication is to remove the poison from the stomach, the second is to neutralise any of it which may be retained in the system, and the third is to obviate its injurious effects.

1. Use of Evacuants.—Until other and more powerful evacuant means can be obtained, we should have recourse to tickling the throat with the fingers, or with a feather dipped in oil. As domestic emetics, mustard or salt may be exhibited. A dessert-spoonful of flour of mustard, or a tablespoonful of salt, may be taken, stirred up in a tumblerful of water. The stomach-pump is, however, the best means of evacuating the contents of the

2 Lancet, March 18, 1837.
stomach, and when it can be procured, should always be preferred. The emetics usually resorted to are the sulphates of zinc and copper: the first is preferred. It should be given in doses of from one to two scruples. The dose of sulphate of copper is less,—from five grains to fifteen. Ipecacuanha or tartar emetic may be resorted to when the other means are not at hand. Clysters containing fifteen or twenty grains of tartar emetic may be administered; or, in extreme cases, a solution of one or two grains of this salt may be injected into the veins, taking care to prevent the introduction of air.

2. Use of Chemical Antidotes.—There are no known agents which completely destroy the activity of opium by their chemical properties, and which can be resorted to in these cases. Infusion of galls, however, is regarded as the best, though an imperfect antidote. Magnesia, as well as iodine and chlorine, have also been recommended.

3. Use of Therapeutical Means to obviate the Effects.—The following are the principal means which have been found efficacious:—

a. Rousing the patient, by exercising him up and down a room between two men. It may sometimes be necessary to continue this for several hours.

β. Cold affusion. Cold water dashed over the head and chest is an exceedingly valuable agent. It often assists the operation of emetics. Dr. Boisragon\(^1\) recommends the alternation of impression, with hot or cold water, and at different parts of the surface of the body. —γ. Irritants. The application of irritants to the body is also sometimes a useful practice: thus blisters and sinapisms to the feet.—δ. Venesection. Blood-letting is sometimes necessary; but it can be safely practised only after the opium has been withdrawn from the stomach. Orfila says, that under these circumstances it never increases, but in most cases materially relieves the symptoms.—ε. Stimulants. Ammonia, camphor, musk, coffee, and other stimulants, are sometimes used with advantage.—ζ. Vegetable acids. Orfila has found the vegetable acids to be the best anti-narcotics. For this purpose, drinks of vinegar and water, lemon juice, or cream of tartar and water, should be given every ten minutes. These agents, however, should not be resorted to till the poison has been evacuated from the stomach.—η. Artificial respiration. As a last resource this is on no account to be omitted. Death has on several occasions been apparently averted by it. An interesting case, in which it was successfully practised, was published many years ago by Mr. Whately.\(^2\) Natural respiration was extinct when it was begun. In another successful case, related by Mr. Smith,\(^3\) artificial respiration was kept up for four hours and a half (with an interval of an hour). When it was commenced there was no pulse at the wrist, and only a slight irregular action of the heart, indicative that life was not quite extinct. A third case, also successful, is that of an infant ten days old, which had taken twenty-five or thirty drops of laudanum intended for the mother, and had lost the power of deglutition, was comatose, and had several convulsions. Artificial respiration was sustained for two or three hours.\(^4\)—[θ. Electricity and electro-magnetism have also been successfully employed of late years in several cases of poisoning by

VOL. II.
opium. This agent has been found effectual in keeping roused, children that are labouring under the effects of narcotic poison.—Ed.]

Preparations.—In noticing the preparations of the poppy employed in medicine, I shall arrange them under three heads:—1st, Preparations of poppy heads; 2dly, Of opium; 3dly, Of morphia.

a. Preparations of Poppy Heads.

1. Decoctum Papaveris, L. E. D.; Decoction of Poppy; Poppy Fomentation. (Poppy-heads, sheed, 3iv.; Water, Oiv. [Oij. E. D.] Boil for a quarter of an hour [ten minutes, D.], and strain.)—The seeds contribute, by their oleaginous properties, to the emollient quality of the decoction. This preparation forms a common fomentation, which is applied to bruised, inflamed, excoriated, tender, or swollen parts; to the eye in opthalmia, to the abdomen in enteritis, peritonitis, to tender ulcers, &c. In cancer and other painful affections of the uterus, it is thrown into the vagina as a soothing remedy.

2. Syrupus Papaveris, L. E.; Syrup of White Poppies. (Poppyheads, without the seeds, lb. iiij. [lb. iss. E.]; Sugar [pure, E.], lb. v. [lb. iiij. E.]; Boiling Water, Cong. v. [Oxv. E.]; [Rectified Spirit, 5v. L.] Boil down the capsules in the water to two gallons, and strongly express the liquor. Again boil down the strained liquor to four pints, and filter while hot. Set it by for twelve hours that the dregs may subside; then boil down the clear liquid to two pints, add the sugar and dissolve it; lastly, mix in the spirit, L.—The Edinburgh Pharmacopeia directs the poppy heads to be first macerated in water for twelve hours; then to boil down to five pints, and strain and express strongly through calico. Again to boil down to Oiss., add the sugar, and dissolve with the aid of heat.)—Syrup of poppies, especially if too thin, is very liable to ferment, and then contains spirit or acetic acid, or both, and is of course ill adapted for medicinal use. To check these changes, it should be carefully made with spirit, according to the directions of the London College, taking care that it has the proper consistence, and keeping it in a cool place. Occasionally a mixture of treacle and laudanum, or of syrup and extract of poppies, has been substituted; but this fraud is highly dangerous, and has on several occasions proved fatal to children. Syrup of poppies is narcotic, sedative, and anodyne, and is commonly employed as the infant’s opiate. It mitigates pain, allays spasm and troublesome cough, and promotes sleep. Even in the adult it is sometimes used for these purposes. It forms a useful adjunct to pectoral tinctures. Over ordinary opiates it has the positive advantages of a less disagreeable taste, and the supposed one of being less likely to create nausea and headache. Even when properly prepared, its administration to infants requires the greatest caution, on account of their known susceptibility to the influence of opiates. “I have been informed,” says Dr. Montgomery, “of more than one instance in which a tea-spoonful has been known to prove fatal to a healthy child.”—The dose of it, for an infant of three or four months old, is f5ss.; for adults, from f3ij. to f5iv.

[1 See the cases referred to by Dr. Montgomery, in his Obs. on the Dublin Pharm. 472.]
3. EXTRACTUM PAPAVERIS, L. E.; Extract of Poppy. (Poppy heads, without the seeds, bruised, 3 xv.; Boiling [distilled, L.] Water, Cong. j. Macerate for twenty-four hours; then boil down to four pints, and filter the liquor while hot; lastly, evaporate to a proper consistence [by the vapour-bath, E.]}—Anodyne and soporific. It appears to me to produce effects similar to those of opium, for which it is frequently substituted, on the supposition that, while it allays pain and promotes sleep, it is less liable to occasion nausea, constipation, headache, or delirium. If it be prepared from a decoction, instead of an infusion of poppy heads as directed in the pharmacopoeias, it will contain a considerable quantity of inert mucilaginous matter. —Dose, gr. ij. to 3j.

b. Preparations of Opium.

1. PILULÆ OPHI sive THEBAICÆ, E.; Opium Pills. (Opium, one part; Sulphate of Potash, three parts; Conserve of Red Roses, one part. Beat them into a proper mass, which is to be divided into five-grain pills.—It is to be observed that this pill contains twice as much opium as the opiate pill of the last Latin edition of this pharmacopoeia, E.)—Employed as an anodyne and soporific. —Dose, one or two pills (i.e. gr. v. to gr. x.) The sulphate of potash serves to divide the opium. One pill of five grains contains one grain of opium.

2. PILULÆ SAPONIS COMPOSITE, L. D.; Compound Soap Pills. (Opium, powdered; Liquorice, powdered, each 5ij.; Soft Soap, 3vj. Beat them together until incorporated, L.—Opium, in fine powder, 3ss.; Castile Soap, 3ij.; Distilled Water, 3ss., or as much as is sufficient. Reduce the soap to a fine powder, add the opium and water, and beat the mixture into a mass of an uniform consistence, D.)—Employed as anodyne and soporific. —Dose, gr. iij. to gr. x. Five grains contain one grain of opium. The soap enables the pills to dissolve readily in the juices of the stomach. From gr. v. to 3j. are sometimes used as a suppository.

3. PILULÆ CALOMELANOS ET OPHI, E. (See Index.)

4. PILULÆ PLUMBI OPIATE, E. (See Index.)

5. TROCHISCI OPPH, E.; Opium Lozenges. (Opium, 3ij.; Tincture of Tolu, 3ss.; Pure Sugar, in fine powder, 3vj.; Powder of Gum-Arabic, and Extract of Liquorice, softened with boiling water, of each 3v. Reduce the opium to a fluid extract by the formula [given for extract of opium]; mix it intimately with the liquorice previously reduced to the consistence of treacle; add the tincture; sprinkle the gum and sugar into the mixture, and beat it into a proper mass, which is to be divided into lozenges of ten grains.)—In London the manufacture of lozenges is practised as a distinct trade. The opium lozenges of the shops usually contain each about one-eighth of a grain of opium. Lozenge-makers employ a much smaller proportion of gum. The tincture of tolu, which they use, is much more concentrated than that of the shops, the spirit of which is objectionable. Opium lozenges are used to allay troublesome cough.

6. PULVIS CRETAE COMPOSITUS CUM OPIO, L.; Pulvis Crete Opiatus,
7. CONFECTION OPII, L.; Electuarium Opii, E.; Confection of Opium; Philonium ¹ Londinense; Philonium Romanum. Opium, powdered, ⁵vij.; Long Pepper, ⁵j.; Ginger, ⁵ij.; Caraway, ³ijj.; Tragacanth, powdered, ⁵ij.; Syrup, ¹³vji. The London College directs the dry ingredients to be kept mixed in the form of a very fine powder, and the syrup to be added when the confection is to be used. The Edinburgh College adopts the following formula:—"Aromatic Powder, ⁵vij.; Senega, in fine powder, ³ijj.; Opium diffused in a little Sherry, ³ss.; Syrup of Ginger, lb. j. Mix them together, and beat into an electuary."—Aromatic and narcotic. Employed in flatulent colic and diarrhoea; in the latter complaint usually as an adjunct to the chalk mixture.—Dose, gr. x. to ³j.—The Dublin preparation of the older pharmacopoeias contained gr. j. of opium in about twenty-five grains of confection. The London preparation is somewhat weaker, and contains gr. j. of opium in perhaps thirty-six grains. The Edinburgh preparation is still weaker; forty-three grains of it containing about one grain of opium.

8. EMPLASTRUM OPII, L. E. D.; Plaster of Opium. (Extract of Opium, ⁵j.; Prepared Resin of the Spruce Fir, ³ij.; Plaster of Lead, ³vij.; Boiling Water, ¹³j.). Add the Resin of the Spruce Fir, the Opium and the Water, to the melted Plaster, and with a slow fire boil down until all unite into a proper consistence, L.—The Edinburgh College omits the water. The formula of the Dublin College is as follows:—Of Opium, in very fine powder, ⁵j.; Resin Plaster, ³ix. Melt the plaster by steam or water bath, add the opium by degrees, and mix thoroughly. Employed as a tonic anodyne in rheumatism, lumbago, and neuralgia. Its powers are very slight, or even equivocal.

9. EXTRACTUM OPII, L.; Extractum Opii, E.; Extractum Opii

¹The ancient philonium was a famous electuary of the opiate kind. It was called Philo's antidote, after Philo, of Tarsus, its inventor, who lived, it is supposed, in Augustus's time. The composition of the Philonium, described in Greek elegiac verses, is preserved and explained by Galen, De medic. comp. sec. loc. lib. ix. 4. The terms of the recipe are enigmatical, and may amuse some readers; we give the substance:—"Take of the yellow and fragrant hair of the divine Crocus, whose blood glitters in the fields of Mercury, as many drachms as a man has senses; of the Euboean Nauplian, a drachm; of the sayer of Memetidias, as preserved in the bowels of sheep, the like quantity; add twenty drachms of white flame, and twenty of the bean of the wild animal of Arcadia; a drachm of the root (falsely so called) which grows in the land famous for the Pisan Jove; take twice five drachms of μέγα ἐφέμα, written with the masculine article prefixed; and mingle all with the production of the daughters of the bulls of Athens." Galen interprets this curious medico-poetical farrago, which, without his aid, would certainly be not a little obscure, as implying the admixture of saffron, pyrethrum, euphorbium, white pepper, hyoscynamus, spikenard, opium, and Athenian honey. It is, moreover, stated in the verses, that the pains for which this μέγα ἐφέμα was most serviceable were those of colic, of the liver, dysuria, and stone.—(Dr. Win. Cunnin, Lond. Med. Gaz. vol. xvii. p. 990.)
Aquosum, D.; Extract of Opium. (Opium sliced, lb. iss. [lb. j. E. D.]; Water [distilled, L. Ov.], [Ovj. D.]) Add Oiiss. of the water to the opium, and macerate for twenty-four hours, stirring occasionally with a spatula, then strain. Macerate what is left in the remaining water for twenty-four hours, and strain. Lastly, evaporate to a proper consistence, L.—The Edinburgh College digests five times successively; each time in a pint of water, and for twenty-four hours each time. Filter the successive infusions as they are made, passing them through the same filter; unite and evaporate them in the vapour bath to the due consistence.—The Dublin College digests the water in like manner, but in successive quarts.)—When opium is digested in water, this fluid takes up the odorous principle, the salts of mophia and codecia, the narcotina, the gum, the extractive, and some of the resin. A portion of morphia is frequently found in the dregs. Moreover, a portion of the oil is found in the solution. By concentration, the odorous principle is dissipated, and the resin and the oil, combined with and in part saturating the narcotina, are separated. These matters would be more completely got rid of by re-dissolving the extract in water. The removal of these inert principles, as well as the impurities of opium and the consequent concentration of the active constituents of this substance, must, of course, render the extract a more powerful preparation than ordinary opium. Good opium yields more than half its weight (from 60 to 70 per cent.) of extract, which, therefore, should be at least one-third more active than crude opium. It is usually believed to operate with less disturbance to the general system than the ordinary preparations of opium. It is employed as an anodyne, sedative, and soporific, in cases where crude opium or its tincture disagrees.—The dose of it is from gr. ½ to gr. iiij. or gr. iv.

Liquor Opii Sedativus.—Mr. Battley, some years since, assured me that the only ingredients employed in the preparation of his liquor opii sedativus were opium, water, and heat. It appears to contain somewhat less meconic acid than the ordinary tincture of opium.Probably this and some other principles of opium are got rid of by successive evaporations and solutions. Perhaps an aqueous solution of the watery extract of opium, with the addition of a little spirit to preserve it, would be a convenient substitute.

10. Tinctura Opii, L. E. D.; Tincture of Opium; Laudanum. (Opium, powdered, 5iij.; Proof Spirit, Oij. Macerate for seven days, and filter, L.—The proportions used by the Dublin College are also 5iij. of Opium and Oij of proof spirit. The Edinburgh College directs—"Opium sliced, 5iij.; Rectified Spirit, Oj. and f3vij.; Water, f5xxiiss. Digest the opium in the water at a temperature near 212° for two hours; break down the opium with the hand; strain and express the infusion; macerate the residuum in the rectified spirit for about twenty hours, and then strain and express very strongly. Mix the watery and spirituous infusions, and filter.—This tincture is not easily obtained by the process of percolation; but when the opium is of fine quality, it may be prepared thus:—Slice the opium finely; mix the spirit and water; let the opium macerate in fourteen fluidounces of the mixture for twelve hours, and then break it down thoroughly with the hand; pour the whole pulpy mass and fluid into a percolator, and let the fluid part pass through, and the rest of the spirit without packing the opium in the cylinder, and continue the process of percolation till two pints are obtained,"

E.)—The percolation process of the Edinburgh College is unnecessary and troublesome, and will, I suspect, be rarely, if ever, adopted by laudanum preparers. Tincture of opium is of a deep brownish red colour, with the peculiar odour and taste of opium. Its sp. gr., according to Mr. Phillips,\(^1\) is 0.952. Nineteen minims of it contain about one grain of opium. Proof spirit dissolves the same constituents as water, but it takes up a large proportion of narcotina, resin, and oil. I have repeatedly prepared morphia from the insoluble residue left behind in the preparation of the tincture.

[Some difference of opinion exists respecting the real strength of the Tincture of Opium of the Pharmacopoeias. In the translation of the last edition of the *London Pharmacopoeia*,\(^2\) Mr. Phillips states that *nineteen minims* contain, or are equivalent to, one grain of solid opium, and he describes the ordinary dose as from ten to sixty minims. Mr. Squire, in his translation of the three Pharmacopoeias, states that the tincture of opium is of the same strength in all, and that “one grain of powdered opium is employed to produce *thirteen minims* of the tincture.” Dr. Christison says, “the Tinctura Opii, commonly called laudanum, is made by all the Colleges with such proportions of the opium and spirit, that about *thirteen minims and a half*; or about twenty-five drops, contain the active part of one grain of opium. But the London tincture may be sometimes sixteen per cent. stronger than the others, as dry opium is directed to be used. The tincture of the shops is very often adulterated. Good tincture should leave, when thoroughly dried up in the vapour-bath, from seventeen to twenty-two grains of residuum for every fluid ounce; but I have several times found it so low as ten or seven only.” The dose, according to Dr. Christison, is from fifteen to forty-five minims.

This question has been recently examined by Dr. Garrod, with results differing from those stated in the text. Dr. Garrod did not find that the undissolved portion, after maceration for the tincture, yielded any morphia. It yielded an abundance of narcotina and meconic acid. The residue, given internally, in doses varying from one to thirty grains, was found to be quite inert. Should traces of morphia be left after the ordinary process of preparing the tincture of the London College, Dr. Garrod does not believe that this would make any appreciable difference in the strength of the preparation. He considers “that the Tinctura Opii contains the active matter of the whole of the drug used in its formation; and therefore about *twelve minims* of tincture of opium possess all the activity of *one grain* of crude opium, assuming that it loses only twelve per cent. in the drying. If dry opium is taken for comparison, *one grain* is contained in about *thirteen and a half minims*; and therefore one fluid drachm of tinctura opii contains five grains of the drug, or four and a half grains (according as it is compared with dry or moist opium), in place of three grains.”

“In the Edinburgh preparation, the amount of tincture containing a grain of opium is about *thirteen and a half minims*; for the opium is ordered in the same proportion, but not previously reduced to powder or dried. In the Dublin preparation the opium is ordered to be coarsely powdered, but Avoir-dupois weight is used in place of Apothecaries’, which makes the strength of

\(^{1}\) *Transl. of the Pharm.*

\(^{2}\) *Pharm. Lond.* 1851.
the tincture such that twelve minims and three-quarters contain one grain of opium."

It follows from this statement, that when tincture of opium is properly made, and the directions of the London Pharmacopoeia are strictly carried out, the strength of the tincture is much greater than it has been hitherto supposed to be. One fluiddrachm will represent a dose of five grains, instead of three grains of opium, as stated by Mr. Phillips. The purity of the opium, its comparative strength in morphia, the strength of the spirit used as a solvent, and the period of maceration, will, however, materially affect the result. According to our observation, the statement of Dr. Christison, that the quantity of soluble matter taken up is subject to great variation, is correct; and unless it be assumed that the morphia is constantly in the same proportion in every sample of opium, and that the whole of the morphia is invariably taken up by the proof spirit, the tincture must necessarily vary in its strength. A practical solution of this question would be obtained by observing whether the effects of a grain of opium are really obtained by the administration of twelve or thirteen minims of an average tincture.—Ep.

Tincture of opium is a powerful and valuable anodyne and soporific. Its employment is to be preferred to that of solid opium where a more immediate effect is required. Moreover, in administering opiates to children, the facility of adjusting small doses of it presents a great advantage over solid opium.—The dose of it, like that of solid opium, must vary according to several circumstances. For an adult it varies from \(\text{mxx. to } f^{3j} \). To children it must be given with the greatest caution. I have seen a powerful effect produced in an infant by one drop. In infants exhausted by illness and of a delicate constitution one minim might cause death.

11. **Enema Opii, L.; Enema Opii vel Anodynum, E.; Opium Claster.** (Decoction of Starch, \(f^{3iv.} \); Tincture of Opium, \(\eta^{xxx.} \). Mix, \(L. \).—The Edinburgh College uses \(5ss. \) of Starch; \(f^{3ss.} \) to \(f^{3j.} \) of Tincture of Opium; and \(f^{5j.} \) of Water. The starch is boiled in the water, and the tincture added when the mucilage is cool enough for use.)—The formula of the London College is, in my opinion, to be preferred to that of the Edinburgh College; but it may be sometimes necessary to double or treble the quantity of tincture employed. In the passage of renal calculi, in nephritis, irritation or inflammation of the bladder, uterus, or prostate gland, in dysentery, and painful affections of the large intestine, the opium clyster is most valuable.

12. **Linimentum Opii, L. E.; Linimentum Opii vel Linimentum Anodynum, D.; Liniment of Opium.** (Soap Liniment, \(f^{3vj.} \); Tincture of Opium, \(f^{3jj.} \). [of each \(f^{3j.} \). \(D. \).] Mix, \(L. \).—Castile Soap, \(3vj. \); Opium, \(3iss. \); Camphor, \(3jj. \); Oil of Rosemary, \(3vj. \); Rectified Spirit, \(Oj. \). Macerate the soap and opium in the spirit for three days; filter, add the oil and camphor, and agitate briskly, \(E. \).—Employed as an anodyne in rheumatism, neuralgic pains, sprains, &c.

13. **Vinum Opii, L. E. D.; Laudanum Liquidum Sydenhami, Ph. L. 1720; Tinctura Thebaica, Ph. L. 1745; Wine of Opium.** (Opium,
Extract of Opium, 3jiss. L.; Cinnamon, bruised; Cloves, bruised, of each, 3jiss.; Sherry Wine, Oxj. Macerate for seven, [fourteen, D.] days, and filter.—The Dublin College omits the spices. Its effects are similar to those of the tincture of opium, but its taste and smell are more agreeable. It was recommended by Mr. Ware1 as an application to the eye in ophthalmia; and experience has fully proved its efficacy where there is much scalding pain, lachrymation, and intolerance of light. When first applied it causes a sharp pain and a copious flow of tears, but these effects soon subside, and are followed by a considerable abatement of the former sufferings.—For internal use the dose is gtt. x. to f$\frac{1}{3}$j.

14. TINCTORIA OPPI AMMONIATA, E.; Ammoniated Tincture of Opium. (Benzaic Acid, and Saffron, chopped, 3vj of each; Opium, sliced, 3ss.; Oil of Anise, 3j.; Spirit of Ammonia, Oxj. Digest for seven days, and filter.)—Employed as a powerful diffusible stimulant and antispasmodic in hooping-cough and other spasmodic affections. Each drachm and a quarter contains about a grain of opium.—Dose, f$\frac{1}{3}$ss. to f$\frac{1}{3}$j.

15. ACETUM OPII, E. D.; Vinegar of Opium. (Opium, 3iv.; Distilled Vinegar, f$\frac{1}{3}$xyj. “Cut the opium into small fragments, triturate it into a pulp with a little of the vinegar, add the rest of the vinegar, macerate in a closed vessel for seven days, and agitate occasionally. Then strain and express strongly, and filter the liquors,” E.—The Dublin College uses one ounce and a half of Opium to one pint of Dilute Acetic Acid; macerates for seven days in a close vessel, with occasional agitation; strains, expresses, and filters.)—Vinegar dissolves all the principles of opium soluble in water, and is better adapted for holding in solution the narcotina and the resinous matter of opium. It cannot, of course, effect any change in the sulphate of morphia contained in opium. Whether any acetate of morphia is formed at the expense of the meconate of morphia has not been satisfactorily proved.

The effects of vinegar of opium do not appear to be precisely those of ordinary opium. It is believed to possess the anodyne, sedative, and soporific qualities of opium, without being apt to excite the disagreeable effects (nausea, headache, constipation, and general disorder of system,) which sometimes result from the ordinary preparation of this drug. Hill2 says that Le Mort observed a very odd effect from this preparation, “which was, that it often brought on suppressions of urine.” Dr. Montgomery3 has seen one instance of this effect; and Dr. Thomas Beattie4 has remarked the same result from the Black Drop. This paralyzing effect on the bladder is doubtless referrible to the morphia, which seems to acquire, in this preparation, increased activity. Vinegar of opium is employed as an anodyne, sedative, and soporific. Dr. Montgomery observes, that he has found this preparation of opium decidedly superior to every other in relieving the agony of cancer uteri, and procuring rest at night.” The same authority states, that twenty drops are equivalent to thirty of the common tincture of opium.—Dose, gtt. vj. to gtt. xxx.

1 Remarks on Ophthalmia, p. 29, 1780.
2 Hist. of the Mat. Med. p. 784, 1751.
3 Observ. on the Dubl. Pharm. p. 451, 1830.
Black Drop.—Acetum Opii may be regarded as the official substitute for a celebrated quack medicine called the Black Drop, or The Lancaster, or Quaker's Black Drop, the method of preparing which has been described by the late Dr. Armstrong. In this preparation *verjuice* (juice of the wild crab) is employed instead of vinegar. But there are several sources of uncertainty in the process. Dr. Porter's solution of opium in citric acid has never come into general use.

16. Unguentum Gallæ Compositum. (See Index.)
17. Tinctura Camphoræ Composita. (See Index.)
18. Pilulae Styracis Compositæ. (See Index.)
19. Pulvis Ipecacuanilæ Compositus. (See Index.)
20. Pilulae Ipecacuanilæ Compositæ. (See Index.)
21. Pulvis Kino Compositus. (See Index.)
22. Electuarium Catechu. (See Index.)

c. Morphia and its Preparations.

1. Morphia, D.; Morphina, Morphine, Morphium.—So called from Morpheus, the god of sleep. Wedelius, Fr. Hoffman, and Neumann, speak of a crystalline salt obtained from a solution of opium; but they formed no correct notion of its nature. The magistery of opium, noticed by Ludwig, in 1688, may, perhaps, have been morphia.

Morphia is peculiar to the poppy tribe. It exists in opium in combination with meconic and sulphuric acids. Doubts, indeed, have been expressed with respect to its independent existence in opium, some chemists having suggested that it was a product rather than an educt; but it is now satisfactorily proved that there are no grounds for the supposition that it is a product.

[The Dublin College alone now admits morphia amongst its pharmaceutical preparations. The directions for preparing it are as follows:—

Take of Turkey Opium, cut into thin slices, lb. j.; Distilled Water, Ovj.; Chloride of Calcium, 5vj.; Prepared Animal Charcoal as much as is sufficient. Macerate the opium for twenty-four hours with a quart of the water, and decant. Macerate the residuum for twelve hours with a second quart of the water, decant, and repeat this process with the rest of the water, subjecting the insoluble residuum to strong expression. Let the decanted solutions and expressed liquor be evaporated by a steam or water heat to the bulk of one pint, and then passed through a calico filter. Pour in now the chloride of calcium, first dissolved in four ounces of distilled water, and then proceed with the evaporation until the solution is so far concentrated, that upon cooling nearly the whole of it becomes solid. Let this solid matter be enveloped in a couple of folds of strong calico, and subjected to powerful pressure, the dark liquid which exudes being reserved for subsequent use. The squeezed cake is now to be acted upon with about half a pint of boiling water, and the whole being thrown upon a paper filter, the precipitate must be well washed. The filtered solution having been evaporated as before, cooled and solidified, the residue is to be again subjected to expression. If the product be not quite white, this process should be repeated a third time, the liquid forced out during expression being always preserved. Let the squeezed cake be dissolved in six ounces of boiling water, and, if necessary, cleared by filtration through prepared animal charcoal, the portion of it soaked by the filter being carefully washed out of it; and to the solution thus obtained let water of ammonia be added, in slight excess, and let the crystalline precipitate which forms when the liquor has cooled be collected on a paper filter, and washed with cold distilled water.

until the washings cease to give a precipitate upon being dropped into an acid solution of nitrate of silver. Lastly, let the filter be transferred to a porous brick, in order that the morphia it contains may become dry.

The liquids separated by expression from the muriate of morphia in the preceding process, having been diluted with water, so as to occupy the bulk of four ounces, and then supersaturated slightly with ammonia, let the precipitate which forms be collected, after the lapse of six hours, on a filter, and washed with a little cold water. This, if redissolved in dilute muriatic acid, boiled with a little animal charcoal, and filtered, will, upon cooling, afford a crystalline deposit, from which, when pressed, dissolved in water, and supersaturated with ammonia, an additional quantity of morphia will be procured.—[Ed.]

The following directions for preparing morphia were given in the former London Pharmacopœia. No directions are given in that for 1851.

Take of Hydrochlorate of Morphia, 3j.; Solution of Ammonia, 3v.; Distilled Water, Oj. Add the Hydrochlorate of Morphia, first dissolved in a pint of water, to the solution of Ammonia with an ounce of water, shaking them together. What is thrown down wash with distilled water, and dry it with a gentle heat.

In this process the ammonia unites with the hydrochloric acid, and the morphia being set free is precipitated.

Pure morphia presents itself under the form of transparent crystals, whose primary form is the right rhombic prism. On turmeric paper, as well as on reddened litmus paper, morphia has an alkaline reaction. Notwithstanding that it is insoluble, or nearly so, in cold water, it has a distinctly bitter taste. Boiling water dissolves a little more than one-hundredth part of morphia. It dissolves in 40 parts of cold anhydrous alcohol, and 30 parts of boiling alcohol: but it is insoluble, or nearly so, in ether. It is soluble in the oils (fixed and volatile), in solutions of potash and soda, and also, but in much smaller quantity, in solution of ammonia; lastly, it readily dissolves in sulphuric, hydrochloric, and acetic acids. When heated, the crystals lose their transparency and water of crystallization; a strong heat causes them to enter into fusion, in which state they form a yellow liquid similar to melted sulphur, and which becomes white and crystalline on cooling. Heated in the open air, it burns like resin, and leaves a carbonaceous residuum.

The following are the chief characteristics of morphia:

1st. Nitric acid reddens morphia or its salts (the chlorate excepted, according to Dumas) and forms with them an orange-red solution, which is much darkened by excess of ammonia, and which becomes yellow after a little time. By the prolonged digestion of morphia in nitric acid, we obtain oxalic acid.—Fallacies. Nitric acid produces a red colour with several other bodies, as brucia, commercial strychnia, several volatile oils (as oil of pimento and oil of cloves), some resinous substances, infusion of cloves or of pimento, &c.

2nd. Iodic acid is deoxidised by morphia, iodine being set free. Hence, when this alkali is added to a solution of iodic acid, the liquor becomes reddish brown, and forms a blue compound (iodyde of starch) with starch. Fallacies.—Sulphuretted hydrogen, sulphurous acid, phosphorous acid, sulphanoyl of potassium, sulphosinapisin, and some other agents, have a similar effect on iodic acid.

3dly. Neutral sesquichloride of iron dropped on crystals of morphia renders them blue. The same effect is produced on solutions of salts of morphia when concentrated. The nature of the blue compound is not perfectly understood. Possibly part of the morphia is oxidised, and the compound thus produced unites with some oxide of iron (morphite of iron). If water in excess, or acids, or alkalis, be added to the blue compound the colour is destroyed.—Fallacies. Tannic and gallic acids with a little water, and infusion of cloves or of pimento, also form blue compounds with sesquichloride of iron.
4thly. The alkaline carbonates occasion a white precipitate (carbonate of morphia) in solutions of the soluble morphitic salts.

5thly. Solution of ammonia precipitates morphia from its solution in acids. A considerable excess of ammonia redissolves the precipitate. In very dilute solutions, ammonia occasions no precipitate until heat be applied to drive off the excess of alkali.

6thly. Infusion of nutgalls, or a solution of tannic acid, causes a precipitate (tannate of morphia) in neutral solutions of the morphitic salts. The precipitate is soluble in acetic acid.

7thly. An alcoholic solution of carbazotic acid causes no precipitate in an alcoholic solution of morphia.

8thly. If a solution of chlorine be mixed with a solution of morphia, or its salts, and then ammonia added, a dark brown colour is developed.

9thly. If to a mixture of morphia and concentrated sulphuric acid a drop of bichromate of potash be added, green oxide of chrome is set free. — Ed.

10thly. A very sensitive test of the presence of morphia or its salts in solution is, to add a drop or two of chloride of gold: a yellow precipitate falls, which on shaking, is taken up; and if a drop of Liq. Potass be now added, it assumes various hues (according to the manipulation) first greenish, then bluish, then violet, and finally purple. The presence of morphia may be detected in a dilute coloured solution of opium, by simply dropping in the gold and potash without disturbing them; in the course of a few seconds, by placing a piece of white paper at the back of the vessel, purple clouds or streaks will be distinctly seen following the gold as it falls: the gold, in each instance, yields up its chlorine and is reduced; sometimes a blue black precipitate (oxide) is formed, varying according to the strength of the solution operated on.

The composition of morphia is, according to Regnault,¹ as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>35</td>
<td>210</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>292</td>
</tr>
<tr>
<td>Cryst. Morphia</td>
<td>1</td>
<td>310</td>
</tr>
</tbody>
</table>

Formula C₃₅H₉₀NO₆: Symbol M.

The morphitic salts are, for the most part, crystallisable. When pure, they are colourless. They have a bitter taste.

The following characters of the acetate and hydrochlorate of morphia are given in the London Pharmacopoeia for 1851.

Acetate of Morphia (Sal ex Opio preparatus Crystallis). —Soluble in water and in rectified spirit, and, when the spirit is distilled from it, yields crystals, which are totally destroyed by heat. On the addition of Nitric acid, morphia becomes first red, and afterwards yellow. Tincture of sesquichloride of iron gives it a blue colour. Chlorine and [afterwards] ammonia being added to its salts, they are rendered of a brown colour, which is destroyed when more chlorine is added. Morphia is precipitated from its salts by solution of potash, which, added in excess, re-dissolves it.

Adulterations.—Morphia is found contaminated with narcotina, codeia, and the colouring or resinoid matter of opium. Narcotina is best distinguished by the action of solution of caustic potash, which dissolves morphia but does not act on narcotina or codeia. Either may be substituted, as this scarcely dissolves morphia, whereas it dissolves codeia and narcotina. The colouring or resinoid matter is detected by the colour of the morphia. If ammonia be

¹ Pharmaceutisches Central-Blatt für 1838, S. 486.
added to a solution of hydrochlorate of morphia and codeia, the morphia is precipitated and the codeia left in solution. It is obvious that the process adopted by the Edinburgh College yields muriate of morphia contaminated with codeia.—Ed.]

The precise relation which the effects of morphia and its salts bear to those of opium, is a point on which the profession is by no means agreed. Some recent writers⁠¹ declare that, after having carefully compared the effects of the morphia salts with those of opium, they can discover no difference between them; but my own limited observation of the effects of these salts induces me to agree with those who admit the similarity, but not the identity, of the effects of these substances. Charvet⁠² could observe no difference between them in their action on the invertebrata. But on the higher classes of the vertebrata there were obvious differences. The effects of morphia on man are in several respects different from those of opium, but they appear to want uniformity; that is, the same results have not been arrived at by different experimenters. This may in some cases at least be ascribed to the employment of morphia contaminated with some other principles of opium. In small doses, as from a quarter of a grain to one grain, acetate of morphia causes a feeling of distension or fulness about the head, some disturbance of vision, oftentimes headache, giddiness and somnolency, or actual sleep, which, however, differs from ordinary sleep, and is often more or less disturbed. The pupils are usually contracted. Orfila says this occurs in nineteen out of twenty cases. However, in some instances dilatation has been observed, and in others the pupil was natural. The pulse is generally slow and small, though sometimes it is more frequent, and occasionally is soft and full. Itching of the skin is frequently noticed, or even a cutaneous eruption is by no means uncommon. Grain doses readily excite gastric uneasiness, nausea, and vomiting. One remarkable symptom often caused by acetate of morphia, especially in men, is a difficulty in voiding the urine, and which appears to depend on a weakened or paralytic condition of the bladder. Bally³ lays great stress on this last-mentioned symptom, especially when a full dose of morphia has been taken. When these effects subside, loss of appetite, muscular feebleness, and constipation, are left behind. When the dose is increased, the effects become somewhat alarming. Great cerebral excitement is produced, vision is disordered and obscured, there is singing in the ears, and the patient, when lying horizontally, experiences sudden convulsive movements, like those produced by the electric shock. When a fatal dose has been swallowed, the stomach sometimes manifests irritation, but this is soon followed by great disorder of the cerebro-spinal system, which ultimately assumes an apoplectic character. The sight becomes dim, excessive weakness is experienced, gradually all consciousness is lost, and coma supervenes, attended usually with contracted, though sometimes with dilated pupils, coldness of the surface, frequent and small pulse, hurried stertorous respiration, and occasionally with convulsions. Before insensibility comes on, as well as when it is subsiding, there is itching of the skin. Difficulty in pass-

⁠¹ Trousseau and Pidoux, Traité de Thérap. i. 164, 1836.
⁠² De l'Action Compos. de l'Opiak, 1826.
⁠³ Mém. de l'Acad. Roy. de Méd. i. 99.
ing the water is also experienced, in consequence of the paralysed state of the bladder. Not unfrequently, lividity of skin is observed.

The effects of morphia and its salts appear to be identical in their nature. The soluble salts (as the hydrochlorates) are more constant and certain in their operation than uncombined morphia, in consequence probably of the difficult solubility of the latter.

In comparing the morphitic salts with opium, we observe that they are less stimulant, and less disposed to cause sweating, constipation, headache, and dryness of the tongue. The feelings which they excite are less agreeable, and hence they are not adapted to be substituted for opium by the eaters of this drug. They more readily affect the bladder than opium.

Uses.—We employ morphia or its salts in preference to opium when our object is to make applications to the denuded dermis (endermic medication.) They are employed in this way for the purpose of alleviating violent neuralgic pains, and to relieve the excessive endermic operation of strychnia. Gastrodynia and obstinate vomiting are sometimes relieved by the endermic application of morphia to the epigastrum; and violent headache by the application of this remedy to the temples. Occasionally this mode of administration is adopted, when we wish to bring the general system under the calming and sedative influence of morphia, and where from some cause its exhibition by the mouth is objectionable. Some cases of maniacal delirium may be treated with advantage this way.

The morphia salts are given internally in cases where we wish to obtain the anodyne, soothing, sedative, soporific, and antispasmodic qualities of opium, and where this drug is objectionable on account of its tendency to excite certain injurious effects already referred to. In all cases where both opium and the morphia salts are equally admissible, I prefer the former, its effects being better known and regulated: moreover, opium is to be preferred as a stimulant and sudorific, and for suppressing excessive mucous discharges.

Administration.—The salts are given internally, in a substance or solution, in doses from one-eighth to one-fourth of a grain, or, beyond this. I have given in insanity two grains of muriate of morphia at a dose. For endermic use they are to be finely powdered, and applied to the extent of a grain or a grain and a half at a time.

2. MORPHLE ACETAS, L. E. D.; Acetate of Morphia.—This salt was formerly directed to be prepared by the London College as follows:

Take of Morphia, 3v.j.; Acetic Acid, 3s.ij.; Distilled Water, 3s.iv. Mix the Acid with the water, and pour them upon the morphia to saturation. Let the liquor evaporate with a gentle heat, that crystals may be formed.

In this process the acetic acid saturates the morphia, and the solution by evaporation yields crystallized acetate of morphia.

The following are the directions of the Edinburgh College:

"Take of muriate of morphia any convenient quantity. Dissolve it in fourteen times its weight of warm water, and, when the solution is cool, add aqua ammonize gradually, and with constant agitation, until there is a permanent but faint odour of ammonia in the fluid. Collect the precipitate on a calico filter, wash it moderately with cold water, and dissolve it by means of a slight excess of pyroligneous acid, in twelve parts of warm water for every part of muriate of morphia that was used. Concentrate the solution over the vapour-bath, and set aside to crystallize. Drain and squeeze the crystals, and dry
them with a gentle heat. More acetate of morphia may be obtained on concentrating the mother liquor."

In this process the ammonia decomposes the muriate of morphia, and the precipitated morphia is afterwards dissolved in diluted pyroligneous (acetic) acid. In the Pharmacopoeia of the Dublin College the following process is given:

"Take of Morphia, in fine powder, 3 j.; Rectified Spirit, 3 viij.; Acetic Acid of commerce (sp. gr. 10-44) fijivss., or as much as is sufficient. Pour the spirit on the morphia, and, applying heat, gradually add the acetic acid until a neutral or a slightly acid solution is obtained. Let this be evaporated to the consistence of syrup by a steam or water heat, and then set by for a few days until it solidifies. In operations on the great scale it will be worth while to remove the spirit by distillation."

Acetate of morphia is usually prepared by evaporating its solution to dryness by a gentle heat. Obtained in this way it is amorphous. It is difficult to obtain it pure, as it readily undergoes decomposition, when its solution is evaporated, and is converted into a mixture of morphia, neutral acetate, and the super-acetate of morphia. Hence, as met with in commerce, it is imperfectly soluble in water, unless a few drops of acetic acid be added. It is usually slightly coloured. Its crystals, when pure, are colourless and radiating. The following is the composition of this salt:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>292</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Acetate of Morphia</td>
<td>1</td>
<td>352</td>
</tr>
</tbody>
</table>

Crystallised acetate of morphia is

Very readily dissolved in water. Its other properties are such as have been stated of morphia, Ph. L.

It is less soluble in alcohol than in water.

The Edinburgh College gives the following characters of the purity of this salt:

One hundred measures of a solution of ten grains in half a fluid ounce of water and five minims of acetic acid, heated to 212°, and decomposed by a faint excess of ammonia, yields by agitation a precipitate which, in twenty-four hours, occupies 15.5 measures of the liquid.

The dose of this and the other morphitic salts has been already mentioned.

[3. LIQUOR MORPHÆ ACETATIS, L.; Morphia Acetatis Liquor, D.—Solution of Acetate of Morphia. Take of Acetate of Morphia, 5 jiv.; Acetic Acid, m xv.; Distilled Water, Oj.; Proof Spirit, Oss. Mix and dissolve, L. The dose of this solution is from m xv. to m xv.—[Take of Acetate of Morphia eighty-two grains; Rectified Spirit, five fluidounces; Distilled Water, fifteen ounces. Having added the spirit to the water, dissolve the acetate of morphia in the mixture; and if the solution is not quite clear, pass it through a paper filter.—D.]

4. MORPHÆ HYDROCHLORAS, L.; Morphia Murias, E. D.; Hydrochlorate or Muriate of Morphia. In the last London Pharmacopœia
White Poppy:—Preparations of Morphia.

In the former edition it was directed to be prepared as follows:—

Take of Opium, sliced, lb. j.; Crystals of Chloride of Lead, 3 j.; or as much as may be sufficient; Purified Animal Charcoal, jiss.; Hydrochloric Acid; Distilled Water; Solution of Ammonia, each as much as may be sufficient. Macerate the opium in four pints of distilled water for thirty hours, and bruise it; afterwards digest for twenty hours more, and press it. Macerate what remains again, and a third time, in water, that it may become free from taste, and as often bruise and press it. Evaporate the mixed liquors, with a heat of 140°, to the consistence of a syrup. Then add three pints of distilled water, and, when all the impurities have subsided, pour off the supernatant liquor. Gradually add to this two ounces of chloride of lead, or as much as may be sufficient, first dissolved in four pints of boiling distilled water, till nothing further is precipitated. Pour off the liquor, and wash what remains frequently with distilled water. Then evaporate the mixed liquors as before, with a gentle heat, that crystals may be formed. Press these in a cloth, then dissolve them in a pint of distilled water, and digest, with an ounce and a half of animal charcoal, in a heat of 120°, and strain. Finally, the charcoal being washed, evaporate the liquors cautiously, that pure crystals may be produced. To the liquor poured off from the crystals first separated, previously mixed with a pint of water, gradually drop in as much solution of ammonia, frequently shaking it, as may be sufficient to precipitate all the morphia. To this, washed with distilled water, add hydrochloric acid, that it may be saturated; afterwards digest it with two ounces of animal charcoal, and strain. Lastly, the animal charcoal being thoroughly washed, evaporate the liquors cautiously, that pure crystals may be produced.

Water extracts from opium the meconate and sulphate of morphia and codeia; a part of the narcotina, of the meconine, of the narcine, and of the theobaine; the brown acid extractive; and a part of the resin, and of the fat oil. When chloride of lead is added to infusion of opium, meconate, with a little sulphate of lead, and some resinous colouring matter, are precipitated, while the hydrochlorates of morphia and of codeia are left in solution.

A solution of the impure crystals is then decomposed by ammonia, by which the morphia is precipitated, while codeia and hydrochlorate of ammonia are left in solution. The morphia is dissolved in hydrochloric acid, and the solution of the hydrochlorate decolourised by charcoal.

The Edinburgh College follows Gregory’s process. Their directions for preparing this salt are as follows:—

"Take of Opium, 3xx.; Water, Ovii.; Muriate of Lime, 3 j., or a slight excess.—Macerate the opium in fragments for twenty-four hours in two pints of water, and separate the infusion, squeezing well the residue. Repeat the maceration successively with two pints more of the water till the whole is made use of. Concentrate the whole infusion over the vapour-bath to one pint, and add the muriate of lime dissolved in four fluidounces of water. Set the whole aside to settle; pour off the liquid; wash the sediment with a little water, adding the washings to the liquid. Evaporate the liquid sufficiently in the vapour-bath for it to solidify on cooling. Subject the eooled mass to a very strong pressure in a cloth; redissolve the cake in a sufficiency of warm distilled water; add a little powder of white marble, and filter; acidulate the filtered liquor with a very little muriatic acid; and concentrate a second time in the vapour-bath for crystallisation. Subject the crystals again to very strong pressure in a cloth. Repeat the process of solution, clarification by marble and muriatic acid, concentration and crystallisation, until a snow-white mass be obtained.

"On the small scale, trouble and loss are saved by decolorising the solution of muriate of morphia by means of a little purified animal charcoal after two crystallisations. But on the large scale it is better to purify the salt by repeated crystallisations alone, and to treat all the expressed fluids, except the first, in the same way with the original solution of impure muriate of morphia. An additional quantity of salt may often be got from the first dark and resinous fluid obtained by expression, on merely allowing it to remain at
rest for a few months, when a little muriate of morphia may be deposited in an impure condition.

"The opium which yields the largest quantity of precipitate by carbonate of soda, according to the formula in p. 2107, yields muriate of morphia not only in greatest proportions, but likewise with the fewest crystallizations."

In this process the changes are analogous to those before described for the process of the London Pharmacopoeia, except that meconate and sulphate of lime, instead of meconate and sulphate of lead, are produced.

The Dublin College gives the following directions:—

"Take of Morphia, in fine powder, 3; Pure Muriatic Acid, fivss., or a sufficient quantity; Distilled Water, 3iiss. Mix the acid with the water; heat to about 200°, and add the morphia, constantly stirring, so that a solution may be formed having a slightly acid reaction. Set this to cool for twelve hours, and let the crystals, which separate, be drained of the liquor which surrounds them, and dried on blotting paper. The decanted liquor will, by further concentration and cooling, give additional crystals."

Another, and, as it is believed, a greatly improved method of obtaining morphia, has been recently suggested by Mohr. It consists in adding, to a concentrated infusion of opium, milk of lime prepared with a quantity of dry lime, equal to the fourth part of the weight of the opium. The mixture is heated till it boils, and is filtered while hot through linen. The filtered liquor has a light brown yellow colour. While still hot it is mixed with pulverised sal ammoniac in excess; the lime is saturated by the muriatic acid of the sal ammoniac, and the ammonia of the latter is set free, and the morphia precipitated. In this way crystallized morphia may be obtained without the use of alcohol.

Pure hydrochlorate of morphia crystallizes in plumose, acicular crystals. It is colourless, odourless, bitter, soluble in from 16 to 20 parts of cold water, but less of boiling water. When its saturated boiling solution is allowed to cool, it congeals to form a crystalline mass. It is soluble in alcohol. By heat it is decomposed and totally dissipated. Nitric acid reddens it. Sesquichloride of iron with an alkali colours it blue.

The air-dried crystals are thus composed:—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>292</td>
<td>76.24</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>1</td>
<td>37</td>
<td>9.66</td>
</tr>
<tr>
<td>Water</td>
<td>6</td>
<td>54</td>
<td>14.10</td>
</tr>
<tr>
<td>Crystallized Hydrochlorate of Morphia</td>
<td>1</td>
<td>383</td>
<td>100.00</td>
</tr>
</tbody>
</table>

According to the London College, crystallized hydrochlorate of morphia should be—

Soluble in water and in rectified spirit. What is precipitated from the aqueous solution by the nitrate of silver is not entirely dissolved either by ammonia, unless added in excess, nor by hydrochloric acid, nor by nitric acid. It answers in other respects to what is stated above of the acetate of morphia.

1 Athenaeum for 1840, p. 772; Report of the Tenth Meeting of the British Association, Lond. 1841; and Berlinisches Jahrbuch, Bd. xiii. S. 448.
The Edinburgh College gives the following characters of its purity:—

"Snow white; entirely soluble; solution colourless; loss of weight at 212° not above 13 per cent.; one hundred measures of a solution of 10 grains in half a fluidounce of water heated to near 212°, and decomposed with agitation by a faint excess of ammonia, yield a precipitate which, in twenty-four hours, occupies 12-5 measures of the liquid."

On the above I would merely observe, that Mr. Sandall found that the quantity of water which this salt loses by drying varies from 9·20 to 14·33 per cent. The effects, uses, and doses of this, as well as the other morphitic salts, have been already described.

3. LIQUOR MORPHIE HYDROCHLORATIS, L.; Morphiae Muriatis Solutio, E.; Morphiae Muriatis Liquor, D.; Solution of Muriate of Morphia. (Take of Hydrochlorate of Morphia, 5iv.; Distilled Water, Oj.; Proof Spirit, Oss. Mix and dissolve, L.—Muriate of Morphia, 3iss.; Rectified Spirit, f3v.; Distilled Water, f3xv. Mix the spirit and water, and dissolve the muriate of morphia in the mixture with the aid of a gentle heat, E. D.)—About one hundred and six minims of this solution contain one grain of muriate of morphia.—The dose is from mx. gradually increased to f3ss.

4. TROCHISCI MORPHIÆ, E.; Morphia Lozenges. (Muriate of Morphia, 9j.; Tincture of Tolu, 5ss.; Pure Sugar, 5xxv. Dissolve the muriate of morphia in a little hot water; mix it and the tincture of tolu with the sugar; and, with a sufficiency of muelage, form a proper mass for making lozenges; each of which should weigh about fifteen grains.)—Each lozenge contains about one-fortieth of a grain of muriate of morphia. The morphia lozenges of the shops usually contain each one-twenty-fourth of a grain of muriate of morphia.—This is an agreeable mode of employing morphia, especially in pectoral affections.

5. TROCHISCI MORPHIÆ ET IPECACUANIIÆ, E.; Morphia and Ipecacuanha Lozenges. (Muriate of Morphia, 9j.; Ipecacuan, in fine powder, 5j.; Tincture of Tolu, f3ss.; Pure Sugar, 5xxv. Dissolve the muriate in a little hot water; mix it with the tincture and the ipecacuan and sugar; and, with a sufficiency of muelage, beat the whole into a proper mass, which is to be divided into fifteen-grain lozenges.)—Each lozenge contains about one-fortieth of a grain of muriate of morphia, and one-thirteenth of a grain of ipecacuanha. Useful to allay tickling cough.

6. MORPHILE SULPHAS; Sulphate of Morphia.—This salt, though not contained in the British pharmacopoeias, is occasionally used in medicine. It is crystalline, and readily soluble in water. It consists of 1 atom sulphuric acid=49, 1 atom morphia=292, and 6 atoms water=54. One of these atoms of water is an essential constituent of the salt, and cannot be removed without destroying the salt. The other 5 atoms are the water of crystallization. The dose of it is the same as the other morphitic salts.

Order LXXXIII. MENISPERMAEÆ, De Candolle.—THE

COCCULUS TRIBE.

Menispermææ, Jussieu.

Characters.—Flowers (by abortion?) unisexual, usually dioecious, very small. Floral integuments in one or several rows, each of which consists of three or four parts, hypogynous, deciduous. Petals sometimes absent. Males: stamens monadelphous, or rarely distinct; sometimes equal in number and opposite to, the petals; at other times three or four times as many: anthers adnate, turned outwards, or inserted on the apex of the filament. Females: ovaries sometimes numerous, each with one style cohering slightly at the base; sometimes solitary, crowned with many stigmas, internally many-celled, and, therefore, consisting of many carpels soldered together. Drupes usually berried, 1-seeded, oblique or lunate, compressed. Seed of the same shape as the fruit; embryo curved or turned in the direction of the circumference; albumen 0, or small and fleshy; cotyledous flat, sometimes lying face to face, sometimes distant from each other, and lying in two cells of the seed!; radicle superior, but sometimes appears inferior, when the apex of the fruit is, by the mode of growth, contiguous with the base.—Sarmentaceous flexible tough shrubs. Leaves alternate, simple or rarely compound, mucronate. Flowers small, usually racemose (De Cand.)

Properties.—The roots of several species are bitter and tonic; the seeds of some of them are narcotic.

337. COCCULUS PALMATUS, De Candolle, L. E.—THE

CALUMBA PLANT.

Menispernum palmatum, Lamarck.

Sex. Syst. Dioecia, Hexandria.

(Radix, L.—Root, E. D.)

History.—Franciscus Redi,¹ in 1675, is the first writer who mentions the root of this plant: he praises it as an alexipharmic or antidote for poisons. Cartheuser afterwards examined it; but Dr. Thomas Percival² gave the best account of it. This root has been known by various names,—such as Calumba, Colombo, Calumba, and Colomba. Its native country and history were long involved in obscurity. In 1830, Dr. Hooker³ published a complete description of both the male and female plants. The root was at first supposed to come from Colombo, a town of Ceylon, and from which it was said to derive its name. But it is now known to be the produce of Mozambique. Its English name, Calumba, is derived from the Portuguese word Kalumbo, the o in which is mute.⁴

Botany. Gen. Char.—Flowers unisexual, (always?) dioecious. Calyx of 12 sepals in four series, with 2, 3, or more, close-pressed bracteoles. Males: stamens 6, or rarely 3, opposite to the inner sepals, distinct; anthers 2-celled, terminal, dehiscing vertically; filaments either filiform with the

¹ Exs. circa variis reg nat. p. 179.
⁴ Berry, Asiatic Researches, x. 385.
anther cells horizontal, approximate, and each externally 2-lobed, or thickened at the apex with the cells divaricating downwards, and separated by the connective. Females: ovaries 3, 6, or numerous. Drupes 1 to 6, or numerous, 1-celled, 1-seeded. Peduncles axillary or rarely lateral; males usually many-flowered; females generally few-flowered, without bracts, or with very small ones if present (Lindley).

Sp. Char.—Leaves cordate at the base, 5- to 7-lobed; lobes quite entire, acuminate, somewhat hairy. Stems and ovaries clothed with glandular hair (De Cand.).

Root perennial, of several fasciculated, fusiform, fleshy tubers, with a brown warty epidermis; internally deep-yellow, odourless, very bitter. Stems annual, herbaceous, twining, beset at the lower part with long glanduliferous hairs: of the males, simple; of the females, branching. Leaves alternate, nearly orbicular, wavy on the margin, with long hairy foot-stalks. Racemes axillary, solitary; in the male plants compound. Flowers small, green. Fruit drupaceous or berried, about the size of a hazel-nut, densely clothed with long spreading hairs, tipped with a black oblong gland.

Hab.—Thick forests on the shores of Oibo and Mozambique, as well as inland for 15 or 20 miles.

Preparation of the Roots.—The natives never cultivate the plant, the spontaneous produce being sufficient. The roots are dug up in March (the hot season), the offsets from the main root are cut in slices, strung on cords, and hung up to dry in the shade. It is deemed fit for commerce when, on exposure to the sun, it breaks short; and of a bad quality when it is soft or black.

Description.—Calumba or Colombo root (radix calumba) is met with in flat circular or oval pieces, of from half an inch to three inches diameter, and from one to three or four lines thick. It occurs also in cylindrical pieces of from one to two inches long. The epidermis covering the sides of the pieces is of a yellowish gray or brownish colour, smooth, or irregularly rugous. The transversal surfaces are of a greenish or grayish yellow colour, depressed in the middle from the great shrinking of the medulla in the drying process, and consist of three or four concentric layers. The outer or cortical portion varies in thickness, but is usually about two or three lines thick. It is separated from the ligneous portion by a dark-coloured layer, not exceeding a hair in thickness. The internal or medullary portion is light, spongy, and shrunk. The odour of calumba is faint, but somewhat aromatic: the taste aromatic, and very bitter. In the larger and thicker pieces small holes are occasionally observed, which have been made for the convenience of drying. On account of the starch which it contains, the root is readily attacked by insects.

I am indebted to Mr. N. B. Ward for a sample of calumba root cultivated.

1 Bojer, in Hooker's Bot. Mag. t. 2970-71.
at the Mauritius. It is deficient in the bright greenish yellow tint of the Mozambique calumba.

Commerce.—In the year 1838, duty (2d. per lb.) was paid on 19,805 lbs., and in 1839 only on 9,844 lbs. of calumba.

Composition.—The more recent analyses of Calumba root are those of Planche¹ and Buchner.²

<table>
<thead>
<tr>
<th></th>
<th>Planche.</th>
<th>Buchner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter matter</td>
<td>13</td>
<td>10 to 12·2</td>
</tr>
<tr>
<td>Animal matter, soluble in water and not in alcohol</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Yellow resinous extractive</td>
<td>0</td>
<td>5·0</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>a trace.</td>
<td>0</td>
</tr>
<tr>
<td>Wax</td>
<td>0</td>
<td>0·2</td>
</tr>
<tr>
<td>Gum</td>
<td>9</td>
<td>3·8 to 4·7</td>
</tr>
<tr>
<td>Starch</td>
<td>33</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Vegetable medulla [pectin?]</td>
<td>0</td>
<td>17·4</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>39</td>
<td>12·6</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td>9·8</td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Calumba Root</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

1. **Odorous Principle (Volatile Oil?).**—The odour of the root is supposed to depend on a volatile oil, traces of which were procured by Planche. The distilled water of the root possesses the odour of the latter.

2. **Calumbin (Bitter Principle).**—A crystallizable, odourless, very bitter, neutral substance, extracted from Calumba root by Wittstock.³ Its crystals are rhombic prisms. It is fusible; very slightly soluble in water, alcohol, ether, and volatile oils. Boiling rectified spirit dissolves about 1·40th of its weight. It dissolves in acids and alkalies; its best solvent being acetic acid. It is unaffected by metallic solutions, and by infusion of nut-galls. Sulphuric acid dissolves it, assuming first a yellow, then a red colour. Its composition, according to Liebig, is carbon 65·45, hydrogen 6·18, oxygen 28·37: or $\text{C}_3\text{H}_2\text{O}_4$.

Planche describes the active principle of calumba as a yellow bitter matter soluble in water and alcohol, and yielding no precipitate either with the salts of lead or infusion of galls.

3. **Starch.**—This constitutes about one-third by weight of the root. It renders the root an easy prey to insects. The structure of the starch particles has been described by Payen.¹ These bodies are remarkable by their gibbosities, and by the hilum being found on the largest part of the particles.

Chemical Characteristics.—If the root be moistened with water, and then touched with tincture of iodine, it becomes black. A decoction of the root, when cold, forms with a solution of iodine a blue colour (iodide of starch). Sulphate of iron, emetic tartar, and gelatine, produce no obvious change in an infusion of calumba, shewing the absence of tannic and gallic acids. Litmus detects no free acid. Infusion of nut-galls causes in the infusion of calumba a precipitate (tannate of starch?)

Adulteration.—The root of Frasera Walteri, called the American or

¹ Bull. de Pharm. iii. 189.
³ Ibid. 1830, S. 517.
false calumba, has been occasionally substituted for calumba root on the continent. Such a fraud would not be practicable in England, at least to any extent, as the appearance of the root is quite dissimilar to that of the genuine calumba. It is distinguished chemically from the latter by three characters: 1st, it undergoes no change of colour when touched with tincture of iodine, showing that it contains no starch; 2ndly, it becomes blackish green on the addition of sulphate of iron; 3rdly, it yields a precipitate with a solution of gelatine. The two last characters indicate the presence of tannic acid.

Physiological Effects.—Calumba is an excellent tonic, promoting the appetite, assisting the digestive process, and improving the quality of the secretions from the gastro-intestinal mucous membrane. It is not a stimulant; for Dr. T. Percival took a scruple of it on an empty stomach, but did not observe that it had the least effect on the regularity, fulness, or velocity of the pulse. In another experiment he swallowed half a drachm: in ten minutes his pulse was fuller, and slower by three beats, and continued so for three-quarters of an hour. In consequence of the quantity of starch and gum which it contains, it is sometimes termed a mucilaginous or demulcent tonic. Cetraria islandica and Simaruba bark agree with calumba in this circumstance. But from them, as well as from quassia, it is distinguished by its aromatic properties. In some respects (i.e. in its tonic and aromatic qualities) it approximates to rhubarb, but is devoid of the purgative and astringent properties of the latter. Its want of astringency distinguishes it from the astringent tonics (as cinchona). Full doses of it, in the form of powder, given when the stomach is very irritable, cause vomiting. It does not appear either to constipate or relax the bowels. We are not acquainted with the effects of excessive doses of it. Poisonous properties have been assigned to it by Buchner,¹ who states that Härth, one of his pupils, applied a grain of the ethereal extract of calumba, deprived of wax by repeated solution in water, to a wound in the leg of a rabbit, and that it proved fatal in ten hours.

Uses.—Calumba is one of our most useful stomachics and tonics. Its great value consists in its not being apt, like other and more powerful tonics, to create nausea, sickness, febrile disorder, or headache, so that it is tolerated when other remedies of this class would be immediately rejected. Indeed on many occasions it evinces a positive power of checking vomiting. Schwilgué,² in order to test its anti-emetic qualities, gave it when vomiting had commenced after the use of emetic tartar and ipecacuanha. It frequently arrested the vomiting. He also gave it in conjunction with these emetics, and observed that the vomiting occurred more slowly than usual, and was milder. Probably it owes these valuable properties to a combination of circumstances; such as its freedom from acidity and astringency, the large quantity of starch which it contains (from which it acquires demulcent properties), and the peculiar operation of its bitter principle. The following are the principal uses to which it has been applied:

1. In a languid state of the stomach, with general debility, attended

¹ Toxikol. S. 229.
² Mat. Méd. ii. 374.
with want of appetite, indigestion, nausea, and flatulence, experience has fully established the value of calumba, and has proved the justice of the encomiums passed on it by Dr. T. Percival. It is of all tonics the least likely to disagree with the stomach. In the stage of convalescence after an attack of fever, the infusion of calumba is an excellent preparative for the more powerful tonics (infusion of cinchona and disulphate of quina). In those forms of dyspepsia attended with great acidity of stomach, it may be given with advantage in combination with bicarbonate of potash.

2. To allay vomiting, when not dependent on inflammatory conditions of the stomach, calumba is often highly serviceable; as in bilious vomiting, in the sickness which so frequently attends pregnancy, and delirium. Even vomiting arising from renal calculi or diseased kidney has been somewhat palliated by calumba. I have seen the most satisfactory results from the combined use of infusion of calumba and effervescing draughts (composed of citric acid and bicarbonate of potash) in those occasional attacks of vomiting especially observed in delicate females, and which are commonly termed bilious attacks. By this treatment the violence and continuance of the vomitings have been diminished, and the continued employment of calumba has reduced the frequency, and in some cases prevented the occurrence, of future attacks.

3. In diarrhoea and dysentery, where tonics are admissible, as in the later periods of these diseases, when the inflammatory symptoms have subsided, and in habitual diarrhoea, calumba often proves serviceable. In Germany it is denominated Ruhrwurzel (i.e. dysenteric root).

Administration.—Calumba is administered in the form of powder, infusion, or tincture. The dose of the powder is from gr. x to 5ss. The infusion is the most eligible form of exhibition.

4. Infusum Calumbæ, L. E.; Infusum Colombæ, D.; Infusion of Calumba. (Calumba, sliced [in coarse powder, E. D.], 3v. [5ss. E.; 3ij. D.]; Boiling [distilled, L.]. Water [Cold Water, E. D.], Oij. [3ix. D.].) Macerate for two hours in a lightly covered vessel, and strain, L. D.—Tri- turate the calumba with a little of the water, so as to moisten it thoroughly, put it into a percolator, and transmit cold water till f3xvj. of infusion be obtained.” E)—The facility with which this preparation undergoes decomposition is ascribed by Planche to the substance which he terms animal matter.—Dose of the infusion, f3j. to f3ij. It may be conjoined with alkalies or chalybeates, without injury or obvious change. [Infusion of calumba becomes muddy by allowing it to stand on the dregs.—Ed.]

2. Tinctura Calumbæ, L. E.; Tinctura Colombæ, D.; Tincture of Calumba. (Calumba, sliced [in small fragments; if by percolation in moderately fine powder, E.], 3ij. [5v. D.]; Proof Spirit, Oij. Macerate for seven days [fourteen, D.], and filter.—“Express the residuum strongly, and filter the liquors. This tincture is much more conveniently prepared by the process of percolation, allowing the powder to be soaked with a little of the spirit for six hours before putting it into the percolator,” E)—An excellent adjunct to bitter infusion and effervescent medicines, when given to check vomiting.—Dose, f3j. to f3ij.
338. **ANAMIRTA COCCULUS, Wight and Arnott, E.—THE COCCULUS INDICUS PLANT.**

Sex. Syst. Dioccia, Monadelphia.

(Fruit, E.)

History.—"According to Sprengel,¹ the fruit now usually called *Coccus indicus* was introduced by the Arabians, and was described by Avicenna and Serapion under the name of *Maheradsch.*"² In my copy, however, of the Latin translation of Avicenna,³ the word *Maheradsch* does not occur: but *Mahezecheregi* or *Maheizhera*⁴ is said to intoxicate fish. Nor can I find it in Serapion. *Coccus indicus* is sometimes termed the *Levant nut,* or *bacca orientalis.*

Botany. Gen. Char.—Flowers dioecious. *Calyx* of 6 sepals in a double series, with 2 close-pressed bracteoles. *Corolla* 0. Male: stamens united into a central column dilated at the apex; *anthers* numerous, covering the whole globose apex of the column. Female: flowers unknown. *Drupe* 1 to 3, 1-celled, 1-seeded. Seed globose, deeply excavated at the hilum; *albumen* fleshy; *cotyledons* very thin, diverging.—Twining plants, with a corky bark. Leaves more or less cordate-ovate. *Flowers* in lateral compound racemes (Wight and Arnott).

Sp. Char.—The only species.

A strong climbing shrub. **Bark** deeply cracked, ash-coloured. Leaves stalked, large (from 8 to 12 inches long); petiole a little shorter than the leaves.

Hab.—Malabar, and Eastern Islands, &c. of India.

Description.—As met with in commerce, *Coccus indicus* (also called *Coccus levanticus* seu *piscatorius*) has considerable resemblance to the bay berry (*bacca laurii*), but is scarcely so large as the latter. It consists externally of a dried, thin, blackish-brown, rugous, acrid and bitter layer, which envelops a thin, bivalved, white, ligneous shell (*endocarp*). In the middle of this shell arises a central placenta, which is contracted at its base, but enlarged and divided into two cells superiorly. Between this placenta and the shell is an oleaginous, yellowish, very bitter nucleus (*seed*) of a semi-lunar form. This nucleus never wholly fills the cavity of the shell,—at least in the *Coccus indicus* of commerce; for by keeping, it gradually becomes atrophied, and in old samples it is not uncommon to find the shell almost empty. This change is observed also in other oleaginous seeds. By this character alone, *Coccus indicus* may be instantly distinguished from the bay berry. The *Edinburgh College* requires that,—

"The kernels should fill at least two-thirds of the fruit."

¹ *Bertl. Jahrb. xxiii. 1822, S. 70.*
³ Venet. 1561.
⁴ Lib. 2ndus, tr. 2ndus, cap. 488.
commerce.—Cocculus indicus is imported in bags from Bombay, Madras, and Ceylon. I am not acquainted with any official returns of the quantity annually brought over. From a druggist’s private books I find that, in 1834, about 2500 bags entered; and this probably is much below the quantity imported. The greater part is consumed for illegal purposes,—principally for adulterating beer and ale, though this practice is prohibited by the legislature, under a penalty of £200 upon the brewer, and £500 upon the seller of the drug.

composition.—Cocculus indicus was examined in 1811, by Boullay,¹ and in 1834 by Pelletier and Courbe.² The results obtained by the last-mentioned chemists were as follows:—

<table>
<thead>
<tr>
<th>Analysis of the Nucleus</th>
<th>Analysis of the Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Resin.</td>
<td>2. Paramenispermia.</td>
</tr>
<tr>
<td>4. A fatty acid substance.</td>
<td>4. Hypopicrotoxic acid.</td>
</tr>
<tr>
<td>5. An odorous matter.</td>
<td>5. Wax.</td>
</tr>
<tr>
<td>11. Inorganic substances (nitrate and sulphate of potassium, and chloride of potassium), by incineration carbonates of potash, and of lime, manganese, and iron.</td>
<td>11. Inorganic substances (as those of the nucleus with the addition of copper.)</td>
</tr>
</tbody>
</table>

1. Picrotoxin (Picrotoxic Acid).—At first it was supposed to be an alkaline substance, and was termed picrotoxine. It is a white, crystalline, intensely bitter substance, usually crystallizing in needles, but sometimes in silky flexible filaments or transparent plates, or granular crystals. It is soluble in 150 parts of water at 57°F, in 25 parts of boiling water, in a third of its weight of alcohol, and in less than half its weight of ether. It is insoluble in the fixed and volatile oils, but is soluble in acetic acid. It does not combine with acids, but forms combinations with alkalies. It seems, therefore, to be an acid, though a feeble one. It consists of C₁₂H₁₃O₆. The poisonous properties of the nucleus (seed) of cocculus indicus depend on picrotoxin. Dr. Glover has recently experimented on the properties of this substance, and has published an account of his experiments in the Lancet.³ According to the analysis of Dr. Francis, it contains nitrogen, and it consists in 100 parts of carbon 60·26, hydrogen 5·70, nitrogen 1·30, oxygen 32·74.—Ed.

2. Menispermia (Menisperminia; Menispermin).—This is an opaque, white, crystalline substance, soluble in alcohol and ether, but insoluble in water. It fuses at 218° F., and at a higher temperature is decomposed, leaving an abundant charcoal. It dissolves in, and saturates acids; and from these solutions alkalies precipitate it. Concentrated sulphuric acid has little action on it: hot nitric acid converts it into a yellow resinous substance, and oxalic acid. It is composed, according to Gay-Lussac, of C₁₉H₂₄NO₄. It does not appear to have any marked action on the animal economy.

3. Paramenispermia (Paramenispermia; Paramenisperm).—This is a crystalline solid, insoluble in water, scarcely soluble in ether, but dissolving readily in alcohol. It is fusible and volatile, and may be sublimed unchanged. It does not saturate acids, and, therefore, differs in this respect from the preceding substance. Notwithstanding this, however, its composition is the same.

4. Hypopicrotoxic Acid.—This acid is an amorphous, brown solid, insoluble in water (cold or boiling), insoluble in ether, soluble in alkalies, and precipitable from its

¹ Ann. de Chim. lxxx. 209.
³ Lancet, Jan. 11, 1851, p. 47.
solution in them by the mineral acids. It is composed of, carbon 64·14, hydrogen 6·09, oxygen 29·77. This composition approximates to that of picrotoxin.

The yellow alkaline matter of the shell has been scarcely examined. Boulay\(^1\) mentions a crystalline substance which he calls menispermic acid; but its properties require further examination.\(^2\)

Chemical Characteristics.—Iodine colours the nucleus brown. The cold watery infusion of the whole fruit is slightly acid, and produces a dark precipitate with the sesquichloride of iron. Infusion of galls also occasions a precipitate.

Physiological Effects.

\(a\). On Vegetables.—A solution of the aqueous extract of Cocculus indicus killed a haricot plant in twenty-four hours.\(^3\)

\(b\). On Animals generally.—It is poisonous to all animals; at least it has been found to be poisonous to dogs, goats, cows, crocodiles, birds, and insects. Goupil\(^4\) considered it to be a local irritant; but the correctness of this opinion is denied by Orfila.\(^5\) When introduced into the stomach its irritant effects were confined to the production of nausea and vomiting. It acts on the cerebro-spinal system, causing staggering, trembling, tic-tac convulsions, and insensibility. Goupil states, that all fish which eat it die,—roach being killed very easily, barbel with more difficulty. “The barbel,” we are told, “is, of all fish, that whose flesh the most frequently occasions accidents in those animals who eat it; probably becausc these fish, taking a longer time to die, the poison is longer subjected to the action of the digestive juices, and a considerable quantity of it is consequently absorbed.” Orfila says, Cocculus indicus acts like camphor on the nervous system, and principally on the brain.

\(γ\). On Man.—Its effects on man have not been accurately ascertained. Hill\(^6\) says, three or four grains of it have brought on nauseas and faintings. It is frequently added to malt liquors, for the purpose of increasing their intoxicating powers; but, from some accounts which I have received from an Excise officer, who has been repeatedly subjected to the influence of beer thus adulterated, its action appeared to be rather on the voluntary muscles than on the intellectual powers.

The operation of Picrotoxine is analogous to, though stronger than, that of Cocculus indicus. Ten or twelve grains, given by the mouth, are sufficient to kill a dog. A grain and a half, injected into the jugular vein of a dog, killed the animal in twenty minutes.

Uses.—Cocculus indicus is rarely employed in medicine. It has, however, been used as an external application, in the form of powder or ointment, to destroy pediculi (hence the Germans call these fruits Läusekorner, or louse-grains). It has also been employed in some obstinate skin diseases, as porrigo; but its use requires caution, especially where the skin is not entire, on account of the danger of absorption. Notwithstanding the severe prohibitory statutes against the employment of Cocculus indicus in brewing, I

1. *Journ. de Pharm.*, xiv. 61.
5. *Ibid*.
have reason to believe that it is extensively used; but being employed in the form of a solution of the extract, the form is not easy of detection. Morrice gives full directions for its employment. In the manufacture of porter, this author directs three lbs. of Cocculus indicus to be added to every ten quarters of malt. "It gives," says he, "an inebriating quality, which passes for strength of liquor;" and he adds, "that it prevents second fermentation in bottled beer, and consequently the bursting of the bottles in warm climates."

Antidote.—In poisoning by Cocculus indicus, or picrotoxin, remove the poison from the stomach as speedily as possible. No chemical antidote is known, though acetic acid has appeared to give relief. The symptoms must be combated on general principles, no peculiarities in the treatment being known. As a last resource, try artificial respiration.

Ointment of Cocculus Indicus.—(Take any convenient quantity of Cocculus indicus, separate and preserve the kernels; beat them well in a mortar, first alone, and then with a little axunge, and then add axunge till it amounts, altogether, to five times the weight of the kernels).—Used to destroy pediculi.

Jäger 2 has an ointment of picrotoxin (composed of gr. x. of picrotoxin and 5j. of lard) in obstinate forms of porrigo.

339. CISSAMPELOS PAREIRA, Linn. E. D.—PAREIRA BRAVA, OR VELVET LEAF.

Sex. Syst. Dicccia, Monadelphia.

(Radix, L.—Root, E. D.)

History.—The root of this plant was first mentioned by Piso 3 in 1648, under the name of Caapêba. It was introduced into Paris, in 1689, by M. Amelot, the French ambassador at Portugal. 4

It is usually termed Pareira (Parreyra) brava, which means, literally, wild vine, on account of its supposed resemblance to the root of the wild vine. The Germans call it Grieswurzel (i. e. gravel root), on account of its beneficial effects in stone or gravel.

Botany. Gen. Char.—Dicccious. Male: sepals 4, in a double series. Petals 4, united into a cup-shaped corolla, with usually an entire margin. Stamens united into slender columns dilated at the apex, bearing two 2-celled anthers opening horizontally; cells placed end to end, and forming a 4-lobed, 4-celled annulus round the top of the column. Female: calyx of 11 lateral sepal. Corolla of 11 petal in front of the sepal. Ovary solitary. Stigmas 3. Drupe obliquely reniform; but compressed, wrinkled round its margin. Seed solitary uncinate; embryo long, terete, inclosed in a fleshy albumen (Wight and Arnott).

1 Treatise on Brewing.
3 Hist. Nat. Brasil. 94.
4 Murray, App. Med. i. 499.
Sp. Char.—*Leaves* peltate, subcordate, ovate-articulate; silky-pubescent beneath. Female *racemes* larger than the leaf. *Berry* hispid (De Cand.)

A climbing *shrub*. *Root* woody, branching. *Stem* round, smooth, or with close-pressed down. *Leaves* aristate at the point, when full-grown smooth above, underneath covered with silky pubescence (hence called *velut leaf*), but not truly downy. *Flowers* small, yellow. *Berry* scarlet, round or reniform, hispid.

Hab.—West India Islands and Spanish Main.

Description.—The root of Cissampelos Pareira, commonly termed *pareira brava* (radix *pareire brava*), is sometimes imported under the name of *abuta* or *batua root* (radix *batua*). Von Martius says, that in the Brazils, Cissampelos Pareira is called *Butua* or *Capeeba*. *Pareira brava* occurs in more or less cylindrical pieces, sometimes flattened or bluntly angular. Some of the pieces are as thick as a child's arm,—their length often a foot or more. Externally they are covered with a dark-brown rind or cortex, which is furrowed longitudinally, and wrinkled transversely. The wrinkles have very much the appearance of large, transversely elongated lenticellae. The surface of the transverse section of the root is of a yellowish gray colour, and presents a number of concentric circles (the annular layers), traversed by numerous radiating lines (medullary rays); between these lines are triangular bundles of woody fibres and ducts,—the latter are large, and being cut transversely, constitute the numerous holes or apertures presented by the cut surface. The circles or layers occasionally assume a very eccentric appearance.

The number of concentric circles varies with the age of the root. The fracture of the root is coarsely fibrous. The taste is sweetish, aromatic, afterwards bitter and unpleasant. It has no odour.

Substitution.—The *pareira brava* of commerce yields most unequal quantities of extract. This circumstance, as well as some variation in the appearance of the pieces, leads to the belief that the roots (and stems?) of more than one plant, are sold under this name. A sample of a supposed spurious root,\(^1\) yields “only a very minute quantity of the extract; and the decoction prepared from it, according to the usual formula, has only a slightly bitter taste, instead of the strong bitter of the decoctions” of the true root. A piece of this supposed spurious root presents an appearance of medulla, and is covered externally with a lichen; whence it would appear to be a portion of a stem.

Composition.—*Pareira brava* has been analysed by Feneulle,\(^2\) who found the constituents to be, a soft resin, a yellow bitter principle, a brown colouring principle, vegeto-animal matter, fucula, super-malate of lime, nitrate of potash, and some ammoniacal and mineral salts. More recently, Wiggers\(^3\) has announced the discovery of a new vegetable alkali, which he calls *cissampelin*, in this root.

1. Feneulle considers the *yellow bitter matter* to be the active principle of the root. It is described as being soluble in both alcohol and water. From its solution it was precipitated by tincture of nutgalls as well as by diacetate of lead. In these pro-

\(^2\) *Journ. de Pharm.* vii. 404.

\(^3\) *Berl. Jahrb.* xl. 223, 1838.

Properties it appears to agree with cathartine; but it is, probably, a mixture of several substances.

2. The properties of cissampelin have not been described. Wiggers says it is a strong saline base, soluble in ether and in acetic acid. From its acetic solution it is precipitated by carbonate of soda.

Chemical Characteristics.—The presence of starch in the root is shown by iodine. An infusion of the root yields a precipitate on the addition of infusion of galls, and is rendered brown by the sesquichloride of iron.

Physiological Effects.—I am unacquainted with any experiments made to determine the effects of this root in the healthy state of the body. From its taste, botanical affinities, and effects in diseases, it appears to possess a tonic power, and occasionally to act as a diuretic. Furthermore, its efficacy in certain maladies of the urinary organs induces us to ascribe an almost specific influence to this root over the mucous membrane lining the urinary passages. It certainly does appear to have the power of altering the quality of the urinary secretion. Large doses prove aperient.

Uses.—It was originally introduced into medicine as a lithontriptic. Its powers in this way were at one time highly vaunted, and Helvétius even went so far as to assert that calculi, the size of an olive, had disappeared under its use, and that the operation of lithotomy was no longer necessary! We now employ it almost solely in discharges from the urino-genital mucous membrane.—It has been used in gonorrhœa, leucorrhœa, and chronic inflammation of the bladder. In the latter of these diseases Sir B. Brodie states, that he has seen more good done by this root than by the Uva-ursi. “I am satisfied,” says this eminent surgeon, “that it has a great influence over the disease which is now under consideration, lessening very materially the secretion of the ropy mucus, which is itself a very great evil, and, I believe, diminishing the inflammation and irritability of the bladder also.” He recommends it to be taken in the form of a concentrated decoction, to which may be added some tincture of hyoscyamus; and in these cases in which there is a deposit of the triple phosphates, muriatic or diluted nitric acid may be added.

Administration.—The powder has been given in doses of from half a drachm to a drachm. But the infusion or decoction, to which some extract has been added, is to be preferred. A tincture or essence has been prepared by digesting one part of the root in five parts of rectified spirit. It is reputed diuretic and antiseptic. Its dose is 1/5j.

1. Decoctum Pareireœ, L.; Decoction of Pareira. (Pareira, sliced, 5x.; Distilled Water, Oiss. Boil to a pint and strain.) [Narcotics, especially hyoscyamus, and alkalies or acids, may be added to this decoction as occasion may require. A stronger decoction than this is recommended by Sir Benjamin Brodie, who employs 3ss. of the root to Oij. of water, to be gently boiled down to one pint. Eight to twelve ounces of this should be taken daily. This is certainly a more effective preparation than that of the Ph. L.—Ed.]

2. Infusum Pareireœ, E. D.; Infusion of Pereira Brava.—(Pareira, 5vj.; Boiling Water, Oj. Macerate for two hours in a lightly covered vessel,

1 Lond. Med. Gaz. i. 300.
and strain through calico, E.)—Dose $\frac{1}{2}$ to $\frac{3}{2}$ drachms. It will be advisable to increase the strength of this infusion by the addition of some extract of pareira to it. The Dublin College orders 3 ss. of the bruised and torn root to 3 in. of boiling water, and macerates for one hour.

3. **EXTRACTUM PAREIRÆ, L. E.; Extract of Pareira Brava.** (Prepared as Extract of Haematoxylon [as Extract of Liquorice-root, E.])—Dose, gr. x. to 3 ss. It is usually given in conjunction with the infusion or decoction.

OTHER MEDICINAL MENISPERMACEÆ.

The student must not confound **Pareira Brava** with the **Pereira bark** belonging to Styraxaceæ and before noticed, nor with the **Pereira medica**, Lindley, a menispermaceous plant, whose root is employed by the Cingalese as a stomachic.

Order LXXXIV. MAGNOLIACEÆ, De Candolle.—THE MAGNOLIA TRIBE.

Magnoliaceæ and Winteraceæ, Lindley.

Characters.—All the parts of the flower disposed in ternary number. *Sepals* 3 to 6, deciduous. *Petals* 3 to 27, in many series, hypogynous, *Stamens* numerous, free, inserted on the torus beneath the ovaries; *anthers* adnate, elongated. *Ovaries* numerous, inserted on the torus above the stamens, generally disposed like a spike, monostylous; *styles* short; *stigmas* simple. *Carpels* as many as the ovaries, 1-celled, 1- or many seeded, capsular, and dehiscing by a superior chink; or capsular bivalved, dehiscing by an inferior chink; or follicular; or somewhat fleshy and indehiscent; or, lastly, samariform, aggregate, or partially united into a loose or dense strobile. *Seeds* attached to the internal angle of the carpels; *albumen* fleshy; *embryo* straight, small, inferior.—Elegant trees or shrubs. *Leaves* alternate, pinnatinerved. *Flowers* conspicuous, often powerfully odoriferous (De Cand.)

Properties.—Bark tonic and aromatic. The same properties are possessed by some of the fruits. The flowers by their odour readily occasion nausea, headache, and faintness.

340. DRIMYS WINTERI, De Candolle.—WINTER’S BARK TREE.

Wintera aromatica, Murray.

Sex. Syst. Polyandria, Tetracyenia.

History.—William Winter, captain of one of the ships which accompanied Sir Francis Drake, in the year 1578, to the Straits of Magellan, returning in 1579, brought the bark of some trees, which he had cut down there, to
Europe. From this circumstance Clusius\(^1\) called it *Winter's bark* (*Winteran us cortex*). It was afterwards confounded with Canella bark.

Botany. _Gen. Char._—Carpels congested, baccate, many-seeded. _Filaments_ thickest at the apex; cells of the anther separate (De Cand).

**Sp. Char._—Leaves oblong, obtuse, glaucescent beneath. _Peduncles_ simple, approximated, or very short, divided into elongated pedicels (De Cand).

![Drinks Winteri.](image)

A large forest tree. _Branches_ often tuberculated from the scars of the old footstalks. _Sepals_ 2 to 3, green. _Petalas_ 7, milk-white. _Fruit_ ovate.\(^2\)

**Hab._—Straits of Magellan, Chili, Peru, New Grenada.

**Description._—Winter's bark (*Cortex Winteri* seu *Winteranus*) occurs in quills or rolled pieces, commonly a foot long, one or two inches in diameter, and two or three lines thick. Its colour externally is pale-yellowish, or dull reddish gray, with red elliptical spots; internally it is reddish brown. Its odour is aromatic, its taste warm and pungent. The characters by which it is distinguished from Canella bark have been already pointed out. Its infusion is darkened by the salts of iron.

**Composition._—Winter's bark has been analysed by M. Henry,\(^3\) who found its constituents to be _resin, volatile oil, colouring matter, tannin, acetate of potash, chloride of potassium, sulphate of potash, oxalate of lime, and oxide of iron._

1. **Volatil Oil** (*Oleum Corticis Winteri)._—Pale-yellow, lighter than water, with a very hot and acrid taste. By standing it is separated into two parts: one (the most abundant part) a greenish-yellow liquid; the other (heavier, but lighter than water) white, and of a fatty consistence.

2. **Resin._—Reddish-brown, and almost odourless. Its taste is at first feeble; then acrid and persistent.

**Physiological Effects and Uses._—Stimulant, aromatic, and tonic. Its uses are similar to those of cinnamon and canella alba. Winter employed it in scurvy. It is seldom employed._—Dose, 3 ss. or 3j.

Other Medicinal Magnoliaceae.

Illicium Anisatum is an evergreen tree, growing in Japan and Cochim-China. Its fruit constitutes the *star-anise* (*anisum stellatum*) of the shops. It consists of a variable number (usually six to twelve) of hard woody follicles, disposed in a star-like form, each containing an oval reddish seed. It has the odour of common anise (*Pimpinella Anisum*), but somewhat sweeter. By distillation it yields the _oil of star-anise* (*oleum badiani*), which closely resembles, and is often substituted for, the _oil of common anise_; but it congeals less readily than the latter. Star-anise is aromatic and carminative. Both the fruit and the oil are employed by liqueur-makers. As regards its effects it might be substituted for common anise.

1 Exot. lb. iv. cap. i. p. 75.
3 Journ. de Pharm. t. v. p. 489.
Order LXXXV. Ranunculaceae, De Candolle.—The Crow-foot Tribe.

Characters.—Sepals 3 to 6, hypogynous, deciduous, generally imbricate in aestivation, occasionally valvate or duplicate. Petals 3 to 15, hypogynous, in one or more rows, distinct, sometimes deformed. Stamens definite or indefinite in number, hypogynous; anthers adnate. Carpels numerous, seated on a torus, 1-celled or united into a single many-celled pistil; ovary 1 or more seeded, the ovules adhering to the inner edge; style 1 to each ovary, short, simple. Fruit either consisting of dry akenia, or baccate with 1 or more seeds, or follicular with 1 or more valves. Seeds albuminous; when solitary, either erect or pendulous; embryo minute; albumen cornous.—Herbs, or very rarely shrubs. Leaves alternate or opposite, generally much divided, with the petiole dilated and forming a sheath half clasping the stem. Stipules occasionally present. Hairs, if any, simple. Inflorescence variable (Lindley).

Properties.—Mostly poisonous. Acridity is the prevailing quality, conjoined, in a considerable number of instances, with a narcotic quality. Several of the species are topical benumbers.

341. Ranunculus Acris, Linn.—Upright Meadow Crowfoot.

Botany. Gen. Char.—Calyx of 5 sepals; sepals not separate at the base, deciduous. Petals 5, rarely 10, with nectariferous scales at the base. Stamens and ovaries numerous. Caryopsides ovate, somewhat compressed, terminating in a short micro or horn, scarcely larger than the seed, smooth, striated or tuberculated, arranged in a globose or cylindrical head (De Cand). Sp. Char.—Calyx spreading. Flower-stalks round and even. Leaves in three deep-lobed and cut segments; those of the uppermost linear and entire. Stem erect, covered with close hairs.1

Perennial. Flowers yellow. Petals with a scale at the base.

Hab.—Indigenous; very common in meadows and pastures. Flowers in June and July.

Composition.—Not analysed. Its acrid principle is either very volatile, or readily undergoes decomposition, as, by drying, the plant loses its acridity.

Physiological Effects.—A powerful acrid. Inflammation of the palm of the hand has been produced by pulling it up and carrying it a little distance.2 Withering3 says it easily blisters the skin. Orfila4 has shown, by experiments on animals, its power of causing inflammation of the tissues to which it is applied.

Uses.—It has been applied as a rubefacient and epispastic, but is far

1 Smith, Eng. Fl.
2 Curtis, Fl. Lond. vol. i.
3 Arrang. of Brit. Plants, iii. 681.
4 Tor. Gén.
inferior to cantharides and mustard, on account of the uncertainty of its operation.

342. RANUNCULUS FLAMMULA, Linn.—LESSER SPEAR-WORT CROWFOOT.

Sex. Syst. Polyandria, Polygynia.

Hab.—Indigenous; sides of lakes and ditches abundant.

Physiological Effects and Uses.—Similar to those of Ranunculus acris.

343. HELLEBORUS NIGER, Linn. L. E.—BLACK HELLEBore, OR CHRISTMAS ROSE.

Sex. Syst. Polyandria, Polygynia.

(Rhizoma et radix, L.—Root, E.)

History.—According to Sprengel,¹ this is the plant called by the Abbess Hildegard, Christiana.

It must not be confounded with the ἐλεθορος μέλας (black hellebore) of Dioscorides,² which, according to Dr. Sibthorp,³ was the plant which he has described and figured under the name of Helleborus officinalis. Hippocrates employed hellebore in medicine. Melampus employed it with great success, in the treatment of madness, 1400 years before Christ. His use of it is the earliest instance on record of the use of a purgative.⁴ It has been called after him melampodium, a term which has also been applied to Helleborus niger.

Botany. Gen. Char.—Calyx persistent, of 5 sepals; sepals roundish, obtuse, large, usually green. Petals 8 to 10, very short, tubular, narrow, and nectariferous beneath. Stamens 30 to 64. Ovaries 3 to 10. Stigmas terminal, orbicular. Capsules coriaceous. Seeds in a double row, elliptical, umbilicated (De Cand.)
Sp. Char.—Leaves radical, pedatisect, quite smooth. Scape leafless, 1- to 2-flowered, bracteate (De Cand.)

Rhizome several inches long, tuberculated, horizontal, scaly, blackish-

¹ Hist. Rei Herb. i. 226.
² Lib. iv. cap. 151.
³ Fl. Greca.
⁴ Le Clerc, Hist. de la Méd. p. 27, 1729.
brown externally, white internally, with many dependent, long, simple root-fibres. Leaves on cylindrical stalks from 4 to 8 inches long; lobes ovate-lanceolate, serratate near the point. Scape shorter than the petiole. Sepals ovate or roundish, large, white, slightly tinged with pink, eventually becoming green. Petals green, tubular, shorter than the stamens. Follicles many-seeded. Seeds black, shining.

Hab.—Sub-alpine, woodland regions in the midland and southern parts of Europe.

Commerç.—Hellebore root is imported in barrels and bags from Hamburg usually, but sometimes from Marseilles.

Description.—The root met with in commerce under the name of black hellebore root (radix hellebori nigri, seu radix melampodii) consists of two parts,—the rhizome or rootstock, and the fibres which arise from it. The rhizome is half an inch or less thick, several inches long, horizontal or contorted, knotty, with transverse ridges and slight longitudinal striae. The fibres are numerous, cylindrical, dark brown externally, internally whitish or yellowish white, with a central paler cord. The odour is very feeble, and scarcely perceptible, but has been compared to that of senega root. Its taste is slight at first, then bitterish, acrid, and nauseous.

Substitution.—It is probable that the roots of Helleborus viridis and foetidus are sometimes substituted for, or intermixed with, black hellebore root. This practice certainly occurs on the continent. The root of Actaea spicata (sometimes called radix hellebori nigri falsi) is also said to be occasionally substituted for the genuine root: its stronger fibres, when cut transversely, present the form of a cross. As far as I have observed, the roots, sold in this country as black hellebore, have a very uniform appearance, and from this I have not had reason to suspect any intermixture of other roots.

Composition.—Vauquelin\(^1\) analysed the root of Helleborus hiemalis. This analysis is quoted by Soubeiran\(^2\) as the analysis of black hellebore root. Feneulle and Capron\(^3\) analysed the black hellebore root.

<table>
<thead>
<tr>
<th>Vauquelin’s Analysis</th>
<th>Feneulle and Capron’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root of Helleborus hiemalis.</td>
<td>Root of Helleborus niger.</td>
</tr>
<tr>
<td>Very acrid oil.</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Extractive.</td>
<td>Fatty oil.</td>
</tr>
<tr>
<td>Starch.</td>
<td>Volatile acid.</td>
</tr>
<tr>
<td>Vegeto-animal matter.</td>
<td>Resinous matter.</td>
</tr>
<tr>
<td>Sugar.</td>
<td>Wax.</td>
</tr>
<tr>
<td></td>
<td>Ulmin.</td>
</tr>
<tr>
<td></td>
<td>Gallate of potash.</td>
</tr>
<tr>
<td></td>
<td>Ammoniacal salts.</td>
</tr>
</tbody>
</table>

Acrid Oil, Vauquelin; Soft Resin, Gmelin; Helleborin.—This substance is odourless, has an acrid taste, and is soluble in spirit. Vauquelin ascribed the activity of hellebore to it. Feneulle and Capron, on the other hand, ascribe it to a combination of fatty oil and volatile acid. Probably the two latter correspond to the acrid oil of Vauquelin.

\(^1\) Ann. de Muséum, viii. 87.
\(^2\) Nouv. Traité de Pharm. 1.
\(^3\) Journ. de Pharm. viii. 503.
Physiological Effects. a. On Animals.—Given by the mouth to the carnivora (as dogs), it causes vomiting, frequently purging and griping. In excessive doses it produces gastro-enteritis. If the esophagus be tied, to prevent the ejection of the root from the stomach, it causes staggering, weakness or paralysis of the hind extremities, insensibility, and death. Similar effects result from its application to a wound. Orfila states, when the animals survive a few hours, inflammation of the rectum is a constant occurrence; whereas Vicat says it causes inflammation of all the intestines, except only the rectum. The latter statement is entirely erroneous.

b. On Man.—Black hellebore is a local irritant, drastic purgative, and emmenagogue. Given in small doses it increases the secretion and peristaltic motion of the intestines, and acts as a stimulant to the pelvic circulation, thereby promoting the menstrual and hemorrhoidal discharges, and by its influence over the portal circulation contributing probably to increase the hepatic secretion. Large doses act as a drastic purgative, and frequently also occasion sickness. They produce a more manifest influence over the pelvic vessels, often cause cold sweats, and lower the strength of the pulse. In an excessive or poisonous dose it acts as a narecto-acrid poison, and causes vomiting, purging, burning pain in the stomach and intestines, cramps of the lower extremities, cold sweats, faintness, paralysis, insensibility, and death. The fresh root applied to the skin produces rubefaction and vesication.

As a drastic purgative it is allied to colocyth, from which its narcotic operation and its greater influence over the pelvic organs distinguish it.

Uses.—Black hellebore, though greatly esteemed by the ancients, is but little employed by the moderns. It is adapted for torpid, phlegmatic individuals, especially when the pelvic circulation is languid. On the other hand, in easily-excitable persons, and where any irritation of the pelvic organs (especially the uterus and rectum) exists, it proves injurious.

1. In affections of the nervous system, especially mania, melancholia, and epilepsy, it has long been celebrated, and, under the above-mentioned conditions, at times proves serviceable.

2. As an emmenagogue it was greatly esteemed by Dr. Mead and is still much valued by some practitioners. He gave two teaspoonfuls of the tincture in a glass of warm water twice a day. The remarks already made will readily suggest the class of cases to which it is applicable.

3. Indropsy its drastic operation renders it useful. Furthermore, when this disease depends on, or is connected with, a languid state of the portal circulation, black hellebore proves further useful by the stimulus which it communicates to the hepatic vessels.

4. Lastly, black hellebore has been used in chronic skin diseases, and as an anthelmintic.

Administration.—The dose of powdered hellebore is from grs. x. to ½, as a drastic purgative. When we require a milder effect, we may give it in doses of grs. ⅛ to grs. viij. It has also been given in decoction; but the tincture is the most frequently employed preparation.

2 Hist. des Plant. Vén. de la Suisse, p. 69.
3 Works, p. 563, 1762.
Stavesacre, L.; Tincture of Black Hellebore. (Hellebore, bruised, 3v.; Proof Spirit, Oij. Macerate for seven days, and strain).—Dose, f5ss. to f3j. Principally employed as an emmenagogue.

344. DELPHINIUM STAPHYSAGRIA, Linn. L. E.—STAVESACRE.

Sex, Syst. Polyandria, Trigynia.
(Semina, L.—Seeds, E.)

History.—Hippocrates employed stavesacre in medicine. Sibthorp found the plant growing in Crete and Zante, and identified it with the σταφύλι τῆς οφθαλμίας of Dioscorides.

Botany. Gen. Char.—Calyx deciduous, petaloid, irregular; the sepals elongated at the base into a spur. Petals 4, the two upper appendiculated within the spur (De Cand.)

Sp. Char.—Spur very short. Bractlets inserted at the base of the pedicel. Petioles pilose. Pedicels twice as long as the flower (De Cand.)

A stout herb, one or two feet high. Stem and petioles hispid, with soft hairs. Leaves broad, palmated, stalked, 5- to 9-cleft. Racemes lax. Flowers bluish or purplish. Capsules 3, large.

Hab.—South of Europe, the Levant, and the Canaries.

Description.—Stavesacre seeds (semina staphisagrie seu staphidis agriae) are irregularly triangular (sometimes quadrangular), slightly arched, blackish-brown, and wrinkled. They contain a white and oily nucleus. Their odour is slight but disagreeable; their taste bitter, very acrid, hot, and nauseous. Iodine colours the seeds brown. Their watery infusion is darkened by sesquichloride of iron. Infusion of nutgalls renders it turbid.

Composition.—Stavesacre seeds were analysed in 1820 by Brandes, and in 1821 by Lassaigne and Teneulle.

Delphinia	8:10
Fatty oil	19:10
Waxy substance	3:40
Gum	3:75
Starch	2:40
Woody fibre	17:20
Phytocol with salts	30:67
Vegetable albumen	3:70
Sulphates and phosphates of lime, potash, and magnesia	5:77
Water	10:00
Stavesacre Seeds	100:49

| Malate of delphinia. |
| Volatile oil. |
| Fatty oil. |
| Brown bitter matter. |
| Yellow dito. |
| Uncrystallizable sugar. |
| Gum. |
| Woody fibre. |
| Animal matter. |
| Albumen. |
| Mineral salts. |

Stavesacre Seeds.

1. Delphinia (Delphina; Delphine; Delphinum).—As usually met with, this is a white, odourless powder. Its taste is extremely acrid and very bitter. It fuses at 248° F. It is scarcely soluble in water whether hot or cold, but dissolves in ether, and still better in alcohol. Its alcoholic solution reacts as an alkali on test paper. It is not crystallizable, though its texture is said to be crystalline, when the powder is moistened. It saturates acids, forms salts which are acrid, very bitter, and difficultly crystallizable. From its solution in acids it is precipitated by alkalies. Its composition is \(C_{27}H_{18}NO_{3} \). Its atomic weight, therefore, is 211. Coureeb¹ says that, as usually procured, it is not absolutely pure, but contains a resinous matter, and an acrid resin which he calls staphysain.

2. Volatile Acid (Delphinic Acid ?).—Discovered by Hofschläger². It is white, crystalline, volatile at a low temperature, and in small doses is a powerful emetic.

Physiological Effects.—The activity of stavesacre seeds depends partly on the delphinia and partly on the volatile acid. The powder of the seeds readily excites nausea, vomiting, and purging. Orfila³ has shown that on dogs it acts first as an acrid, and afterwards as a narcotic poison. Its operation appears to be similar to cebadilla.

Uses.—Stavesacre seeds have been used to destroy pediculi; whence the Germans term them Läusesaumen, or louse-seeds. For this purpose they are employed in the form of ointment or acetoous infusion. They have also been administered internally (in doses of from three to eight grains) against worms, and externally in the form of decoction (prepared by boiling 3j. of the seeds in Oij. of water) in inveterate itch.

Antidote.—See Veratrum album.

Delphinia.—Four grains of delphinia dissolved in a drachm of rectified spirit produce, when rubbed on the skin, a sensation of burning and prickling, with tingling and slight redness. Taken internally, in doses of half a grain, it sometimes acts slightly on the bowels, and increases the flow of urine. In larger doses, as a few grains, it gives rise to sensations of heat and tingling in various parts of the body.⁴ The diseases in which it is chiefly successful are neuralgic cases. It has also been used in rheumatic affections with some benefit. It is employed externally in the form of ointment or alcoholic solution. The ungüentum delphiniae consists of 3ss. of delphinia, 3j. of olive oil, and 5j. of lard. The solutio delphiniae, composed of 3j. of delphinia dissolved in 13j. of rectified spirit, is an excellent embrocation. Internally, delphinia is given in the form of pills. The pilulae delphiniae consist of gr. j. of delphinia; grs. xij. extract of hyoseyamus; and the same quantity of extract of liquorice. Divide the mass into twelve pills, one of which may be taken every three hours (Turnbull).

¹ Journ. de Pharm. xiii. 365.
² Ann. Chim. et de Phys. i. 2.
³ Toxicol. Gen.
⁴ Turnbull, Treat. on Painful and Nerv. Diseases, p. 78, 1837.
345. ACONITUM NAPELLUS, Linn. L. E. D.—COMMON WOLFSBANE, OR MONKSHOOD.

Sex. Syst. Polyandria, Trigynia.

(Folium recens et exsiccatum; Radix, L.—Leaves, E.—The Root, D.)

History.—The ancient history of Aconite is involved in great obscurity. The Greeks make frequent reference to a most virulent poison which they term ἁκόνιτον. Theophrastus' is the earliest writer who speaks of it. As Aconitum Napellus is a virulent poison, and is a native of Greece, where it is known at the present day as ἁκόνιτον, it would at first appear probable that our common aconite was the plant referred to by the ancient Greeks. But the characters of it as given by Theophrastus quite preclude this supposition; and I believe no one has been able to identify satisfactorily the plant described by this ancient naturalist. Dioscorides has noticed two kinds of ἁκόνιτον.

Botany. Gen. Char.—Calyx petaloid, irregular, deciduous, or withering; upper sepal concave, helmet-shaped. Petals 2, superior (nectaries), on long stalks, expanded at the apex into a bag hidden beneath the helmet (De Cand.)

Sp. Char.—Flowers densely spiked or loosely panicked. Helmet semi-circular, rarely boat-shaped. Bag of the petals somewhat conical. Spur short, thick, inclined. Wings of the stamens cuspidate or evanescent. Lobes of the leaves cuneate pinnatisect. Ovaries 3, rarely 5, smooth or pilose (De Cand.)

Perennial herb. Root tapering. Stem simple. Flowers blue.—This species is subject to great variation in the dense or loose condition of the inflorescence, in the form of the helmet, the colour and size of the flower, the breadth and the number of slashes of the leaves, the downiness of the parts of the plant, and the condition of the stem. De Candolle admits no less than twenty-nine varieties.

Hab.—Europe. It is placed among indigenous plants, but it is a doubtful native.

The Dublin College directs the root to be used. The London College directs the root (radix) as well as the leaves (folia) to be employed.

The Aconitum Napellus is one of the most active species of the genus, and no good evidence has yet been adduced to prove its inferiority to the A. paniculatum var. γ Storkianum, which Stork published as A. Napellus officinalis, and which was formerly adopted as the official plant.

Moreover, the roots of A. paniculatum are not found in commerce, nor is the plant grown (except in botanical gardens) in this country; so that druggists and apothecaries could not if they would have obeyed the former directions of the London and Dublin Colleges.

DESCRIPTION.—Aconite root (radix aconiti), when fresh, consists of a tapering rootstock, placed perpendicularly, or nearly so, in the earth, and of numerous cylindrical fleshy fibres arising from it. At its upper and thickest part the rootstock seldom exceeds the thickness of the finger; inferiorly it is attenuated and filiform. Sometimes two or three rootstocks are conjoined. In the latter case the root has a palmated appearance. Its total length is three or four or more inches. Its colour, as well as that of the fibres, is externally coffee-brown; its odour is earthy. Internally it is white and fleshy. Its taste is bitter; but after a few minutes a remarkable numbness and tingling is perceived on the lips, tongue, and fauces. By drying, the root shrivels, and becomes darker coloured. The root should be gathered in the spring, just before the leaves appear. The leaves (folia aconiti), when chewed, have the same taste, and produce the same feeling of numbness.

COMPOSITION.—No complete analysis either of the root or the leaves of Aconitum Napellus has been made. The following are the constituents of the root of A. Lycoctonum, according to Pallas:—1 a black oil, a green fatty matter, a substance having some analogy with the vegetable alkalies [impure aconitina?], vegetable albumen, starch, lignin, and some salts.

The leaves of Aconitum medium Schraderi were analysed by Bucholz.

Both Brandes and Peschier announced the existence of a peculiar alkali (aconitina) in aconite. Their statement was confirmed, in 1825, by Pallas, and, in 1832, by Geiger and Hesse. Peschier also asserted that aconite contained a peculiar acid (aconitic acid). His assertion has been substantiated by L. A. Buchner, Jun. It has been since ascertained that the same acid is developed by the action of heat on citric acid. Most chemists have admitted the existence of a volatile acid principle in aconite, but it has not hitherto been isolated.

1. ACONITINA.—See post.

2. VOLATILE ACID PRINCIPLE.—This principle, though admitted by several chemists, has not been isolated. Geiger submitted the fresh herb of Aconitum Napellus, with water, to distillation, and obtained a liquor having an acid taste, an unpleasant odour, and whose emanations affected the eyes. May not this volatile principle be the product of the decomposition of aconitina? The following circumstances favour this suggestion:—1st. The fresh herb and root have little odour; 2ndly, the local effect of aconitina is similar to that of the root and leaves; 3rdly, aconitina, when mixed with the other constituents of the plant, readily undergoes decomposition, so that considerable nicety of manipulation is required in the extraction of it; and Mr. Morson tells me he has sometimes failed to obtain it.

3. ACONITIC ACID.—In the evaporation of the juice of aconite, octahedral crystals of aconitate of lime are frequently deposited. From these L. A. Buchner obtained the acid. The acid also exists in Episcelium fluviatile, and may be formed by the action of heat on citric acid. As obtained from aconite it is scarcely crystalline, merely forming warty elevations. It is white, permanent in the air, odourless, very sour, and is very soluble in water, alcohol, and ether. When heated it fuses, and at the same time undergoes decomposition; but does not yield fumaric acid. From the latter acid it is distinguished

1 Journ. de Chim. Méd. i. 192.
5 Pharm. Central-Blatt für 1838, S. 439.
6 Ibid. 1831, 491.
by its greater fusibility and solubility; from maleic acid by its forming indistinct crystals, and not yielding fumaric acid by heat. The anhydrous acid, as found in aconitate of silver, consists of C(HO)₃.

4. Fatty Oil.—This is extracted from the root by alcohol. It is dark-coloured. All the specimens of it which I have obtained possess a powerfully benumbing property [from the presence of aconitina?].

Physiological Effects.—Hitherto I have met with no clear and accurate account of the effects of aconite, and some of them appear to me to have been entirely overlooked.

a. On Animals.—If a small quantity of the soft alcoholic extract of the root of aconite be introduced into a wound (as into the cavity of the peritoneum) in a dog, it usually causes vomiting (sometimes of a stercoraceous character), diminishes the force of the circulation, weakens the muscular system so as sometimes to cause the animal to stagger in walking, and destroys common sensibility of feeling, without causing stupor. A dog under the influence of not too strong a dose will sometimes follow its owner round the room, recognise him by wagging his tail when called, and yet be totally insensible to pinching, pricking with needles, &c. Convulsions do not usually occur until a short period before death, and they are then commonly slight, and rather to be termed spasmodic movements. I have repeatedly demonstrated these effects to the pupils attending my lectures.

The following is a notice of one experiment:—

March 31, 1837: London Hospital. Present Mr. Adams, and several medical students.—A small portion of alcoholic extract of aconite was introduced into the peritoneal sac of a strong dog, which had been kept fasting for some hours. In a few minutes he was evidently affected. He was less capable of supporting himself, and leaned against a wall. In ten minutes was insensible to the pain caused by the introduction of pins into his legs, paws, body, tail, nose, &c. His sight, however, was unaffected; at least he winked as usual when attempts to strike him were feigned. Was not paralytic, for he walked, though not firmly. He recognised several individuals, and wagged his tail when spoken to. He made violent attempts to vomit. He then lay down, became apparently weaker, and died without a single convulsion. At one period the action of the heart was slower than usual, and the first and second sounds of the heart were unusually clear and distinct. Subsequently the circulation was quickened. Respiration was not disordered; nor were the bowels affected.

I have subsequently found that if a large quantity of alcoholic extract be used, the loss of feeling is not so well marked; for death succeeds in so short a period of time that the loss of feeling, as distinguished by the insensibility immediately preceding death, is not well observed. For the same reason, rabbits do not answer well for demonstrating these effects; and the weakness (paralysis?) of the hind extremities, and spasmodic movements, are much more marked in them than in dogs. I can distinguish no difference between the effects of Aconitum Napellus on rabbits, and those of Aconitum ferox on the same animals.¹ On opening the bodies of dogs killed by aconite immediately after death, no pulsations of the heart are visible.—Want of space compels me to abstain from entering into any details respecting the experiments.

¹ See the results of my experiments on the latter plant, in the splendid work of my friend Dr. Wallieh, Planta Hariores Asiaticæ; also a detail of my experiments in the Edinb. Journ. of Nat. and Geogr. Science, July 1830, p. 285.
made on animals withaconite by Wepfer,1 Sprægel,2 Viborg,3 Brodie,4 and Ortila.4

3. On Man.—The topical effects are peculiar, and most remarkable. If a leaf or a small portion of the root be chewed, or a few drops of the alcoholic tincture of the root be applied to the lips, there are produced in a few minutes numbness and a remarkable tingling sensation. These effects endure for many hours. If the quantity taken into the mouth be somewhat larger, the palate and throat are affected. To me the sensation appears as if the velum and soft palate were elongated, and rested on the dorsum of the tongue. To relieve this, frequent attempts are made to swallow.

When small and repeated doses of the alcoholic tincture of the root are taken internally, they cause a sensation of heat and tingling in the extremities, and occasionally a slight diuresis.

The extract ofaconite of the shops is but little to be relied on. Many samples produce neither numbness nor tingling when rubbed on the lips and gums. Störeck6 states that it acts as a diaphoretic and diuretic. These symptoms, however, are by no means constantly produced, and, when they occur, are not always clearly referable to theaconite used.

In poisonous doses the effects ofaconite are most remarkable. The following details of the effects produced on a family of three persons were furnished me, a few days after the accident, by one of the sufferers (Mrs. Prescott), and her account was confirmed by a very intelligent neighbour who witnessed the progress of the symptoms:

In December, 1836, Mr. Prescott, aged 57, residing in the City Road, planted in his garden a few pieces of horse-radish. On February 5th, 1837, he observed some green shoots, which he supposed to be those of horse-radish. He dug up three of them. The roots (samples of which were given, and have yielded me thriving plants ofAconitum Napellus) were tap-shaped and small. Perhaps a very small walnut would exceed in bulk that of the whole root. These roots were washed, scraped, placed on a plate with some vinegar, and eaten at dinner (at 2 o’clock) with roast-beef, by Prescott, his wife (aged 57), and a child (aged 5). It was remarked at dinner that the root was very mild, and had not the pungency of horse-radish. After the family had dined, about one root was left; so that two had been eaten at dinner, the greater part (perhaps one or one and a half roots) by the husband. About three-quarters of an hour after dinner, Mr. Prescott complained of burning and numbness of the lips, mouth, and throat, and which soon extended to the stomach, and was accompanied with vomiting. The matters ejected were first his dinner; and afterwards a frothy mucus; but at no time was any blood brought up. The vomiting was very violent and constant for an hour, and continued more or less until within half an hour of his death. An emetic was swallowed at a quarter past four o’clock; and therefore the subsequent vomiting may be ascribed, in part at least, to this. His extremities were cold, but his chest was warm: the head was bathed in a cold sweat. His eyes, to use the expression of his neighbour, were “glaring.” He complained of violent pain in the head, and trembled excessively. The last symptom might, perhaps, be in part owing to his terror of the mistake he had committed. The lips were blue. His mental faculties were not disordered: on this point I

1 Hist. Cie. Ag. 1733.
3 Ibid. S. 34.
4 Phil. Trans. for 1811, p. 178.
5 Toxicol. Gén.
made particular inquiry, and I was assured that he was neither delirious nor sleepy, but was quite conscious until within two minutes of his death. He had no cramp, spasm, or convulsion; the only approach to it was trembling. He frequently put his hand to his throat. Though exceedingly weak he did not lose his power over the voluntary muscles; for within a few minutes of his death he was able, with the assistance of his neighbour, to walk to the water-closet. His bowels were acted on once only after dinner, and that on the occasion just mentioned, which was about an hour after he had taken the emetic and some castor oil. His breathing was apparently unaffected. On his return from the water-closet he was put to bed, and within a few minutes expired, apparently in a fainting state. Death occurred about four hours after dinner.

Mrs. Prescott was affected in a similar way. She had the same burning and numbness of the lips, mouth, throat, and stomach, and violent vomiting. She experienced a curious sensation of numbness in the hands, arms, and legs; and she lost the power of articulating, so that she was unable to tell the address of her son. Her attempts to speak were attended with unintelligible sounds only. She experienced great muscular debility, and was unable to stand. In this respect her condition differed from that of her husband, who could both stand and walk. She felt stiffness of, and difficulty in moving, her limbs. She had no cramps, spasms, or convulsions. The only approach thereto was the stiffness of the muscles when she attempted to put them in action, as in her attempts to wipe her face. Some of the external senses were disordered: thus, to use her own expression, though her eyes were wide open, her sight was very dim, and surrounding objects were seen indistinctly. The hearing was unaffected. The sensibility of the body was greatly impaired; her face and throat were almost insensible to touch. She felt very giddy, but was neither delirious nor sleepy. For the most part she was conscious, but at times scarcely knew what was passing around her. Her body and extremities were cold. She was frequently pulling her throat about, but she knew not why. Five or six hours after dinner she began to recover, and her natural warmth returned. The remedies employed were an emetic, castor oil, pediluvia, rum and water, and some "warm" medicine given her by a neighbouring practitioner. The child was similarly but more slightly affected, except that she evinced a slight tendency to sleep. Like the others she was constantly putting her hands to her throat.

Mr. Sherwen has published a most interesting case of a female poisoned by the alcoholic tincture of the root. About five minutes after swallowing it, she was seized with a prickling and tingling down her arms and fingers, and a painful numbness across the wrists; the tongue and mouth next felt the same, then the legs and feet; and in less than ten minutes her face seemed to her feelings to be swelling, and the throat growing tight. She felt sick, and made many efforts to vomit. Her legs failed, she was almost blind, but was conscious of her plight. When seen by Mr. Sherwen her eyes were fixed and protruded, with contracted pupils; countenance livid; jaws and fauces rigid; arms and hands quite cold and pulseless; the legs and trunk much in the same state; breathing short, imperfect, and laborious; while the heart fluttered feebly. She was sufficiently sensible to tell how the accident occurred. In an attempt to administer an emetic a strong convulsion occurred. Copious vomiting afterwards took place. Five hours after she had taken the poison the pulse was becoming full, only 58 per minute, and intermittent. There was less oppression at the praecordia, and the pupils were larger. She eventually recovered. These cases agree with the one detailed in the Philo-

1 [In The Times of Nov. 4th, 1842, is a brief report of another case of poisoning by aconite root taken by mistake for horse-radish. The patient was sensible, but died. Dr. Geoghegan has published some valuable remarks on this form of poisoning in the Dublin Journal of Medical Science, vol. xix. page 403.—Ed.]
VEGETABLES.—NAT. ORD. RANUNCULACEÆ.

SOPHICAL TRANSACTIONS.¹ Pallas (quoted by Christison) and Degland² have published cases in which violent vomiting, purging, colic, and abdominal tenderness, are said to have been produced by aconite [?].

In comparing the operation of aconite with that of other cerebro-spinants, we observe that its most characteristic topical effect is numbness and tingling. Applied to the eye it causes contraction of the pupil. When the root or its tincture is swallowed, the most marked symptoms are numbness and tingling of the parts about the mouth and throat, and of the extremities, vomiting, contracted pupil, and failure of the circulation. The heart appears to be weakened or paralysed, and a state approaching asphyxia is produced. Convulsion or spasm is not constantly present, and, when it does take place, is probably a secondary effect arising from the incipient asphyxia. In neither of the cases which I have above detailed, nor in that of Mr. Sherwen, did stupor occur. Yet in some recorded instances it has happened. In such it probably depends, as Mr. Sherwen suggests, on the congested condition of the venous system of the brain brought on by the failure of the heart’s action, and the consequent accumulation of blood on the right side of the heart.

USES.—A knowledge of the physiological effects of aconite suggests the therapeutical uses of this medicine. A benumbing is obviously the physiological remedy for increased sensibility (pain) of the nerves. As a topical remedy, aconite is most valuable for the relief of neuralgic and rheumatic pains. In neuralgia, no remedy, I believe, will be found equal to it. One application of the tincture produces some amelioration, and, after a few times’ use, it frequently happens that the patient is cured. In some cases the benefit seems almost magical. In others, however, the remedy entirely fails to give any permanent relief. Though the pathology of this disease be but little understood, yet we know that the causes of it, and the conditions under which it occurs, are by no means uniform. We are, therefore, easily prepared to believe, that while in some cases aconite may prove beneficial, in others it may be useless. I do not think that in any it proves injurious. The causes of neuralgia are, however, usually obscure, and therefore we are in most cases not able to determine à priori the probability or the reverse of the beneficial agency of aconite. Hence its employment must be, for the most part, empirical. I have observed, that when it succeeds, it gives more or less relief at the first application. When the disease depends on inflammation, aconite will be found, I think, an unavailing remedy. In a painful affection of the nerves of the face, arising from inflammation of the socket of a tooth, it gave no relief. In rheumatic pains, unaccompanied with local swelling or redness, aconite is frequently of great service. In painful conditions of the intercostal and other respiratory muscles, occurring in rheumatic individuals, I have found this remedy most valuable. In one case of sciatica it gave partial relief: but in most cases in which I have tried it, it has failed. In lumbago I have not tried it. Dr. Turnbull³ states that a lady was cured of this disease

¹ Vol. xxxviii. p. 287.
² Jour. de Chim. Méd. iii. 344.
³ See his Trea. on Painf. and Ner. Dis. 1837.
by the aconite ointment. In acute rheumatism its application has not proved successful in my hands; but I have been informed of cases occurring to others in which it has been of great service.

Aconite has been administered internally in various diseases, principally on the recommendation of Störek. It has been employed as a narcotic (anodyne) sedative, sudorific, resolvent, and diuretic. The diseases in which it has been employed are rheumatism, gout, scrofula, phthisis, syphilis, some skin diseases, scirrhous and cancer, intermitents, dropsies, paralysis, epilepsy, amaurosis, uterine affections, and hypertrophy of the heart. In the large majority of these maladies scarcely any practitioner now believes in its efficacy. Fouquier gave it very extensive trials without obtaining much relief from it, except as a diuretic in passive dropsies. In rheumatism it has frequently proved serviceable when combined with a sudorific regimen. I have seen it give great relief in rheumatic pains. In hypertrophy of the heart it has been recommended by Dr. Lombard on account of its decidedly sedative effects.

Administration.—The only preparations of aconite, whose activity may be relied on, are the tincture of the root (made with rectified spirit), the alcoholic extract, and Morson's aconitina. The powder is given in doses of one or two grains, gradually increased, until some effects are produced; but no reliance can be placed on it. When of good quality, it causes numbness and tingling of the lips and tongue a few minutes after its application to these parts.

Antidotes.—See the treatment for poisoning by tobacco. In Mr. Sherwen's case great benefit was obtained by the abstraction of ten ounces of blood from the jugular vein.

1. Tinctura Aconiti, L.; Tinctura Radicis Aconiti, D.; Tincture of Monkshood. (Root of Aconite, recently dried and coarsely powdered, 3xv.; Rectified Spirit, Oij. Macerate for seven days and strain.) This formula is very nearly that given by Dr. Turnbull. Its dose is five drops three times a day. It should be employed with great caution. As an embrocation in neuralgia and rheumatism it is invaluable. It is applied by means of a sponge tooth-brush, or a small piece of sponge attached to the end of a stick. Mr. Curtis, of Camden Town, has suggested to me the use of an aconite plaster, prepared by spreading the soft alcoholic extract (obtained by evaporating the tincture) on adhesive plaster, in neuralgia.—[The Dublin College gives the following formula for the tincture:—Take of Aconite Root, dried and cut small, 3x; Rectified Spirit, Oj. Macerate for fourteen days, strain, express, and filter.

Fleming's Tincture of Aconite is a more powerful preparation. As this has acquired some repute, and has already occasioned several deaths, we subjoin the formula. Take of root of Aconitum Napellus, carefully dried and

1 Essay on the Internal Use of Thorn-Apple and Monkshood, 1763.
3 Treat. on Painf. and Nerv. Dis. p. 91, 1837.
4 Lancet, March 25, 1837.
finely powdered, 3xvj. troy; Rectified Spirit, f3xvj. Macerate for four days, then pack into a percolator; add rectified spirit until twenty-four ounces of tincture are obtained. It is beautifully transparent, of the colour of sherry wine, and the taste is slightly bitter. Dose as an anodyne and anti-neuralgic, five minims three times daily. The dose should be cautiously increased.1 A revenue officer lately lost his life from merely tasting this tincture, under the supposition that it was wine, or a flavoured spirit.—Ed.]

[Mr. Redfern has communicated to the author a case of poisoning by tincture of aconite, in which the tincture was probably that which is known as Fleming’s tincture.—Ed.] “The patient was a young man of the age of 21, who had been suffering from acute articular rheumatism for some days previous to his admission. He took five drops of the tincture, three times a day, for two days, without marked relief. On the third day this dose was increased to six drops, and was ordered to be taken with the same intervals between the doses as formerly. Unfortunately, however, these directions were not adhered to, for the first dose of six drops was administered at nine o’clock a.m., and the second at eleven. At twelve o’clock, the hour of visit of the physicians, the man was found in a state of extreme restlessness, and complaining of great pain in various parts of his body. To use his own expression, ‘he felt as though his skin were too tight for his body.’ In imploring relief he described his sensations as most intolerable. At this time there was much frothing at the mouth, with violent retching at intervals. The surface of the body was cold, and bathed in profuse perspiration, which ran down his face in streams. The pulse, though at first 150 in the minute, fell to between 50 and 60 in a few minutes, and was so small and compressible as scarcely to be felt at the wrist. Brandy and water was ordered to be given internally in repeated doses, and warmth was also applied to various parts of the surface. In six hours afterwards the man had almost wholly recovered, and had lost all his rheumatic pains, which never returned. It may be stated that in this case, as well as in three others in which the same tincture was administered, the dose of four or five drops almost invariably produced decided effects, viz. tingling and numbness of the limbs, and very generally relief of the pain.”

2. EXTRACTUM ALCOHOLICUM ACONITI; Alcoholic Extract of Monks-hood. (Prepared by distilling the spirit from the tincture, until the consis-
tence of an extract has been obtained.)—It has been employed internally in doses of one-sixth of a grain every three hours. It should be given in the form of pills (pilula aconiti) made of liquorice powder and syrup. It may be also employed externally in the form of ointment (unguentum aconiti), composed of one part of the extract, and two parts of lard (Turnbull), or spread on adhesive plaster.

3. EXTRACTUM ACONITI, L. E. (Fresh Aconite Leaves, lb. j. Bruise the leaves in a stone mortar; then press out the juice, and evaporate it, un-

5 An Inquiry into the Medicinal Properties of the Aconitum Napellus, by A. Fleming, M.D.
strained, to a proper consistence, L.—"Take of the leaves of monkshood, fresh, any convenient quantity; beat them into a pulp; express the juice; subject the residuum to percolation with rectified spirit, so long as the spirit passes materially coloured; unite the expressed juice and the spirituous infusion; filter; distil off the spirit, and evaporate the residuum in the vapour-bath, taking care to remove the vessel from the heat so soon as the due degree of consistence shall be attained," E. J.—An uncertain preparation. When of good quality it causes numbness and tingling, within a few minutes after its application, in the mouth and lips. The tincture or alcoholic extract are, in my opinion, greatly to be preferred to this variable preparation. —Dose, one or two grains at the commencement, and to be gradually increased until some obvious effect is produced.

4. ACONITINA; Aconitine.—The following directions for making this alkaloid were given in the former London Pharmacopoeia. The alkaloid is now, however, altogether excluded:

"Root of Aconite, dried and bruised, lb. ij.; Rectified Spirit, Cong. iij.; Diluted Sulphuric Acid; Solution of Ammonia; Purified Animal Charcoal, each as much as may be sufficient. Boil the Aconite with a gallon of the Spirit for an hour, in a retort with a receiver adapted to it. Pour off the liquor, and again boil the residue with another gallon of the Spirit and the Spirit recently distilled, and pour off the liquor also. Let the same be done a third time. Then press the Aconite, and, all the liquors being mixed and strained, let the Spirit distil. Evaporate what remains to the proper consistence of an extract. Dissolve this in water, and strain. Evaporate the liquor with a gentle heat, that it may thicken like a syrup. To this add of dilute Sulphuric Acid, mixed with distilled water, as much as may be sufficient to dissolve the Aconitina. Then drop in solution of Ammonia, and dissolve the Aconitina precipitated in diluted Sulphuric Acid and water, mixed as before. Afterwards mix in the Animal Charcoal, frequently shaking them during a quarter of an hour. Lastly, strain, and solution of Ammonia being again dropped in, that the Aconitina may be precipitated, wash and dry it."

Aconitina exists in the plant in combination with a vegetable acid (aconitic acid?). Alcohol extracts this salt with some other matters. The alcoholic extract yields this salt to the water, and on the addition of sulphuric acid a sulphate of aconitina is formed, which is decomposed by ammonia, and the aconitina precipitated. It is then again dissolved by sulphuric acid, the solution decolorised by charcoal, and the aconitina again precipitated by ammonia. As prepared by Mr. Morson, this substance presents the following properties:—It is a white, odourless solid, either dull and amorphous or somewhat sparkling, and apparently crystalline. As it is usually described as being uncrystallizable, I have carefully examined a supposed crystalline mass with the microscope, but I could not detect distinct crystals. The fragments appeared like thin plates of chlorate of potash, and, though they varied greatly in shape, the triangular form seemed predominant. Heated in a tube, aconitina readily fuses, and forms a pale amber-coloured liquid; and at a higher temperature it is decomposed. It is not volatile. Heated on platinum foil over a spirit-lamp, it is speedily and entirely dissipated. It is soluble in alcohol, ether, and the acids. From its acid solution it is precipitated by ammonia. A minute portion of it mixed with lard, and applied to the eye, causes contraction of the pupil, as I have repeatedly seen. Geiger and Hesse state that the aconitina which they obtained produces dilatation.
of the pupil. Mr. Morson’s aconitina is so powerful that one-fiftieth of a grain has endangered the life of an individual. It is the most virulent poison known, not excepting hydrocyanic acid.

The following notes were formerly appended to it in the London Pharmacopoeia:

"An alkali prepared from the leaves and root of aconite. It is very soluble in sulphuric ether, less in alcohol, and very slightly in water. It is totally consumed in the fire, no salt of lime remaining. This substance possessing strong power, is not to be rashly employed."

A spurious aconitina is found in the shops. It is imported from France, and bears the stamp and label of a celebrated French chemical firm. Its colour is greyish-yellow. It is inert, or nearly so; at least I have taken one grain of it without perceiving the least effect of it on the tongue or otherwise. It is not completely soluble in either ether or alcohol. When burnt on platinum foil it leaves a calcareous residue. The only genuine aconitina which I have met with is that manufactured by Mr. Morson, of Southampton Row; and Dr. Turnbull informs me that he has found none other to possess any medicinal value. Mr. Skey also found this to be the case.¹

The effects of this alkaloid are similar to those of aconite root, but, of course, much more powerful. If the ointment, or an alcoholic solution of this substance, be rubbed on the skin, it causes intense heat, tingling, and numbness, which continue for more than twelve or eighteen hours. A minute portion of an ointment, composed of a grain of the alkaloid to two drachms of lard, applied to the eye, causes almost insupportable heat and tingling, and contraction of the pupil. This last effect was shown me by Dr. Turnbull, in some amaurotic cases of several years’ standing: the pupils underwent no change when the eye was exposed to strong day-light. In very minute doses it has caused heat and tingling upon the surface of the body, and sometimes diuresis; but it cannot be administered internally with safety. In one case (an elderly lady), one-fiftieth of a grain had nearly proved fatal. Satisfied that great insecurity attends its internal use, Dr. Turnbull tells me he has long since ceased to employ it in this way, as the slightest inattention on the part of the dispenser may be attended with fatal results. The enormous cost (£3. 6d. per grain!) of Morson’s aconitina limits its use. I believe that the alcoholic tincture is a perfect substitute for it; and the experience of others confirms my own observation. Of the great efficacy of aconitina in neuralgic and rheumatic affections, no one can entertain any doubt who has submitted the remedy to trial.² The following are Dr. Turnbull’s formulae for using aconitina externally:

1. Unguentum Aconitinae; Aconitine Ointment. (Aconitine, gr. xvi.; Olive Oil, 3ss.; Lard, 3j. Mix).—It is employed by friction with the finger during several minutes.

[Dr. Fleming recommends for external use the following preparation:—Take of Aconitina, gr. xvi.; Spir. Rectif. ml. xvi.; Lard, 3j. Rub together and make an Ointment.—One or more drachms of the tincture may, according to Dr. Fleming, form an excellent sub-
stitute for the ointment in external use; but, when there is any abrasion of the skin the use of any of these preparations is attended with danger.—Ed.)

2. *Solutio Aconitina; Aconitine Embrocation.* (Aconitine, gr. viij.; Rectified Spirit, 3ij. Dissolve.)—Used by friction-sponge (as a sponge tooth-brush). Care must be taken not to employ it where the skin is abraded.

OTHER MEDICINAL OR POISONOUS RANUNCULACEÆ.

1. The leaves of *Helleborus foetidus* are emetic and purgative. They have been employed as a vermifuge against the large round worm (*Ascaris lumbricoides*).

2. *Helleborus viridis* possesses similar properties.

3. *Aconitum ferox* is, perhaps, the most violent of the ranunculaceous poisons. It is a Nepal plant, and constitutes the Bish or Bikh poison of that country. Several years since I undertook, at the request of Dr. Wallich, to examine the effects of this plant on animals. My experiments were made with plants which had been ten years in Dr. Walllich's possession, and which, therefore, had doubtless lost part of their activity; yet their effects were most energetic; but of the same nature as those of *Aconitum Napellus*.

Division I. Invertebrata.—Invertebral Animals.

Characters.—Animals destitute of a vertebral column and an internal skeleton. Skin sometimes ossified, and thereby forming an external skeleton. Nervous system not always evident.

Subdivision I. ACRITA, Macleay.

Nervous system indistinct, diffused, or molecular (Owen).

Class I. Poriphera, Grant.—Poripherous Animals.

Characters.—Simple, soft, aquatic animals, with a fibrous axis, without perceptible nerves or muscular filaments, or organs of sense, or any circulating or glandular organs. Their body is composed of a soft gelatinous flesh, traversed internally with numerous ramose, anastomosing canals, which commence from superficial minute pores, and terminate in larger, open vents.

346. SPONGIA OFFICINALIS, Linn. E.—THE OFFICINAL SPONGE.

(Sponge, E.)

History.—Aristotle was acquainted with the sponges, and notices the popular but erroneous opinion of their shrinking when attempted to be plucked.

Zoology. Gen. Char.—Body soft, very elastic, multiform, more or less irregular, very porous, traversed by numerous tortuous canals, which open externally by very distinct vents (oscula), and composed of a kind of sub-cartilaginous skeleton, anastomosed in every direction, and entirely without spicules (De Blainville).

My friend, Mr. J. S. Bowerbank, has recently shown that spicula do exist in the keratose or horny sponges of commerce. They are imbedded, to a greater or less extent, in the substance of the fibre, and are mostly to be observed in the larger flattened portions of the fibre, and not in the finer anastomosing threads. Mr. Bowerbank
has also shown that the fibre of the true sponges is solid, and not tubular, as commonly supposed.

Sp. Char.—**Masses** very large, flattened and slightly convex above, soft, tenacious, coarsely porous, cracked and lacunose, especially beneath. **Vents** round, and for the most part large (Lamouroux).

These characters are insufficient to distinguish the official sponge from numerous other allied species; and it is tolerably clear, from Mr. Bowerbank’s discoveries, above alluded to, that the naked eye is incompetent to distinguish species of this curious genus, and that the microscope must be principally, if not wholly, relied on for ascertaining specific characters. Mr. Bowerbank has recognised three distinct species in the sponges of commerce.

The animality of sponge is by no means universally admitted; indeed a considerable number of the naturalists of the present day regard it as of vegetable origin; and its position, in a natural classification of plants, it is said, should be between Algae and Fungi. But the recent observations of Mr. Bowerbank appear to me to be conclusive as to its animality. In one species of sponge he detected a branched vascular system, with globules in the vessels analogous to the circular blood disks of the higher animals. Now, nothing analogous to this has hitherto been detected in plants. The sponge derives its food from the fluid in which it lives. The water (containing the matters necessary for the existence of the animal) enters by the superficial pores, circulates through the anastomosing canals, and is expelled by the facial orifices or vents, carrying along with it particles which separate from the sides of the canals.

Sponge adheres to rocks by a very broad base. When first taken out of the sea it has a strong fishy odour. Its colour varies from pale to deep brownish yellow. It often contains stony or earthy concretions (*lapides spongiarum*), which Bley found to consist principally of the carbonates of lime and magnesia. Shells also are found in sponges. Various marine animals pierce and gnaw it into irregular holes.

Hab.—In the Red and Mediterranean Seas. Chiefly collected about the islands of the Grecian Archipelago.

Collection.—The inhabitants of the Greek islands collect sponge by diving for it. In their submarine operations they carry with them a knife. Practice enables them to remain a considerable time under water. As soon as the sponge is brought on shore, it is squeezed and washed to get rid of the gelatinous matters; otherwise putrefaction speedily ensues.

Description.—Commercial sponge (*spongia*) is the dry skeleton of the animal, from which the gelatinous flesh has been removed, as just mentioned. When deprived of stony concretions, &c. found in the interior of the mass, it is soft, light, flexible, and compressible. When burnt it evolves an animal odour. It absorbs water, and thereby swells up. Nitric acid colours it yellow. Liquor potassae dissolves it: the solution forms a precipitate on the

1 The only tubular sponge known to Mr. Bowerbank is *Spongia fistularis*. This, however, he proposes to separate from the genus *Spongia*, and to give it the generic name of *Fistularia*.

3 See Hoge, in the *Linn. Trans.* vol. xviii. pp. 363 and 368; also, Johnson’s *History of British Zoophytes*, ed 1838.

4 *Grant, Outlines of Comparative Anatomy*, p. 310, Lond. 1836.

5 *Pharm. Central-Blatt für 1834*, S. 273.

6 Savary, *Letters on Greece*, p. 109, Lond. 1788. [Dr. Lefevre, of Rochefort, found that among the Navarino sponge divers, accustomed as they were to the practice of diving, there was not one who could sustain entire submersion of the body for two consecutive minutes. The average period of entire submersion was seventy-six seconds.—Ed.]
addition of an acid. The finer sponges, which have the greatest firmness and tenacity, were formerly called male sponge; while the coarser portions were denominated female sponge.

In 1841 duty (6d. per lb., with an additional 5 per cent. on the duty), was paid on 58,931 lbs. of sponge.

In English commerce two kinds of sponge are met with, which are respectively known as Turkey and West Indian.

a. Turkey Sponge.—This is imported from Smyrna, and constitutes the best sponge of the shops. It occurs in cup-shaped masses of various sizes. Its texture is much finer than the West Indian kind. Mr. Bowerbank, by the aid of the microscope, has discovered that it consists of two species of Spongia, not distinguishable from each other by the naked eye. One of these is characterised by the presence of a beautiful, branched, vascular tissue, which surrounds, in great abundance, nearly every fibre of its structure, and is inclosed in an external membrane or sheath. In the other, and most common kind of Turkey sponge, no vascular tissue has yet been discovered. The common variety is called honeycomb sponge.

b. West Indian Sponge.—The principal source of this is the Bahama Islands; whence it is commonly known as Bahama Sponge. Its forms are more or less convex, with projecting lobes. Its fibre is coarser. Its tissue has but little cohesion, and hence this kind of sponge is commonly regarded as rotten. Mr. Bowerbank states that it consists of one species only of Spongia.

Composition.—Well-washed sponge, freed as much as possible from earths and salts by dilute acids, was analysed, in 1828, by Hornemann, who found it to consist of a substance similar to osmazome, animal mucus, fat oil, a substance soluble in water, a substance only soluble in potash, and traces of chloride of sodium, iodine, sulphur, phosphate of lime (?), silica, alumina, and magnesia. Mr. Hatchett found sponge to consist of gelatine (which it gradually gave out to water), and a thin, brittle, membranous substance, which possessed the properties of coagulated albumen.

According to the experiments of Posselt, the substance of sponge is peculiar, and stands near the horny substance, from which, however, it is distinguished both in composition and properties. It, nevertheless, is not a proteine compound, nor does it contain a trace of such a body.

Uses.—The extensive economical uses of sponge are familiar to every one. To the surgeon it is of great value on account of its softness, porosity, elasticity, and the facility with which it imbibes fluids. Its use at surgical operations and for checking hemorrhage is well known. It has also been applied to wounds and ulcers for imbibing acrid discharges. The sponge-

1 On the continent a considerable variety of sponges are known. See Baudrimont, in the Dict. de l'Industrie, t. iv. art. Eponge; and Dr. T. W. C. Martius's Lehrbuch der pharmaceutischen Zoologie, Stuttgart, 1838.
3 Phil. Trans. for 1800, p. 327.
5 C. White, An Account of the Topical Application of the Sponge in the Stoppage of Hemorrhage, Lond. 1762.
6 On the Use of Sponge after Amputations, by Mr. T. Kirkland, in the Med. Observ. and Inv. vol. ii. p. 278, Lond. 1764.
tent is usually made of compressed sponge impregnated with wax (spongia cerata), and which is called prepared sponge (spongia preparata). It is prepared by dipping sponge into melted wax, and compressing it between two iron plates till the wax hardens. It was formerly much used for dilating sinuses and small openings, but it is seldom resorted to now.

SPONGIA USTA: Pulvis spongiae uste; Calcined or Burnt Sponge.—Formerly in the Dublin Pharmacopoeia, and directed to be prepared as follows:—Having cut sponge into pieces, beat it to free it from little stones; burn it in a closed iron vessel until it becomes black and friable, and reduce it to powder.—Preuss\(^1\) calcined 1000 parts of sponge: of these, 343·848 parts were destroyed by heat. The residue consisted of carbon and siliceous insoluble matters, 327·0; chloride of sodium, 112·08; sulphate of lime, 16·430; iodide of sodium, 21·422; bromide of magnesium, 7·570; carbonate of lime, 103·2; magnesia, 4·73; protoxide of iron, 28·720; and phosphate of lime, 35·0.—Burnt sponge, if good, should evolve violet fumes (vapour of iodine) when heated with sulphuric acid in a flask. It has been employed as a resolvent in bronchocele, scrofulous enlargement of the lymphatic glands, &c.—Its efficacy is referable to iodine and bromine. Iodine is now almost invariably substituted for it.—Dose, 5j. to 5iij. It is given in the form of electuary or lozenges (burnt sponge lozenges; trochisci spongiae uste. [A decoction of burnt sponge is, when filtered, colourless. When treated with starch and chlorine it strikes a blue colour, showing the presence of an iodide.—Ed.]

Class II. Polypiphera, Grant.—Polypipipherous Animals.

The polypipipherous animals have received their name from the circumstance of their bearing tubes called polypes. They consist of two parts, a skeleton and a fleshy portion. The skeletons vary in their consistence, and also in their position relative to the soft parts. They are soft and flexible, or hard and calcareous. They are external and tubular, or internal and solid. The fleshy portion may be, with respect to the skeleton, either external or internal. It gives origin to fleshy tubes (polypes), each of which, at its external orifice, is surrounded by tentacula.

The calcareous internal skeleton of Corallium rubrum, Lamarck (Lis nobilis, Pallas; Gorgonia pretiosa, Ellis), is the Red Coral of the shops. It consists of carbonate of lime principally coloured with oxide of iron. Prepared Red Coral (Corallium rubrum preparatum) was formerly used in medicine, but it presents no advantage over chalk. Its powder, obtained by levigation, or an imitation of it, is still kept in the shops, and is occasionally employed as a dentifrice. [According to Witting 100 grains of red coral yield the following constituents:—

\(^1\) Pharm. Central-Blatt für 1837, 169.
Subdivision II. Radiata, Lamarck.—Radiate Animals.

Characters.—Nervous system distinct, composed of filaments and rudimentary ganglia; the filaments arranged circularly around the buccal orifice (Cyclo-neura). No officinal substance is obtained from the Radiata.

Subdivision III. Mollusca, Latreille.—Mollusks or Soft Animals.

Malacoza, Blainville.—Cyclo-Gangliata, Grant.

Characters.—Inarticulated animals with a soft not annulated skin. Cerebral ganglia arranged circularly around the oesophagus.

Class III. Conchifera, Lamarck.—Conchiferous Mollusks.

Characters.—Acephalous, aquatic mollusks, with a bivalve or a multivalve shell. Organs of respiration 4 pectinated laminae. Heart simple. Impregnation effected without the assistance of a second individual.

(The Shells burnt, of former Ph. Lond.)

History.—Oysters were greatly admired by the Romans as a most delicious article of food. Those of Britain were much esteemed; though they were said to be inferior to those of Cyzicena (Pliny). Zoology. Gen. Char.—Body compressed, more or less orbicular. Edges of the mantle thick, non-adherent, or retractile, and provided with a double row of short and tentacular filaments. The two pair of labial appendices triangular and elongated. A subcentral bipartite muscle. Shell irregular, inequivalved, inequilateral, coarsely laminated. Left or inferior valve adherent, largest, and deepest; its summit prolonged, by age, into a kind of

1 Pliny, Hist. Nat. lib. xxxii. cap. 6, ed. Valp.
2 Juvenal, Sat. iv.
keel. **Right or upper valve** smallest, more or less operculiform. **Hinge** oral, toothless. **Ligament** somewhat internal, short, inserted in a cardinal pit, growing with the summit. The **muscular impression** unique and sub-central (Blainville).

Sp. Char.—**Valves** ovate-roundish or obovate; the upper one flat. **Lamellae** of both valves imbricated and undulated (Brandt).¹

Brandt² has given an elaborate account of the anatomy of the oyster, to which I must refer the student interested in these details.

Hab.—European and Indian seas. Our own coasts furnish some of the finest kinds.

Oyster Fisheries.—Oysters are caught by dredging. In order to improve their flavour and size they are laid on beds in creeks along shore, where they rapidly improve. Colchester and other places of Essex, as well as some parts of the coast of Kent, are the nurseries or feeding grounds for the metropolis.³

Description.—The officinal parts of oysters are the **shells** (testae ostreae). The hollow halves are preferred as they contain more carbonate of lime. When calcined, oyster shell yields a quicklime formerly much esteemed as a lithotriptic.

Composition.—**Oyster shells** have been analysed by Bucholz and Brandes,⁴ and by Rogers.⁵—*The flesh of the oyster* has been analysed by Pasquier.⁶

<table>
<thead>
<tr>
<th>Bucholz and Brande's Analysis</th>
<th>Pasquier's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate of lime</td>
<td>Osmazome</td>
</tr>
<tr>
<td>Phosphate of lime</td>
<td>Gelatine</td>
</tr>
<tr>
<td>Alumina</td>
<td>Mucus</td>
</tr>
<tr>
<td>Aluminous matter</td>
<td>Albumen</td>
</tr>
<tr>
<td>Oyster Shells</td>
<td>Fibrine</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.5</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>87.4</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

The dietetical properties of oysters have been before noticed.

TESTE PREPARATE; Testae Ostreorum Preparatae; Prepared Oyster Shells of former London Pharmacopoeia.—Wash the shells, first freed from impurities, with boiling water; then prepare in the same manner as directed for chalk.—**The mode of preparing chalk by elutriation has been already described.** After oyster shells have been washed, boiled, and crushed,

¹ Med. Zool.
² Ibid. Bd. ii.
³ For details respecting the treatment of oysters in beds, see Spratt's *History of the Royal Society*, p. 307. "In the fish-shops, the oysters are laid with their flat sides uppermost; they would die were it otherwise. The animal breathes and feeds by opening its shell, and thereby receiving a new supply of water into the concavity of its undershell. Oysters, when packed in barrels, should be laid in the same position. "Geologists can tell whether oysters were overwhelmed in their native beds, or rolled away and scattered as shells, by determining their position." (Paley's *Theology*, by Bell, vol. ii. pp. 220–221.)

⁵ Silliman's *Journal*, vol. xxvi. p. 361.
⁶ Gmelin, *op. supra cit.*
they are dried and ground to an impalpable powder previous to elutriation. In the shops the substance sold as prepared oyster shells is in small conical masses. The principal constituent of prepared oyster shells is carbonate of lime, and they therefore possess the same medicinal properties as chalk, already described, and which is usually substituted for them.

Class IV. Cephalopoda, Cuvier.—Cephalopods.

Characters.—Body inclosed in a bag (mantle). Head protruding from the bag, crowned with inarticulated arms, furnished with cups or suckers, and surrounding the mouth. Eyes two, sessile. Mouth with two horny mandibles. Hearts three. Sexes separate.

348. SEPIA OFFICINALIS, Linn.—COMMON CUTTLE-FISH.

The substance called os sepia or cuttle-fish bone is an oval or oblong calcareous bone (sometimes termed a shell) deposited in the mantle of the animal. The common species of sepia is *S. officinalis*, Linn.; but *S. elegans*, Blainville, also yields part of the cuttlefish bone of the shops.

Os sepia has a cellular texture, and is so light as to float on water. It is cast in considerable quantities on the shore, and is collected for commercial purposes. It was analysed by John, who found the constituents to be as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Hard Upper or Porous Outer Portion</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate (with a trace of phosphate) of lime</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Non-gelatinous animal matter, soluble in water with some common salt</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Gelatinous membrane not soluble in water</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Water, with a trace of magnesia</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Reduced to powder it is used as a dentifrice. It is employed for several purposes in the arts, as for polishing, for forming moulds for small silver castings, and as a pounce.

Subdivision IV. ARTICULATA, Cuvier.—ARTICULATED ANIMALS.

Characters.—Skin annulated. Muscles attached to the inner surface of the skin. Nervous system of two cords extended along the ventral surface of the body, with ganglionic enlargements at intervals (*diplo-neura*); the anterior ganglion (brain) placed over the oesophagus.

Class V. Annulosa, Macleay.—Annulose Animals.

Annelides seu Annelida.

Characters.—Body more or less elongated. Skin soft, segmented and annulated. Articulated members and wings absent. Blood red.

349. SANGUISUGA, Savigny.—BLOOD-SUCKING LEECHES.

Iatrobdella, Blainville.

History.—We have no accurate knowledge of the exact period when leeches either became known to, or were employed by, man; but this deficiency of information is not necessarily referable to their discovery preceding the date of our historical documents. It is true that in the common version of our most ancient record, the Bible, this passage occurs, "The horse-leech hath two daughters, crying, give, give;" but critics are not agreed as to the correctness of this translation. The word "Olukeh," or "Aluka," here interpreted "horse-leech," means, according to Bochart, destiny or fate, either of which terms should, according to this writer, be substituted for that of horse-leech; the daughters alluded to being Eden and Hell. But the Vulgate, Greek, and Lutheran translations, are all against his opinion. Brandt has entered into a very elaborate discussion of this subject, from which it appears that, in Arabic, the term Aluka indicates a leech, while Aluk signifies fate; the latter being derived from Alaka, to attach or hang to, because every man's fate is supposed to be appended to him, just as a leech affixes itself to the body; so that from this it appears probable the word "Olukeh" of the Old Testament really refers to the leeches. Nay, I think there is some reason for suspecting that the Sanguisuga aegyptiaca is the species referred to. The leeches referred to by Herodotus are Bdella nilotica (Savigny).

But admitting that these animals were known at this early period, it does not appear that they were employed in medicine: for Hippocrates makes no mention of them, though he notices other modes of drawing blood. Aristotle also is silent with regard to them. In the extracts which Cælius Aurelianus has made from the writings of Diocles, Praxagoras, Herophilus, Heraclides, Asclepiades, and other ancient physicians, who lived between the time of Hippocrates and Themison, no mention is made of the employment of leeches; a remarkable fact in favour of the opinion that they were not at this period in use. In fact, the founder of the Methodic sect, Themison, is the

1 Prov. xxx. 15.
3 Enterpe, lxviii.
first person in whose works we find mention of leeches being employed therapeutically. However, it does not follow that he was the first who prescribed them, though our documentary evidence fails in tracing back their use beyond his time.

In the Latin and Greek languages, the animal has received its name from its sucking or drawing qualities. Thus the Greeks called it βυταλλα, from βυταιω, to suck; the Romans hirudo, probably from haurio, to draw out; or sanguisuga, literally signifying "blood-sucker," from sanguis and sugo. It would appear, however, that the latter of these two Latin terms is the more modern; for Pliny, in speaking of elephants, says "Cruciatum in potu maximum sentiunt, hausta, hirudine, quam sanguisugam vulgo cœpisse appellarì adverto."

Zoology. Gen. Char.—Jaws with two rows of pointed, numerous teeth, which are mutually inclined at an acute angle (Brandt). Body elongated. Back convex. Belly flat. Extremities somewhat narrowed, furnished with disks or suckers; the anterior extremity somewhat narrower than the posterior one. Rings from ninety to a hundred. Eyes represented by ten blackish points. Mouth tri-radiate. Jaws cartilaginous, armed with numerous cutting teeth. Anus small, placed on the dorsum of the last ring.

Cuvier includes all leeches in the genus Hirudo; but later naturalists have found it necessary to arrange them in several genera. The leeches employed in medicine have been formed into a distinct genus, called by Blainville Iatrobdella (from iatro and βυταιλα, a leech), by Savigny, Sanguisuga. The latter classical term, so expressive of the blood-sucking properties of the genus, I have adopted. All leeches, it appears, are not provided with an apparatus for perforating the skin of vertebrate animals. In consequence of the numerous complaints addressed to the Prefet de Police, in 1825, that of the leeches sold in Paris some would not bite, while others caused painful and obstinate wounds, he consulted the Council de Salubrité, who deputed M. Pelletier and Hazard fils, to inquire into the accuracy of the statements. One of the results of the investigation was, that the animal called in France horse-leech, and which had been particularly charged with causing painful wounds, could not perforate the human skin, the teeth of the animal being quite blunt. The horse-leech referred to, the reporters declared to be Hæmopis sanguisorba, Savigny; but Blainville says it was Hæmopis nigra.

Moquin-Tandon⁴ admits three varieties:—

a. Dorsal bands interrupted at intervals.

b. Dorsal bands reduced to blackish spots.

γ. Dorsal bands united by transverse ones.

2. Sanguisuga medicinalis, Savigny; Hirudo medicinalis, Linn. L. D.; True English or Speckled Leech.—Back greenish or olive-green, with six rusty red longitudinal stripes, which are mostly spotted with black. Belly greenish yellow, spotted with black (Brandt).—Spots very variable in size and number; in some cases they are but few; in others are so numerous as to form the almost prevailing tint of the belly, the intervening spaces appearing like greenish yellow spots.—Europe, especially the northern parts. A native of England, but rare. Imported from Hamburgh.

Several varieties of this leech have been described and figured. One of the most remarkable of these is the flesh coloured medicinal leech (Sanguisuga medicinalis carnea) described by Guillez of Paris. The anterior half of its body is flesh-coloured; while the posterior half is of the usual colour. The spotted or piebald leech is flesh-coloured, with olive-green spots.³

These are the only species employed in medicine in this country. Others have been described and figured by Brandt. The following is a short sketch of the anatomy of the medicinal leech:

The Cutaneous System of the animal consists of a transparent epidermis (which is thrown off from the body every four or five days) and the corium. The latter consists of condensed cellular tissue, composed, according to Brandt, of globules. Like the epidermis, it shows the partitions into rings. It contains a number of globules impregnated with a pigment varying in colour in different places, and which is the source of the colours presented by the surface of the animal.

It is asserted that the predominant or base colour is, in part at least, owing to the colour of the soil in which the animals are found. Dr. J. R. Johnson⁴ says, "Mr. Baker, a man of some intelligence, residing in Glastonbury, and who for the last twenty years has been in the habit of collecting large quantities of leeches for sale, informs me that at the Black River, near Glastonbury, they are black, from the peat being of that colour; at Cook's Corner, they are of a reddish cast, from the red peat; while at Auler Moor, where, from a deficiency of peat, they penetrate the clay, they are yellow."

The Muscular System has been elaborately described by Brandt, but can scarcely be comprehended without the aid of drawings. The muscles of the trunk are arranged circularly, longitudinally, and obliquely: of these, the circular fibres are the most external, and the longitudinal ones the most internal.

The Digestive System consists of a mouth, alimentary tube, anus, salivary glands, and liver. The mouth is placed in the middle of the oval or buccal disk; its shape is triradiate,—that is, of three equidistant lines or rays meeting in a centre. Within it are three white sublenticular jaws (dentiferous tubercles or piercers), which in appearance are cartilaginous; but Brandt says they consist of a strong firm skin, inclosing a muscular mass. On the free-curved sharp margin of each jaw are about sixty small, finely-pointed teeth. The esophagus is a muscular tube, and dilates as it approaches the stomach; but at its termination it contracts into a small circular aperture, its whole length not exceeding a quarter of an inch. The stomach occupies two-thirds of the length of the animal, and

¹ Monogr. de la fam. des Hirud. p. 112.
² See Brandt and Ratzeburg, Med. Zool.
⁴ Treat. on the Med. Leech, p. 42, 1816.
ANIMAL SUBSTANCES.

is divided into about eleven compartments or cells, each of which, from the second to the eleventh, gives off on each side a caecal sac, those of the last cell being by far the largest, and extending down by the side of the intestine as far as the commencement of the rectum. The stomach consists of three coats—a cellular, a muscular, and a mucous coat. Its eleventh cell terminates by a funnel shaped projection in the intestine. The intestine is about an inch in length; at its upper orifice is a valve, and at its lower end a sphincter: on either side of it, for the greater part of its length, is one of the sacs for the last compartment of the stomach; on its inner surface are several folds. It is divided into small and large intestine, the lower part of the latter being called a rectum. The anus is not, as we might anticipate, in the posterior disk, but on the dorsal surface of the last ring. Salivary organs have been described: they consist of whitish granular masses placed around the oesophagus, into which tube the common salivary duct opens. De Blainville, Carus, and Brandt, speak of a liver. It is a brownish mass placed on the alimentary canal, the ducts opening into the stomach and intestine. The best mode of displaying the cells of the stomach is to immerse a leech, fully gorged with blood, for a week in a saturated solution of corrosive sublimate.

The Vascular System consists of four great pulsating vessels, giving off numerous ramifying branches; but without any heart, commonly so called. Two of these are placed laterally, a third in the median line of the dorsal surface, and a fourth on the abdominal surface. All these vessels pulsate (Johnson). We know very little about the manner in which the blood circulates. Brandt thinks that the lateral vessels must be arteries, on account of their very distinct transverse and longitudinal fibres: the dorsal and venous vessels he terms veins. Does not the dorsal vessel correspond to the vena cava, and the abdominal vessel to the vena portae, of higher animals? Grant, however, terms the dorsal vessel of the annelids an artery.

The Respiratory System consists of small apertures (called stigmata or spiracula) arranged in two rows on the abdominal surface, and occurring at every fifth ring. They lead into little cavities lined by mucous membrane, and which have been called air sacs, pulmonary vesicles, mucous bags, crypte, or lateral vesicles, containing usually a whitish fluid. They are placed on each side of the alimentary canal, in the spaces between the caecal sacs of the stomach, and are usually regarded as organs of respiration. Brandt, however, asserts that the respiratory function is effected solely by the skin, and that these vesicles are, in fact, receptacles for mucus secreted by a neighbouring glandular apparatus, which has a whitish appearance, and in form represents a folded intestine. This notion, however, is not new, but was held by De Blainville and Johnson.

The Nervous System consists of two parts: one (which we may compare to the

2. Outl. of Comp. Anat. 440.
cerebro-spinal axis of the vertebrata) consists of a chain of ganglia (usually about twenty-three in number) occupying the mesial line of the abdomen, and connected by a double nervous cord; the first ganglion (brain) is placed on the oesophagus, and supplies the eyes and neighbouring muscles. The second part of the nervous system is that lately discovered by Brandt, and may be regarded as a kind of sympathetic system. It consists of three ganglia (connected to the brain by filaments, and supplying the jaws), and a single nerve connected to them, and running along the abdominal surface of the stomach in the mesial line.

Of the External Senses three only have been recognized: feeling, which resides in the external surface of the body; taste, apparently indicated by the fondness of leeches for certain fluids (as blood, milk, &c.); and vision, effected by ten eyes (in the form of black spots) arranged in a crescent form at the anterior or cephalic extremity of the animal.

The Sexual System is double,—that is, each animal is androgy nous, or possesses both male and female organs. There is, however, no power of self-impregnation (the contact of two individuals being requisite, each acting to the other in a double capacity of male and female). The **male organs** consist of several pairs of testicles, two vasa deferentia, two vesiculæ seminæ, two ejaculatory ducts, and a penis surrounded at its base by what some have termed a prostate gland. The penis projects from the abdominal surface at about one-third distant from the anterior extremity. The **female organs** consist of two ovaries, two oviducts (which subsequently unite into one) a hollow organ (uterus) which opens by a contracted aperture (vagina) externally at about the twenty-ninth ring, or five rings below the penis.

That leeches are essentially oviparous admits of no doubt; and we have now an admirable account of their development by Professor Weber. It appears that soon after copulation an unusual activity pervades the ovaries, in consequence of which some ova (termed by Weber gerus, by Carus yelks) are separated, and pass along the oviduct to the uterus, where they stop, in order to obtain the matters necessary for their development, and their proper coats. They here become invested with a serous-like membrane, on the inner side of which is produced (either by secretion from the uterine cavity or from the membrane itself) an albuminous whitish mucus, serving in part for the nourishment of the ova, and which is regarded as a kind of liquor amnii. Subsequently a glutinous fluid is deposited on the outside of the serous coat. When the ova are expelled from the uterus, part of this fluid gives a coating to them, while part is expelled before and after them. But this coat seems now distended with air-vesicles, and has the frothy appearance of well-beaten white of egg, produced by the violent contraction of the uterus.

The animals usually deposit their ova (in their own native waters) in holes or moist places on the shore, from May to the end of September. When first expelled, they are somewhat cylindrical in form, and have a brownish appearance. The frothy layer adheres very slightly; but after lying in the water for a quarter of an hour the outer surface becomes somewhat hardened, forming a kind of pellicle or fine skin. After some days a

1 Meckel's *Archiv* for 1828, p. 366.
portion of this frothy covering is converted into a spongy tissue (spongy coat of the cocoon), covering the capsule of the ova (cocoon) wholly or partially. In this state the cocoon has a brownish, fibrous appearance, similar to fine sponge, and varies somewhat in its size and weight; its longest diameter being from six to twelve lines, its shortest from five to eight, and its weight from twenty-four to twenty-eight grains.\(^4\)

The ova or germs, which have a lenticular form, evince vital movements; and very soon we perceive on each a funnel-shaped tube, extending from their surface inwards, and which appears to absorb the albumen of the cocoon. The ovum goes on enlarging, and becomes somewhat elongated, and subsequently the young leech begins to be developed on the exterior part of the ovum, the aperture of the funnel being the spot where the mouth of the young animal is observed. The abdominal surface is the first, the dorsal the last, to be developed. When the young leeches have attained a considerable size they pierce their cocoon.

Diseases of Leeches.—The natural duration of the life of leeches is not easily determined; but judging from the slowness of their growth, and the length of time full-grown leeches have been preserved, we may necessarily infer that they are long-lived animals. Dr. Johnson thinks that in their native waters, if they can always meet with an abundant supply of food, they may live at least twenty years. But they are subject to several diseases, some of which are epidemic, and of a very destructive kind. Although the study of the pathology of this animal is of considerable interest in a commercial and even scientific point of view, yet no practically useful results have hitherto been arrived at, in regard to the prevention and treatment of the diseases of leeches. Dr. J. R. Johnson mentions three diseases as common to this animal:—1st. An ulcer, seated in various parts of the body, but more generally affecting the side. It destroys life in a few days. 2ndly. A rigidity and narrowing of one part, whilst another portion is studded with tumours of putrid coagulated blood. 3dly. A flaccid appearance of the whole body, except the lips, which are hard, swollen, purple, and frequently bloody. These

\(^4\) See figures of the cocoon, in Dr. J. R. Johnson’s *Further Observations on the Medicinal Leech*, 1825.
diseases are particularly prevalent during the summer months. Brostat\(^1\) describes three epidemic disorders.

Collection and Commerce of Leeches.—Leeches may be caught with the hand, or by a kind of net (described by Derheims), or by the gatherers going into the ponds with naked feet, to which the leeches adhere; or by baits, especially the liver of animals. The two latter methods are objectionable,—one because it is not free from danger to the gatherers, and the other because it is apt to injure the health of the animal. An interesting and graphic account of the leech fishery at La Brenne, and of the miserable appearance of the fisherman who collects the leeches, by allowing them to attach themselves to his legs and feet, has been published in the *Gazette des Hôpitaux*. A translation of this paper is given in M’Culloch’s *Dictionary of Commerce*. Leeches are largely imported from Hamburg. The Hamburgh dealers draw their supplies from the Ukraine. “Having exhausted all the lakes of Siberia, Bohemia, and other more frequented parts of Europe, the buyers are now rolling gradually and implacably eastward, carrying death and desolation among the leeches in their course—sweeping all before them, till now they have got as far as Pultava, the pools and swamps about which are yielding them great captures.”\(^2\) Leeches are sometimes imported in bags, but more usually in small barrels, each holding about 2000, the head being made of stout canvas to admit the air. The best vessels for preserving these animals are unglazed brown pans or wooden tubs. The dealers have a notion (and possibly a correct one) that the leaden glazing is injurious. These pans should be very little more than half filled with soft water (pond, river, or rain water). This does not require changing so often as is commonly supposed. In very hot weather, or when the water has become bloody, or otherwise much discoloured, it should be changed every day or so; otherwise, in summer every four or five days, or a week; in winter, once a month is believed by large dealers to be sufficient.

The consumption of leeches must be enormous. Some years ago it was stated that four principal dealers in London imported, on the average, 600,000 monthly, or 7,200,000 annually.\(^3\) Féé\(^4\) says, “it is estimated that 3,000,000 are annually consumed in Paris; and as the population of Paris is to that of the whole of France as one is to thirty-three, it follows that, independently of exportation, 100,000,000 are consumed annually, which is equivalent to three leeches annually for each person. Now, if we estimate

\(^1\) Brandes’s *Archiv*, Bd. v.

\(^2\) Brenne, *Excurs. in the Interior of Russia*, vol. ii. p. 408, 1839. [In some parts of England, more particularly in the feney districts of Cambridgeshire and Lincolnshire, the trade in leeches forms a valuable branch of business. The manner in which the leeches are taken is this:—Two or three persons, furnished with long poles, enter the marshes with their shoes and stockings off, and continue heating the weeds and rushes for some time. The leeches being disturbed by this proceeding are aroused from their wonted lethargy, and impelled by hunger, the effect of long abstinence, seize with avidity the first animal object they meet with. The feet and ankles of the leech-catchers being exposed to them, the same are freely fastened upon by the leeches, and they are thence removed and deposited in a basket carried for the purpose of receiving them. When taken home, they are washed in a weak solution of salt and water, and when purified are carefully packed in wet linen cloths, and in this manner are dispatched to the different leech merchants and the various medical establishments throughout the country.]

\(^3\) Price, *Treat. on Sanguisuct.* p. 129, 1822.

\(^4\) *Cours d’Hist. Nat.* t. i. p. 21.
the average price at fifty francs per thousand, we shall have the enormous sum of five millions of francs paid for this one article of our materia medica."

Mode of Biting.—Having fixed on a suitable spot, the animal applies his oval disk, and firmly fixes it (at first, perhaps, by atmospheric pressure; then by intimate contact), so that the anterior end forms an angle with the other portions of the body. The three cartilaginous jaws bearing the sharp teeth are now stiffened and protruded through the tri-radiate mouth against the skin, which they perforate, not at once, but gradually, by a saw-like motion. Dr. Johnson\(^1\) says, "The jaws are carried from side to side in an oblique direction;" and adds, "their action may be seen by presenting to the leech a coagulum of blood, and when the leech is in the act of suction, cautiously removing it. For a few seconds it appears unconscious of its removal, which presents a fair opportunity of observing the oscillatory movement of each piercer." The wound is not produced instantaneously, for the gnawing pain continues for two or three minutes after the animal has commenced operations. Thus, then, it appears that the leech saws the skin; hence the irritation and inflammation frequently produced around the orifices. The flow of blood is promoted by the suction of the animal, which swallows the fluid as fast as it is evolved. During the whole of the operation the jaws remain lodged in the skin. In proportion as the anterior cells of the stomach become filled, the blood passes into the posterior ones; and when the whole of the vescus is distended, the animal falls off. On examination it will be found that not a particle of blood has passed into the intestine.

Physiological Effects.—There are two classes of phenomena observed in all modes of drawing blood; one of which has been termed local, the other general. In phlebotomy and arteriotomy, the first is trifling, and of no therapeutic value; and we resort to these operations only as means of affecting the general system. On the other hand, we obtain topical effects, both powerful and useful, from cupping and leeching; hence these are termed local, while the former are denominated general blood-lettings. It must, however, be remembered, that constitutional or general effects are also frequently obtained from both cupping and leeching.

1. Constitutional or general effects of leeching are the same in kind as those caused by the loss of blood from other means. A moderate quantity of blood may be abstracted without any obvious effects on any of the functions; but, if the amount taken be increased, syncope results. The quantity necessary to produce this varies, however, considerably, and will depend on the mode of drawing it (whether rapidly or otherwise); the position, constitution, and age of the patient; the nature of the disease; and many other circumstances not necessary to enumerate. It is well known that a small quantity will, if taken rapidly, and the patient be in the erect posture, cause this effect; whereas a considerably larger amount may be abstracted, if taken gradually, and the patient in the recumbent position, without giving rise to it. The usual explanation of this is, that when blood is drawn faster than the vessels can contract, the circulation is temporarily stopped, and fainting ensues. Several reasons, however, lead me to doubt

\(^1\) Treat. p. 112.
the sufficiency of this explanation. Leeching, then, as being a slower mode of abstracting blood, is less likely to cause syncope than venesection, or even cupping. As the patient recovers from the fainting state, hysterical symptoms sometimes manifest themselves. Throbbing headache, and sleeplessness, are by no means uncommon consequences of loss of blood. In some cases I have seen febrile excitement, of several hours' duration, brought on by blood-letting.¹

Dr. Marshall Hall² has directed attention to the disorder of the cerebral functions (marked by convulsions, delirium, or coma) caused by blood-letting. I may observe, that convulsive movements are by no means uncommon in syncope from general blood-letting, and I think are not always to be considered as denoting that the remedy has been used beyond the safe degree. I have on several occasions been told by patients about to lose blood, that they are apt to faint and struggle when bled; and I have, in consequence, been requested to prevent them from injuring themselves. Delirium and coma are less frequently met with. Great depression of the vascular system, followed by sudden dissolution, is another occasional effect of loss of blood.³

As might be expected, an operation so powerfully affecting the vital functions cannot be passive in its influence over morbid action; but the phenomena vary so much in different diseases, and even in the same disease under different circumstances, that it becomes extremely difficult to offer any general results. That loss of blood is sometimes beneficial, at other times hurtful, is well known. Its immediate beneficial effects are best seen in pneumonia and ophthalmia. In the first of these diseases the respiration sometimes becomes easier, and the pain removed, while the blood is flowing; and from this time the amendment progresses. In ophthalmia, the redness of the conjunctiva disappears during the syncope from blood-letting, and sometimes never returns with equal intensity. A tendency to hemorrhage has been thought by some experienced practitioners to be engendered or increased by the application of leeches. Thus the return of the menses, the aggravation of menorrhagia, haemoptysis, and apoplexy, have been found to follow, and apparently to result from, the employment of leeches.⁴

The effects of blood-letting are considerably influenced by disease. Every practitioner is acquainted with the fact, that in certain morbid conditions patients bear the loss of larger quantities of blood than in others. I need only mention apoplexy, inflammation of the serous membranes, peripneumony, and phrenitis, as examples of increased tolerance; while chlorosis and cholera may be cited as instances of diminished tolerance. On this point there cannot be, I think, two opinions.

I confess I am not prepared to assent to the inferences Dr. Hall has drawn from these facts, nor to the rules he has laid down in the diagnosis and treatment of disease founded on the circumstances just mentioned. The susceptibility to syncope is so great in some persons, that we should, I sus-

¹ For further details respecting the effects of loss of blood, see Dr. Clutterbuck On the proper Administration of Blood-letting, 1840.
² On the Morbid and Curative Effects of Loss of Blood, 1830.
³ See an illustrative case in the Lancet, vol. xi, p. 94.
⁴ See the observations of Laenec and Sir James Clark, in Forbes's translation of Laenec's Treatise on Diseases of the Chest, p. 193, 1827.
pect, be often led into error, if we were to infer the absence of inflammation merely from the occurrence of fainting after the loss of a few ounces of blood. Besides, it not unfrequently happens that a patient faints on the first, but not on the second or third bleeding. I have more than once seen this. Neither do I think it would always be safe to bleed ad deliquium, even if we were satisfied that inflammation be present; for in some it is difficult to occasion syncope, although the quantity of blood lost be so great as to endanger the safety of the patient. The practice of Dr. Hall, however, is much to be preferred in this respect to that of Mr. Wardrop; for, although both recommend bleeding to syncope in inflammation, the former places his patient in the erect, the latter in the recumbent posture. And here I cannot help remarking, that the practice of ordering patients to be bled to syncope in the recumbent posture appears to me a highly dangerous one. That fainting will sometimes occur in the erect position, before a sufficient quantity of blood has been drawn, we all know; and, to prevent this occurrence, it is frequently proper to bleed in the recumbent posture: but I must protest against bleeding patients to syncope in this position.

I have yet to notice another class of the general effects of the loss of blood, which may be denominated secondary or remote, and which are in no way useful in the treatment of disease. In some cases excessive reaction occurs, attended with throbbing of the vessels of the brain, pain and disorder of the cerebral functions. Examples of this are seen in women who have suffered severely from uterine hemorrhage. Exhaustion, with insufficient reaction, is another remote effect of loss of blood. In two cases of infants, I have seen this effect, consequent on hemorrhage after a leech-bite, terminate fatally. Other secondary or remote effects of blood-letting are mentioned: they consist principally in disorder of the sensorial functions, marked by delirium, coma, or even amaurosis.

Having hitherto described the consequences of bleeding generally, I must now refer more particularly to leeching. The constitutional or general effects caused by the application of leeches are best observed in children and delicate females—more especially the former. I have, on several occasions, seen infants completely blanched by the application of one or two leeches. Pelle-tan mentions the case of a child, six years old, who died from the hemorrhage occasioned by six leeches applied to the chest. Leeching, then, is here, to all intents and purposes, a mode of general blood-letting, arising in part from the powerful influence which a small quantity of blood produces in infants; and secondly, because one leech will cause the loss of more blood in them than in adults, owing to the greater vascularity of the cutaneous system. It is apparent, therefore, that in the diseases of infants, leeching may, in most cases, be substituted for venesection. But in disorders which are rapidly fatal, as croup, opening the jugular vein is undoubtedly to be preferred, since it is necessary to produce an immediate and powerful effect. As children advance in years they become capable of bearing larger evaucations of blood; and, therefore, leeching excites a less influential effect. It is quite impossible to say at what age venesection ought to be substituted, or, in infancy,

1 Op. Blood-letting.
2 Dr. M. Hall, op. supra cit.
what number of leeches should be applied; since they take away such unequal quantities of blood. These are points which must be decided by the practitioner in each case. Here is a tabular statement of the amount of blood which Dr. James Blundell has taken from children at different ages:—

<table>
<thead>
<tr>
<th>Ages</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>1 ounce to 1½ ounces.</td>
</tr>
<tr>
<td>4 "</td>
<td>1¼ " to 2 "</td>
</tr>
<tr>
<td>8 "</td>
<td>2 " to 3 "</td>
</tr>
<tr>
<td>12 "</td>
<td>3 " to 4 "</td>
</tr>
<tr>
<td>18 "</td>
<td>4 " to 5 "</td>
</tr>
<tr>
<td>3 years</td>
<td>8 " to 10 "</td>
</tr>
<tr>
<td>6 "</td>
<td>10 " to 12 "</td>
</tr>
</tbody>
</table>

But these quantities are exceedingly large, and in most instances greater than it will be found prudent to abstract. Guersen says, that in infants up to two years of age we ought never to draw more than three or four ounces of blood in twenty-four hours.2

2. The local effects of leeching must now be noticed. The jaws of the leech may be compared to three saws, each armed with sixty teeth. It is, therefore, not surprising that pain and aflux of blood to the wounded part should be occasioned by the laceration of the skin by a single leech. I have sometimes seen one of these animals produce intense redness to the extent of an inch around the bite. This is best observed when the skin is delicate, as that covering the mammae of the female. Now when a number of these animals are applied, their united local effects must have some influence over a neighbouring disease. There are also certain topical effects which occur subsequently, such as ecchymosis; the irritation and inflammation of the mouths of the punctures; the diffused redness and the soreness in the parts intervening between the bites, which cannot be without influence over morbid action. They act on the principle of counter-irritation. In taking into consideration the beneficial influence of leeches, we must, therefore, not forget these, nor the fomentations and poultices subsequently employed.

When leeches are applied to the temples, especially if they fix close to the external canthus, a diffused swelling frequently arises, similar to that caused by erysipelas. This is not referable to any noxious qualities of the animal, for it happens when the finest and most healthy are employed; nor to the teeth of the animal being left within the wound, since I have seen it when the leech has fallen off spontaneously.

In concluding these remarks on the local effects of leeches, I have only to add, that independently of the local irritation caused by the puncture, I believe the evacuation of blood from an inflamed part may be more beneficial than the same quantity taken by the usual operation of venesection. In other words, I am disposed to admit what were formerly termed the derivative effects of local bleeding. The amount of benefit obtained by the application of leeches to parts that have been injured by falls, &c. as in fractures and dislocations, has frequently appeared to me much greater than could be

1 Lancet, Sept. 20, 1828, p. 773.
2 On the sensible effects of leeches on man, see Vitet, Traité de la Sangs. Méd. 1809.

VOL. II.
referred to the combined influence of the quantity of blood lost, and the local irritation of the punctures; so, also, with respect to the good effects of leeching hemorrhoidal tumours. Mr. Wardrop thinks more benefit is in some cases obtained by the application of leeches at a distance from the affected organ, constituting what has been termed a revulsive operation.

I trust the remarks now offered will be sufficient to prove, that in estimating the therapeutic influence of leeches, the quantity of blood drawn is not the only element in the calculation; and I think, in practice, constant proof will be found that leeching is more beneficial than can be accounted for by the mere quantity of blood drawn.

Uses.—The following are some of the uses of leeches:

1. In children and delicate adults (as females and aged persons) leeches often form an excellent substitute for general blood-letting, when the object is not to occasion any immediate or sudden effect on the disease. In children it is necessary to avoid applying them to the neck, or other parts where compression cannot be conveniently made.

2. In local determinations of blood, unattended with febrile symptoms, local blood-letting, when it can be resorted to, is generally, though not invariably, preferred to phlebotomy. The advantages of leeching over cupping are, the less pain, and the ease with which blood may be procured; for it is evident that in swelled testicle, in inflammation attending fractured limbs, and in acute inflammation of the mammary gland, patients could not, in most cases, bear the necessary pressure of the cupping-glass; and in some parts of the body, as the abdomen, blood can only be procured from cupping by a very dexterous manipulation.

3. In internal and other inflammatory affections, accompanied with constitutional disorder, the rule is to employ general in preference to local blood-letting. But circumstances occasionally render the reverse practice justifiable and proper, as where the disease is not active, and the patient delicate and weak. In many instances it will be found most advantageous to combine both modes of drawing blood: for example, in abdominal inflammations, the application of leeches, preceded by venesection, will sometimes do more good than the same quantity taken by the lancet alone. During the progress of fever with determination of blood to the brain, the application of leeches to the temples, after the use of blood-letting, is often attended with the best effects.

4. There are some diseases in which no substitute of equal efficacy can be found for leeches. Such, I conceive, are hemorrhoidal tumours, and prolapsus of the rectum. In these cases general is not equal to local blood-letting, and cupping is out of the question.

5. In various organic diseases leeches will often be found an exceedingly useful palliative means. I would particularly mention as examples, affections of the heart and lungs.

6. Dr. Crampton recommends the application of leeches to the internal surfaces; as to the conjunctiva in ophthalmia, to the tonsils in cyanache tonsillaris, and to the internal surface of the nostrils in epistaxis. The mode of applying a leech to the tonsils is as follows: pass a single thread of silk

1 Dublin Hospital Reports, vol. iii. 1822.
through the body of the leech, and make fast the ligature to the finger of the operator: then apply the leech to the part.

There are few diseases in which loss of blood is required, where leeching is positively objectionable; indeed, erysipelas is the only one that can be named. Here it has been supposed that the local irritation caused by leeches would add to the severity of the malady; but I believe that even in this case the objections are more imaginary than real. There are, however, numerous instances in which leeching is negatively objectionable: in some the quantity of blood drawn by these animals is insufficient to make much impression on the disease, as in visceral inflammation of robust persons; in others, where the disease is very rapid and fatal, the effects of leeches are too slow, as in croup. Venesection is the remedy in all these instances.

Mode of Applying Leeches.— Let the part be well cleansed (sometimes it may be necessary to shave it): then dry the leeches, by rolling them in a clean linen cloth; place them in the lid of a pill-box, and apply to the affected part. This is a preferable method to applying them by the fingers, or in a wine-glass. A narrow tube (called a *leech-glass*) will be found useful when we wish to affix one of these animals to the inside of the mouth, or any particular spot. [By grasping the body of the leech gently in a dry cloth, its head may be directed to any part where we wish it to be applied; and by gently withdrawing it as its head reaches the skin, we compel the animal to fix its head to the spot, and insert its teeth.—En.]

Several circumstances influence the fixing of leeches; as the condition of the animal, whether healthy or otherwise; the nature and condition of the part to which it is applied: thus, leeches will not readily attach themselves to the soles of the feet, or the palms of the hands, or to the hairy parts—the presence of grease, vinegar, salt, and some other substances, will prevent them from biting; whereas milk, sugared water, and blood, are said to have the contrary effect. Scarifying the part promotes their attachment. The condition of the patient also affects the fixing of the animal. Derheims\(^2\) says that leeches will not bite those under the influence of sulphur, on account of the evolution of sulphuretted hydrogen by the skin. The effluvia, or vapours of the room, as the fumes of tobacco, sulphur, vinegar, &c., will prevent them biting, or even cause them suddenly to fall off.

The quantity of blood a leech is capable of drawing varies considerably. I believe four drachms to be the maximum. On an average I do not think we ought to estimate it at more than one drachm and a half. Of course this has no reference to that lost after the animal has fallen off, and which varies according to the vascularity of the part; in children being oftentimes very considerable. When the leech has had sufficient it drops off; but it is said that if the tail be snipped, the animal will continue to bite, the blood passing out posteriorly as fast as it is taken in by the mouth. I have tried several, but they usually let go their hold the instant the tail is cut. H. Cloquet\(^3\) has made the same remark. In order to disgorge the leech of the

1. For a more extended account of the uses of leeching, see Dr. R. Price, *Treatise on the Utility of Sanguination*, 1822.
blood, the usual practice is to apply salt to its body; but it is objectionable (if you wish to preserve the animal), since the surface is frequently thereby blistered, and several days elapse ere the creature regains its former activity. Some advise squeezing the blood out by the mouth; others the application of diluted vinegar to the head. If no kind of emetic be employed, the blood remains for a considerable time in the stomach of the leech undigested, but without putrefying.

After-treatment.—When leeches have fallen off it is generally desirable to promote the sanguineous discharge. This is best done by the use of warm fomentations or cataplasms; or even, in some cases, by cupping-glasses. Great caution is necessary in the case of children. Some years since, the application of a leech was ordered to the chest of a child labouring under pneumonia; it was at the same time mentioned that the bleeding should be encouraged. The directions were literally fulfilled—the discharge of blood was assiduously promoted—until so large a quantity had been lost, that death was the result. No attempt was made to stop it, nor notice sent to the Dispensary, in the practice of which the case occurred. The child being illegitimate, and the mother evidently careless of its recovery, led some to suspect that this did not take place through mere ignorance. In another instance two leeches were ordered for a child aged about eighteen months, suffering with pneumonic inflammation, a consequence of measles. The following day the poor little creature was found in a fainting, or rather dying, state, with face and lips completely blanched. On inquiry it appeared the leech-bites were still bleeding, and no attempt had been made to stop the discharge, the mother, thinking it would be beneficial, more especially as the pneumonic symptoms had considerably abated. As predicted, the little sufferer died within twenty-four hours.

In some persons there appears to be an hereditary predisposition to hemorrhage, so that very slight wounds are attended with serious and even fatal effects. Mr. Wilson, quoted by Mr. Wardrop, has related the case of a child where one leech had nearly caused death, by the serious hemorrhage. When about three or four years old, this child bit its tongue, and notwithstanding that every attempt was made to stop the discharge, death took place from the loss of blood.

I have been called to many cases of hemorrhage after leech-bites, and have never failed in stopping it by compression. Sometimes mere exposure to the air will be sufficient; or, if this fail, we may apply a dossil of lint and a bandage. In other instances this will not succeed. I usually employ compression, thus: roll a piece of lint into a fine cone, and introduce it into the bites by means of a needle or probe; over this lay a compress and bandage. Sponge may be substituted for the lint. Various other modes have been proposed; some, I think, exceedingly cruel, since I do not believe they are necessary. I allude, now, to the application of a red-hot needle; and to passing a needle through the orifice, and wrapping thread round, just as a farrier stops the discharge of blood from the vein of a horse. Some employ absorbing powders, as gum arabic; or styptic washes, as a saturated solution of alum. One very effectual means is to apply a stick of lunar caustic

scraped to a point, or powdered nitrate of silver. Sir Charles Bell, in one case, stitched up the wound.

Accidents from Leeches in the Mucous Cavitites.—The ancients were very apprehensive of the ill consequences likely to arise from swallowing leeches. That their fears were not groundless is proved from the following circumstances, related by the celebrated Baron Larrey. When the French army entered upon the deserts which separate Egypt from Syria, the soldiers, pressed by thirst, threw themselves on their faces, and drank greedily of the muddy water, and which, unknown to them, contained leeches (Sanguisuga egyptiaca), having the form of a horse-hair, and the length of a few lines only. Many of them felt immediately stings, or prickling pains, in the posterior fauces, followed by frequent coughs, glairy spots, slightly tinged with blood, and a disposition to vomit, with a difficulty of swallowing, laborious respiration, and sharp pains in the chest, loss of appetite and rest, attended with great uneasiness and agitation. On pressing down the tongue of the individual first attacked, a leech was discovered, which was with difficulty removed by the forceps. Little or no haemorrhage followed, and the patient recovered. Those which had attached themselves to the posterior fauces were removed by the use of gargles composed of vinegar and salt water. The Chief of Brigade, Latour-Mauberg, commander of the 22d regiment of chasseurs, swallowed two in the deserts of St. Makaire, a day’s journey from the Pyramids, which so much weakened him, that his convalescence was long and difficult.

Derheims\(^1\) relates a case where a young man, who had leeches applied to his anus, was so unfortunate as to have one enter his rectum unnoticed. The animal made several punctures, and was not expelled until some hours after, when salt water injections were used. The wounds caused by the bites, however, did not heal for several months, during which time the patient suffered considerably, and constantly passed blood with the feces.

Whenever practicable, salt-water injections should be resorted to. In the following cases related by Derheims\(^2\) this practice could not be adopted. Two small leeches were applied to the gums of an infant during the period of dentition, and by the inattention of the nurse they fixed themselves at the back part of the mouth, and, becoming gorged with blood, caused great difficulty of respiration. The infant, by strongly closing the jaws, prevented the removal of the animals, who only ceased their hold when they were filled with blood. The hemorrhage continued for two hours.

Ill effects have resulted from swallowing leeches. A lady accidentally swallowed a leech she was applying to her gums. Acute cardialgia soon came on, with a feeling of erosion and creeping in the interior of the stomach; sometimes convulsive movements in the limbs and muscles of the face; frequency and irregularity of the pulse; universal agitation and paleness of the countenance. The physician who was called in, recollecting the fact ascertained by Bibliéna, that leeches could not live in wine, administered half a glass every quarter of an hour. The symptoms were soon alleviated; and the fourth dose caused vomiting, by which the dead leech was evacuated,

\(^1\) Op. supra cit. p. 140.
\(^2\) Page 140.
with much glairy matter, mixed with clots of black blood. By a proper subsequent treatment the patient recovered in eight days.¹

[The following case occurred within our knowledge:—A lady was directed to apply a leech to the septum of the nose. By some accident the animal insinuated itself into the nasal cavities, and, reaching the posterior nares, the patient was irresistibly compelled to swallow it. No uneasiness was felt, probably owing to the leech having already drawn much blood. A moderately strong solution of chloride of sodium was administered at short intervals. The leech was not discharged by vomiting, and it did not pass by the bowels. The patient suffered from no unusual symptoms, probably owing to the rapid administration of the solution of salt.—Ed.]

Class VI. Insecta, Goldfuss.—Insects.

Characters.—Articulated animals with 6 feet (hexapoda), one pair of antennae, a dorsal vessel for circulation, respiring by tracheæ, and undergoing metamorphosis (being successively ovum, larva, pupa, and imago). Head distinct from the thorax.

Order I. COLEOPTERA, Linneus.—BEETLES.

Characters.—4 wings, of which the two upper or anterior (elytra or wing cases) are horny or leathery, united down the back by a straight suture; lower or posterior wings folded longitudinally. Mandibles and jaws for mastication.

350. CANTHARIS VESICATORIA, Latreille, L. E. D.—THE BLISTER BEETLE, OR SPANISH FLY.

Lytta vesicatoria, Fabricius; Meloë vesicatorius, Linneus.

(The whole fly, E.)

History.—Hippocrates employed in medicine an insect which he calls κανθαρίς, whose effects were similar to those of our Cantharides vesicatoria. Hence it has been erroneously inferred by some writers that our blistering beetle is identical with that employed by the ancients. That this inference is incorrect is proved by the following facts. In the first place, many beetles agree in their effects on the system with those of Cantharides vesicatoria; secondly, the word κανθαρίς merely signifies a small beetle or scarabæus parvus; thirdly, both Dioscorides² and Pliny³ refer to several kinds of cantharides, but remark that the most powerful are those with transverse yellow bands on the wings, and that those which are homogeneous in colour

¹ Recueil périodique.
² Lib. ii. cap. 65.
are weak and inert. It is tolerably clear, therefore, that neither of these ancient writers was acquainted with Cantharis vesicatoria. Now the characters assigned to the ancient blistering insect agree precisely with those of two species of Mylabris. Burmeister\(^1\) suggests that Mylabris Füsselini, a native of the south of Europe, was the species used by the ancients. Mylabris Cichorii is employed as a blistering beetle at the present day in China and some parts of Hindostan, and may, perhaps, have been used by the Greeks and Romans.

Zoology. Gen. Char.—Antennæ elongate, simple, filiform. Maxillary palpi with terminal joint somewhat ovate. Head large, heart-shaped. Thorax small, rather quadrate, narrower than the elytra, which are as long as the abdomen, soft, linear, the apex slightly gaping. Wings two, ample (J. F. Stephens).\(^2\)

Sp. Char.—Bright glossy brass-green or bluish, glabrous; beneath more glossy, with a few hairs. Breast densely pubescent, finely punctured. Head and thorax with a longitudinal channel. Elytra with two slightly raised lines. Tarsi violaceous. Antenne black, with the basal joint brassy (J. F. Stephens).

Form elongated, almost cylindrical. Length six to eleven lines. Breadth one to two lines. Colour brass or copper green. Odour nauseous, unpleasant. Body covered with whitish grey hairs, which are most numerous on the thorax. Head large, subcordate, with a longitudinal furrow along its top. Eyes lateral, dark brown. Thorax not larger than the head, narrowed at the base. Elytra from four to six lines long, and from 3-4ths to 1½ lines broad; costa slightly margined. Wings ample, thin, membranous, veined, transparent, pale brown; tips folded. Legs stout, from four to six lines long, the hinder ones longest: tibiae clavate, in the female all terminated by two small moveable spurs; in the male the two hinder pairs of extremities alone have this arrangement, the anterior ones having but one spur; last joint of the tarsi with a pair of bifid claws. Abdomen soft, broadest in the female. In the female, near the anus, are two articulated, caudal appendages.

The internal organization of these animals has been elaborately studied by Audouin\(^3\) and by Brandt.\(^4\) The Nervous System consists of a cerebro-spinal axis, and a double and single sympathetic system. The cerebro-spinal axis consists of a double nervous cord, and nine ganglia (two cephalic, one of which is the brain, three thoracic, and four abdominal). The single sympathetic system commences at the brain by two branches, which unite at the ganglion frontale, from which a single nerve proceeds along the

ANIMAL SUBSTANCES.

cesophagus to the stomach, where it divides into two, forming at its division a small ganglion. The double sympathetic system consists of four ganglia placed on the cesophagus, two on either side of the single nervous cord just described, with which, as well as with the brain, they are connected by nervous twigs. The Vascular System consists of a simple pulsating dorsal vessel, which extends from the head to the extremity of the abdomen. The Respiratory System consists of ten pair (three thoracic, seven abdominal) of stigmata, which open into the trachea. The Digestive System consists of the mouth, which terminates in the pharynx. The latter contracts into a long muscular cesophagus, which ends in an elongated fusiform stomach. The latter is marked transversely by bands formed by the muscular coat. Between the stomach and intestine is a valve (pylorus) formed by four small, floating, kidney-shaped bodies. The small intestine forms two curvatures, and then proceeding directly backwards, terminates in the swallowed caecum, which ends in the very short narrow rectum. The biliary vessels consist of six very long, filiform, convoluted tubes, which terminate anteriorly at the stomach near the pylorus, and posteriorly at the intestine near the caecum. The Sexual System of the Male consists of a pair of spherical testicles, having externally a granulated appearance; two vasa deferentia, which have a ringed appearance; three or four pair of tubes (seminal vesicles or epididymoid vessels), the functions of which are imperfectly known; a common spermatic duct; and a penis which has three barbs or hooks at its extremity, and is enveloped by a sheath. The Female Organs consist of two large, hollow, egg shaped ovaries, the cavities of which are called calyces. On their external surface is an immense number of pyriform egg tubes. From each ovary or calyx arises an oviduct, and the two oviducts by their junction form the common oviduct, the lower portion of which is called the vagina. Into the common oviduct passes a tube from a vesicular bag, called spermatheca (vesicule copulatrice, Audouin), and also from other appendages (sebaceous glands, Audouin).

Hab.—Europe. Originally, perhaps, a native of the southern parts, especially Italy and Spain. Now found in France, Germany, Hungary, Russia, Siberia, and England. With us they are rare. In the summer of 1837
they were abundant in Essex and Suffolk. They are found on species of Oleaceae (as the ash, privet, and lilac,) and of Cuprifoliacee (as the elder and Lonicera).

Mode of catching Cantharides.—In the south of France these animals are caught during the month of May, either in the morning or evening, when they are less active, by spreading large cloths under the trees, which are then strongly shaken, or beaten with long poles. The catchers usually cover their faces, and guard their hands by gloves. Various methods have been recommended for killing the insects; such as exposing them to the vapour of vinegar (the practice mentioned by Dioscorides), or of hot water, or of spirit of wine, or of the oil of turpentine. Geiger states, that if destroyed by dropping oil of turpentine into the bottle in which they are contained, they are not subject to the attack of mites; but I believe they are more frequently destroyed by immersing the cloths containing them in hot vinegar and water, and then drying on hurdles covered with paper or cloths.

Preservation.—Cantharides should be preserved in well-stoppered bottles, and to prevent them from being attacked by mites (Acarus domesticus), a few drops of strong acetic acid should be added to them. I have found this a most successful mode of preservation. Besides mites, they are subject to the attacks of a moth (Tinea flavifrontella) and two coleopterous insects (Anthrenus muscorum and Hoplia farinosa.)

Commerce.—Cantharides are imported from St. Petersburgh, in cases, each containing 160 or 170 lbs.; and also from Messina, in barrels or cases, holding each about 100 lbs. They are principally brought over towards the end of the year. In 1839, duty (1s. per lb.) was paid on 16,376 lbs.

The cantharides from St. Petersburgh are the largest and most esteemed. They are somewhat more copper-coloured than the French or English varieties, which have rather a brassy than copper tint. Sir James Wylie states that they are very abundant in the southern provinces of Russia.

Characteristics for Medico-legal purposes.—There are no chemical tests for cantharides to be relied on. Orfila has published an account of the effects of various reagents on tincture of cantharides; but they are unimportant. Cantharides are rarely met with in a sufficiently perfect form to enable us to recognise them by their zoological characters. Their physical characters are much more important. In all powders of cantharides golden green particles may be distinguished; these may be separated from the other contents of the stomach by immersing them in boiling water: the fatty matter rises to the surface, while the cantharides powder falls to the bottom. Orfila has recognised these particles in a body nine months after interment; so that they do not readily decompose, even when mixed with decaying animal matters. [A portion of the suspected substance spread in a thin layer should be allowed to dry on a piece of glass. When dried,—either by the naked eye or by the aid of a lens the green and copper-coloured particles of the wings may be seen, if cantharides be present, on one or both sides of the

1 Westwood, Intr. to the Mod. Classif. of Insects, vol. i. 1839.
2 Richard, Dict. des Droq. i. 550.
3 Pharmacopoeia Castrensis Ruthenica, p. 243, Petropoli, 1840.
4 Toxicot. Gén.
Some other insects, however, have the same golden-green colour, but are without vesicating properties; and vice versa, there are many insects which vesicate, but which have not a golden-green colour. The physical characters of the particles, aided by their physiological effects, together form tolerably conclusive evidence of the presence of cantharides. To judge of the effects of cantharides, and their preparations, we should proceed as follows:—If the suspected matter be a liquid, evaporate it to the consistence of an extract; then digest in repeated quantities of sulphuric ether. The ethereal solutions are to be mixed, and allowed to evaporate in the air: the vesicating properties of the residuum may be determined by applying it to the inside of the lip or to the arm. If the suspected matter contain solid particles, these are to be digested in ether, and the concentrated tincture applied to the inner surface of the lip. Dr. Hastings has published an interesting fatal case of inflammation of the alimentary canal and urinary organs. The symptoms simulated those caused by excessive doses of cantharides; but the moral and other evidence seemed to negative the suspicion that insects had been taken.

Adulteration and Goodness.—The goodness or quality of cantharides may be recognised by their odour, and freedom from other insects, especially mites. Sometimes the powder, but more commonly the plaster, is adulterated with powdered euphorbium. I have been informed, by persons well acquainted with the fact, that it is a common practice, amongst certain druggists, to mix one pound of euphorbium with fourteen pounds of powdered Spanish flies.

Composition.—Cantharides were analysed in 1803 by Thouvenal, in 1804 by Beaupoil, and in 1810 by Roubiquet.

<table>
<thead>
<tr>
<th>Thouvenal's Analysis</th>
<th>Beaupoil's Analysis</th>
<th>Robiquet's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watery extract 37·50</td>
<td>Black matter, insoluble in alcohol, but soluble in water 12·94</td>
<td>1. Cantharidin.</td>
</tr>
<tr>
<td>Subsequent alcoholic extract 10·42</td>
<td>Yellow matter, soluble in water, alcohol, and ether 12·94</td>
<td>2. Green fatty oil, soluble in alcohol.</td>
</tr>
<tr>
<td>Subsequent ethereal extract 2·08</td>
<td>Green oil, soluble in alcohol and ether 13·99</td>
<td>3. Fatty matter, insoluble in alcohol.</td>
</tr>
<tr>
<td>Insoluble residuum 50·00</td>
<td>Parenchyma, salts, and oxide of iron 60·13</td>
<td>4. Yellow viscid substance, soluble in water and alcohol (osmazome?).</td>
</tr>
<tr>
<td>Total 100·00</td>
<td>Phosphoric acid 7. Free acetic and uric acids. [Cel.</td>
<td>5. Black matter, soluble in water, insoluble in alcohol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Yellow matter, soluble in ether and alcohol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Free acetic and uric acids. [Cel.</td>
</tr>
</tbody>
</table>

1. Cantharidin (Vesicatorium; Cantharides-Camphor).—Has been found in Cantharides vesicatoria, Lytta vittata, Mylabris Cicorii, and other vesicating insects. Possibly exists in all the blistering beetles. To procure it, concentrate an alcoholic tincture (prepared by percolation) and set aside: the cantharidin slowly crystallises. It is purified by washing with cold alcohol, and boiling with alcohol and animal charcoal. Its properties are as follows:—It crystallizes in the form of micaceous plates, which are fusible, forming a yellow oil, which by a stronger heat is vaporizable, forming white vapours: these sub-

1 See Ann. d'Hygiène Publique, 1835, xiii. p. 455.
4 Ibid. xlvii. 29.
5 Ibid. lxxvi. 302.
subsequently condense into aeicular crystals of cantharidin. Dana regards it as an organic alkali, but without any just grounds; for it will not restore the blue colour of litmus paper reddened by an acid. Gimel's opinion, that it is a solid volatile oil, seems to be correct. When isolated, it is not soluble in water, but becomes so by combination with the other constituents of cantharides; the yellow matter probably being the principal agent in rendering it so. This, then, is the reason why an aqueous infusion of the insects contains cantharidin in solution. Cold spirit, digested on cantharides, extracts cantharidin; which it can only do by the agency of some of the other principles of the flies. It is easily soluble in ether, oils (volatile and fixed), and hot spirit of wine; and from the latter it separates as the liquid cools. Concentrated boiling sulphuric acid dissolves cantharidin: the solution is slightly brown; when diluted with water it deposits small needle-like crystals of cantharidin. Boiling nitric and hydrochloric acids dissolve it without changing colour; the solutions, by cooling, deposit it. Cantharidin is dissolved by potash and soda; but when concentrated acetic acid is added to the solution, the cantharidin is precipitated. Ammonia is without action on it. According to Regnaud, it consists of carbon, 61.68; hydrogen, 6.04; and oxygen, 32.28. Robiquet thus describes the effects of cantharidin—The 1-100th part of a grain, placed on a slip of paper and applied to the edge of the lower lip, caused, in about a quarter of an hour, small blisters. A little cerate being applied served only to extend the action over a larger surface, and both lips were in consequence covered with blisters. Some atoms of cantharidin, dissolved in two or three drops of almond oil, were rubbed over a small piece of paper, and applied to the arm; in six hours the blister was formed, the size of the paper. The volatility of cantharidin at a comparatively low temperature, and the action of the vapour on the conjunctival membrane, are shown by the accident which happened to one of Robiquet's pupils, who was watching its crystallisation, and felt acute pain in the conjunctiva, which was followed by inflammation, accompanied with small phlyctenæ, and loss of sight for several days. Robiquet, who was not so near the liquid, suffered but slightly. I have suffered once in preparing this substance. I applied one drop of an ethereal solution of impure cantharadin to the inside of the lower lip; but immediately afterwards, repenting of my temerity, I wiped it carefully off. In about an hour a blister had formed on the inside of the lip, and it was five or six days before the part had completely healed. Bretonneau, in his experiments on animals, has not found any marked aphrodisia effect produced by cantharidin. He found that it rendered the circulation slower, and caused fatal lethargy.

2. Volatile Odorous Oil?—Orfila asserts that volatile odorous oil is one of the constituents of the insects. The distilled water of cantharides is strongly odorous and milky; and its vapour affects the eyes and kidneys like cantharides.

The active and odorous principles of cantharides reside principally in the sexual organs of the animals. Both Farines and Zier tell us, that the soft contain more active matter than the hard parts. It appears, also, that the posterior is much more acid than the anterior portion of the body; and Zier says the ovaries are particularly rich in this active matter. If so, it is evident that we ought to prefer large female to male insects. It is a well-known fact, that the odour of these animals becomes much more powerful at the season of copulation than at other periods; and that persons sitting under the trees in which these insects are found, at this season more particularly, are very apt to be attacked with ophthalmia and ar dor urinæ.

Physiological Effects. a. On Animals.—The principal experiments with cantharides on animals (dogs) are those of Orfila, and Schubarth. It results from their investigations, that these insects cause violent inflammation in the parts to which they are applied, and an affection of the nervous system (spinal cord principally). Injected into the jugular vein, the oleaginous infusion caused tetanus; introduced into the stomach, the oesophagus being tied, the tincture produced insensibility (Orfila). Inflammation of the

1 Toricol. Gen.
inner coat of the bladder was observed when the poison had remained in the stomach for a few hours before death.

\[\text{ANIMAL SUBSTANCES.} \]

\[g. \text{ On Man.—The topical effects of cantharides are those of a most powerful acrid. When these insects are applied to the skin, the first effects noticed are, a sensation of heat accompanied by pain, redness, and slight swelling. These phenomena are soon followed by a serous effusion between the corium and epidermis, by which the latter is raised, forming what is commonly termed a blister, or, in the more precise language of the cutaneous pathologist, an \textit{ampulla} or \textit{bulla}. The effused liquid has a pale yellow colour, with a very feeble taste and smell. Two analyses of it have been made:—} \]

\[
\begin{array}{l|l}
\text{Analysis by Dr. Bostock.} & \text{Analysis by Brandes and Reimann.} \\
\text{Albumen} & \text{Albumen} \\
\text{Uncouagulable matter} & \text{Animal matter, with muriate of ammonia, potassium salts,} \\
\text{Salts} & \text{carbonate, lactate, muriate, and sulphate of soda} \\
\text{Water} & \text{Water} \\
\hline
6^\circ00 & 5'75 \\
0'14 & 0'26 \\
1'00 & 93'99 \\
92'86 & \\
100'00 & 100'00
\end{array}
\]

If the cuticle be removed, the subjacent corium is seen intensely reddened, and, by exposure to the air, oftentimes becomes exceedingly painful. If irritants be applied, a secretion of pus takes place, and sometimes a whitish-looking false membrane is formed. Long-continued irritation occasionally causes tubercular granulations. Not unfrequently I have noticed ecchymatous pustules around the blistered surface; and in one remarkable case, which fell under my notice, the whole body, but more especially the pectoral region (to which the blister had been applied), was covered with them. Sometimes the vesicles of eczema occur. Ulceration and gangrene are not uncommon: the latter effect is occasionally observed after exanthematous diseases, especially measles. I have seen death result therefrom in two instances. The constitutional symptoms frequently produced are excitement of the vascular system (as denoted by the increased frequency of pulse, heat of skin, and furred tongue), and irritation of the urinary and genital organs (marked by heat and pain in passing the urine, which is usually high colored, or there may be complete suppression). It not unfrequently happens that the part to which a blister has been applied remains considerably darker coloured than the surrounding skin. Rayer states, that the disappearance of these discolorations is hastened by the use of sulphurous baths.

When swallowed, cantharides act topically on the \textit{gastro-intestinal membrane}; in poisonous quantities they excite inflammation of the mucous lining of the alimentary canal, with constriction and difficulty of swallowing, which is sometimes so great, that not a particle of fluid can be got into the stomach without the most inexpressible anguish; violent burning pain, nausea, vomiting, frequently of bloody matters, sometimes with flakes like the inner lining of the alimentary tube, and great tenderness to touch. These phenomena sufficiently indicate the gastric inflammation. Ptyalism is not an uncommon occurrence. The enteritic symptoms are, abundant and frequent evacuations, sometimes of blood, with horrible griping and burning pain, and exquisite sensibility of the abdomen.

The \textit{volatile odorous matter} evolved by these insects is a local irritant; for it causes itching and even inflammation of the eyelids and conjunctiva,
irritation of the air-passages, marked by epistaxis, convulsive sneezing, &c. If it be inhaled, as is done when persons sit under trees on which the animals are found, or by breathing the vapour of decoction of cantharides, an affection of the urinary organs may be brought on. The same remote effects may also be excited by blisters, by handling the insects, by applying them to wounds, by swallowing them, or by injecting solutions of their active principle into the veins. We may classify the remote effects of cantharides into those observed in the urinary-genital, the nervous, and the vascular systems.

\(\text{aa. Action on the Urino-genital system.} \) — The pain in the loins, and the alteration in the quantity and quality of the urine, are the symptoms indicative of the inflamed condition of the kidneys. The burning pain and tenderness in the hypogastric region, and the constant desire to pass the urine, with the inability of doing so except drop by drop, are evidences of the vesical inflammation. The action on the genital organs in the male is proved by priapism, which is sometimes accompanied by satyriasis, sometimes not; and by the occasional inflammation and mortification of the external organs. In the female, the action on the sexual system is shown by the local heat and irritation, and by the occasional occurrence of abortion.

\(\text{bb. Action on the nervous system.} \) — The affection of this system is proved by the pain in the head, disordered intellect, manifested in the form of furious or phrenitic delirium, convulsions of the tetanic kind, and subsequently coma. It is deserving of especial notice, that sometimes several days elapse before the nervous symptoms show themselves: thus, in a case related by Giulio, they appeared on the third day; in another instance, mentioned by Graaf, on the eighth; and in a case noticed by Dr. Ives, they were not observed until the fourteenth day.1

\(\text{gg. Action on the vascular system.} \) — The pulse becomes hard and frequent, the skin hot, and the respiration quickened; diaphoresis is occasionally observed.

The susceptibility to the influence of cantharides is by no means uniform. Werlhoff mentions the case of a lad who used to be attacked with priapism and involuntary emission by merely smelling the powder. Amoreux says, in one case a pinch of the powder caused death; while in another a spoonful occasioned only slight heat in the throat, and ardor urinæ. Dr. Hosack has mentioned an instance in which a man took nearly six ounces of the tincture with the view of self-destruction, yet no dangerous symptoms followed. In contrast with this, I may instance a case that came within my own knowledge, where one ounce of the tincture produced serious symptoms. Orfila has seen twenty-four grains of the powder prove fatal.

1. \(\text{Action in small or medicinal doses.} \) — In very small quantities there are no obvious effects. If we increase the dose, a sensation of warmth is felt in the throat, stomach, and respiratory passages, with increased secretion from the alimentary tube. By continued use, a tickling or burning sensation is experienced in the urethra, with frequent desire to pass the urine, which may or may not be altered in quality and quantity. In some cases diuresis is observed, in others not: in the latter the urine is generally higher coloured than usual. Occasionally the sexual feelings are excited.

1 See Christison, Treatise on Poisons.
2. Action in larger doses: Subacute poisoning.—The symptoms are, heat in the throat, stomach, intestines, and respiratory passages; pain in the loins, burning sensation in the bladder, with frequent desire to evacuate the urine, which is sometimes bloody, and passed with difficulty. Painful priapism, with or without satyriasis. Pulse more frequent, skin hot, and the respiration quickened: the nervous system is frequently excited.

3. Action in still larger doses: Acute poisoning.—The symptoms observed are, in part, common to other irritant poisons; in part peculiar to the vesicating insects. Violent burning in the stomach, with exquisite sensibility and constant vomiting; extreme thirst, dryness, and fetid odour of the mouth, and not unfrequently ptyalism. Burning pain and spasmodic contraction of the bladder, giving rise to the most excruciating agony. Notwithstanding the incessant desire to void urine, nothing but drops of blood are passed, and with great pain. The constriction of the throat and difficulty of deglutition are most distressing and alarming: the unfortunate sufferer is constantly tormented with violent gripings, purging, generally of blood, extreme tenderness of the whole abdominal surface, faintings, giddiness, convulsions, and an almost hydrophobic aversion to liquids, with delirium terminating in coma.

The mode and immediate cause of death are various: sometimes the nervous symptoms kill before gangrene makes its appearance; but more usually the patient dies from inflammation and subsequent mortification of the alimentary tube or of the genital organs.

Post-mortem appearances.—On opening the bodies of persons poisoned by cantharides, inflammation and its consequences have been observed in the alimentary tube, and the urinary and genital organs. The cerebral vessels have been found in a congested state. It is deserving of notice that inflammation of the urino-genital organs is more likely to be met with in patients dying within a few days after poisoning.

Uses.—Hippocrates used vesicating insects (under the name of cantharides) internally; but the practice was subsequently regarded as dangerous; and, so lately as the year 1693, the President of the College of Physicians committed Dr. Groenvelt to Newgate for daring to employ them!!

1. Local Uses.—Cantharides are frequently used as topical agents; sometimes as stimulants, sometimes as rubefacients, at other times as vesicants.

a. To stimulate topically.—Tincture of cantharides with water (in the proportion of three or four drachms of the tincture to a pint of water) has been employed to stimulate ulcers; more especially sinuses and fistulous sores. It is said, on the same principle that stimulant and irritant applications are made to the eye in ophthalmia; that is, to excite a new action, which shall supersede the old one. Matthew's once celebrated injection for fistula in ano is a wash of this kind. In alopecia or baldness, when this is not the result of old age, ungents of cantharides have been employed to promote the growth of hair. Powdered cantharides have been advised as an application to the parts bitten by rabid animals.

1 Groenvelt, De tarto Cantharidum in medicinam usui interno, 12mo. Lond. 1698; Greenfield, Treatise on Cantharides, translated by Martin, 1706.
2 Dr. Paris, Pharmacologia.
b. To produce rubefaction.—For this purpose the tincture may be mixed with soap or camphor liniment; or, when it is desirable to limit the effect to a particular spot, and especially if friction be objectionable, the common blistering plaster may be applied, allowing it to remain in contact with the part for an hour or two only. Rubefacient liniments are employed to excite the sensibility of the skin in numbness and paralysis; as also to promote local irritation in neuralgic and rheumatic pains. In the inflammatory affections of children it will be occasionally found useful to employ the plaster as a rubefacient merely.

γ. To excite vesication.—A considerable number of substances (mineral, vegetable, and animal) cause vesication when applied to the skin. Horse-radish, mezereon, liquor ammonia, and acetic acid, may be mentioned as examples. To these may be added heat, applied in the form of hot water, or a hot metallic plate. For facility of application, certainty of effect, and slightness of pain, no agents are equal to cantharides, and these are now almost solely used.

It was formerly supposed that the efficacy of blisters was in proportion to the quantity of fluid discharged. But the truth is, that the therapeutic influence is in proportion to the local irritation, and has no more relation to the quantity of fluid discharged, than that the latter is frequently (not invariably) in the ratio of the former. Stoll's axiom is, therefore, correct:—“Non suppuration sed stimulus prodest.” As to the precise manner in which blisters, or, indeed, any remedies, influence diseases, we are quite in the dark. We are accustomed to refer their operation to the principles of counter-irritation. I must refer those who feel interested in the question whether blisters ought to be applied in the neighbourhood of, or at a distance from, the affected part, to a paper by Barthez, in the Recueil de la Société Médicale de Paris. In this country we generally apply them near to the morbid part; to which practice Barthez assents, with some exceptions.

We employ blisters in inflammatory diseases, both acute and chronic; in the former, however, preceding their use by blood-letting. In chronic inflammatory disease we often employ what is termed a perpetual blister—that is, the cuticle is removed, and the blistered surface dressed with savine or cantharides ointment. This practice is advisable in chronic diseases of the chest, of the joints, of the eyes, &c. Blisters are sometimes used in erysipelas; thus to localise the disease when disposed to spread, and as a revulsive, applied to the feet, in erysipelas of the head. A blister to the perineum has been sometimes found beneficial in gleet.

It is hardly safe to apply blisters to children immediately after exanthematous diseases, sloughing being not an unfrequent result. If it be required to produce in them counter-irritation, the best plan is to dilute the common blistering plaster, by mixing it with three times its weight of soap cerate. I have seen this compound frequently employed, but never observed any unpleasant results from it. Another plan, sometimes adopted, is to apply a common blister, for an hour or two only, so that it shall merely produce rubefaction.

2. Remote uses.—These will require examination under distinct heads, according to the particular object we have in view in employing cantharides.

a. To act specifically on the urinary organs.—In dropsy they have been used to excite diuresis, though they frequently fail in producing this
effect. In diabetes, cantharides have been employed, but without apparent
benefit. In paralysis of the bladder they are frequently useful, when there
are no marks of local irritation. Two opposite conditions may be the result
of paralysis of this organ; namely, retention or incontinence of urine. The
latter condition is not unfrequently met with in children, and is very likely to
be relieved by cantharides. It is usually stated they are particularly ser-
viceable in that species of incontinence which occurs during sleep only; but
I have seen them cure the disease during day, and fail in giving relief at
night. The case alluded to was that of a boy, 14 years old, who had been
subject to incontinence of urine since his infancy. He was a robust lad, and
apparently in the most perfect health. I put him under the influence of
gradually increased doses of cantharides, and within two months he was ena-
bled to retain his urine by day, but it still passed involuntarily at night; and,
though he continued the remedy for a considerable time, no further benefit
was obtained. In incontinence of urine which occurs after lingering labours,
from the long-continued pressure of the child’s head, cantharides are sometimes
serviceable. But their use must not be commenced until all the symptoms
of local irritation have subsided.

b. To act on the organs of generation.—In consequence of the specific
stimulus communicated by cantharides to the bladder, it has been supposed
that the same influence might be extended to the uterus; and thus these insects
have been employed as stimulating emmenagogues, in some cases with
apparent benefit, but frequently without any obvious effect. Abortion has
occasionally happened from their employment, as I have myself witnessed in
one case.

Cantharides are also employed as an aphrodisiac, both in man and other
animals (as horses, heifers, and asses). In man, if given in sufficient quan-
tity to excite the sexual feelings, they endanger the patient’s safety. Most of
the cases in which we are requested to administer aphrodisiacs, will be found,
on examination, to require moral rather than pharmacological treatment. In
discharges from the genital organs, beneficial effects are frequently obtained
by the internal use of cantharides. In gleet they have been often found ser-
viceable. Mr. Roberton¹ explains their efficacy by saying that they excite a
mild inflammatory action on the urethra (shown by the discharge becoming
thick, opaque, and puriform), which supersedes the previous morbid one.
I have frequently found equal parts of tincture of chloride of iron and tincture
of cantharides a successful combination in old-standing gonorrhoeas. The
dose is twenty drops at the commencement.

γ. In chronic skin diseases.—Pliny states that cantharides (Mylabris)
were employed in a disease which he terms lichen. At the present time,
tincture of cantharides is not unfrequently employed in lepra, psoriasis, and
eczema. Having found other remedies very successful in lepra and psoriasis,
I have rarely had occasion to try cantharides; but Rayer² says, “Of all the
energetic and dangerous remedies that have been used in lepra, the tincture
of cantharides is, perhaps, that which has the most remarkable influence over
the disease. The great objection to its employment is its liability to excite

¹ Practical Treatise on the Powers of Cantharides, 1806.
² Diseases of the Skin, translated by Dr. R. Willis.
inflammation in the digestive organs and urinary passages, especially among females, which necessitates the immediate suspension, and occasionally the entire abandonment, of the medicine." Biett has found it successful in chronic eczema, as well as in the scaly diseases.

e. In diseases of the nervous system, cantharides were at one time in great repute. The cases in which they were employed were hydrophobia, epilepsy, chorea, tetanus, and mania. Experience has shown that they deserve little attention in any of these complaints.

f. In obstinate sores, Mr. Roberton recommends cantharides on the same principle that he uses them in gleet.

Administration.—Powdered cantharides are not unfrequently employed internally. The dose is one or two grains in the form of pill. The tincture is the safest preparation, and should, therefore, always be preferred.

Antidote.—In poisoning by cantharides, remove the poison as speedily as possible from the stomach. If sickness have not commenced, the removal may be effected by the stomach-pump, emetics, or tickling the throat (see treatment of poisoning by Opium, ante). Assist the vomiting by mucilaginous and albuminous demulcent liquids,—as linseed-tea, milk, white of egg, with water, &c. No chemical antidote is known. Oil was at one time thought to be an excellent remedy; but since the discovery of its being a solvent for the cantharidin, suspicion has been entertained that it is calculated to increase, rather than decrease, the patient's danger. This theoretical and plausible objection, first broached, I believe, by Pallas, seems supported by experience. Orfila found that cantharides macerated in cold oil, and afterwards given to dogs, killed them in a few minutes; and Dr. Christison says, "The case mentioned in the Genoa Memoirs was evidently exasperated by the use of oil." I confess, however, I think farther experience is required to determine the hurtful consequences of employing oil; for,—as the editors of the "Dictionnaire de Matière Médicale" very properly observe,—on the same principles that oil is prohibited, mucilaginous drinks ought also to be proscribed, since cantharidin, aided by the yellow matter, dissolves in water; and on the other hand, oil, in some cases, has appeared to be beneficial. To counteract the effects of cantharides, blood-letting, both general and local, opium, and the warm-bath, must be resorted to. Camphor was at one time highly esteemed for counteracting the effects of cantharides. Oleaginous and mucilaginous injections into the bladder are recommended to relieve the vesical symptoms.

4. ACETUM CANTHARIDIS (Epispasticum), L.; Acetum Cantharidis, E.; Vinegar (epispastic) of Cantharides; Acetum Cantharidis, D. (Cantharides, rubbed to powder, ʒij; Acetic Acid, Oj. Macerate the cantharides with the acid for eight days, occasionally shaking: lastly, express and strain, L.—"Cantharides, in powder, ʒij.; Acetic Acid, ʒfʒv.; Pyrogallous Acid, ʒfʒv.; Euphorbium, in coarse powder, ʒss. Mix the acids, add the powders, macerate for seven days, strain and express strongly, and filter the liquor," E.—Spanish Flies, in fine powder, ʒiv.; Strong Acetic Acid, ʒfʒv.; Acetic Acid of commerce (sp. gr. 1044), ʒfʒxvj. Mix the acids, and, having added the flies, macerate in a close vessel for fourteen days; then strain through flannel with expression, and filter, so as to obtain a clear liquor, D.) —Not fitted for internal employment. Applied to the skin as a convenient
and prompt vesicant. In the formula of the London College, eight times as much cantharides are employed as in the tincture.

2. TINCTURA CANTHARIDIS, L. E. D.; Tinctura Lyttæ; Tincture of Cantharides. (Cantharides, in powder, ʒiv. ; Proof Spirit, Oij. Macerate for seven [fourteen, D.] days, [strain and express strongly the residuum, E.] express, and filter, D. “This tincture may be obtained much more conveniently and expeditiously by percolation, provided the cantharides be reduced to coarse powder, and left with a little of the spirit in a state of pulp for twelve hours before the process of percolation is commenced,” E.)—The strength of this preparation is now uniform in the three British Pharmacopoeias.—Dose mx. gradually increased to ʃvij. Its effects on the bladder must be carefully watched. It should be given in some demulcent liquid, as barley water or linseed tea. It is sometimes employed externally as a rubefacient.

3. CERATUM CANTHARIDIS, L.; Unguentum Cantharidis, E.; Cerate of Cantharides. (Cantharides, in very fine powder, ʒj.; Spermacetî Cerate, [Resinous Ointment, E.] ʃvij. [ʃvij. E.] Add the cantharides to the cerate, softened by heat, and mix.)—This preparation must not be confounded with the next one, than which it is more irritant. The uses of the two are the same. From the greater activity of the cerate more danger of the absorption of the active principle of the cantharides is to be apprehended. When this occurs the bladder becomes affected, and, in some cases, inflammation of the absorbents, and fever, are produced.

4. UNGUENTUM INFUSI CANTHARIDIS, E.; Unguentum Cantharidis, L. D.; Ointment of Cantharides. (Cantharides, in very fine powder, ʒiij.; Distilled Water, ʃʒiij.; Resinous Cerate, lb. j. Boil the water with the cantharides down to one-half, and strain. Mix the cerate with the strained liquor, then evaporate the mixture to a proper consistence, L.—“Cantharides, in moderately fine powder, Resin, and Bees’ Wax, of each, ʒj.; Venice Turpentine and Axunge, of each, ʒij.; Boiling Water, ʒv. Infuse the cantharides in the water for one night, squeeze strongly, and filter the expressed liquid. Add the axunge, and boil till the water is dispersed. Then add the wax and resin; and, when these have become liquid, remove the vessel from the fire, add the turpentine, and mix the whole thoroughly,” E.—Liniment of Spanish Flies, ʃʒvij.; White Wax, ʒiij.; Spermacetî, ʃj. Melt the wax and spermacetî in the oil with a gentle heat, and stir the mixture constantly until it concretes, D.)—A milder and less certain preparation than the preceding. Used to excite a purulent discharge from blistered surfaces, and to stimulate issues and indolent ulcers.

5.EMPLASTRUM CANTHARIDIS, L. E. D.; Emplastraum Lyttæ; Plaster of Cantharides; Blistering Plaster. (Cantharides, in very fine powder, lb. j.; Wax, Lard, of each, ʒviiss.; Resin, ʒiij.; Lard, ʒvij. L.—Cantharides in very fine powder, Resin, Bees’ Wax, and Suet, of each, ʒij. E.—Cantharides, in very fine powder, ʃvij.; Yellow Wax, Resin, and Lard, of each, ʃiv. D.—“Liquefy the fats, remove from the heat, sprinkle in the cantharides in very fine powder, and stir briskly, as the mixture concretes on cooling.”)—Dishonest druggists sometimes omit a portion of the cantharides here ordered, and substitute powdered euphorbium. In making blistering plasters, care
must be taken not to add the cantharides while the melted lard is quite hot, as the heat greatly injures the vesicating power of the insect. For a similar reason the plaster should be spread by the thumb, a heated spatula being objectionable. To prevent the blister moving after its application to the skin, its margin should be covered with adhesive plaster. In order to guard against any affection of the urinary organs, place a piece of thin book-muslin or silver (tissue) paper between the plaster and the skin. The efficacy of the blister depends on the fatty matter dissolving the cantharidin and transuding through the muslin or paper. Some recommend the paper to be soaked in oil, which is supposed to dissolve the cantharidin. Now oil, not being miscible with the blood, is not readily absorbed; and hence, it is supposed, arises its protective influence. The usual time requisite for a blistering plaster to remain in contact with the skin is twelve hours; the vesicle is then to be cut at its most depending part, and dressed with spermaceti ointment. When the irritation caused by these plasters is excessive, it is sometimes necessary to substitute a poultice for the ointment. When we wish to make a perpetual blister, the cerate of cantharides is employed as a dressing; or if we wish to excite less irritation, and prevent the possibility of the urinary organs being affected, the cerate of savine. The danger of applying blisters to children after exanthematosus diseases, especially measles, has been already noticed (see pp. 2207 and 2209).

6. EMPLASTRUM CANTHARIDIS COMPOSITUM, E.; Compound Plaster of Cantharides. (Venice Turpentine, 3ivs.; Burgundy Pitch and Cantharides, of each, 3iii.; Bees’ Wax, 3i.; Verdigris, 3ss.; White Mustard Seed and Black Pepper, of each, 3ij. Liquefy the wax and Burgundy pitch, add the turpentine, and, while the mixture is hot, sprinkle into it the remaining articles previously in fine powder, and mix together. Stir the whole briskly, as it concretes in cooling, E.) — “This is supposed to be an infallible blistering plaster. It certainly contains a sufficient variety of stimulating ingredients.”

7. EMPLASTRUM CALEFAECIENS, D.; Warming Plaster. (Plaster of Cantharides, lb. ss.; Burgundy Pitch, lb. vss. Melt them with a steam or water bath, and, withdrawing the heat, stir constantly until the mixture stiffens.)—Stimulant, rubefacient, and, in some cases, vesicant. Used in catarrh, local pains, &c.

8. PANNUS VESICATORIUS; Blistering Cloth; Taffetas Vesicant. (Digest powder of cantharides in sulphuric ether. Let the ethereal tincture be submitted to distillation, and the residue evaporated, by means of a salt water bath, until ebullition ceases. The oily mass which remains is to be melted with twice its weight of wax, and spread on cloth prepared with waxed plaster, Henry and Guibourt.—Employed as a substitute for the ordinary blistering plaster, than which it is a more convenient and elegant preparation.

1 Duncan, Edinburgh Dispensatory.
2 The Toile préparée à la cire, used by the French pharmacologists, is prepared by spreading the following mixture on cloth:—white wax 8 parts, olive oil 4 parts, and turpentine 1 part (Henry and Guibourt).
3 Pharmacopée Raisonnée, 3me edit. p. 470, Paris, 1841.
The *Tela vesicatoria* or Blistering Tissue, and *Chara vesicatoria*, or Blistering Paper, are analogous preparations.

The *Papier épispastique* or *Epispastic Paper* of Henry and Guibourt is prepared as follows:—Take of white wax 8 parts, spermaceti 3 parts, olive oil 4 parts, turpentine 1 part, powder of cantharides 1 part, and water 10 parts. Boil slowly for two hours, constantly stirring it. Strain the fatty mixture through a woollen cloth, without expression, and spread on paper.

OTHER COLEOPTEROUS VESICANTS.

In Europe, the ordinary vesicating insect is the *Cantharis vesicatoria*; but in some other parts of the world other blistering insects are employed. Thus, *Cantharis vittata*, or the *Potato-fly*, *C. atrata*, *marginata*, and *cinerea*, are used in North America. In the Brazils, *C. atenaria* has been employed. *C. ruficeps*, a native of Sumatra and Java, is said to possess extraordinary blistering properties. *C. gigas* (*Lyta caerulea*, Pfaff), is a native of Guinea and the East Indies. *C. violacea* (*Lyta gigas was*, Buchner), is a native of the East Indies. In Arabia, *C. syriaca* (*Lyta segetum*), is said by Förskal to be employed. *Mylabris Cichorii* is used in China and some parts of the East Indies. *Meloe proscarabeus* is an indigenous vesicating insect which has in two instances caused death. *M. majalis* or true *Mayworm* possesses similar properties.

Order II. HEMIPTERA.—Linnaeus.

Characters.—2 wings covered by elytra. Mouth formed for suction; the rostrum composed of a tubular articulated sheath, including four scaly setae, in place of mandibles and jaws. *Elytra*, in some, crustaceous, with the posterior extremity membranous; in others, almost similar to wings, but more extended, thicker, and coloured (Stark).³

351. COCCUS CACTI, Linna. L. E. D.—COCHINEAL INSECT.

(Coccus, L.—The entire insects, E. D.)

History.—The Spaniards, on their first arrival in Mexico, about the year 1518, saw the cochineal employed (as it appears to have been long before) by the native inhabitants of that country, in colouring some part of their habitations and ornaments.²

Sp. Char.—*Male* very small, with the antennæ shorter than the body: body elongated, of a deep red, terminated by 2 long diverging setæ; wings large, white, crossed above the abdomen. *Female* nearly twice as large

¹ *Elements of Natural History*, ii. 318.
² Bancroft, *Experimental Researches*, i. 413; and Beckmann, *History of Inventions*, ii. 192.
as the male, bluish red, covered with a white farina; antennæ short; body flattened below, convex; feet short.

Wings of the male beautifully snow white. The females fix themselves firmly on the plant, which serves them as a habitation, and never quit this spot: here they couple, and increase considerably in size. Each insect lays several thousand eggs, which proceed from the body through an aperture placed at the extremity of the abdomen, and pass under the belly to be there hatched. Death then ensues; the body of the mother dries up; its two membranes become flat, and form a sort of shell or cocoon, in which the eggs are inclosed, and from whence the little cochineals soon proceed. The female only is of commercial value.

Hab.—Mexico.

Cultivation.—The cochineal insects feed on the Nopal (Opuntia cochinillifera). Mr. Ward says the plantations are confined to the district of La Mistéca, in the state of Oixáca, in Mexico. The animals are domesticated and reared with the greatest care. Plantations of these are cultivated for the nourishment of the insects. Here the impregnated females are placed; this operation being denominated sowing. Young ones are soon developed; and some months afterwards, when the females have become fecundated and enlarged, the harvest commences. The insects are brushed off with a squirrel's tail, and killed by immersing them in hot water, and afterwards drying them in the sun, or by the heat of a stove. Three harvests are made annually; the first being the best, since the impregnated females alone are taken; in the second the young females also are collected; and in the third both old and young ones, and skins, are collected indiscriminately. Before the rainy season commences, branches of the nopal plant, loaded with infant insects, are cut off and preserved in the

1 Cactus cochinillifer, Linn., is without spines, and is called Spineless Cochineal;—this does not produce the best Mexican Cochineal. De Candolle has given as C. coch. the C. Tuna of Linneus,—a plant totally distinct. Cactus Tuna yields the cochineal of Mexico. C. cochinillifer also yields Opuntia maxima.—Sloane, vol. ii. p. 152, t. 8, f. 1 and 2.

2 Mexico in 1827, i. 84.
houses of the Mexicans, to prevent the animals being destroyed by the weather.

Commerce.—In 1839, the quantity of cochineal on which duty (1s. per cwt.) was paid, was 489,998 lbs. In 1838 it was only 204,748 lbs. It is said that, on the average, one pound of cochineal contains 70,000 dried insects.

Description.—Cochineal (coccus; coccinella) consists of the dried female insects, which are about one or two lines long, wrinkled, of an irregular figure, convex on one side and flat or somewhat hollow on the other. They are inodorous, have a bitterish warm taste, tinge the saliva violet red, and yield a dark red powder. In burning they evolve an animal odour, and leave a greyish white ash. By infusion in water they swell up, show their ringed character, and even their feet, giving the liquid a red colour. Both the Hondurans and Vera Cruz kinds are distinguished into the silver and black varieties. Silver cochineal (cochinilla jaspeada of the Spaniards) has a purplish gray colour; but in all the furrows and depressions we observe a whitish powder, which, examined by the aid of a lens, appears like fine wool. Black cochineal (cochinilla renigrida or grana nigra of the Spaniards), is reddish or purplish black, and devoid or nearly so of the silvery character. Granilla (cochinilla sylvestre or grana sylvestria) consists of very small cochineal insects, and smaller, wrinkled, globular or ovate masses, (cocoons and new-born insects?) somewhat like fragments of the cochineal insect.¹

An extensive system of adulterating cochineal by a mercantile house in London was discovered a few years ago. The genuine article was moistened with gum-water, and then agitated in a box or leathern bag, first with powdered sulphate of baryta, then with bone or ivory-black, to give it the appearance of black cochineal. By this means the specific gravity of the cochineal was increased from 1.25 to 1.35, and 12 per cent. of worthless heavy spar sold at the price of cochineal.² Powdered t alc and carbonate of lead have been used to give the silvery appearance. But a lens will readily distinguish these powders from the real wool which gives the true silvery character.

Composition.—Two analyses of cochineal have been made; one by John,³ the other by Pelletier and Caventou.⁴ The latter chemists found the constituents to be carmine, peculiar animal matter, fatty matter (composed of stearine, olein, and an odorous acid), and salts (viz. phosphate and carbonate of lime, chloride of potassium, phosphate of potash, and a salt of potash, containing an organic acid).

Cochenillin (Carmine).—Obtained by digesting cochineal in ether, to extract the fatty matter, and then in alcohol, which dissolves the carmine. This colouring matter is a brilliant purplish red substance, with a granular or crystalline appearance; unalterable in the air, easily soluble in water and alcohol, but insoluble in ether. It fuses at 113° F. Chlorine renders it yellow. Acids change its colour. The concentrated mineral acids decompose it. Alkalies render the watery solution of carmine violet. Lime-water forms a violet precipitate with it. The affinity of hydrate of alumina for it is most remarkable: the compound formed by their union is called a lake. [Cochenillin contains nitrogen, but

¹ See Granillo, in Baucroft's Experimental Researches, i. 435.
² Ure, Dictionary of Arts and Manufactures, p. 305—6.
³ Gmelin, Handb. der Chem. ii. 1474.
its formula has not yet been determined. According to Preisser the red colouring matter of the insect, which he calls Carmine, is derived by oxidation from a colourless crystalline compound called by him carmine.—Ed.]

The pigment sold in the shops as carmine,1 and which is one of the most valuable colours employed by the painter in water-colours, is a compound, of which cochenillin is one of the constituents. Pelletier and Caventou regard it as consisting of cochenillin, animal matter, and an acid.

Physiological Effects and Uses.—Diuretic, diaphoretic, antispasmodic, and anodyne qualities, have been assigned to cochineal, but without the least evidence of their existence. A mixture of carbonate of potash and cochineal is a popular remedy for hooping-cough. The only real value of cochineal is as a colouring matter, and as such it is used both in powder and solution. In the arts it is extensively employed in dyeing scarlet and crimson, and in the manufacture of carmine and lake.

Manufacture of Carmine.—[We subjoin the following note by the author on the manufacture of carmine, evidently the result of his own observation of the process pursued.—Ed.]

Carmine is prepared from black cochineal. A decoction of the insect in water is made. The residue is called carmine grounds (used by paper-stainers). To the decoction is added a precipitant—say bichloride of tin. Alum will not answer, as the colour is very different. The decoction to which the bichloride has been added is put into wash-hand basins, and allowed to stand. Slowly a deposit takes place. It adheres to the sides of the vessel, and the liquid being poured off, it is dried. Artificial heat cannot be used, as it changes the colour of the deposit; neither can solar light be employed for the same reason. This precipitate when dried is carmine [the liquor is called liquid rouge]. It can only be made in certain states of weather. If the weather be too hot, the liquids soon become sour, and the deposit is redisolved; yet fine weather is necessary, or the precipitate will not dry: flies also injure it. If carmine be not dry, it is apt to become mouldy.

The decoction from which the carmine has been precipitated yields a further precipitate on the addition of more of the precipitant; but the product thus obtained is darker coloured, and is sold to the colour-makers as lake. It varies considerably in its tint.

Carmine is quite soluble in ammonia. Its colour should be remarkably bright. It should be also in the form of a light powder. These are the best tests of its goodness. Carmine is used for velvet painting, for pattern drawing for waistcoats, for water-colour painting; and as a face paint. Lady Dungannon's composition is composed of carmine, with a little water and ammonia. According to Bateman, rouge for the face is made by mixing lb. ss. of levigated French chalk and 2 oz of fresh carmine.

Six drachms of carmine may be obtained from 1 lb. of cochineal.

Cochineal is sometimes used for colouring pickled cabbage.

[Cochineal colouring for jellies, &c. is prepared by adding cream of tartar to a decoction of cochineal, and filtering. The pink saucers sold in colour shops are made up with a mixture of carmine, gum, and ammonium.—Ed.]

1 *Carmine*, sold by the perfumers as *Rouge*, is very different to jeweller's *rouge* (oxide of iron). The carmine sold for theatrical performers must be largely diluted, as it has been sold at £8s. per ounce, when carmine, properly so called, was worth £3 or £4 per ounce.
Order III. Hymenoptera, Linnaeus.

Characters.—4 naked veined wings of unequal size. Mouth composed of jaws, mandibles, and 2 lips. Lip tabular at its base, terminated by a labium, either doubled or folded in, and forming a kind of sucker. Females with a compound ovipositor or sting at the anus (Stark).

352. Apis Mellifica, Linn. L. E. D.—The Hive Bee, or Honey Bee.

(1. Humor florum in favo repositus despumatus, L.; Saccharine secretion, E. D. — 2. Cera, Favus preparatus; Cera alba, idem dealbatis, L.; Cera flava, Waxy secretion, Cera alba, Bleached bees' wax, E.; Cera alba, Cera flava, D.)

History.—This animal was very anciently known, and is frequently referred to in the Old Testament. In all ages it has been an object of admiration and attention, on account of its industry, curious economy, and policy.

Zoology. Gen. Char.—Labium filiform, composing with the jaws a kind of proboscis, geniculate, and bent downwards. First joint of the posterior tarsi large, compressed. No spines at the extremity of the last two legs. Upper wings with one radial and three cubital cells (Stark).

Sp. Char.—Blackish. Abdomen of the same colour, with a transverse greyish band, formed by the down at the base of the third and following segment (Stark).

The honey bee lives in societies, called swarms, consisting of from fifteen to thirty thousand individuals. Each swarm is composed of three classes of individuals—viz. a female, males, and neuters. The female, called the queen bee, is narrower and longer than the others. The males, termed drones, are smaller than the females, and are devoid of stings. In each hive there are from 800 to 1000 drones. Towards autumn, when they can be of no further use, they are destroyed by the neuters. The neuters are termed working bees, and are by far the most numerous, since in each hive there are from fifteen to thirty thousand. They are in reality females, whose ovaries are not developed, in consequence, as some have supposed, of the nature of the aliment with which they are supplied while in the larva state.

The digestive system of the animal consists of highly developed salivary organs communicating with the proboscis, of an osophagus (which enlarges at one part, forming the crop, sucking stomach, or honey bag), a proper stomach, small and large intestines, and biliary vessels. The latter open into the alimentary canal immediately behind the stomach. The sexual system, in the male, consists of a pair of testicles, each having a vas deferens, which terminates in a vesicula seminalis. From the conjointed extremities of the vesiculae proceed a common duct terminating in a penis. The female genital organs consist of two ovaries made up of tubes, each containing about twelve ova; the two oviducts from these ovaries terminate in a vagina, into which also opens a duct from a roundish vesicle. The poison apparatus is found in the females and neuters only. It consists of two thin conjoluted secreting organs, opening into a pyriform receptacle, from which a small duct passes to the sting, which consists of two portions placed side by side, barbed at the extremity and contained in a sheath. The poison is said to be hot and acrid to the taste. The consequences produced by the sting of a bee are pain, redness, swelling, and hardness of the part; and might prove fatal if a swarm were to attack an individual. The removal of the sting (if left within the wound), and friction with saliva, or with oil and hartshorn, is all the treatment usually required.
Honey:—Production; Purity; Properties; Effects.

Hab.—Old continent (Latreille). In a state of nature they reside in hollow trees; but they are almost universally domesticated, and are preserved in hives. Curtis has described and depicted a remarkable instance of the nest of some hive bees attached to the arm of a tree. It was discovered in 1838, by Lord Malmesbury, in his plantation near the river Avon.

Bees furnish two products useful in medicine,—viz. honey and wax.

a. HONEY. Production.—Honey (mel) is secreted by the nectariferous glands of flowers, and is collected by the working or neuter bees, who take it by suction or lapping, and pass it into the dilatation of the cæsophagus, denominated crop, sucking stomach, or honey-bag; beyond which, we presume, the honey does not pass, as it has never been found in the true stomach. When the animal arrives at the hive, the honey is disgorged by a kind of inverted peristaltic motion, and is probably somewhat altered in its properties by the secretions of the crop. It is used by the animal as food.

Physical Properties.—Honey varies in its taste and odour according to the age of the bees and flowers on which they have fed. A hive which has never swarmed is considered to yield the best, which is therefore called virgin honey. The flavour of Narbonne honey, which is so much admired, is said to arise from the labiate flowers on which the animals feed; to imitate this, a sprig of rosemary is sometimes added to the honey obtained from other places.

Purity.—Flour, it is said, is now and then mixed with honey. This adulteration may be readily distinguished by its insolubility in cold water, and by the blue rpuolo reduced by the addition of iodine.

The London College directs that honey,—

Is not to be employed without being despumated. Dissolved in water, iodide of potassium and acid being added, it does not become of a blue colour.

Chemical Properties.—The constituents of honey vary somewhat according to the food of the bees, the season, the age of the animals, the mode of extracting it from the combs, &c. It must, however, be regarded at all times as a concentrated solution of sugar mixed with odorous, colouring, gummy, and waxy matters. The saccharine matter is of two kinds: one crystallisable, and analogous to the sugar of grapes; the other uncrystallisable, and similar to the uncrystallisable brown syrup of the sugar-cane. Guibourt has found also maunite, which differs from sugar in not fermenting when mixed with water and yeast.

Physiological Effects.—Honey is emollient, demulcent, nutritive, and laxative. When fresh it is apt to occasion indigestion and colic. Collected from poisonous plants it has been found to possess deleterious qualities. The honey of Trebizond has long been notorious for its deleterious qualities. Mr. Abbott says it causes violent headache, vomiting, and a condition like that of a tipsy man. A larger dose produces deprivation of all sense and power for some hours afterwards. These effects agree with those assigned to this honey by Xenophon in his account of the "Retreat of the Ten Thou-

1 British Entomologist, xvi. pl. 769.
3 Anabasis, lib. iv.
sand." Pliny\(^1\) also speaks of this poisonous honey. Tournefort\(^2\) ascribes its venomous properties to the bees feeding on the *Azalea pontica*. Many other instances of poisonous honey are on record.\(^3\)

Uses.—Mixed with flour, and spread on linen or leather, it is a popular application to promote the maturation of small abscesses and furunculi. It sometimes forms a constituent of gargles, partly on account of its taste, partly for its emollient operation. It is also used as a vehicle for the application of other more powerful agents to the mouth and throat, especially in children. It is occasionally employed as an emollient and demulcent in inflammatory affections. In troublesome coughs, barley-water, mixed with honey, and sharpened with slices of lemon, and taken warm, forms a very agreeable and useful demulcent to allay troublesome coughs.

1. *MEL DEPURATUM, D.*; *Clarified Honey.* (Melt the honey in a water bath, and strain it while hot through flannel.)—The object of this process is to deprive honey of certain impurities which render it apt to ferment; but the flavour and odour of the honey is somewhat injured by the operation.

\(\beta\). WAX. *SECRETION OF BEES’ WAX.*—Bees’ Wax (*cera*) was at one time supposed to be merely the pollen of plants elaborated by bees. Bonnet, however, so early as 1768, asserted it to be a secretion from the ventral scales. Hunter\(^4\) and Huber have subsequently proved the correctness of this assertion. The latter writer, indeed, proved that the pollen is not at all essential to the production of wax, for bees fed on honey and water equally secreted it, and formed the usual waxy cells. With this wax they construct the *comb* (*favus*), the cells (*alveoli*) of which are hexagonal with angular bottoms.\(^5\) The substance called *Propolis* is collected by the bees from the buds of trees. It is of a resinous nature, and is used for lining the cells of a new comb, stopping crevices, &c.

Other animals secrete wax.

Thus the larva of the *Cicada limbata* or white wax insect of China is covered with a waxy powder, which is communicated to the trees upon which these insects are found, and is collected by the natives, who esteem it highly as a medicinal substance.\(^6\)

Wax is also a product of vegetables; but *vegetable wax* is not employed in this country. *Myrtle wax* is obtained from the berries of the *Myrica cerifera*, a native of the United States of America. These are boiled in water and pressed. The wax exudes, floats on the water, is skimmed off, and is remelted. This kind of wax has a greenish-yellow colour. By saponification it yields stearic, margaric, and oleic acids, along with glycerine, so that it is rather fat than wax.

\(^1\) *Hist. Nat. xxi. 44, ed. Valp.*

\(^3\) See Barton, *Philosophical Magazine*, xii. 121; and in Beck’s *Medical Jurisprudence*: also Hamilton’s *Travels in Asia Minor*, 1842.

\(^4\) *Philosophical Transactions* for 1792, p. 148.

\(^5\) On their mathematical form, consult Waterhouse, in the *Pennsylvania Cyclopedia*, art. *Bee*; and Lord Brougham’s *Dissertations on Subjects connected with Natural Theology*, i. 218, 1839.

\(^6\) See Donovan’s *Insects of China*.
Preparation.—Wax is extracted from the comb, partly by allowing the latter to drip, partly by subjecting it to pressure. The comb is then melted in water, by which the impurities subside, and the wax is allowed to cool in moulds.

Properties of Yellow Bees’ Wax.—Yellow wax (cera flava) has a remarkable and peculiar odour; its colour is more or less yellow, but varying in degree; its specific gravity varies from 0·960 to 0·965. [It melts at 145°.—Ed.] It is said to be sometimes adulterated with suet, which gives it a fatty and disagreeable taste. Resin may be recognised by its solubility in cold alcohol; bean or pea meal, by its insolubility in oil of turpentine.

Wax Bleaching.—This is effected by melting yellow wax (either in a copper vessel, or in a large vat or tub, by means of steam), running it off, while in the melted state, into a trough, called a cradle, perforated at the bottom with holes, and placed over a large water-tank, at one end of which is a revolving cylinder, almost wholly immersed in water. By this means the wax is solidified, converted into a kind of ribbon, and conveyed on the surface of the water to the other end of the tank. These ribbons of wax are here lifted out, and conveyed in baskets to the bleaching grounds, where they are exposed to the air for one or two weeks (according to the state of the weather), being turned every day, and watered from time to time. The wax is then re-melted, re-ribboned, and re-bleached; it is subsequently refined by melting in water acidulated with sulphuric acid.

Properties of White Wax.—White wax (cera alba; cera dealbata) is yellowish-white: I have never met with pure wax perfectly white. The circular cakes of commerce, as well as wax candles, always contain spermaceti, which the dealers add to improve the colour. Pure wax is solid, brittle, inodorous, or nearly so, insipid, fusible, and at a much higher temperature decomposable. Its specific gravity varies from 0·8203 to 0·965. [It melts at 158°, and congeals at 149°.—Ed.]

Composition.—According to John, wax is a compound of two other substances;—the one called cerine, the other myricine. [The former is soluble in alcohol, the latter is comparatively insoluble.—Ed.] These have been examined by Boudet and Boissenot.1

1. Cerine.—This constitutes at least 70 per cent. of wax. It fuses at 143½ F. It dissolves in 16 parts of boiling alcohol. By saponification with potash it yields margaric acid, a minute portion of oleic acid, and a considerable quantity of a non-saponifiable fat called cerüine.

2. Myricine.—It fuses at 149° F. It dissolves in 200 parts of boiling alcohol of sp. gr. 0·833. It is not saponifiable by potash. Etting2 says that cerine, ceraine, and myricine, are isomeric, and composed of C\textsubscript{19}H\textsubscript{30}O. More recently Hess3 asserts that pure wax is homogeneous, and possesses the properties of myricine; its composition being C\textsubscript{20}H\textsubscript{30}O. The difference between cerine and myricine he ascribes to the presence of ceric acid formed by the oxidation of myricin.

[Mr. B. C. Brodie has made an extensive series of researches into the constitution of wax, and has assigned formulæ to sixteen different constituents or products of the decomposition of wax. He applies the name cerotic acid to

1 Journ. de Pharm. xiii. 38.
2 Thomson, Organic Chemistry.
3 Pharm. Central-Blatt f"ur 1838, p. 332.
cerine, and represents its formula as C\textsubscript{54}H\textsubscript{84}O\textsubscript{4}. Pure myricine he considers to be represented by C\textsubscript{92}H\textsubscript{92}O\textsubscript{4}. It is remarkable that in nearly all the varieties of wax, as well as in the products obtained from this body, the carbon and the hydrogen are in equal equivalents.

Bees' wax varies very much in the proportions of cerine and myricine which it contains. Wax is obtained from the vegetable kingdom. Myrtle wax is derived from the Myrica cerifera. From the action of potash it appears to be more analogous to the fatty bodies than to wax. Its formula is C\textsubscript{36}H\textsubscript{36}O\textsubscript{5}. The Chinese or Japan wax is the produce of Rhus Succedaneum. It is white and crystalline, resembling spermaceti. Formula = C\textsubscript{36}H\textsubscript{36}O\textsubscript{5}. The sugar cane wax has been called Cerosine by Dumas. It is a wax-like substance deposited in fine light pearly scales on the surface of some species of sugar cane. It melts at 180\(^\circ\), and is not saponified by potash. Its formula, according to Dumas, is C\textsubscript{48}H\textsubscript{50}O\textsubscript{2}.—Ed.]

Physiological Effects and Uses.—Wax is an emollient and demulcent. It has been administered internally, in the form of emulsion (prepared with melted wax and soap, yolk of eggs, or mucilage), in diarrhoea and dysentery, especially when ulceration of the alimentary canal is suspected. In these cases it has been used by Hufeland and Wedekind. It has sometimes been employed as a masticatory; but its action is mechanical only. Its principal use, however, is externally, sometimes as a mild sheathing or protecting application, sometimes as a basis for the application of other agents. It is a constituent of all cerates, which take their name from it. The vapour evolved from wax placed on red-hot iron has been inhaled in phthisis.

1. Emplastrum Simplex, E.; Emplastrum attrahens; Wax Plaster.

—Bees' wax, 3ij. Suet, and Resin, of each, 3ij. "Melt them together with a moderate heat, and stir the mixture briskly till it concretes on cooling," E.

—Used to promote discharge from a blistered surface.

[The **Emplastrum Aromaticum** of the former Dublin Pharmacopoeia consisted of a mixture of yellow wax and frankincense. The reader will find a formula for this at page 1310 of this edition (Part 1, Vol. ii.) It is necessary to add, that although the plaster is there entered as being among the Dublin preparations, it is excluded from the last edition of the Pharmacopoeia.—Ed.]

2. Ceratum, L.; Unguentum simplex, E.; Unguentum Cerae albae, D.; Simple Cerate; Simple Dressing. (Olive Oil, Oj. [15vss. E.]; Wax, 3xx. [White Wax, 3ij. E.], White Wax, lb. j.; Prepared Hog's Lard, lb. iv. D. Add the oil to the melted wax, and mix [and stir the mixture briskly while it concretes on cooling, E.])—A mild and cooling dressing. Sometimes used as a basis for more active preparations.

3. Linimentum Simplex, E.; Simple Liniment. (Olive Oil, four parts; White Wax, one part. Dissolve the wax in the oil with a gentle heat; and agitate well as the fused mass cools and concretes.)—Differs from the Unguentum simplex in its greater liquidity. Used to soften the skin, and to promote the healing of chaps.

\[^1\] Philosophical Transactions for 1849, p. 106.
OTHER HYMENOPTEROUS INSECTS.

The tribe of hymenopterous insects, called Gallicola or Diplolepariae, contains the insects which produce those excrescences on plants commonly denominated galls (see Nutgall, and Bedeguar). Latreille comprehends all the insects of this tribe in one genus,—viz. Cynips.

Class VII. Crustacea, Cuvier.—Crustaceans.

The dietetical properties of the Crustaceans (Lobsters, Crabs, Cray-fish, Prawns, and Shrimps), have been noticed in a former part of the work.

1. Astacus fluviatilis.—In the stomach of the Crawfish are found, at the time the animal is about to change its shell, two calcereous concretions, commonly called Crabs' Eyes or Crabs' Stones (Lapilli Cancrorum), which were formerly ground and employed in medicine, as absorbents and antacids, under the name of Prepared Crabs' Stones (Lapilli Cancrorum preparati; Lapides Cancrorum preparati). They consist of carbonate of lime and animal matter principally, with a little phosphate of lime. Their use is now obsolete. In the shops, imitations of them (prepared with chalk and mucilage, or size) are still met with.

2. Cancer Pagurus.—The Black-clawed or Large Edible Crab was at one time an officinal animal. Its Claws (Chela Cancrorum) when prepared by grinding, constitute the Prepared Crabs' Claws (Chela Cancrorum preparatae) of the shops. Their composition and uses are similar to those of prepared Crabs' stones. I have already given an account of the effects and uses of carbonate of lime.

Division II. Vertebrata.—Vertebral Animals.

Characters.—Animals furnished with a skull and vertebral column for the protection of the brain and spinal marrow.

Class VIII. Pisces.—Fishes.

Characters.—Vertebrated animals with cold red blood, respiring by gills or branchiæ, and moving in the water by the aid of fins.

No article of the Materia Medica, contained in the British pharmacopœias,
is derived from this class of animals: but the important uses of isinglass, and the extraordinary efficacy, in various diseases, ascribed by some writers to cod's liver oil, render it necessary to notice both of these productions.

353. ICHTHYOCOLLA. —ISINGLASS.

History. —Ichthyocolla (ἐκ νησοκόλλα, from ἵθβνης, a fish; and κόλλα, glue) is mentioned by both Dioscorides and Pliny. The latter of these writers ascribes its invention to Deedalus.

Zoology. —I singlass is obtained from various fishes, some only of which have hitherto been ascertained. The finest kinds are procured from different species of Acipenser. Several other genera, — as Silurus, Morrhua, Gadus, Otolithus, Lota, and Polyneumus, also yield it.

The organ from which isinglass is usually procured is the air-bag, or swimming bladder, sometimes termed the sound. It is a membranous sac filled with air (containing from 69 to 87 per cent. of oxygen), and placed under the spine, in the middle of the back, and above the centre of gravity. In most fish it communicates with the oesophagus, or stomach, by the ductus pneumaticus. In others it is an imperforate sac. Occasionally there are two sacs, which communicate with each other. In the Acipenser stellatus, according to Brandt, the bag is composed of three membranes: an external, silvery one, derived from the peritoneum; a middle, membranous (hautigen) one; and the most internal, very vascular, and, as it were, pulpy membrane. The latter, he states, yields the fish gelatine. But unless the sound of this fish differs considerably from that of other fishes, there must be an error in this statement. I have examined all the purse and pipe isinglasses of commerce, and find the internal to be an insoluble membrane. In the cod the innermost membrane is very thin, and is perhaps analogous to the epithelium. Externally to this is a highly vascular thin coat, and still more externally is the gelatinous coat, which appears devoid, or nearly so, of vessels.

Preparation. —The mode of preparing the swimming bladder for sale as isinglass, varies in different countries. Sometimes the bag is dried unopened, as in the case of the purse, pipe, and lump isinglass of the shops. At other times it is laid open, and submitted to some preparation; being either dried unfolded, as in the leaf and honeycomb isinglass; or folded, as in the staple and book isinglass; or rolled out, as in the ribbon isinglass. When it arrives in this country it is picked or cut. Formerly it was picked into shreds by women and children, but it is now usually cut by machines worked by steam.

Description. — Many varieties of isinglass are imported: the Russian kinds are the most esteemed; but the Brazilian, on account of its cheapness, is very extensively used.

1. Russian and Siberian Isinglass. — The isinglass produced in the Russian empire is principally obtained from the sturgeons. These cartilaginous fishes constitute the genus Acipenser.
The following are the generic characters of Acipenser:—Body elongated and angular, defended by indurated plates and spines, arranged in longitudinal rows; snout pointed, conical; mouth placed on the under surface of the head, tubular, and without teeth (Yarrell). The species are badly determined. Brandt has described and figured eight. Acipenser Sturio, or the Common Sturgeon, is occasionally caught in the river Thames. The species from which Isinglass is procured are the following:—

1. A. Huso, Linn. The Beluga or Bieloga.—Inhabits the Caspian Sea and its tributary streams. Its roe (ovary) is esteemed as caviare. Its swimming bladder, when properly prepared, yields leaf isinglass of three qualities, fine firsts, firsts, and seconds.

2. A Guldenstadtii, Brant and Ratzeburg. The Ossetr or Osseter.—Inhabits the Caspian and Black Seas and their tributary rivers. Caviare is prepared from its roe (ovary). From its swimming bladder are obtained both staple and leaf isinglass. The varieties of the staple are the Patriarch Astrakhan, and Astrakhan firsts, seconds, and thirds. The leaf varieties are firsts, seconds, and thirds.

3. A. Rutenus, Linn. The Sterlet.—Inhabits the Black and Caspian Seas and their tributary rivers; and the Arctic Ocean. Its roe yields caviare. Leaf and book (first and second) isinglass are obtained from the swimming bladder.

4. A. Stellatus, Pallas. The Sewruga.—Inhabits the Caspian and Black Seas and their tributary rivers. Yields caviare and leaf isinglass.

[We subjoin some remarks by the author on the swimming bladders of several species of Acipenser from the Volga. These were published in the Pharmaceutical Journal. —Ed.]

Professor Ludewig kindly sent me the dried air or swimming bladders of three species of Acipenser, namely, the A. Huso, A. Guldenstadtii, and A. stellatus. I had been for some time anxious to possess specimens of these swimming bladders, in order that I might further satisfy myself of the real nature and position of the isinglass membrane.

In the second edition of my Elements of Materia Medica, pp. 1559 and 1861, I have stated that the innermost layer of the swimming bladder is insoluble in boiling water, and is not the gelatigenous or isinglass membrane. I came to this conclusion from a careful examination of the sound of the cod-fish, and of the unopened pipe and purse isinglasses of commerce, all of which I found to be lined with an insoluble epithelium. In the leaf isinglass imported from Russia, this membrane has been removed, probably by rubbing with a cloth; and as in some species of Acipenser this layer is exceedingly fine, its presence is apt to be overlooked. But in the swimming bladders of some other fishes it is much thicker, and its non-removal in them considerably deteriorates the commercial value of the isinglass which they yield. The insobvibility of the inner lining of the Hudson Bay purse isinglass is well known to the dealers.

Dr. Edward Martiny, the learned author of the Naturgeschichte der für die Heilkunde wichtigen Thiere, published at Darmstadt last year, has, however, denied the accuracy of my account of the gelatigenous or isinglass membrane. He describes these bladders as consisting of two membranes (Hauten) an outer, strong, shining and fibrous membrane, and an inner soft mucous coat. The outer membrane is covered by a peritoneal coat. "The inner membrane, namely the mucous membrane, is the so-called isinglass." To this sentence he has appended a foot-note, of which the following is a translation: "Pereira (Elements of Materia Medica, vol. ii., 2d edit. p. 1861) erroneously regards the middle coat as yielding gelatine."

This statement, emanating from so high an authority as Dr. Martiny, induced me to re-examine the subject, and the result is the confirmation of the accuracy of my former statement. I have now examined the swimming bladders of four species of sturgeon, and in all find their inner coat, or lining, to consist of an epithelium insoluble in water. In some, however, it is so exceedingly delicate as to require very careful microscopic examination to detect it. In the spring of the present year I obtained the swimming bladder of the common sturgeon (Acipensur Sturio) caught in the Thames, and found its lining membrane to be a very delicate, but insoluble, epithelium. I gave a portion of it

1 History of British Fishes, ii. 360.
2 Med. Zool. ii. 1 and 349.
4 Vol. vii. No. 10, April 1848.
ANIMAL SUBSTANCES.

to my friend Mr. John Quekett, of the Royal College of Surgeons, and requested him to examine it, and the following is the reply which he sent me:

"I have carefully examined the sections of air-bladder, and I find that commencing with the inner coat you have—

"1st.—An epithelial layer; then,
"2dly.—The membrane to which the epithelium is attached (basement membrane); then,
"3dly.—Some flaky spindle-shaped bodies, which give the silvery appearance; then,
"4thly.—Some fibrous tissue, arranged principally in two directions, probably the muscular or elastic coat; then,
"5thly.—Some areolar tissue; and,
"6thly.—Lastly of all the serous coat.

"I have not tried the solubility of these layers in boiling water, but should think it must be the middle or thick substance which is the gelatinous coat."

On the receipt of the air bladders of the three species of Acipenser, sent me by Professor Ludewig, I resolved to submit them to a careful microscopic examination in order to ascertain in them the existence or absence of an inner epithelial or insoluble layer. I have detected it in all of them.

a. Acipenser Huso.—This fish, called by the Russians the Bietuga, yields the isinglass known by the name of the Bietuga (or Beluga) leaf. The dried air bladder is a pyriform bag about the size of a small pig's bladder. Its length is about eleven inches, its greatest diameter about five inches. The opening of the ductus pneumaticus is near the larger extremity.

b. Acipenser Goldenstadtii.—From this fish is obtained both staple and leaf isinglass. The dried pyriform swimming bladder, now laid before the Society, is of the kind called in commerce the pipe. Its length is about ten inches, and its greatest diameter about three inches. The opening of the ductus pneumaticus is at the larger extremity.

c. Acipenser stellatus.—This yields leaf isinglass. The pyriform swimming bladder of this fish, which I have received from Professor Ludewig, is also of the pipe kind. Its length is eight inches, and its greatest diameter two and-a-half inches.

But in Russia the acipenser is not the only genus from which isinglass is obtained, for it is also procured from Silurus Glanis,1 which Dr. Royle2 suggests may be the source of the Samovoy3 isinglass of commerce.

Brandt4 thus describes the preparation of Russian isinglass. The swimming bladder is cut open, washed, and then exposed to the air with the inner

1 Pallas, Reise durch verschiedene Provinzen des russischen Reichs, Th. i. S. 139, Petersb. 1771.
2 On the Production of Icinglass along the Coasts of India, with a Notice of its Fisheries, p. 29, Lond. 1842.
3 This word is sometimes written Samovoy or Simovy. I have been unable to trace its derivation. Dr. Royle's suggestion appears to me probable, since the Russian name for the Siluris Glanis is Som, while Albertus Magnus calls it Sumus. The Poles term it Scum. (Brandt and Ratzeburg, op. supra cit. ii. 31). Moreover, Martius says that staple, leaf, and book isinglass are produced from this fish. Now these are the three forms of the Samovoy isinglass. [A note addressed to the author confirms this view. The isinglass in question comes from the Russian fish Som. The Russians having no article, make an adjective of Som by adding "iwy." They pronounce it Samovy, although they spell it Samovy. There is another kind called Leshopy, from the fish Lesh or Leshtohik (Bream). It is more soluble than the Samovy kind, but scarcely of equal strength.—Ed.]
4 Though the account above given by Brandt agrees with the statements of Pallas, Gmelin, Georgi, and Tootke, there must be some inaccuracy in it. I have before stated that the innermost membrane of the swimming bladder is insoluble;—but according to Brandt's statement, the innermost is the gelatinous membrane. The account which T. W. C. Martius (Lehrbuch d. pharmaceut. Zoologie, p. 71, Stuttg. 1838) gives of the preparation of isinglass in Russia confirms my views. The swimming bladders, he observes, are first placed in hot water, carefully deprived of adhereing blood, cut open longitudinally, and exposed to the air, with the inner delicate silvery membrane upwards. When dried, this fine membrane is removed by beating and rubbing, and the swimming bladder is then made into different forms.
BRAZILIAN ISINGLASS.

silvery membrane turned upwards. The latter is then stript off and placed in damp cloths, or left in the outer covering, and prepared or kneaded. It is then taken out of the cloths, and either merely dried (leaf isinglass) and twisted or folded in a serpentine manner, between three pegs, into the shape of a horse-shoe, heart, or lyre (long and short staple), or folded in the manner bookbinders fold printed sheets of paper (book isinglass). Jackson\(^1\) has given figures to illustrate the manner in which the staple and book isinglass are made to retain their shapes by skewers. Several kinds of leaf isinglass are imported from Russia. The finest kind is that from Astrakhan, of which one kind is said to be obtained from the Beluga (Acipenser Huso). These are imported from St. Petersburgh. The Samovey leaf is an inferior kind brought from Taganrod. Sisane leaf is the produce of a small fish; each leaf measuring only about 2½ inches each way, and weighing about a drachm: it looks like pieces of dried bladder, marked by two fibrous or muscular bands. Kroski isinglass I have not seen; but I am told it is in small circular membranous disks. Long staple isinglass is of fine quality. It is the produce of the Oural. [It is usually imported loose—at times strung on ropes. The latter kind is preferred.] Of short staple three kinds are known: the finest is from the Oural, and is distinguished by the name of Patriarch, but it is very scarce. The Astrakhan short staple is one of the best kinds. The Samovey short staple is of inferior quality. Two kinds of book isinglass are met with. That from the Oural is of excellent quality. Samovey book is an inferior kind. Siberian purse isinglass is of moderately good quality, and is in general demand. [A small kind on strings, in a necklace form, is sometimes imported.]

2. Brazilian Isinglass.—This is imported from Para and Maranham; but it has not hitherto been ascertained from what fishes it is procured: though it is obvious, from a superficial examination of the commercial specimens, that they must have been obtained from at least several species or genera. Mr. Yarrell\(^3\) suggests the genera Pimelodus and Silurus as the source of it. It comes over in the form of pipe, lump, and honeycomb. Pipe Brazilian isinglass must have been procured from a large fish. It is prepared by drying the swimming bladder unopened. In some cases this bladder is imported distended with air. The dried bladders, or pipes, as they are called, are from ten to twelve inches in length, and two or two and a half inches broad. Their weight is about five ounces. Their shape is somewhat conical, tapering at one extremity, and broader at the other, where, on either side, is a conical cecal prolongation. It is devoid of smell. Lump Brazilian isinglass consists of two swimming bladders placed side by side, considerably separated at one end, and communicating at the other extremity with each other. When perfect, each lump somewhat resembles in shape a torpedo. Its size varies. A perfect, though not very large specimen, measured eight inches in length, and, at the broadest part, five inches in breadth. Its weight is six ounces and a half. It consists of three portions, separated by constrictions. The largest portion is five inches broad, and three inches and a half

\(^1\) Royle, *op. supra* cit. p. 21.

\(^2\) Sometimes called Cayenne Isinglass (Guibourt).

\(^3\) *Philosophical Transactions*, vol. lxiii. 1788.
ANIMAL SUBSTANCES.

long; flattish in front, rounded posteriorly. It consists of two sacs, placed one on either side. The middle portion is oblong, three inches long, and two inches broad: it consists of two sacs, which communicate with those of the preceding portion. The third portion is oblong, one inch and a half long, and three-quarters of an inch wide. It consists of one sac only, into which both the sacs of the middle portion open. *Honeycomb Brazilian isinglass* appears to be the largest portion of the lump kind split open. The lump variety is sometimes softened, and rolled out into thin ribbons, in this country. On account of its deeper colour and inferior solubility, Brazilian isinglass is not in demand for domestic use; though, as it is sold in the cut state, it is probably largely intermixed by shopkeepers with the finer kinds of Russian isinglass, and sold as such. As it is moderately cheap and soluble, it is in extensive use for fining by brewers, who are the principal consumers of this kind of isinglass. [When digested with boiling water, it leaves a very large proportion of undissolved white residuum of a starchy consistency.]

3. **New York Isinglass.**—Occasionally *ribbon* isinglass is imported from New York. It is in thin ribbons of several feet long, and from an inch and a half to two inches in width. It is but little used in this country. It is less soluble than the Russian, and affords a dark-coloured solution. 1 Dr. J. V. C. Smith, 2 a work on the fishes of Massachusetts, states that it is obtained from the air-bladder of the common Hake (*Gadus merlucius*), which is thrown into water to macerate for a little while, and is then taken out and pressed between two iron rollers, "by which it is elongated to the extent of half a yard and more. It is then carefully dried, packed, and sent to market. The common cod (*Morrhua vulgaris*) yields a poorer kind of isinglass; but the hake only is known to the extensive manufacturers as fit for their purposes."

4. **Hudson's Bay Isinglass.**—I have been unable to ascertain from what fish this isinglass is procured. 3 It comes over in the *purse* form. A specimen in my possession measured twelve inches in length, and three inches and a half in diameter; its weight is one ounce and a half. It is of a light yellow colour, translucent, and free from taste and smell. The inner lining of the sac, which may be readily stripped off, is insoluble in water: the remaining membrane dissolves in boiling water.

5. **East India Isinglass.**—It appears that, for a long period, this has been exported from Calcutta to China, but it has only recently occupied the attention of Europeans. It is probably the produce of a species of *Polynemus*. 4

1 United States Dispensatory; also Journal of the Philadelphia College of Pharmacy, vol. iii. pp. 17 and 92.
2 In a letter to Dr. S. W. Williams, of Deerfield, Massachusetts, from whom I received the above information.
3 Richardson, in his *Fauna Boreali-Americana*, part iii., says, that the sturgeons of North America are equally numerous with those of Asia, but that their sounds and roes are utterly wasted.
4 Mr. M'Clelland (Journal of the Asiatic Society of Bengal, viii. 293) states, that Indian isinglass is yielded by *Polynemus Sele* of Buchanan. But, inasmuch as he obtained only sixty-six grains of isinglass from one of these fishes, while some of the specimens of commerce weigh from half to three quarters of a pound, it seems tolerably clear that the Indian isinglass of English commerce cannot be obtained from *P. Sele*, but must be procured from some larger fish. It may be the produce of *Polynemus teria*, Buchanan, or the new species of *Polynemus*, referred to by Dr. Cantor (Journal of the Royal Asiatic Society, v. 168, London) as the Salliah or Saccelth.
But the fishes called, by Dr. Buchanan, *Bola*, and several species of *Silurus*, especially *Silurus rovita*, also yield isinglass (Royle). Most of the specimens of Indian isinglass which I have examined have an unpleasant fishy odour, which renders them totally unfit for domestic use, and greatly deteriorates their commercial value. A specimen of *East India purse isinglass* which I examined consisted of an unopened swimming bladder, flattened and dried. Its shape is oval-oblong; its length nine inches; its breadth three inches and a half; its weight seven ounces and a half. It has a strong fishy smell, and a dark colour.

Another kind (*East Indian leaf isinglass*) is merely the sac laid open and dried. It is eight or nine inches long, six or seven inches broad, and about three-tenths of an inch thick. A third kind (*East India rolled leaf isinglass*), which I have received from Dr. Royle, appears to have been formed by rolling out the preceding kind into thin plates. One specimen was about eighteen inches long, three inches and a half wide, and one-tenth of an inch thick. Some of the sheets are covered with a thin film of chalk.

Picked East India isinglass, kindly furnished me by Dr. Royle, is in small shreds, two or three inches long, and tapering at the extremities. It is hand-picked in India by the natives. The composition of this isinglass has been ascertained by Mr. Solly, and will hereafter be stated.¹

Manilla Isinglass.—A variety under this name has been recently imported. It is called *thin cake*. It is white and clean. It is equal in quality to Brazilian or Samovoy book. The fish which yields it is found in the river of Manilla, and on the coasts of the Phillipines, Luconia. Chief mart, Manilla. Price four shillings per pound. It is smaller than the Brazilian; but it greatly resembles the lump Brazilian, and the fish is probably an allied species.²

6. **Cod Sounds.**—Cod sounds, in the dried state, are brought from Scotland, and used as a substitute for foreign isinglass. They are, however, usually preserved soft by salting, and dressed for the table.

Purity.—When isinglass is reduced to small shreds (*picked or out isinglass*) it is scarcely possible to distinguish, by the eye, some of the inferior from the finer kinds. The best criteria are its whiteness, freedom from unpleasant fishy odour, its solubility in water, and translucency of the jelly obtained on cooling from its hot solution. [No sample even of the best isinglass (Beluga or Astrachan leaf) is completely soluble in boiling water. There is always some undissolved residue (albuminous membrane); but this is small in proportion to the goodness of quality. In Beluga it may form one per cent.; in some kinds of Brazilian, as much as twenty per cent. The reader will find some good remarks by Mr. Redwood on the adulteration of isinglass in the Pharmaceutical Journal for May 1850, p. 503.—Ed.]

Substitution.—Hartshorn shavings and sole skins (when clean, sweet, and well prepared) are sometimes substituted for isinglass in fining. For domestic uses, *patent gelatine* is frequently employed as a substitute for isinglass.

¹ Metcalfe, December 1842.
² For further details respecting East Indian isinglass, see Dr. Royle's work, *On the Production of Isinglass along the Coasts of India, with a Notice of its Fisheries*, London, 1842.
7. Para Isinglass.—A substance has lately been imported under the name of Isinglass, which, on examination, proves not to be isinglass, but the dried ovary of a large fish.

Two boxes were imported: they did not contain more than 14 or 16 lbs. A similar article has been before imported into London. It consists of bunches of the size and shape of the subjoined figure. They somewhat resemble a bunch of grapes; and consist of ovoid or rounded masses, attached by peduncles to a central axis; by immersion in water this axis is found to consist of a convoluted membrane, to one side only of which these ovoid masses are attached.

A very superficial examination of this so-called isinglass proves that it is neither the swimming bladder of a fish, nor is it gelatinous; but it is in reality the ovary of some large fish, and is of an albuminous nature. When soaked in water its fishy odour becomes very obvious.

The ovoid masses are ova. They are highly vascular on the surface, and are filled with an animal substance of a yellow colour. In general appearance they resemble the vitellus of a shark or ray.

The *Sudis Gigas*, a large osseous fish, upwards of six feet in length, is found at Para. Its flesh is dried, salted, and eaten by the lower classes; and its swimming bladder constitutes one of the kinds of Brazilian isinglass imported into London. It is probable, therefore, that the ovary of this fish constitutes the false isinglass in question. If not from this
fish, it is probably obtained from some allied genus (as *Amin*) of highly organised osseous fishes.¹

Gelatine.—Gelatine may be extracted from bones, by boiling them in water under pressure; or, more readily, by employing bones which have been previously digested in hydrochloric acid to extract the phosphate of lime. In this way a nutritious soup is prepared in Paris for the hospitals, and other pauper habitations.² Gelatine has even been extracted from fossil bones. A soup was prepared from one of the bones of the Great Mastodon, by the Prefect of one of the departments of France.

Nelson’s Patent Gelatine is obtained from glue-pieces, freed from hair, wool, flesh, and fat.³ It is probable that inferior kinds of isinglass are also employed. Two kinds of this patent gelatine are made up:—the best (called *gelatine of the first quality*) is opaque; it is, by preference, made from the cuttings of the hides of beasts, or from the skins of calves: the inferior kind (called *gelatine of the second quality*) is transparent; it is made from non-transparent glue pieces. Both kinds are sold, cut somewhat in imitation of picked isinglass.

French gelatine is sold in cakes, marked like those of common glue, with the nets on which they have been dried. They are either uncoloured, or coloured red, green, or blue. [Some of this patent French gelatine is made at Paris from the cuttings of skins used for making white kid gloves.—Ed.]

[A very pure form of gelatine is now extensively sold under the name of *Swinburne’s Patent Refined Isinglass.* It is procured from the skins of calves cut into very thin slices, and treated simply with water at or about 200°. No chemical substance whatever is used in its preparation. The skins are treated with successive quantities of water until all the gelatine is extracted. The common sorts of isinglass are treated in the same way, and a very pure kind of colourless gelatine is thus obtained from them, the residues being subsequently boiled up to make glue. The gelatine of the first quality thus procured is white, inodorous, and tasteless, entirely free from acidity or alkalinity. If previously soaked in cold water, it is entirely dissolved without leaving any residue on the addition of a small quantity of boiling water, and the solution on cooling, if not overheated, sets into a firm transparent jelly. The properties are the same whether it be procured from calves’ skins, or from isinglass. The process simply deprives the isinglass and skins of their insoluble albuminous portions.

The test of the goodness of gelatine is this:—When boiling hot water is poured upon it, it should not form a yellow gluey-looking mass of an offensive odour, but it should be colourless, of a thick consistence, and entirely free from smell. The French gelatine is generally run into very thin sheets in order to conceal the yellow colour. It has no smell when dry, but is very offensive when treated with warm water in the manner above described. A pink or red colour is sometimes given to it in order to conceal its bad quality. The principle, gelatine, is deteriorated by any chemical substance used for its extraction. Gelatine thus prepared has found its way into the market, and has tended to give an evil reputation to this substance as an article of food and as an economical substitute for isinglass. But it is a well-known fact that isinglass owes its chief properties to *gelatine* alone, and chemistry and the microscope show that when this principle has been once extracted either from skins or fish bladder, its properties are identical, provided they have not been changed by any chemical process in the extraction. Swinburne’s gelatine of first quality is not to be distinguished from the gelatine separated from the air bladder of the sturgeon. The latter, weight for weight, yields a much larger proportion than the

¹ [It was during his visit to the Museum of the College of Surgeons for the purpose of examining the preparation to which the preceding plate refers, that the late Dr. Pereira met with the serious accident which confined him to his bed, and from which he was just recovering, when he was suddenly seized with fatal illness. The above was written while he was confined to his bed, and it was one of the last articles from his pen. It therefore possesses an interest beyond that of the subject to which it relates, and for this reason we have extracted the paragraph from the *Pharmaceutical Journal* for January 1858, in which it was published.—Ed.]

³ See the specification of his patent in *The Mechanic and Chemist* for 1840.
ANIMAL SUBSTANCES.

skin of the calf, and the process of extraction is more easy, but the principles are the same: they have the same properties and are adapted to the same uses.

The term Isinglass is probably an English corruption of the German *Hausenblase*—bladder of the Sturgeon. To apply the term isinglass to gelatine extracted from skin is, therefore, not only a misnomer but a mistake. All kinds of isinglass may be regarded as gelatine plus certain impurities or adventitious substances. Gelatine, however, is not isinglass, but the true animal principle separated from these impurities.

Much absurd discussion has arisen as to whether gelatine is to be regarded in the light of a *product* or *educt* of the tissues. It is an educt of the swimming bladder of the sturgeon, and is properly described by the author (infra) as a *constituent* forming from 86 to 93 per cent. of isinglass. If an educt of the air-bladder of the sturgeon, it must be equally an educt of the skin of young animals, as of the calf, *i. e.* it exists in the skin as such, and is not produced from it by the action of boiling water any more than starch is produced from grain by a similar process. The tissue of the skin is closer than that of the air bladder; hence it requires a longer continuance of the action of water to separate the gelatine from the other principles. Acetic acid will, however, dissolve gelatine from the skin in the cold, and tannic acid (in tanning skins) combines with the gelatious tissue in the cold to form leather. These facts show correctly and truly that gelatine exists in the skin as an independent principle like albumen.—Ed.]

Composition.—Isinglass of fine quality was analysed by John,¹ who found the constituents to be gelatine 70·0, osmazome 16·0, membrane insoluble in boiling water 2·5, *free acid* (lactic?), with *salts of potash and soda*, and some *phosphate of lime*, 4·0, and water 7·0. These results, however, can scarcely be accurate; for dried flesh, as Berzelius² observes, does not contain more than 8 per cent. of osmazome; and if isinglass contained 16 per cent. it could not be kept dry when exposed to the air.

Mr. E. Solly, jun.³ examined three specimens of Bengal isinglass, and found the constituents to be *gelatine, albumen*, a small portion of *saline and earthy substances, osmazome*, and a minute trace of *odorous oil*. The quantities of gelatine in three specimens were respectively 86·5, 90·9, and 92·8 per cent.; while those of albumen were 13·5, 9·1, and 7·2 per cent.

Effects and Uses.—The *dietetical* properties of gelatine have been already noticed. Considered *medicinally* it is an emollient and demulcent. It is employed, dissolved in water or milk, and rendered palatable by acid and sugar, as a nutritious substance for invalids and convalescents.

A solution of isinglass, with tincture of benzoin, is brushed over black sarcenet to form *Court or Black Sticking Plaster*. Liston's *isinglass plaster* consists of oiled silk coated with isinglass.⁴ The preparation of *Gelatine Capsules* has been already described.

Isinglass is also employed as a clarifying or fining agent (for coffee, wines, beer, &c.) Some of the constituents of these liquors unite with the gelatine, and form insoluble compounds, which precipitate, and in the act of precipitation the gelatine incloses within its meshes the matters which rendered the liquid turbid. The great consumers of isinglass are the brewers,⁵ who employ principally the coarse Brazilian variety.

² Traité de Chim. vii. 668.
⁴ *Pharmaceutical Transactions*, i. 143.
⁵ Full particulars respecting the mode of fining beer are given by Jackson, in his *Essay on British Isinglass*, Lond. 1765.
For the following table of the different kinds of isinglass known in the London market I am principally indebted to Mr. James Metcalfe, wholesale dealer in isinglass, of No. 20, Artillery Place, Finsbury Square.

<table>
<thead>
<tr>
<th>Country</th>
<th>Place of Produce</th>
<th>Place of Export</th>
<th>Name and Character</th>
<th>Prices per lb. English</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>The Oral (Ural)</td>
<td>St. Petersburg</td>
<td>Long Staple Ural, 1st and 2d</td>
<td>14 6 13 6</td>
<td>Very choice and dear.</td>
</tr>
<tr>
<td></td>
<td>The Irtysh and Obi</td>
<td>Odessa</td>
<td>Short ditto, Patriarch</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oural and tributaries</td>
<td>Taganrog</td>
<td>Ditto, ditto, 1st and 2d book</td>
<td>14 6 13 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astrakhan</td>
<td></td>
<td>Thin leaf, 1st and 2d</td>
<td>14 6 to 9 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Volga and tributaries</td>
<td></td>
<td>Beluga, 1st and 2d</td>
<td>14 6 10 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tributaries of Black Sea</td>
<td>Odessa</td>
<td>Sisane leaf</td>
<td>2 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tcherkaskoy</td>
<td>Taganrog</td>
<td>Krosky or Krosky</td>
<td>6 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Don and tributaries</td>
<td></td>
<td>Samovoy Leaf, 1st and 2d</td>
<td>3 9 3 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ditto</td>
<td></td>
<td>Ditto, Book 1st and 2d</td>
<td>4 0 3 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ditto</td>
<td></td>
<td>Ditto, Short Staple</td>
<td>5 0</td>
<td></td>
</tr>
<tr>
<td>Siberia</td>
<td>The Irtysh and Obi</td>
<td>St. Petersburg</td>
<td>Siberian Purse</td>
<td>8 6 7 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hudson's Bay and rivers</td>
<td>Hudson's Bay</td>
<td>Purse</td>
<td>5 6 6 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>United States</td>
<td>New York</td>
<td>Ribbon</td>
<td>No price</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Brazils</td>
<td>Maranhao and Para</td>
<td>Pipe Brazil</td>
<td>5/0 to 4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lump ditto</td>
<td>5/0 to 4/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Indies</td>
<td>Calcutta</td>
<td>Honeycomb do.</td>
<td>3 6 2 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bay of Bengal</td>
<td></td>
<td>Cut Brazil</td>
<td>7/6 to 6/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scotian Coasts</td>
<td></td>
<td></td>
<td>6 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>England</td>
<td></td>
<td></td>
<td>1 9 to 1 6 if dry and sweet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sole Skins</td>
<td></td>
<td>0 10 if clean, sweet, and well prepared.</td>
<td></td>
</tr>
</tbody>
</table>

354. OLEUM JECORIS MORRHUAE.—COD-LIVER OIL.

(Gadus Morrhua, L.—Morrhua vulgaris, D.)

History.—The oil obtained from the livers of the Common Cod, and various other allied species of fish, appears to have been for a long period a popular remedy, in various countries of Europe, for rheumatism, and some other diseases, though its use by medical practitioners is comparatively recent. In 1782 it was strongly recommended in chronic rheumatism by Dr. T. Percival, 1 and in 1807 by Dr. Bardsley, 2 who states that it was in high repute in Lancashire.

Zoology.—This oil is principally procured from the common cod (Morrhua vulgaris; Gadus Morrhua) formerly called Asellus major; 3 also from allied species, as the Dorse (Gadus Callarias), the Coal-fish (Gadus carbonarius), the Burbot (Lota vulgaris), the Ling (Lota molva), and the Torsk (Brosminius vulgaris). 4

Some of the fish-oils 5 of commerce are obtained exclusively from the liver, others are procured from the adipose tissue diffused through the body of the animal generally. In the former, therefore, we are prepared to find bile-constituents which are not obtainable from the latter. In fishes, properly so called, the distribution of oil in the body of the animal is not uniform. In the Gadidae or Cod-tribe (common cod, dorse, coal-fish, pollack, turbot, ling, torsk, &c.), in the Squalidae or Sharks, and in some other fishes, almost the whole adipose tissue of the animal is concentrated in the form of oil contained in the liver. 6 On the other hand, in the salmon, herring, sprat, and wolf-fish, the oil is more diffused through the body of the animal, and the liver is, comparatively speaking, devoid of it. The oils obtained from the livers of the different species composing the tribe Gadidae, appear to be very similar in their physical and chemical qualities, and there is good reason for believing that they agree in their medicinal properties. To all of them the term oleum jecoris asellis 7 oleum jecoris gadi, or cod-liver

1 London Medical Journal, iii. 393.
2 Medical Reports, p. 18.
4 See Dr. J. H. Bennett’s Treatise on the Oleum Jecoris Aselli, p. 17, Lond. 1841.
5 I use the term fish-oils in its popular and commercial acception, and include under it not only the oils obtained from fishes properly so called, but also those procured from other aquatic animals, as the cetacea and seals.
6 Professor Owen, in his Lectures on the Comparative Anatomy and Physiology of the Vertebrate Animals (Part 1, Fishes, p. 242, 1846), observes, “that the myriads of dog-fish captured and commonly rejected on our coasts, show that the fishermen have not yet taken full advantage of this anatomical fact, which exposes to them an abundant source of a pure and valuable oil.”
7 Pliny (Hist. Nat. lib. iv. cap. 28) states that there were two kinds of fishes called aselli, one smaller, termed callarius, the other found in deep water, and denominated bacchi: the latter were preferred to the former. Varro (Opera Omnia, p. 21, Durdrecht, 1619) says that these fishes derived their name aselli from their resemblance in colour to the ass. By some later writers the term asellus has been extended to several species of the cod tribe:—thus, the common cod is called asellus major; the ling, asellus longus; the coal-fish, asellus niger; the whiting, asellus albus; the dorse, asellus striatus; the pollack, asellus haifingo, &c. A few years ago, a writer in one of the medical journals, mistaking the meaning of the word asellus, gravely announced that “oil of the liver of the ass” had been introduced as a remedial agent into Germany from Sweden.
Cod-Liver Oil:—Preparation; Description.

oil,¹ is indiscriminately applied, though it is commonly used, especially in this country, to indicate the oil procured from the liver of the common cod (Gadus morrhae, Cuv.). It would be better, therefore, to employ the term oleum jecoris morrhae, or simply oleum morrhae, when it is intended exclusively to designate the latter oil. De Jongh, in his Disquisitio comparativa chemico-medica de tribus olei jecoris aselli speciebus, published at Leyden in 1843, states that the Bergen (Norwegian) oil is principally obtained from three species, viz., the dorse (Gadus callarias), the Coal-fish (Gadus carbonarius), and the pollack (Gadus pollachiis), but chiefly from the first.

Preparation.—In different countries the mode of preparing the oil varies somewhat. The cod oil met with in the London market is the produce of Newfoundland, where, according to Pennent,² it is thus procured:—"They take a half tub, and, boring a hole through the bottom, press hard down into it a layer of spruce boughs; upon which they place the livers, and expose the whole apparatus to as sunny a place as possible. As the livers corrupt the oil runs from them, and, straining itself through the spruce boughs, is caught in a vessel set under the hole in the tub's bottom." "At Newhaven, near Edinburgh, the fishermen simply boil the livers in an iron pot, and then filter it [the oil] through a towel containing a little sand." (J. H. Bennett.)

Description.—Among London dealers I have met with but one kind of cod-liver oil. Its colour is chestnut brown, and its odour is like that of boiled cod's liver. It is the Cod Oil of commerce, the oleum jecoris aselli fuscum of continental pharmacologists. It is extensively used by curriers in dressing leather.

In general, continental writers distinguish three varieties of cod-liver oil; one white or pale yellow, a second brownish-yellow, a third dark-brown. But between the finest pale yellow or almost colourless oil, and the dark brown cod-oil used by curriers, there is an almost infinite variety of shade, so that no absolute difference can be founded on colour only. De Jongh made, in Mulder's laboratory, a very elaborate analysis of three kinds of cod-liver oil, the properties of which he thus describes:—

Three kinds of cod-liver oil are admitted and described by the writer just quoted. These are pale, pale brown, and brown.

1. Pale cod-liver oil.—Golden yellow; odour not disagreeable; not bitter, but leaving in the throat a somewhat acrid fishy taste; reacts feebly as an acid; sp. gr. 0·923 at 63·5° F. Cold alcohol dissolves from 2·5 to 2·7 per cent. of the oil; hot alcohol from 3·5 to 4·5 per cent.; in ether it is soluble in all proportions.

2. Pale brown cod-liver oil.—Colour that of Malaga wine; odour not disagreeable; bitterish, leaving a slightly acrid fishy taste in the throat; reacts feebly as an acid; sp. gr. 0·924 at 63·5° F. Cold alcohol dissolves from 2·8 to 3·2 per cent. of it; hot alcohol from 6·5 to 6·8 per cent. Ether dissolves it in all proportions.

3. Dark brown cod-liver oil.—Dark brown, by transmitted light greenish, in thin layers transparent; odour disagreeable, empyreumatic; taste bitter

¹ The term cod-liver oil is here used to indicate the oil obtained from the livers of any of the cod-tribe. In this sense it is about equivalent to the Latin term oleum jecoris aselli.
² Arctic Zoology, iii. 305, 1792.
and empyreumatic, leaving behind in the fauces an acid sensation; reacts feebly as an acid; sp. gr. 0·929 at 63°·5 Fahr. Cold alcohol dissolves from 5·9 to 6·5 per cent. of it; hot alcohol from 6·5 to 6·9 per cent. of it. In ether it is soluble in all proportions.

Composition.—Cod oil has been analysed by several chemists. The following is the analysis of Marder. In 200 grains of the oil he found the following substances:—

<table>
<thead>
<tr>
<th>In the Clear Oil</th>
<th>In the Burnt Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green soft resin</td>
<td>0·104 (brown resin)</td>
</tr>
<tr>
<td>Brown hard resin</td>
<td>0·026 (black resin)</td>
</tr>
<tr>
<td>Gelatine</td>
<td>0·312</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>111·833</td>
</tr>
<tr>
<td>Margaric acid</td>
<td>20·625</td>
</tr>
<tr>
<td>Glycerine</td>
<td>16·832</td>
</tr>
<tr>
<td>Colouring matter</td>
<td>11·500</td>
</tr>
<tr>
<td>Chloride of calcium</td>
<td>0·1046</td>
</tr>
<tr>
<td>Chloride of sodium</td>
<td>0·179</td>
</tr>
<tr>
<td>Sulphate of potash</td>
<td>0·0361</td>
</tr>
</tbody>
</table>

161·4906 147·6509

Since the above analyses were made, iodine and bromine have been detected in this oil.

De Jongh found the principal constituents of these oils to be oleate and margarate of glycerine, possessing the usual properties. But they also contained butyric and acetic acids, the principal constituents of the bile (bilifellinic acid, bilifulvin, and cholic acid), some peculiar principles (among which the substance called gadulin) and not quite one per cent. of salts, containing iodine, chlorine, and traces of bromine. Moreover, he found that the oil always contained free phosphorus.

The following table shows the proportion of the constituents in the three kinds of oil:—

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Pale Oil</th>
<th>Pale Brown Oil</th>
<th>Brown Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleic acid (with Gadulin and two other substances)</td>
<td>74·03800</td>
<td>71·75700</td>
<td>69·78500</td>
</tr>
<tr>
<td>Margaric acid</td>
<td>11·75700</td>
<td>16·42100</td>
<td>16·14500</td>
</tr>
<tr>
<td>Glycerine</td>
<td>10·17700</td>
<td>9·07300</td>
<td>9·71100</td>
</tr>
<tr>
<td>Butyric acid</td>
<td>0·07436</td>
<td>—</td>
<td>0·15875</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>0·04571</td>
<td>—</td>
<td>0·12506</td>
</tr>
<tr>
<td>Oleate and cholic acids, with a small quantity of</td>
<td>0·04300</td>
<td>0·06200</td>
<td>0·29900</td>
</tr>
<tr>
<td>margarine, oleine, and bilifulvin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilifulvin, bilifellinic acid, and two peculiar</td>
<td>0·26800</td>
<td>0·44500</td>
<td>0·87600</td>
</tr>
<tr>
<td>substances, soluble in alcohol</td>
<td>0·09600</td>
<td>0·01300</td>
<td>0·03800</td>
</tr>
<tr>
<td>A peculiar substance, insoluble in water, alcohol,</td>
<td>0·00100</td>
<td>0·00200</td>
<td>0·00500</td>
</tr>
<tr>
<td>and ether</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>0·08740</td>
<td>0·04060</td>
<td>0·02950</td>
</tr>
<tr>
<td>Chlorine, and traces of bromine</td>
<td>0·11850</td>
<td>0·15880</td>
<td>0·08400</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>0·09135</td>
<td>0·07890</td>
<td>0·03665</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>0·07100</td>
<td>0·08395</td>
<td>0·01010</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0·02125</td>
<td>0·01136</td>
<td>0·00754</td>
</tr>
<tr>
<td>Lime</td>
<td>0·15150</td>
<td>0·16780</td>
<td>0·05170</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0·00880</td>
<td>0·01230</td>
<td>0·00350</td>
</tr>
<tr>
<td>Soda</td>
<td>0·05540</td>
<td>0·06810</td>
<td>0·01790</td>
</tr>
<tr>
<td>Iron</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Loss</td>
<td>3·09943</td>
<td>2·60319</td>
<td>2·56900</td>
</tr>
</tbody>
</table>

Cod-Liver Oil...... 100·00000 100·00000 100·00000

By reference to this table there will be observed some slight differences in the composition of the three kinds of oil. Whether these are constant or accidental, further inves-

1 Pharm. Central-Blatt für 1887, p. 536.
tigations are required to determine. But from De Jongh’s analyses, it would appear that the pale oil is richest in oleic acid and glycerine—that the brown oil contains the largest amount of margarine, butyric, and acetic acids, and of the substances peculiar to cod-liver oil—and, lastly, that the pale brown oil is richest in iodine and saline matters.

I now proceed to notice in detail some of the substances which enter into the composition of this oil.

1. Of Gaduin.—For the discovery of this substance in cod-liver oil we are indebted to De Jongh. It may be obtained as follows:—Saponify cod-liver oil by means of caustic soda, and decompose the soap thus obtained by means of acetate of lead. The resulting lead-soap is to be treated with ether, which takes up oleate of lead and gaduin, and leaves undissolved the margarate of lead. The ethereal solution is dark brown. If it be decomposed by sulphuric acid, brown oleic acid is set free. The brown colour of this acid is owing to the presence of gaduin. To separate the latter, add excess of caustic acid to the oleic acid, by which oleate of soda is formed. This is insoluble in the excess of caustic soda. It is to be dissolved in alcohol, and the alcoholic solution cooled below 32° Fahr., by which the oleate of soda separates, leaving for the most part the gaduin in solution. By the addition of sulphuric acid the gaduin is precipitated from its solution. Gaduin is a brown substance which is soluble in alcohol, but is rendered insoluble by evaporating its solution to dryness. The alcoholic solution yields, on the addition of neutral acetate of lead, a copious precipitate, composed of C\textsubscript{3}H\textsubscript{2}O\textsubscript{3},PbO. If this lead salt be digested with carbonate of soda, it is decomposed, and a soda salt is obtained in solution, from which sulphuric acid precipitates a brown acid. This when dried at 288° Fahr., was found to have the following composition: C\textsubscript{9}H\textsubscript{2}O\textsubscript{3}PbO. Gaduin is odourless, tasteless, and of a dark brown colour. It is completely insoluble in water, but is for the most part soluble in both ether and alcohol. Its insoluble portion augments every time the solution is evaporated. When dry it is brittle and pulverisable. It is insoluble in both nitric and hydrochloric acids. In sulphuric acid it dissolves, and acquires a blood red colour, but from this solution it is precipitated both by water and alkalies. It is soluble in alkalies. Diffused through water and treated with chlorine it becomes decolourised. In burning, it yields an odour first of acetic acid, afterwards of cod-oil, and leaves behind a small quantity of ash.

The insoluble modification of gaduin, to which allusion has already been made, is blackish-brown, pulverisable, insoluble in water, alcohol, ether, and diluted sulphuric acid, but by concentrated sulphuric and hydrochloric acids it is converted into a black powder, without freely dissolving; in hot nitric acid it gradually and completely dissolves. It dissolves in alkalies, forming a red-coloured solution. In burning, it evolves the odour of acetic acid, and leaves about 0·822 per cent. of ashes. When dried at 235° C., its composition is C\textsubscript{9}H\textsubscript{2}O\textsubscript{3}PbO=C\textsubscript{9}H\textsubscript{2}O\textsubscript{3}PbO+C\textsubscript{3}H\textsubscript{3}O\textsubscript{3}H: that is, gaduin (C\textsubscript{9}H\textsubscript{2}O\textsubscript{3}PbO) combined with acetic acid (C\textsubscript{3}H\textsubscript{3}O\textsubscript{3}H). But De Jongh’s formula scarcely agrees with his experimental result. He says that analysis gave him 7'04 per cent. of hydrogen, whereas his formula indicates about 7·3 per cent.

Berzelius states that when he read De Jongh’s account of gaduin, he was struck with the analogy of the reactions of this substance with those of bilfulvic acid, and he tells us that he was disposed to think that gaduin is primitive bilfulvic acid, and that the reddish-brown substance, insoluble both in alcohol and water, which he (Berzelius) separated from bilfulvin by long and numerous operations, is only the insoluble modification of gaduin. This point, however, at present remains undetermined.

Gaduin is contained in all the three varieties of oil examined by De Jongh. At first it is yellow, but under the influence of atmospheric air it acquires a brown colour.

2. Fatty acids; margaric and oleic acids.—These acids, as obtained from cod-liver oil, do not appear to differ in their nature and composition from the same acids procured from other sources. De Jongh analysed them in the form of margarate and oleate of lead. The results were as follows:—

- Margarate of lead .. C\textsubscript{3}H\textsubscript{3}O\textsubscript{3}PbO.
- Oleate of lead ... C\textsubscript{3}H\textsubscript{3}O\textsubscript{3}PbO.

3. Glycerine.—This was obtained by saponifying cod-liver oil by caustic soda. The residual lye was decanted from the soda-soap, saturated with sulphuric acid, and the sulphate of soda prepared by crystallisation. The residual glycerine was compared with glycerine procured from olive-oil and lead, and found to be darker coloured. All these
kinds of glycerine were decolourised by adding basic acetate of lead to the glycerine solution, though they again became coloured when submitted to evaporation.

4. **Bile constituents.**—When cod-liver oil is shaken with water, an emulsion is obtained from which the oil slowly separates. The aqueous liquid becomes clear by filtration. That which had been obtained by shaking the brown oil with water was coloured and empyreumatic; but the other kinds of oil did not colour the water. The liquid invariably had a slightly acid re-action, and the oil which had been shaken with it was clearer, had a feebler odour, and reacted less powerfully as an acid. By boiling the oils with water, the same results were obtained. By evaporation, the aqueous fluids from all the three kinds of oil yielded a reddish-brown extract, which, softened by heat, was slightly soluble in water, was more soluble in ether, and completely so in alcohol. Alkaline solutions dissolved it, and acids threw it down again in the form of reddish-brown flocculent precipitate. The extracts had a peculiar odour and a bitterish taste. The quantities obtained from the different kinds of oil were as follows:—

<table>
<thead>
<tr>
<th></th>
<th>With cold water.</th>
<th>With hot water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale oil</td>
<td>0·607 per cent.</td>
<td>0·513 per cent.</td>
</tr>
<tr>
<td>Clear brown oil</td>
<td>0·890</td>
<td>0·849</td>
</tr>
<tr>
<td>Brown oil</td>
<td>1·288</td>
<td>1·256</td>
</tr>
</tbody>
</table>

When successively treated with ether, alcohol, and dilute spirit, all these extracts yielded the same results.

By ether, a reddish-brown, transparent, glutinous extract was obtained, which melted by heat, stained paper, and had the odour and taste of bile. After some time, small crystals made their appearance in it. It was slightly soluble in water, but readily so in ether as well as in alcohol. A solution of carbonate of ammonia being added to its etheral solution caused the separation of the mixture into two layers; an upper turbid layer, which by evaporation yielded some drops of olein, some crystals of margarin, and a brownish mass which was identical with that procured by the evaporation of the lower layer. This brown mass had a bitter taste, was separated by water into a soluble and insoluble portion, and consisted of fettinate and cholate of ammonia.

The extract which had been exhausted by ether, yielded to alcohol a blackish-brown, odourless, bitter, shining, hygroscopic mass, which dissolved with difficulty in water, and consisted of biliverdin, bilifulvin, and bilifellinic acid.

Dilute spirit removed from the residual extract a black shining substance, soluble in alkalis, concentrated sulphuric acid, and hot acetic acid, but insoluble in nitric and hydrochloric acids. From its alcoholic solution, baryta-water and acetate of lead precipitated it of a brown colour. It left no residue by burning.

The residue of the aqueous extract, left after the action of the three above-mentioned solvents, contained an organic substance (whose nature has not been determined) and inorganic salts, in which chlorine, phosphoric and sulphuric acids, lime, magnesia, and soda were found, but no potash or iodine.

5. **Iodine, bromine, and chlorine.**—Considerable, though as I conceive unnecessary, importance has been given to the fact that cod-liver oil frequently or usually contains both iodine and bromine. To the presence of one or both of these substances has been ascribed the whole or part of the remedial efficacy of the oil. A little consideration, however, would be sufficient to prove that their therapeutical agency in the oil must, if any, be exceedingly small. The proportions in which they exist in the oil is inconstant, though in all cases very small. Moreover, beneficial effects have been produced by the use of the oil, which neither iodine nor bromine is capable of producing.

Some chemists have failed to detect iodine in cod-liver oil. De Jongh says, that it is present in every genuine oil, but that the only certain mode of detecting it is to saponify the oil, and carbonise the resulting soap. He confirms Stein’s remark, that neither by immediately carbonising the oil, nor by saponifying it, and then decomposing the soap by acids, can the iodine be detected. It follows, therefore, that iodine exists in the oil neither in the free state nor in that of metallic iodide, but probably in organic combination—perhaps as an iodic fatty acid. De Jongh determined the proportion of iodine by forming iodide of palladium; every 100 parts of anhydrous iodide of palladium were considered equivalent to 70·34 parts of free iodine.

The largest amount of iodine found in genuine oil is less than 0·05 per cent. If the amount obtained be larger than this, fraud may be suspected. It is said by Dr.
Martiny¹ that some dishonest druggists have introduced iodine into the oil for the purpose of augmenting its commercial value. Nay, it is stated that an artificial cod-liver oil has been made by combining iodine with common fish or train oils.

De Jongh detected bromine in the oil by Balard’s process. The carbonised soap was digested with alcohol, and the alcoholic extract treated with chlorine gas and ether. Its proportion was estimated in conjunction with that of chlorine, as the quantity was too small to admit of accurate separation.

The chlorine was determined by precipitating it as chlorid of silver from the watery extract of the carbonised soap.

6. Phosphoric and sulphuric acids.—Phosphorus.—De Jongh determined the presence and quantity of these ingredients in the following way: The oil was saponified by potash, and the soap thus obtained decomposed by hydrochloric acid, by which the fatty acids were separated. From the solution the phosphoric acid was precipitated by a nitrate of iron (whose proportions of oxide was known) and ammonia, and the sulphuric acid by means of nitrate of baryta.

In order to determine the presence and quantity of free phosphorus or sulphur, a given quantity of oil was decomposed by concentrated nitric acid, and the quantity of phosphoric and sulphuric acids in the oxidised liquid ascertained by the above-mentioned method. More phosphoric acid was procured from the oxidised than from the unoxidised liquid, and the proportion of phosphorus was calculated from the excess of acid.

7. Acetic and butyric acids.—De Jongh separated these volatile acids from cod-liver oil by adding sulphuric acid to the soda-sap, and distilling the liquid thus obtained. The distilled product had a peculiar odour. It was saturated with barytic water, and evaporated to dryness. One portion of the residue was insoluble in alcohol, the other was soluble. The insoluble salt was acetate of baryta with two equivalents of water (\(\text{C}_2\text{H}_3\text{O}_4\cdot\text{BaO}\)); the soluble salt was butyrate of baryta. The soluble salt obtained from the pale oil gave the formula \(2\text{C}_2\text{H}_3\text{O}_4\cdot\text{BaO}_{2}\text{H}\); that procured from the pale brown sort gave the formula \(4\text{C}_2\text{H}_3\text{O}_4\cdot\text{BaO}_{2}\text{H}\).

Rancid cod-liver oil emits an odour like common fish, or train-oil, and we might, therefore, expect that phocenic acid would be a constituent of cod-liver oil. De Jongh did not detect it; but thinks that phocenic acid may perhaps be resolvable into acetic and butyric acids—a supposition somewhat improbable, seeing that phocenic acid contains considerably more carbon than either butyric or acetic acid. Berzelius observes, that the presence of acetic acid in cod-liver oil, in a form which is not extractable by water, is remarkable, because it leads to the supposition that it is contained in the form of a peculiar fat, which would be the acetate of lipole. It will be unnecessary to enter into any details with respect to the other constituents of the oil.

Adulteration.—The characters by which we judge of the genuineness, purity, and goodness of the oil, are partly physical, partly chemical.

The physical characters which are usually employed are principally colour, odour, and flavour. The finest oil is that which is most devoid of colour, odour, and flavour. The oil as contained in the cells of the fresh liver is nearly colourless, and the brownish colour possessed by the ordinary cod-oil used by curriers is due to colouring matters derived from the decomposing hepatic tissues and fluids, or from the action of air on the oil. Chemical analysis lends no support to the opinion, at one time entertained, that the brown oil was superior, as a therapeutical agent, to the pale oil. Chemistry has not discovered any substances in the brown oil which would confer on it superior activity as a medicine. On the other hand, the disgusting odour and flavour, and nauseating qualities of the brown oil, preclude its repeated use. Moreover, there is reason to suspect that, if patients could conquer their aversion to it, its free use, like that of other rancid and empyreumatic fats would disturb the digestive functions, and be attended with injurious effects.

¹ *Natürgeschichte der für die Heilkunde wichtigen Thiere*, Darmstadt, 1847.
Of the chemical characters which have been used to determine the genuineness of cod-liver oil, some have reference to the iodine, others to the gaduin or to the bile constituents. I have already stated that some fraudulent persons are said to have admixed iodine (either free iodine or iodide of potassium) with train oil to imitate cod-liver oil. The presence of this substance may be readily detected by adding a solution of starch and a few drops of sulphuric acid, by which the blue iodide of starch is produced; or the suspected oil may be shaken with alcohol, which abstracts the iodine.

But though we may thus readily prove that the suspected oil contains no artificially added iodine, the iodine which is naturally contained in, and more intimately combined with the oil, may be frequently recognised by another process. Marchand\(^1\) gives the following directions for detecting it: Saponify the oil with soda, carbonise the soap thus obtained, digest the coal in distilled water, add a drop of starch paste, and subject the mixture to the action of a voltaic battery, the positive pole being placed in contact with the starch paste, the negative pole with the solution. If iodine be present, the starch becomes blue. Marchand states that by this test the iodine can be detected in the urine of a patient soon after he has taken the oil. This, however, is certainly not always correct, for I submitted the urine of a young gentleman, who, for several weeks had taken with great benefit a tablespoonful of cod-liver oil thrice daily, to the action of a galvanic battery of fifty pairs of plates for several hours, without obtaining the slightest evidence of the presence of iodine.

Sulphuric acid has been employed as a test for cod-liver oil. If a drop of concentrated sulphuric acid be added to fresh cod-liver oil, the latter assumes a fine violet colour, which soon passes into yellowish or brownish-red. Some samples of oil produce at once the red colour, without the preliminary violet tint. Gobley,\(^2\) who noticed this reaction in the case of oil of the liver of the ray, says, that oil which has been prepared by ebullition in water does not possess this property, but yields with sulphuric acid a clear red colour. This, however, is an error, at least with respect to cod-liver oil. It has been erroneously supposed by some persons that this violet colour was due to the evolution of iodine by the action of the acid on an alkaline iodide contained in the oil. If that were the case, the presence of a little starch-paste would be sufficient to convert the violet into an intense blue colour; which is not the case. The colouration in fact depends on the action of the sulphuric acid on some one or more organic constituents of the oil, and the following facts lead me to infer that it is in part due to the presence in the oil of one of the constituents of the bile.

It is well known that, in 1844, Pettenkofer\(^3\) pointed out a new test for bile. If to a liquid supposed to contain bile about two-thirds of its volume of oil of vitriol be added, the liquid kept cool, a few drops of a solution of cane-sugar (four or five parts to one of sugar) be added, and the mixture shaken up, a violet red colour is produced, provided bile be present. This test succeeds very well, if we dissolve a little extract of ox-bile in water, and

\(^1\) Lehrbuck der Physiolog. Chemie.

\(^2\) Journal de Pharmacie, 3me sér. v. 308, 1844.

\(^3\) Ann. der Chemie und Pharmacie, B. llii. S. 90, 1844; also Simon’s Chemistry, translated by Dr. Day, ii. 193.
test the solution with sugar and oil of vitriol. The colour developed agrees with that produced by the addition of oil of vitriol to cod-liver oil, which De Jongh has shown contains the essential constituents of the bile. Pettenkofer remarks that the presence of a very great excess of chlorides will change the violet-red colour into a brownish-red. This fact is deserving of notice, because it may aid in accounting for the fact that some specimens of cod-liver oil strike a brownish-red, not a violet-red colour, with oil of vitriol. Streckert confirms Platner’s observation that both cholic and parachoic acids produce the same colour with sugar and oil of vitriol, as bile does; so that Pettenkofer’s test doubtless acts on one or both of these acids. Now De Jongh has shown that cholic acid is contained in cod-liver oil, and we have, therefore, good reason for believing that it is in part by the action of oil of vitriol on this acid that the violet-red colour is produced in cod-liver oil.

But it is well known that for the development of this colour in bile it is necessary to use, besides oil of vitriol, a third agent (sugar). Pettenkofer observes that for cane-sugar we may substitute grape-sugar or starch; in fact, any substance which can by the action of oil of vitriol be converted into grape-sugar. No such substance has hitherto been detected in cod-liver oil, and, therefore, it may be said the necessary ingredient to produce this characteristic reaction of oil of vitriol on cholic acid is wanting. Streckert has recently supplied the wanting link. In his valuable paper, to which I have already referred, he observes that acetic acid may be substituted for sugar. To the liquid supposed to contain bile add a few drops of acetic acid, and then concentrated sulphuric acid, when a magnificent purple-red colour is developed. If the quantity of bile be small, it may be necessary to use heat. Now, as cod-liver oil contains acetic acid, we have the requisite agent to enable the oil of vitriol to act on the cholic acid, and the development of the purple or violet-red colour is then readily accounted for. I have already noticed the red colour produced by the action of oil of vitriol on gadinum (supposed by Berzelius to be derived from the bile). Here then is another source for the red colour caused by the action of sulphuric acid on cod-liver oil.

It follows, therefore, from what has been now stated, that oil of vitriol is a test for liver oils. It does not distinguish one liver oil from another, for it reacts equally with the oil of the liver of the ray and with oil of the liver of the common cod. Neither does it distinguish good cod-liver oil from bad, for it produces its characteristic reaction both with common brown cod-oil, and with the finest and palest qualities. But it serves to distinguish oil procured from the liver, from oil obtained from other parts of the animal.

[The experiments of De Jongh go to prove that the active principle of the cod oil is a substance called by him gadin. Dr. Winckler considers the efficacy of the oil to depend on the presence of oxide of propyle, a substance existing also in ergot of rye, and in the liquor in which herrings are pickled.—Ed.]

Mr. Beasley communicated to the late Dr. Pereira the subjoined method by which he detected iodine in cod-liver oil: —To detect iodine in the liquor which accompanies the oil from the liver of cod-fish, it is sufficient to put a portion of it into a porcelain
capsule with a little starch, and add a few drops of a fresh and rather dilute solution of chloride of lime. The characteristic colour manifests itself either immediately or after standing a short time.

The detection of the iodine in the oil was thus effected:—3iss. of hydrate of potash was triturated in a wedgewood mortar with about f3vj. of warm water, and f3ij. of the oil. The merritar was set in a warm place, and triturated occasionally until the combination appeared complete. The soapy mass was thrown, by portions, into a crucible heated to redness in a common fire, and the heat continued till the soap was calcined. The residuum was triturated with f3ij. or less of water, and the mixture thrown on a filter. A portion of the clear lixivium was placed on a capsule with a little starch and nitric acid, moderately diluted, gradually added. A considerable effervescence takes place, and as soon as the point of saturation is passed the mixture becomes coloured. A considerable excess of acid, however, destroys the colour.

Physiological Effects.—At the commencement of its use cod-liver oil frequently causes nausea, disagreeable eructation, and occasionally vomiting. In the dose of a tablespoonful, it acts as a laxative, diaphoretic, and diuretic.\(^2\) But Taufflied\(^3\) declares that in doses of from two to four spoonfuls a day, he never found it “exert any appreciable influence upon the urine or perspiration, or produce any disturbance in the economy.” The disagreeable flavour of the oil sometimes creates nausea and sickness, but when habit has surmounted the repugnance to it, these effects cease. In several cases it has proved emmenagogue;\(^3\) and on some occasions it has given rise to a cutaneous eruption.\(^4\) Dr. Bardsley found that most persons were disposed to get fat under its use.

Uses.—Though it has been used more or less successfully in a considerable number of diseases, the cases in which it has proved most successful are those of a gouty, rheumatic, or scrofulous nature [and especially in phthisis.—Ed.] But even in these it requires a very long-continued use to prove successful. The most recent writer on its employment observes that its use must be continued long, “at least a month, often six weeks, and sometimes for years.” As the oil contains iodine, and as it proves most successful in those maladies in which this element proves successful, it has been suggested that iodine is its active principle. Taufflied, however, denies this, and asserts that the properties of the two are not identical, for the one succeeds where the other fails. Is bromine the active agent?\(^5\) [It must not be forgotten that iodine and bromine are combined organically with some of the constituents of this oil, and in such manner that they are not to be immediately recognised by the ordinary tests. This fact may perhaps tend to develop a peculiar action of iodine and bromine, and endow them with an efficacy not otherwise attainable.—Ed.]

The oil is best adapted for relaxed, torpid, and phlegmatic temperaments, and for scrofulous subjects. In plethoric habits, and where irritation of the stomach and bowels, or inflammation, exists, its use is contraindicated.

Rheumatism, scrofula, and phthisis are the diseases in which it has proved most successful. In rheumatism it is indicated in the chronic forms

1 Schenk, Hufeland’s Journal, Bd. xxii. 1822.
2 London Medical Gazette, Feb. 28. 1840.
3 Bennett, op. supra cit. pp. 46 and 47.
4 Ibid. pp. 16 and 47.
5 For an account of Aschers’s speculations on the modus medendi of this oil, see Dr. Bennett’s Treatise before cited, p. 53.
of this disease, where the muscles and tendons are rigid, and the joints nearly inflexible. In chronic gout it is said not to be so efficacious. In scrofula it has proved successful in most of the forms of this disease, but especially when it affects the bones (as in rickets, caries, &c.), and in tabes mesenterica. In the latter intractable form of the disease, its efficacy has occasionally been most surprising. [The experience of the profession at large appears now quite to have established the fact that cod-liver oil is one of the most efficacious of all remedies in arresting the progress of pulmonary phthisis: that it enables patients to struggle on longer against the inroads of the disease, and thus enables them sometimes to obtain cicatrization and contraction of cavities which otherwise must have produced speedy death.—Ed.]

The oil has also been employed in some other diseases, with more or less success. In chronic skin diseases attention was drawn to its use, some years since, by Dr. Marshall Hall. In tinea favosa, impetigo, and chronic eczema, it has been found efficacious as a topical application. In chronic ophthalmia, especially of a scrofulous kind, it has been given internally, and, in some cases, applied to the eye with benefit. In paralysis also it has been found beneficial by Schuppmann.2

Administration.—For an adult, the dose at the commencement is a table-spoonful, which has sometimes been increased to six times this quantity (!). This dose is to be repeated two, three, or four times a day for several weeks, or even months. One patient consumed thirty-six lbs. of oil in two years and a half!! (Tauflied). Dr. Bardsley gave from 3 ss. to 3 ss. twice or thrice a day in warm table beer. For children of twelvemonths or under, the dose is a teaspoonful night and morning. The addition of some aromatic oil (as of lemon, peppermint, cassia, or anise) partly covers the unpleasant taste and smell. It is sometimes taken in the form of an emulsion. Peppermint water and lozenges have been recommended for covering the unpleasant taste of the remedy. [A minute portion of common salt taken both before and after the dose of oil will sometimes enable the stomach to bear this remedy when all other devices fail.—Ed.]

Class IX. Aves.—Birds.

Characters.—Vertebrated animals, with red and warm blood, respiring by lungs, and the young of which are produced from eggs. Body covered with feathers, and general conformation organised for flying.

Order I. Gallinæ, Linnaeus.—Gallinaceous Birds.

Characters—Bill short, convex, in some genera covered by a cere. Upper mandible bending from its base or only at the point; nostrils lateral, covered by a membrane,

1 London Medical Gazette, x. 796.
2 For further details respecting the therapeutic uses of this oil, the reader is referred to Richter's Ausführ. Arzneim.; Dierbach's Neuest. Entw. in d. Mat. Med. p. 270, 1828; and Ibid. i. 352, 1837; also D. Bennett's Treatise, already quoted.
naked, or feathered. Tarsus long. Three toes before, united at their base by a membrane; hind toe articulated on the tarsus above the junction of the anterior toes.

355. **GALLUS BANCKIVA** var. **DOMESTICUS**, Temminck.—**THE DOMESTIC COCK AND HEN.**

Phasianus Gallus, Linna. E.

(Ovi albumen; Ovi vitellus, L.—The egg, E.—Ovum, D.)

History.—No mention is made of this animal in the Old Testament. Both the male and female are referred to in the New Testament. Aristotle calls the cock ἀλεκτρων, —the hen ἀλεκτροῖς.

Zoology. Gen. Char.—Bill of medium size, strong, base naked. Upper mandible arched, convex, bent towards the point. Head surmounted by a crest or plume. Ears naked. Three toes before, united to the first joint; the hind toe raised from the ground. Tarsus with a long and bent spur. Middle feathers of the tail arched. Wings short.

Some doubt exists as to the origin of our domestic cock and hen. Sonnerat affirms that all the varieties originate from the Jungle Fowl (Gallus Sonnerati); while Temminck refers them to the Javan Fowl (Gallus banckiva).

Structure of the Ovarium and Development of the Egg.—The **Ovarium** (ræcunus vitellornus) or egg-organ, consists of a cluster of ova, in a hen beginning to lay, about 500 in number. The stalk by which each ovum is attached to the ovarium is called the petiolus. The size of the ova is exceedingly various; when quite ripe, they are as large as the yolk of an egg; the smaller ones are white, the larger ones yellow. Each ovum, when ripe, is composed of a calyx, the yolk-bag, and the yolk. The calyx constitutes the outer coat or covering of the ovum, and consists of two layers—an outer one, derived from the peritoneum, and an inner one, which is somewhat thicker. Between these two coats the vessels ramify. The petiolus is merely a prolongation of the calyx: it is studded with a number of small oval resembling vesicles. On that part of the calyx of a ripe ovum which is opposite the petiolus is a whitish curved stripe, called the stigma, indicating the spot where the calyx bursts, to allow the escape of the yolk. The yolk-bag, or membrana propria vitelli, is within the calyx, and closely invests the yolk. It is a floculent, delicate, fine coat. In the early stage of the ovum, the yolk is constituted of a pellucid fluid lymph, and is hardly distinguishable from the vesicula cicatricula. It then becomes whitish, and subsequently yellow, globules of oil making their appearance. In a ripe ovum, it is viscid, tenacious, and of an orange yellow colour; and lies in the calyx, with its long axis towards the petiolus. It is composed of three layers, the middle one having the deepest colour; the innermost enclosing a white fluid called the albumen centrale (or substantia alba vitelli), from which passes a little canal to that part of the surface of the yolk called the cicatricula.

The internal surface of the yolk bag is lined with a very thin stratum of globules, in form and figure like those of the blood, but arranged organically. The cicatricula or tread (as it is improperly called), is formed by an accumulation of these globules forming a mammiform heap, the convexity of which is towards the centre of the yolk, and is usually situated nearer the petiolus than the stigma. In the top of this is the so-called

1 Matthew, xxvi. and xxiii.
2 Hist. de Animal.
3 Voyage aux Ind. Orient. ii. 148.
pellucid pore, which is occupied by a small vesicle discovered by Parkinje,\(^1\) and called by him the vesicula germinativa, or vesicula citriverteæ. It is found in all the ovarian ova, and seems to be a natural organ, since it is found in the ova of fowls which have never had access to the male. When the yelk falls into the infundibulum, this vesicle disappears. The Oviduct has some resemblance to a convoluted intestine. It is situated on the left side of the animal. Its superior expanded free extremity is called the infundibulum, the edges of which are fimbriated. Inferiorly, the oviduct opens into the cloaca. It is attached to the spine by the mesometrium. The infundibulum, or expanded portion of the tube, receives the ovum as it escapes from the calyx of the ovariun. The upper part of the oviduct is lined by a fine villous membrane, covered with follicles secreting the albumen, or glaire, and thrown into a number of longitudinal folds. The first layer of albumen which the ovum receives forms the membrana chalazifera of Dutrochet; at either end of which is a soft, pellucid, albuminous nodule, which may be regarded as the rudimentum chalazarum. During the descent of the ovum in the oviduct, it receives fresh deposits of albumen; and, as it undergoes spiral rotations in its passage, the above-mentioned processes become curved spirally, and in the perfect egg constitute the chalazæ, grandines, appendices albuminis, or the poles or trediles. From one chalaza to the other are observed, in many eggs, one or more white striae, formed by a thickening of the membrana chalazifera. Vieuq d’Azyr called this appearance the zona albicans.

The albumen, glaire, or white of the egg, is not uniform in its consistence. The thickest portion is that which is first deposited around the yelk. Proceeding from without inwards, the three layers of albumen are denominated albumen primum, a. secundum, and a. tertium. Just before the egg arrives at that part of the oviduct called the uterus, it receives its outer coat, the pellicula ovi. In the middle, or so-called uterine portion of the oviduct, is formed the calcareous shell. Some eggs are expelled without it; these are termed oov eggs. The chalk is first deposited in small polygonal pieces, having a crystalline appearance; but, when the deposit has attained a certain thickness, all traces of crystallisation are lost.

Hab.—Domesticated in all the four quarters of the globe.

Description.—Eggs (ova) are too well known to need much description. Their specific gravity varies from 1:080 to 1:090. By keeping them become lighter, by the evaporation of a portion of the water. Dr. Prout\(^2\) found, that in two years an egg lost 544.\(^{16}\) grains. The relative weights of the different parts of the egg are, according to the same authority, as follows:—

- **shell and membrane, 106.9**; **albumen, 604.2**; **yelk, 288.9**; (total, 1000).

By boiling in water an egg loses two or three per cent.

1. **Egg-shell (Testa Ovi; Putamen Ovi).**—This consists, according to Prout, of carbonate of lime, 97; phosphate of lime and magnesia, 1; animal matter, with traces of sulphur and iron, 2. The chalk renders the egg absorbent and autacid; hence its use to neutralise the acidity of wines.

2. **Pellicula Ovi (Membrana Putaminis).**—An albuminous membrane which lines the shell. It is soluble in alkalies, and from its solution is precipitated by acids. It weighs about 2:35 grains (the whole egg being supposed to be 1000 grains). At the larger end of the egg it forms the folliculus aeris; the air of which, according to Bischoff, contains 23.475 per cent. of oxygen.

3. **White or Glaire (Albumen seu Album Ovi) consists of two or three laminae, which are not homogeneous, as two parts at least are discernible,—viz. a solid, probably organised albumen, having the appearance of a very fine delicate membrane, forming a series of cells, in which is contained the liquid albumen. Glaire or white of egg consists, according to Gmelin, of albumen 12.0, mucus 2.7, salts 0.3, and water 85.0. According to Dr. Bostock,\(^3\) white of egg consists of water, 89.0, albumen 15.5, uncoagulable matter 4.5=100.0. The coagulability of albumen by heat, and its incoagulability by acetic acid,
distinguish it from caseine. Albumen or glaire (or oralbumen) is distinguished from albumen of the serum of the blood (seralbumen) by its being coagulated by ether. The membranous tissue in which the liquid albumen of eggs is contained is said by Courbe to be devoid of nitrogen: he calls it albumenin or oonin.

4. Yelk (Vitellus Ori) is a kind of yellow emulsion, consisting of oil suspended in water by means of albumen, and enclosed in a sac called the yelk bag. On its upper surface is seen the cicatricula. At the extremities are the twisted flocculent chalaze. The yelk consists, according to Dr. Prout, of yellow oil, with crystallisable fat 28'75, albumen containing phosphorus 17'47, and water 53'8. Dr. Prout¹ says the yelk of egg consists of water 17'02, albumen 55'3, yellow oil 91'0=316'5. The yellow oil (oleum ori) may be obtained by boiling the yelk hard, and digesting in ether or alcohol, which dissolves the oil. By distilling off the alcohol from the filtered tincture, the oil is left behind.

Physiological Effects and Uses.—Both the glaire and the yelk are highly nutritive; the latter, on account of the oil which it contains, is somewhat less easy of digestion than the white. Both are more readily assimilated when in the soft state than when hardened by heat. Considered as medicinal agents, they are emollient and demulcent. The glaire is a valuable agent in the treatment of poisoning by bichloride of mercury, sulphate of copper, and the bichloride of tin. Its efficacy in these cases depends on the combination of the albumen with the oxide or chloride of the metal. [The yelk, as well as the white, exerts antidotal powers, and may therefore be freely used.—Ed.] The glaire is also used as a demulcent or sheathing agent in all cases of corrosive or acrid poisons. The yelk is a constituent of the mistura spiritus vini gallici. It is also used for preparing emulsions. Its oil has been applied to cracked nipples. The white or glaire is employed as a clarifying agent for wines and some other liquids. Its efficacy depends on its coagulation, by which it entangles in its meshes the impurities with which it either rises to the surface or precipitates. When the liquid to be clarified does not spontaneously coagulate the albumen, it is necessary to apply heat. Bookbinders use the glaire as a varnish.

Class X. Mammalia, Linnaeus.—Mammals.

Characters.—Vertebrated animals with red and warm blood, breathing through lungs, viviparous, and suckling their young with milk formed in their breasts or mammae.

Order I. CETACEA, Linnaeus.—THE CETACEANS.

Characters.—Body pisciform, terminated by a caudal appendage, cartilaginous, and horizontal. Two anterior extremities formed like fins, having the bones which form them flattened and very soft. Head joined to the body by a very short thick neck. Two pectoral or abdominal mammae. Ears with very small external openings. Brains large. Pelvis and bones of the posterior extremities represented by two rudimentary bones lost in the flesh.

¹ Philosophical Transactions, 1822.
356. PHYSETER MACROCEPHALUS, \textit{Linn. L. E.—GREAT-HEADED CACHALOT.}

(Concretum in propriis cellulis repertum, \textit{L.—Cetine nearly pure, E.—Cetaceum, D.)}

History.—Cuvier\(^1\) is of opinion that this animal is perhaps the \textit{Physeter} of Pliny,\(^2\)—the \textit{Orca} of some other Latin writers.

Zoology. \textit{Gen. Char.}—\textit{Inferior teeth} eighteen to twenty-three on each side of the jaw. \textit{Upper jaw} broad, elevated, without teeth, or with these short and concealed in the gum; \textit{lower jaw} elongated, narrow, corresponding to a burrow of the upper, and armed with thick and conical teeth entering into corresponding cavities in the upper jaw. \textit{Spiracular orifices} united at the upper part of the snout. A \textit{dorsal fin} in some species, a simple eminence in others. \textit{Cartilaginous cavities} in the superior region of the head, filled with \textit{oily matter}.

Sp. Char.—\textit{Lower teeth} twenty to twenty-three on each side, recurved and pointed at the extremity. Small conical teeth concealed in the upper gums. \textit{Tail} narrow and conical. \textit{A longitudinal eminence} on the back above the anus. Upper part of the body blackish or slate blue, a little spotted with white. \textit{Belly} whitish. \textit{Length} forty-five to sixty feet.

The \textit{snout} of the cachalot, notwithstanding its prodigious length, is formed only by the maxillæ on the sides, by the intermaxillæ towards the median line, and by the vomer on this line. The intermaxillæ project to form the anterior part of the snout. Posteriorly the right one ascends higher than the left. The \textit{spout hole} is single (in most cetacea it is double), and directed towards the left side, so that whenever the animal spouts water, it is to that side only.

Seat of Spermaceti.—Spermaceti is found in several parts of the body of the animal, mixed with common fat. The head, however, is the grand reservoir for it. Here it is found (mixed with oil) in a large excavation of the upper jaw, anterior to, and quite distinct from, the true \textit{cranium} which contains the brain. Mr. Hunter\(^3\) states that the spermaceti and oil are contained in cells, or cellular membrane, in the same manner as the fat in other animals; but that besides the common cells there are larger ones, or ligamentous partitions going across, the latter to support the vast load of oil, of which the bulk of the head is principally made up.

There are two places in the head where this oil lies; these are situated along its upper and lower part; between them pass the nostrils, and a vast number of tendons going to the nose and different parts of the head. The purest spermaceti is contained in the smallest and least ligamentous cells. It lies above the nostril, along the upper part of the head, immediately under the skin and common adipose membrane. These cells resemble those which contain the common fat in the other parts of the body nearest the skin. That which lies above the roof of the mouth, or between that and the nostril, is more intermixed with a ligamentous cellular membrane, and lies in chambers whose partitions are perpendicular. These chambers are smaller the nearer to the nose, becoming larger towards the back part of the head, where the spermaceti is more pure.

Mr. Hunter discovered about the nose, or posterior part of the nostril, a great many vessels having the appearance of a plexus of veins, some as large as a finger. On examining them, they were found loaded with spermaceti and oil; and some had corre-

\(^1\) \textit{Rech. sur les Ossements Foss.} v. 328.
\(^3\) \textit{Philosophical Transactions}, lxxvii. 390.
sponding arteries. They were most probably lymphatics, whose contents had been absorbed from the cells of the head.

Hab.—Pacific Ocean, Indian and Chinese Seas. Especially off New Guinea and parts adjacent, Timor, Australasia, Polynesia, Peru, &c.

Extraction of Spermaceti.—In the right side of the nose and upper surface of the head of the whale is a triangular-shaped cavity, called by the whalers “the case.” Into this the whalers make an opening, and take out the liquid contents (oil and spermaceti) by a bucket. The dense mass of cellular tissue beneath the case and nostril, and which is technically called “junk,” also contains spermaceti, with which and oil its tissue is infiltrated. The spermaceti from the case is carefully boiled alone, and placed in separate casks, when it is called “head matter.”

Purification.—The substance called “head matter” consists of spermaceti and sperm oil. Its colour is yellow. Its consistence varies with the temperature. In cold weather it consists of a congealed mass (spermaceti) surrounded and infiltrated by oil. To separate the latter as much as possible, it is put into filter bags. The solid thus obtained is then submitted to compression in hair bags, placed in an hydraulic press. It is then melted in water, and the impurities are skimmed off. Subsequently it is remelted in a weak solution of potash. It is then fused in a tub by the agency of steam, ladled into tin pans, and allowed slowly to concentrate into large, white, translucent, crystalline masses.

Properties.—Commercial spermaceti (cetaceum; sperma ceti) usually contains a minute portion of sperm oil, which is best removed by boiling in alcohol. [The Cetine or pure spermaceti is dissolved, and is deposited on cooling in a crystalline mass. This process should be repeated so long as the alcohol extracts any oil.—Ed.] Absolutely pure spermaceti (called Cetine) is a white laminated substance, without taste, and almost odourless. By the addition of a few drops of alcohol or almond oil, it may be reduced to powder. [It is crystalline, has a bright pearly lustre, and melts at 120°. At 670° it is sublimed unchanged.—Ed.] It is insoluble in water, and slightly soluble only in alcohol, even at a boiling temperature. [When distilled at a high temperature it is converted chiefly into ethal or cetyleic acid, and cetène, a liquid hydrocarbon having the formula C₃₂H₆₂. By carefully regulating the temperature these two products alone are formed. When saponified by fusion with caustic potash, it yields cetyleate of potash and ethal (C₃₂H₆₂O) or hydrated oxide of cetyle. No oleate or margarate of potash is produced, as was formerly supposed. According to L. Smith purified spermaceti or cetine is a cetyleate of oxide of cetyle, the oleic acid formerly found being derived from a portion of sperm oil adhering to the spermaceti.—Ed.]

Composition.—The ultimate analysis of pure spermaceti or cetine was made by Chevreul. The proximate composition of the same substance has been ascertained by Dumas and Peligot.

1 Bcale, Natural History of the Sperm Whale, p. 186, 1839; also, F. D. Bennett, Narrative of a Whaling Voyage round the Globe, from the year 1833 to 1836, ii. 153 and 228, Lond. 1840.

3 Ann. de Chim. et de Phys. lixii. 5.
[The researches of L. Smith and others have shown that the analysis of Dumas and Peligot must have referred to an impure specimen of spermacti, i.e. a specimen from which the oil had not been entirely separated. The formula of cetine or pure spermacti, on Liebig's authority, is $C_{61}H_{64}O_4$. This corresponds to one equivalent of oxide of cetyle ($C_{32}H_{32}O$) and one equivalent of cetyl acid ($C_{32}H_{31}O_3$). This formula at once explains the products obtained by its saponification and distillation. By distillation at a high temperature, the ethal $C_{32}H_{33}O$ loses 1 equivalent of water and becomes cetene, while the cetyle acid takes up the equivalent of water, and is distilled over as hydrated cetyle acid.—Ed.]

Physiological Effects and Uses.—Emollient and demulcent. Internally it has been employed in irritation and inflammation of the alimentary canal (as diarrhœa and dysentery) and of the bronchial membrane (catarrh); but its internal administration is now nearly obsolete. Its principal medicinal use is in the preparation of cerates and ointments.

Administration.—When employed internally it is generally exhibited in the form of an emulsion (spermacti mixture) made with the yolk of egg. Or it may be made with mucilage.

1. **Ceratum Cetacei**, L.; *Ceratum simplex*, E.; *Unguentum Cetacei*, D.; *Spermacti Cerate*. (Spermacti, 3ij; White Wax, 5viij.; Olive Oil, Oj. L.—Olive Oil, 6 parts; Bleached Bees' wax, 3 parts; Spermacti, 1 part, 6. —White Wax, lb. ss.; Spermacti, lb. j.; Prepared Hogslard, lb. iiij, D. “Heat the oil gently, add the wax and spermacti, stir the whole briskly when it is fluid, and continue the agitation as it cools,” E.)—If cold oil be added to the wax and spermacti, the preparation is apt to be somewhat lumpy. As the white wax of commerce is always largely mixed with spermacti, this preparation has never the precise composition intended by the College. Practically, however, this is of no consequence.—The preparation is employed as a mild and simple dressing for blisters and excoriated surfaces.

2. **Unguentum Cetacei**, L.; *Spermacti Ointment*. (Spermacti, 5v.; White Wax, 5xiv.; Olive Oil, Oj. Having melted them together with a slow fire, stir assiduously until they become cold.)—A softer preparation than the preceding, but used in the same cases.

Ambergis.—The substance called Ambergis (*Ambra grisea*) is procured from the Cachalot or Sperm Whale.¹ In this country it is used as a perfume only: on the continent it is employed in medicine. It appears to be the indurated feces (perhaps somewhat altered by disease) of the animal. Mr. Beale² collected some of the semi-fluid

¹ *Phil. Trans.* for 1783, lxxiii. 226.
ANIMAL SUBSTANCES.

faces, and found that the dried mass had all the properties of ambergris. It is a solid, opaque, greyish, striated substance, having a pleasant musk-like odour, and which is supposed to be derived from the Squid (Sepia moschata) on which the animal feeds; and in support of this opinion it must be mentioned that the horny beaks of this animal are found imbedded in the masses. Its sp. gr. is 0·908 to 0·92. John analysed it, and found it to consist of a peculiar non-saponifiable fat (ambreine) 25, sweet batsamic alcoholic extract, with benzoic acid, $2·5$, aqueous extract, benzoic acid, and chloride of sodium $1·5$. Ambreine is soluble in alcohol, and by the action of nitric acid furnishes a peculiar acid called ambreic acid. The effects of ambergris on the system are said to be analogous to those of musk. In the shops is kept an alcoholic tincture (called essence of ambergris) which is employed as a perfume only.

ORDER II. RUMINANTIA, Cuvier.—RUMINANTS.

PECORA, Linnaeus.

Characters.—No incisors in the upper jaw; in the lower usually eight; a vacant space between the incisors and molars, but in which, in some genera, are found one or two canines. Molars twelve in each jaw, the crown marked with two double crescents of enamel, of which the convexity is outwards in the lower jaw, and inwards in the upper. No clavicles. Extremities disposed for walking. Two toes furnished with hoofs; metacarpal bones united. Four stomachs; intestines long. Two or four inguinal mammae. Horns in the males, and often in the females of most species.

357. MOSCHUS MOSCHIFERUS, Linn. L. E. D.—THE MUSK ANIMAL.

(Concretum in folliculo preputii repertum, L.—Inspissated secretion in the follicle of the prepuce, E. D.)

History.—Aristotle, Pliny, Ælian, and Oppian, make no mention of this animal. Ætius1 is the earliest writer who notices the perfume. None of the etymologies hitherto given for word Musk ($μούρξος$) are satisfactory.

Zoology. Gen. Char.—Incisors $\frac{2}{3}$. Canines $\frac{1}{2}$—$\frac{1}{6}$. Molars $\frac{5}{6}$—$\frac{5}{6} = 34$. Canines wanting altogether in the females; superior canines large in the males. Ears long, pointed. Body slender. Feet with hoofs, separated and enveloping the last phalanges. Tail very short. Two inguinal mammae.

Sp. Char.—Fur of a gray-brown; hair coarse. A pouch before the prepuce of the male, filled with an unctuous musky substance. Size of the roebuck.

The absence of horns and the presence of canine teeth distinguish the animal from the Deer (Cervus). The Stylocerus moschatus is the connecting link between the deer and the musks. It has the horns of the one, and the canine teeth of the other.

1 Serm. xxvi t ii cap. cxiii.
The most interesting part of the musks is the preputial musk sac. Cuvier\(^1\) says no other species of Moschus possesses a musk sac; but this statement is not correct. \textit{M. Alticus}, Eschsholtz (\textit{M. Moschiferus Alticus}, Brandt), \textit{M. Napu}, and \textit{M. Javanicus}, are also said to possess musk sacs.

\textbf{Anatomy of the Musk Sac.}—The sac is peculiar to the male animal. If he be supposed to be laid on his back, and the belly examined, we observe behind the navel, and immediately in front of the preputial orifice, a small aperture (\textit{external aperture of the musk sac}) leading into the musk canal, which terminates in the cavity of the musk sac. The aperture is about half an inch from the umbilicus, and usually about a line, or a line and a half, from the preputial orifice. In some preparations in my possession the distance is much greater. The preputial orifice is somewhat more prominent, and has a number of longish hairs projecting from it, in the form of a brush or hair-pencil; whereas the external musk aperture is placed in a depression and is smooth.

The \textit{musk sac} is of an oval form, rather broader at the anterior than at the posterior part. It is flat and smooth above, where it is in contact with the abdominal muscles, but convex below (supposing the animal standing). Its breadth is from \(\frac{1}{4}\) to \(\frac{3}{4}\) inches; its length from \(2\) to \(2\frac{1}{2}\) inches; its depth varies, being greatest anteriorly, where it is about one-half or 3-4ths of an inch. The \textit{external aperture} of the musk sac is placed in the median line, but nearer to the anterior than the posterior extremity of the sac. The \textit{musk canal} is about \(1\) or \(1\frac{1}{2}\) lines long, its diameter being about one line. The \textit{internal aperture} of the musk sac is surrounded by fine hairs, which readily fall off, and are found in the musk of commerce. The following are the parts of which the musk sac consists:—

1. \textit{Outer or hairy coat or skin.}—This is a continuation of the hide, and covers the convex portion of the sac. Its hairs are stiff but smooth, and disposed in a circular manner around the external musk orifice.

2. \textit{Muscular coat.}—This consists of two strata of fibres which surround the sac in a circular form. Pallas\(^2\) states that they arise from the groin and unite anteriorly with the

\(^1\) \textit{Regne Animal}, nouv. édit. i. 259, 1829.

\(^2\) \textit{Spicileg. Zoolog.} fisc. xiii.
ANIMAL SUBSTANCES.

panniculus carnosus. He regards them as the compressors and retractors of the follicle and of the prepuce when the genital organ is thrust out. The same naturalist has described two retractors of the penis.

Between the two strata of muscular fibres is placed the penis, which is remarkable from the circumstance of the urethra projecting beyond the extremity of the glans. In its usual state the penis lies rolled up within the belly.

On the inner surface of the muscular fibres is a number of small oblong or roundish glands, compared by Pallas to the meibomian glands of the palpebrae.

3. Fibrous coat.—This is the most external of the proper coats of the musk sac. On its inner surface are numerous depressions or cells, surrounded by ramifying folds, within which the blood-vessels ramify. This coat is continuous (through the musk orifice) with the corium.

4. Pearly coat.—A soft delicate membrane, shining like mother of pearl. It lines the cells, and covers the folds of the fibrous coat.

5. Epidermoid coat.—It is the inner lining of the sac. Its external layer is silvery white; its internal one yellowish or reddish-brown.

6. Musk glands.—In each of the depressions observed on the internal coat of the musk sac are found two or more irregular shaped bodies of a yellowish or reddish-brown colour. These bodies consist of a central brownish mass (supposed to be glandular), covered by a fine membrane.

7. Contents of the Musk Sac.—Pallas found, that, in young animals, the sac was empty and contracted. In the adult animal it contained about a drachm and a half of musk, and in old animals more than two drachms. But these quantities must be below the average, since the dried pods of commerce contain on the average more musk than this. Mr. Campbell describes the musk found in the sac as soft, reddish-brown, granular, and having the appearance of soft ginger-bread. 2

Hab.—Asia, between 10° and 55° north latitude, and 92° and 155° of east longitude. Especially on the Atlas and Himalayan ranges. China, Cochin-China, Tonquin, Tartary, and Siberia, have all been celebrated for the musk. The animal is timid, and dwells in cold mountainous districts, where coniferous plants abound.

Capture of the Animals.—Various methods of catching the animals are adopted. Sometimes they are taken by snares or gins, sometimes by pitfalls, sometimes by shooting them. The Tungouses, one of the native tribes of Siberia, employ the bow and arrow only.

Description.—Three kinds of musk are described, viz. China, Russian (or Karabardine) and Bucharian. I am acquainted with the two first only.

1. China, Tonquin, or Thibet Musk (Moschus tundrinensis seu tibetanus).—This is imported in small rectangular boxes (catties), about 7½ inches long, 4½ inches broad, and 4½ deep; covered externally by silk, and lined with sheet-lead and paper. These boxes contain about twenty-five saes or pods, each wrapped separately in paper. On the outside of the lid of some of the boxes is marked "Lingchong Musk;" and on the inside of the lid is a rude Chinese representation of the musk hunters, some shooting the animal, others cutting out the musk-bag. On the paper, which envelopes each pod, are similar rude representations in blue or red ink.

Pod musk (moschus in vesicis) consists of roundish, or somewhat oval pods, which are generally broader at one end than at the other. The hairs are brownish yellow, or greyish or whitish, bristle-like, and stiff; arranged in a concentric manner around the orifice of the sac. A careful examination. 1

1 Journal of the Asiatic Society of Bengal, vi. 119, Calcutta, 1827.
2 For further details respecting the structure of the musk sac, consult Brandt and Ratzburg, Med. Zool. Bd. i.
will always discover the remains of the penis. The pods are about 2½ inches long, and 1½ inches broad. The weight of each pod, as well as of the contained musk, is very variable. I am indebted to Mr. Noakes, druggist, of Snowhill, for the following account of the weight of six pods, and of the grain musk obtained therefrom:

<table>
<thead>
<tr>
<th>Pods of Musk</th>
<th>Weight</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5½ drachms 0 grains</td>
<td>Grain Musk16 drachms 15 grains.</td>
</tr>
<tr>
<td>1</td>
<td>4½ " 0 "</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 " 37½ "</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9 " 47½ "</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5 " 20 "</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3½ " 0 "</td>
<td></td>
</tr>
<tr>
<td>Total ... 6</td>
<td>37 " 15 "</td>
<td>16 " 15 "</td>
</tr>
<tr>
<td>Average . 1</td>
<td>6 " 12½ "</td>
<td>2 " 42½ "</td>
</tr>
</tbody>
</table>

Grain musk (moschus in granis; moschus ex vesicis) is granular, unctuous to the feel, mixed with hairs, of a dark reddish-brown colour, a bitter aromatic taste, and a strong, remarkable, very persistent smell (musky odour). Its odour can scarcely be called peculiar, since it is common to several animals and vegetables. Thus, the musk-ox and the musk-cat evolve it. The submaxillary gland of the crocodile secretes an unctuous musky substance. Among plants, Erodium moschatum, Malva moschata, and Centaurea moschata, may be referred to as possessing a musky odour. When mixed with other scents, musk has the remarkable property of augmenting and improving their smell, without much imparting its own: hence it is extensively used by perfumers. A few drops of potash added to musk increases its odour, by setting free, it is supposed, ammonia.

2. Siberian, Russian, or Kabardine (Caberdine) Musk (Moschus sibiricus, rossicus seu cabardinus). This is an inferior kind. The pods are said to be more oblong or oval than those of the China kind; the hairs longer and whiter. But I have examined large quantities of Siberian musk, the pods of which are not distinguishable from those of the China by any of these characters. The only invariable distinction I have observed is in the scent, which is remarkably different: it is much less powerful, and more nauseous and disagreeable, being somewhat empyreumatic. Geiger says, it is sometimes accompanied by an odour somewhat similar to that of the sweat of a horse. This kind of musk is imported in wooden boxes, and all the pods that I have examined were in a good state of preservation; but frequently, I am told, this is not the case.

Bucharian Musk (Moschus bucharicus) is described by some pharmacologists, but I have never met with it. The hairs are said to be yellowish or reddish-brown. The musk has a weak odour, and is of very inferior quality.

Adulteration.—The great sophisticators of musk are the Chinese. I have seen several artificial pods of musk which had been imported from Canton. T. W. C. Martius calls this artificial kind Wampo Musk, and says that, for some years past, it has been extensively introduced into commerce. The hairy portion of the sacs is formed of a piece of the skin of a

musk animal (readily distinguishable by its remarkable hairs), coarsely sown at the edges to a piece of membrane, which represents the smooth or hairless portion of the sacs. These pods are distinguished from the genuine ones by the following characters:—the absence of any aperture in the middle of the hairy coat; the hair not being arranged in a circular manner; and the absence of remains of the penis (found in every genuine musk sac). These false sacs, as well as the genuine ones, are sometimes enveloped in papers marked "Musk collected in Nankin by Jung-then-chung-chung-kee." The odour of the musk of the false sacs is ammoniacal.

Grain musk is sometimes imitated by dried blood, and perhaps by other substances. The fraud is to be detected by a careful examination of the appearance and odour of the particles, and by their chemical characters. An infusion of genuine musk gives no precipitate with a solution of bichloride of mercury, but does with tincture of nutgalls and acetate of lead. By incineration genuine musk leaves behind a greyish white ash, whereas blood yields a reddish one. Artificial musk is said to be prepared by rubbing in a mortar dried bullock's blood with caustic ammonia, and mixing the half-dried musk with genuine musk.

Commerce.—At an average of the three years ending with 1832, the imports of musk from all places eastward of the Cape of Good Hope, with the exception of China, amounted to 4,965 ounces a year.¹ In 1839, duty (6d. per ounce) was paid on 2,359 ounces.

Composition.—In 1803, Thiemann² analysed musk. In 1805, Bucholz³ examined it. In 1820, Blondeau and Guibourt⁴ published an analysis of it. Afterwards, Westler⁵ Buchner⁶ and Geiger and Reinmann⁷ submitted it to chemical investigation.

<table>
<thead>
<tr>
<th>Guibourt and Blondeau</th>
<th>Geiger and Reinmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Volatilised by (Water 46'925</td>
<td>1. Peculiar volatile substance) Quantity under-</td>
</tr>
<tr>
<td>drying \ (Ammonia 0'325</td>
<td>terminable.)</td>
</tr>
<tr>
<td>cholesterine, fatty acid with ammo-</td>
<td>3. Peculiar, fixed, uncrystallizable acid., Ditto.</td>
</tr>
<tr>
<td>nia, traces of a volatile oil........... 13'000</td>
<td>4. Stearine and oleine 1'1</td>
</tr>
<tr>
<td>3. Extracted subsequently by alcohol—</td>
<td>5. Cholesterine (with some oleine and resin) 4'0</td>
</tr>
<tr>
<td>Cholesterine, fatty acid with amo-</td>
<td>6. Peculiar bitter resin 5'0</td>
</tr>
<tr>
<td>nia, sal ammoniac, chlorides of</td>
<td>7. Osmazome and salts 7'5</td>
</tr>
<tr>
<td>potassium, sodium, and calcium, and</td>
<td>8. A mouldy-like substance, in part com-</td>
</tr>
<tr>
<td>an undetermined acid combined with</td>
<td>bined with ammonia and salts 36'5</td>
</tr>
<tr>
<td>the same hases 6'000</td>
<td>9. Sand 0'4</td>
</tr>
<tr>
<td>4. Extracted subsequently by water—</td>
<td>10. Water, some volatile odorous matter,</td>
</tr>
<tr>
<td>Gelatine, carbonaceous matter solu-</td>
<td>the above acid in part combined with</td>
</tr>
<tr>
<td>ble in water, the preceding chlorides,</td>
<td>alkaline salt, and loss 45'5</td>
</tr>
<tr>
<td>and an undetermined combustible acid</td>
<td>100'0</td>
</tr>
<tr>
<td>19'000</td>
<td></td>
</tr>
<tr>
<td>5. Extracted subsequently by ammonia—</td>
<td></td>
</tr>
<tr>
<td>Albumen and phosphate of lime 12'000</td>
<td></td>
</tr>
<tr>
<td>6. Fibrous tissue, carbonate and phos-</td>
<td></td>
</tr>
<tr>
<td>phate of lime, hairs, and sand 2'750</td>
<td></td>
</tr>
<tr>
<td>100'000</td>
<td></td>
</tr>
</tbody>
</table>

¹ M'Culloch’s Dictionary of Commerce.
³ Pflaff, Mat. Med. iv. 401.
⁴ Journ. de Pharm. vi. 105.
⁵ Buchner’s Rep. xvi. 222, 1824.
⁶ Ibid. xxii. 152, 1825.
⁷ Gmelin, Handb. d. Chem. ii. 1449.
Odorous Principle.—Has not hitherto been isolated. The strong and diffusive odour of musk would lead us to expect that its odorous matter was highly volatile. Yet such is not the fact; for we cannot deprive musk of its peculiar odour by distillation, though the distilled liquid has a musky smell. As it is destructible by heat, it is obviously organic. It is not peculiar to musk, since many other substances exhale an analogous odour. Some have suggested that it is the result of putrefaction of one or more of the constituents of musk; and in support of this statement it is asserted that, by Leslie’s method of desiccation, musk may be dried and rendered odourless. I have repeatedly performed this experiment with every care, but without obtaining odourless musk. Robiquet was of opinion that many odorous substances owed their odour to a certain quantity of ammonia, which, being disengaged, carried off with it substances not otherwise volatile, which masked the ammoniacal smell. In applying this hypothesis to musk, it must be admitted that it harmonizes well with several of the circumstances observed. Thus musk evolves ammonia; water distilled from musk contains ammonia; and potash added to a solution of musk heightens its odour (by facilitating the evolution of ammonia?).

Physiological Effects.—Musk disturbs the functions of the stomach, acts as a stimulant to the vascular system and brain, and afterwards proves narcotic. Jörg² and his pupils submitted themselves to its influence in doses of from 2 to 15 grains in water or mixed with magnesia. Its primitive effects were eructation, weight at the stomach, diminution or increase of appetite, dryness of the oesophagus, heaviness of the head, vertigo, and headache. The secondary effects were more marked on the encephalon than on the digestive canal: disposition to sleep, faintness, and a feeling of heaviness in the whole body. Lastly, deep and long-continued sleep. In very large doses the action on the nervous system was very marked; trembling in the limbs, and even convulsions, were observed. The pulse was increased in frequency, and somewhat fuller. These effects show that musk belongs to the cerebro-spinitants. It is a stimulant to the nervous and vascular systems, and an irritant to the stomach. Its effects are by no means uniform. Trousseau and Pidoux³ suffered from its use neither excitement of the vascular system nor sleep. Its influence is more manifest in some constitutions (those, for example, commonly termed nervous, in whom there is a very sensible or excitable condition of the nervous system), than in others (as the phlegmatic). Moreover, its effects are more marked in some morbid conditions of the cerebral functions (of the hysterical kind), than in the healthy condition of these functions. In some persons the nervous system appears to be peculiarly susceptible of the odour of musk; for it is reported that headache, giddiness, and even fainting, have been induced by it. When the digestive apparatus is previously in a state of irritation, musk increases the local disorder, giving rise to pain, nausea, vomiting, and diarrhoea. Sometimes the stimulant influence of musk is directed to the sexual organs. Trousseau and Pidoux⁴ experienced from it “une assez vive excitation des organes génitaux.” In the female it has occasionally provoked the cata-

1 Even after a century, musk, if originally good, retains its odour. The author examined some in the possession of Mr. Ince of the date of 1745, i. e. 100 years old. It was in small cohesive masses, and had a powerful and delightful odour. Is this the kind described as being scarce, and which the animal is said to squeeze out by pressure against stones? Mr. Ince has also some sixty years old: this is very inferior.

3 Traité de Thérap. i. 25.

4 Op. supra cit.
menial discharge. In persons disposed to epistaxis it has at times appeared to bring on the hemorrhage. Occasionally diaphoresis or diuresis has seemed to result from its use.

The odorous principle of musk is absorbed, and subsequently thrown out of the system by the excretories. Barbier\(^1\) observes that the urine and the sweat of persons who have taken this substance are powerfully impregnated with its odour—now and then so strongly, that the hand, applied for the purpose of feeling the pulse, retains its odour for some time. On post-mortem examination, the brain, and the cavities of the chest and abdomen, in those who have taken it during life, sometimes emit a strong smell of musk. Tiedemann and Gmelin\(^2\) recognised the odour of musk in the blood of the mesenteric, splenic, and portal veins; but they failed to detect it in the contents of the lucteals. Trousseau and Pidoux mention that in their experiments the excretions acquired a feeble odour of musk. Jörg, however, denies that the excretions of those who have taken musk have the smell of this substance.

Uses.—The effects of musk, already alluded to, show that it is a remedy which will be useful where we want to excite the nervous system; and, \textit{vice versá}, that it will be hurtful where there exists a determination of blood to the brain, and in those constitutions denominated plethoric. The cases in which experience seems to have shown that musk is sometimes useful are the following:—

1. Those diseases which are attended with convulsive movements, and which, therefore, are called \textit{spasmodic}. Such, for example, as hysteria, epilepsy (especially of children, and where the disease does not depend on organic changes, or on plethora), chorea, and even in some cases of tetanus. The employment of musk here has led to its denomination of antispasmodic.

Dr. Cullen,\(^3\) on whose practical information I place great reliance, says, "I maintain that musk (when genuine) is one of the most powerful anti-spasmodics that we are acquainted with. I have found it, with Dr. Wall, to be a powerful remedy in many convulsive and spasmodic affections, and in some of a very peculiar kind. I had once a gentleman affected with a spasm of the pharynx, preventing deglutition, and almost respiration. This, when other remedies had failed, was relieved by the use of musk, which often showed its power; for the disease continued to recur at times for some years after, and was only obviated or relieved by the use of musk."

2. In \textit{low fevers} which are accompanied with delirium, twitchings of the muscles, a small contracted pulse, and convulsions, musk has been occasionally employed, and with benefit. Like opium, its use in these cases is always uncertain; in one instance relieving, in another increasing the malady, though the cases may be to all appearances parallel.

3. In \textit{retrocedent gout}, as where gout attacks the stomach or the head, giving rise to headache or delirium, musk has been found beneficial. Cullen relates a case where immediate relief was obtained by the exhibition of fifteen grains of genuine musk.

\(^{1}\) \textit{Traité Éléa. de Mat. Med.}, 2d edit. ii. 143, 1824.

\(^{3}\) \textit{Mat. Med.}
4. In the delirium which sometimes occurs in pneumonia, but which bears no relation to the intensity of the latter, and is accompanied with adynamia, Recamier\(^1\) has found it beneficial.

5. Lastly, during the severe visitation of malignant cholera, musk was one of the remedies tried. I saw it employed several times, but without obvious relief. The experience of others was various; but the result is, that the profession has formed a very low estimate of its power in this disease.

Administration.—Musk should be given in substance, either in the form of boluses, or suspended in water by means of saccharine or mucilaginous substances. Its dose is from eight to fifteen grains. In children it may be sometimes used in the form of enema.

Essence of Musk, used as a perfume, is ordinarily prepared from the musk pods from which the grain musk has been extracted. The following formula has been furnished me, as one in common use:—Grain Musk, 3xiv. (or Musk Pods, \(\frac{3}{4}\))vij. Boiling Water, Oss. Digest until cold; then add, of Rectified Spirit, Ov. 3ss. Carbonate of Potash, 3s. Digest.

358. CERVUS ELAPHUS, Linn. L. E.—THE STAG.

History.—Both the hart and the hind (the male and female stag) are repeatedly mentioned in the Bible.\(^2\) The stag is also noticed by Hippocrates, Aristotle, Pliny, Galen, and Avicenna.

Zoology. Gen. Char.—Incisors \(\frac{2}{3}\), canines \(\frac{1}{3}\)–\(\frac{1}{2}\), or \(\frac{1}{4}\)–\(\frac{1}{5}\), molar \(\frac{4}{5}\)–\(\frac{3}{5}\) = 32 or 34. Canines, when they exist, compressed and bent back. Head long, terminated by a muzzle. Eyes large, pupils elongated transversely. A lachrymal sinus in most. Ears large and pointed. Tongue soft. Body slender. Four inguinal mammae. Horns solid, deciduous, branched, or simple, in the males; females, with one exception, without horns.

Sp. Char.—Horns with three anterior antlers, all curved upwards, the summit forming a crown of snags from a common centre. Lachrymal sinuses. Fur red-brown in summer, brown-grey in winter. A pale disc on the buttocks.

The stag usually begins to shed his antlers in February or March, immediately after which their reproduction begins, and by July he has completely renewed them.\(^3\) The first sensible phenomenon of the formation of these parts is the vascular excitement about the frontal bone. The arteries are observed to be enlarged, and to pulsate more strongly than usual; the heat is increased, and, in fact, all the symptoms of active inflammation come on. Very soon we perceive two cartilaginous tubercles, one on each side; these enlarge and elevate the skin, by which they acquire, from the distension of

2. Deul. xiv. 5; and Psalms, xviii. 33.
3. The temporary existence of the antlers shows that they are for a temporary use. The period of their existence, and the stoppage of their growth by castration, points to the sexual functions for their use. No sooner are they fully formed than the males engage in the most deadly fights for the females. In the College of Surgeons are two fine heads with the antlers interlocked: the animals died starved.
the latter, a velvety covering. These tubercles are soon converted into real bone; but the deposit of ossific matter does not stop here: it continues around the base of the antlers, thus giving rise to what has been usually termed the burr. These osseous prominences, the antlers, are supplied with two sets of vessels—an external or cutaneous, which is the most efficient, and an internal. By the pressure made on the former by the burr, they are obliterated: the covering of the antlers no longer receiving a supply of blood, soon ceases to live, dries up, and falls off. The internal vessels continue to keep up the life of the bone for a few months longer, when death takes place. This occurrence may be in part owing to the imperfect nutrition, and partly, perhaps, to the exposure of the bone to the air without any envelope; but it arises principally from some unknown changes in the vital actions. The antlers being now dead, nature soon sets about their separation. To effect this, the living parts at the base are rapidly absorbed, so that the antlers being left but slightly adherent to the frontal bone, readily fall off by a gentle knock. A few hours only elapse before the irregularity on the surface of the os frontis is covered by a thin pellicle, and shortly afterwards the formation of a fresh pair of antlers is commenced. Castration stops the growth of the antlers.

Hab.—Europe, Asia, and North of Africa.

Description and Composition.—The antlers of the stag are commonly called hartshorn (cornu cervi vel cornu cervinum). Though simply designated cornu (horn) in the London and Edinburgh Pharmacopoeia, their composition is very different to that of the horns of the ox or the sheep, and which are sometimes called true horn. The latter consists principally of coagulated albumen; whereas hartshorn has the same composition as bone. According to Merat-Guillot1 it consists of soluble cartilage (gelatine) 27·0, phosphate of lime 57·5, carbonate of lime 1·0, water and loss 14·5.

Hartshorn shavings or rasplings (rasura vel ramenta cornu cervi) readily give out their gelatine by boiling in water.

Physiological Effects and Uses.—Decoction of hartshorn is nutritive, emollient, and demulcent. It has been used in intestinal and pulmonary

1 Quoted by Berzelius, Traité de Chim. vii. 643
irritation. It is generally taken flavoured with sugar, lemon, or orange juice, and a little wine.

Hartshorn shavings are directed to be used in the manufacture of Antimonial Powder, but manufacturers generally substitute bone sawings.

Brewers sometimes employ decoction of hartshorn for fining beer and other liquors. It is preferable to isinglass on account of its cheapness. The gelatinous matter of bones being less soluble than that of antlers, bone sawings or shavings do not answer as a substitute for hartshorn.

CORNUS USTUM was formerly a preparation of the Ph. L. but is now removed to the Materia Medica, and designated "Calcis phosphas e cornu igne comparata."

359. OVIS ARIES, Linn. L. E.—THE SHEEP.

(Sevum; Adeps preparatus, L.—Fat, E.)

History.—The sheep is one of the anciently known animals. It is mentioned by Moses,1 by Herodotus,2 Aristotle, and other ancient writers.

Sp. Char.—[O. Musimon.]—Horns very strong, arched backwards and curved downwards, and towards the point. General colour fawn, more or less brown, white on the face and legs, and under the belly; a darker streak on the dorsal line, on the flanks, and often black about the neck.

Fig. 431. Fig. 432.

Ovis Aries

Ovis Musimon.

1 Genesis, iv. 2.
2 Thalit, iviii.
The immense number of races of this animal in cultivation are well known; and it is now difficult, perhaps impossible, to determine its native condition. Modern zoologists, however, ascribe our domesticated sheep to *Ovis Ammon*, called the *Argali* of Siberia, or to *Ovis Musimon*, termed the *Mouflon* or *Muflon* of Sardinia.

Hab.—Domesticated everywhere.

Description.—Mutton suet (*sevum; adeps preparatus*) is the fat from the neighbourhood of the kidneys of the animals. It is prepared (*sevum preparation*) by melting it over a slow fire, and straining through linen or flannel in order to separate the membranous portions.

Composition.—The ultimate analysis of mutton suet has been made by Chevreul and by Bérard. The first of these chemists also ascertained its proximate composition.

<table>
<thead>
<tr>
<th>Ultimate Analysis</th>
<th>Proximate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chevreul.</td>
</tr>
<tr>
<td>Carbon</td>
<td>78'996</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>11'700</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9'304</td>
</tr>
<tr>
<td>Mutton Suet</td>
<td>100'000</td>
</tr>
</tbody>
</table>

Physiological Effects and Uses.—Like other fatty bodies, mutton suet is nutritious, but difficult of digestion. Its local effects are emollient and demulcent. In medicine it is used as a basis for ointments, cerates, and some plasters; being preferred, in some cases, to hog's lard, on account of its greater consistence.

360. BOS TAURUS, *Liineus.—The Ox.*

(Lac.)

History.—An animal very anciently known and highly valued. It is repeatedly mentioned by Moses.

Zoology.

Gen. Char.—Incisors 2/3, canines 2/3, molars 2/3 = 32.

Body large. Members strong. Head large; forehead straight; muzzle square. Eyes large. Ears generally funnel-shaped. A fold of the skin, or *dew-lap*, on the under side of the neck. Four *mammae*; tail long, tufted; horns simple, conical, round, with different inflections, but often directed laterally, and the points raised.

Sp. Char.—Horns round, lateral arched, with the point turned outwards. Face flat, or a little concave. *Occipital crest* in the same line as the base of the horns. *Mammae* disposed in a square form. Hair fawn-coloured, brown or black, not sensibly longer at the anterior than the posterior parts. About seven feet long.

Mammary Glands two, placed close together, and constituting the *udder*. Each gland

consists of a number of lobes, made up of yellowish or reddish soft granules, which consist of very fine blood-vessels, nerves, and the commencement of the milk or lactiferous ducts (ductus galactophori) which unite to form 8 or 10 principal ducts, which open into the large duct, or duct of the teat. This tube is conical, and has a number of folds on its internal surface.

Hab.—Domesticated everywhere.

Descrip.—Milk (lac), or to be more precise in our description, cow's milk (lac vaccinum), is an opaque, white, emulsive liquid, with a bland sweetish taste, a faint peculiar odour, and a sp. gr. of about 1.030: the latter property is subject to considerable variation. When recently drawn from the animal it is slightly alkaline. Subjected to a microscopical examination, milk is observed to consist of myriads of globular particles floating in a serous liquid. These globules are exceedingly minute: according to Raspail the diameter of the largest does not exceed in size the 0.0003937 (about 1.2500th of an inch). They instantly disappear by solution on the addition of a drop of caustic alkali. Both Donné and Sir A. Cooper have separated the globules by repeated filtration: the filtered liquor was transparent. The milk globules consist essentially of butter. Donné denies that they contain any caseum, since they are soluble both in alcohol and ether, which do not dissolve caseum. Being specifically lighter than the liquor in which they are suspended, they readily separate by standing. They, therefore, rise to the surface, carrying with them some caseum, and retaining some of the serum; thus forming what is called cream. The milk from which the cream is separated is termed skimmed milk.

Cream (cremor lactis; flos lactis) has a variable sp. gr. The average, perhaps, is 1.0244. The upper stratum of cream is richest in butter, the lowest in caseum. By agitation, as in the process termed churning, the fatty globules unite to form butter (butyrum); the residue, called butter-milk (lac-butyrum), consists of caseum, serum, and a little butter.

Skimmed milk, like cream, has a variable sp. gr.; perhaps the average may be taken at 1.0348. If left to itself it readily acquires acid properties, while white coagula, commonly termed curds, separate from it. If an acid or rennet (an infusion of the fourth stomach of the calf) be added to it, this change is immediately effected. The curd separated by the rennet is called caseum. But after rennet has ceased to produce any more coagula, acetic acid will cause a further quantity to be formed. The curd thus separated by the acid is termed zieger or serai. The whey (serum lactis) left after the separation of the caseum and serai, yields, on evaporation, sugar of milk, one or more nitrogenous substances, lactic acid, and some salts.

Composition.—Milk has been the subject of repeated chemical investigation. The recent analysis of several kinds of milk, published by MM. O. Henry and Chevallier, has been already stated.

The following table shews the composition of several domestic preparations of milk:

2. London Medical Gazette, xxv. 302.
4. See Berzelius, Traité de Chim. vii. 583.
1. Caseum or Casein; Albumen of Milk; Lactalbumen.—An albuminous substance distinguished from the albumen of the egg and of blood by its not coagulating when heated, by its being coagulated on the addition of acetic acid, and by the products of its spontaneous decomposition. When dried it is yellowish and transparent, like gum; it is odourless, and has a very slight taste. It is soluble in water. If its solution be boiled in contact with the air it becomes covered with a white pellicle insoluble in water. The acids unite to form with it, when they are in excess, insoluble compounds. Various salts (as sulphate of copper, bichloride of mercury, nitrate of silver, bichloride of tin, &c.) form insoluble compounds with it. Its composition has been already stated.

2. Butter.—This well-known substance consists of three fatty bodies, stearine, elaine or oleine, and butyrine. The latter substance is characterised by yielding, by saponification, three volatile, odorous, fatty acids, viz. butyric, capric, and caproic acids. A small quantity of these acids exists in ordinary butter, especially when it has been exposed to the air, and gives butter its peculiar odour.¹

3. Sugar of Milk; Lactis; Saccholactin.—Obtained from whey by evaporation. As used in commerce it occurs in cylindrical masses, in the axis of which is the cord which serves as the nucleus for the crystals. It is extensively made in Switzerland. Mr. Hess² has shown that, under certain conditions, sugar of milk is susceptible of fermentation, as was before inferred from the fact that the Tartars prepare a vinous liquid, called Koumiss,³ from mares’ milk. It is gritty under the teeth, and is very slightly soluble in alcohol. It is much less sweet, and less soluble in water, than common sugar. By the action of nitric acid it yields, like gum, saccholactic or mucic acid; so that it forms, as it were, a connecting link between sugar and gum. The composition of it, according to Pront, has been already stated. The formula of crystallized sugar of milk is C_{34}H_{30}O_{9}.5 H₂O. [Owing to its presence the oxide of copper is reduced by Trommer’s test on boiling milk with sulphate of copper and potash.—Ed.]

4. Lactic Acid.—This, though stated by Berzelius to be a constituent of milk, is probably a product of its decomposition.

5. Salts.—Some of these are soluble in alcohol, as the lactates of potash (principally), soda, ammonia, lime, and magnesia; others are soluble in water, but not in alcohol, as sulphate of potash and the phosphate of potash and soda; lastly, the salts insoluble in water are the phosphates of lime, magnesia, and iron. The latter are held in solution in milk by the caseum principally. Berzelius says by the lactic acid also.

Characteristics of Good Milk. — The changes produced in the quality of the milk by diseased conditions of the cows has attracted consi-

¹ For some remarks on the physical and microscopical characters of butter, by Turpin, see Journ. de Chim. Méd. 2nde sér. t. vi. p. 117.
² Journ. de Pharm. xxxiii. 498.
³ Clarke’s Travels in various Countries of Europe, i. 238, Lond. 1810. See also Transactions of the Royal Society of Edinburgh, vol. i.
derable attention in Paris, owing to the prevalence of a malady called the
cocote, among the cows in that capital. The following are the essential
morbid changes which have been recognised in milk:—want of homogeneity,
impersonal mobility or liquidity, capability of becoming thick or viscid
on the addition of ammonia, and presenting, when examined by the micro-
scope, certain globules (agglutinated, tuberculised, or mulberry-like, mucous
or pus globules) not found in healthy milk. Hence, then, good milk should
be quite liquid and homogeneous; not viscid; and should contain an abun-
dance of spherical transparent globules, visible under the microscope,
soluble in alcalics and ether; should not become thick when mixed with
ammonia; and should form a flocculent precipitate with acetic acid, but not
be coagulated by heat alone. The relative quantity of cream afforded by milk
is estimated by a graduated glass tube called a lactometer. [The test for the
purity and goodness of milk is the microscope. By this instrument the
number, size, and form of the oil globules may be determined.—Ed.]

I have repeatedly submitted the milk supplied to me by a respectable dealer in this
metropolis, to examination by the lactometer, but the results have been most unsatisfactory,
as the quantity of cream which I procured varied from 5 to 23 per cent. by measure.
I have usually found the afternoon's milk to yield less cream than the milk supplied me
in the morning. On one occasion I found 11.5 per cent. of cream in the morning milk,
but only 5 per cent. in the afternoon milk. The milk of an Alderney cow yielded 17.5
per cent of cream.

Physiological Effects.—The dietetical properties of milk have been already noticed. As a medicinal agent it is regarded as a demulcent and
emollient.

Uses.—The dietetical uses of milk have been already noticed.

As a demulcent, milk is an exceedingly valuable substance in irritation of the
pulmonary and digestive organs. It is an excellent sheathing agent in
poisoning by caustic and acrid substances, and in some of these cases it acts as
a chemical antidote; for example in poisoning by bichloride of mercury,
sulphate of copper, bichloride of tin, the mineral acids, &c. Milk is further
employed on account of its demulcent qualities in the preparation of the
bread and milk poultrie, which requires to be frequently renewed on account
of the facility with which it undergoes decomposition, and acquires acid
qualities.

Milk is a constituent of the Mistura Scammonii, E.

Whey is an excellent diluent and nutritive. Wine whey (serum lactis
vinosum) taken warm, and combined with a sudorific regimen, acts power-
fully on the skin, and is a valuable remedy in slight colds and febrile dis-
orders. I have already referred to the uses of cream of tartar whey, ahum
whey, and tamarind whey.

1. Lactic Acid. \(\text{C}_6\text{H}_5\text{O}_3 + \text{aq. Symbol}=\text{L} \). This acid has been introduced into
medicine by Mageudie. As it is one of the constituents of the gastric juice he pro-

1 See Journ. de Pharm. xxv. 301–318.
2 Recherches microscopiques sur divers luits obtenus de vaches plus ou moins affectées de la
maladie qui a régné pendant l’année de 1828 à 1839, et destinée vulgairement sous la dénomina-
tion de Cocote, par M. Turpin, in the Mémoires de l’Académie Royale des Sciences de l’Institut,
3 Formulaire pour la préparation et l’emploi de plusieurs nouveaux médicaments, Paris, 1835.
posed its use in dyspepsia, and as it is a ready solvent of phosphate of lime he suggested its employment in phosphatic deposits in the urine. An Italian physician\(^1\) has more recently recommended it in gout, in consequence of its being a special solvent of the freshly precipitated phosphate of lime. It has been exhibited in the form of lozenges, or in solution in water flavoured with sugar.

2. **OX BILE** (*Fel Bovinum seu Tauri*). Formerly extract of ox bile (*Fel tauri inspissatum*) was employed in medicine as a tonic, and it has been recently re-introduced by a few practitioners in dyspeptic cases and biliary derangement. The dose of it is a few grains in the form of pills.

Order III. PACHYDERMATA, Cuvier.—**THE PACHYDERMS.**

Essential Characters.—Three kinds of teeth. Four extremities, with the toes variable in number, and furnished with strong nails or hoofs. No clavicles. Organs of digestion not disposed for ruminating.

361. SUS SCROFA, Linn. L. E. D.—THE HOG.

(Adeps preparatus, L.—Fat, E.—Adeps suillus, D.)

History.—The hog is an animal very anciently known. By the Levitical law the Jews were forbidden to eat its flesh;\(^2\) on account of either the filthy habits of the animal, or its supposed tendency to engender skin and other diseases, more especially leprosy. The Mahometans are also interdicted from eating it.

Zoology.

Gen. Char.—Incisors,\(\frac{3}{2}\) or \(\frac{4}{2}\); canines, \(\frac{1}{2}\); molars, \(\frac{1}{2}\); \(\frac{1}{2}\); or 44.

Canines bent upwards and laterally; molars tuberculous; lower incisors bent forwards. Four toes on all the feet, the two middle ones only touching the ground, armed with strong hoofs. Nose elongated, cartilaginous. Body covered with bristles. Twelve teats.

Sp. Char.—Tusks strong, triangular, directed laterally. No protuberance under the eyes. Colour blackish-gray in the wild animal, but varying much in the domesticated races.

The varieties of this animal are almost innumerable. They are most conveniently reduced to the following:—

a. *S. Scrofa ferus*. The wild hog, or wild boar.

b. *S. Scrofa domesticus*. The domesticated hog, which varies in its form and colour.

c. *S. Scrofa pedibus undivisis*. The hog with solid and undivided hoofs. This variety was noticed by Aristotle and Pliny.

\(^1\) *British and Foreign Medical Review*, ix. 239.

\(^2\) *Levit. xi. 7.*
Hog's Lard:—Properties; Composition; Physiological Effects.

Hab.—The temperate parts of Europe and Asia; the northern parts of Africa; America; the Islands of the South Sea, &c.

Preparation.—The fat of the animal is employed in medicine. That about the loins being firmer and denser than the fat of the other parts of the animal, is selected for medicinal use. In order to separate it from the membranes in which it is contained, it is melted over a slow fire, then strained through flannel or linen, and poured while liquid into a bladder, where it solidifies by cooling (adeps preparatus). Occasionally salt is added to preserve it; but unsalted lard should be employed for medical purposes. By melting in boiling water, lard may be deprived of any salt which may have been mixed with it. While solidifying, lard should be kept stirred, to prevent the separation of stearine and claire.

Properties.—Hog's lard (adeps suillus vel porci) or axunega (axunelia, so called from the use anientely made of it, namely, greasing the axle of a wheel,—unguendi axem) is at ordinary temperatures a white or yellowish white solid. Its melting point varies from 78·5° F. to 87·5° F. In the liquid state it should be perfectly clear and transparent; but if it be intermixed with water it has a whitish or milky appearance. It should have little or no taste or odour. By exposure to the air, however, it acquires an unpleasant odour and acid properties. In this state it is said to be rancid. This condition is induced by the oxygen of the air, part of which is absorbed, while a small portion of carbonic acid is evolved. As stearine does not become rancid in the air, while elaine does, the rancidity of lard is referred to the latter constituent. But it has been found that the purer the elaine the less readily does this change occur; whence it is assumed that some foreign substance in the elaine is the primary cause of rancidity, either by undergoing decomposition or by acting on the elaine.

Composition.—The ultimate composition of lard was ascertained by Chevreul,¹ as well as by Saussure and Berard. The first of these chemists also made a proximate analysis of rancid lard; and Braconnot determined the composition of fresh lard.

<table>
<thead>
<tr>
<th>Ultimate Analysis</th>
<th>Proximate Analysis of Fresh Lard—Braconnot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon..... 79·098</td>
<td>Stearine 38</td>
</tr>
<tr>
<td>Hydrogen ... 11·146</td>
<td>Margarine 3</td>
</tr>
<tr>
<td>Oxygen 9·756</td>
<td>Elaine or Oleine 62</td>
</tr>
<tr>
<td>Lard...100·000</td>
<td>100</td>
</tr>
</tbody>
</table>

Proximate Analysis of Rancid Lard—Chevreul.
Stearine and elaine.
Volatile non-acid matter having a rancid odour.
Caproic (f) acid.
Another volatile acid.
Oleic, margaric, and perhaps stearic acids.
Yellow colouring matter.
Non-acid, non-volatile matter, soluble in water.

Physiological Effects.—Lard, like other animal fats, is nutritious, but very difficult of digestion. Its topical effects are demulcent and emollient. Both the flesh and fat of the hog have been long supposed to dispose to cutaneous disease; but it is no easy matter either to prove or disprove this opinion.

Uses.—In medicine lard is principally employed as a basis for unguents. It has been used, by friction, as an emollient; but the practitioner is now ob-

¹ Gmelin, Handb. d. Chem. ii.
solete. In pauper establishments it is sometimes employed, as a substitute for spermaceti ointment, to dress blisters; but the salt which lard sometimes contains, as well as the facility with which this fat becomes rancid, are objections to its use. I have seen it occasion considerable irritation.

Order IV. Rodentia, Cuvier.—The Rodents.

Glires, Linnaeus.

Essential Characters.—Two large incisors in each jaw, separated from the molars by a vacant space. No canine teeth. Molars with flat crowns or blunt tubercles. Extremities, the posterior longest, terminated by ungualated toes, the number varying according to the species. Mammae variable in number. Stomach empty. Intestines very long.

(Castoreum; Folliculi præputii proprio humore repleti, L.—A peculiar secretion from the preputial follicles, E. D.)

History.—Castoreum was employed in medicine by Hippocrates, who considered it to have the power of acting on the uterus. It was an ancient opinion that the castor sacs were testicles, and that when closely pursued by the hunter, the animal tore them off, leaving them behind as a ransom. This absurd notion [which is carried out in old plates on beaver hunting] seems to have been long ago disbelieved; for Pliny tells us that Sextius derided it, and said it was impossible the animal could bite them off, since they were fastened to the spine. Thus was one error confuted by another; the truth being, the testicles are so placed in the inguinal region, on the external part of the os pubis, that they are not discernible until the skin is removed. Moreover, female beavers also have castor sacs.

Zoology. Gen. Char.—Incisors \(\frac{1}{2} \), canines \(\frac{2}{6} - \frac{5}{6} \), molars \(\frac{4}{3} - \frac{4}{6} = 20 \). Molars composed of flat crowns, with sinuous and complicated ridges of enamel. Five toes on each foot, the anterior short and close, the posterior longer and palmed. Tail broad, thick, flattened horizontally, of an oval form, naked, and covered with scales (Stark).

Sp. Char.—Fur consisting of two sorts of hair, one coarse and brownish, the other downy, more or less grey. About two feet long.

The ordinary colour of the animal is brown; but yellow, black, spotted, and white beavers, are met with. The two latter are very rare. Richardson has never seen either of them, though he has met with black beavers which were kept as curiosities. The tail is remarkable for its scaly appearance. Its great breadth (oftentimes 5 inches) depends, not on the width of the caudal vertebrae, but on numerous strong tendons inserted into these vertebrae. Incisor teeth smooth, orange-coloured anteriorly, white posteriorly.

1 Juvenal, Sat. xii. v. 34.
3 Fauna Boreali-Americana.
The Beaver:—Anatomy of the Castor Sacs.

Fig. 434.

Castor Fiber.

b, Scales of the tail.

Fig. 435.

Skeleton of the Castor Fiber.

a, Molars of the upper jaw.

There is some reason for supposing that the European and American beavers are distinct species. The former are burrowers, the latter are for the most part builders.

Anatomy of the Castor Sacs.—It has been before stated, that both male and female beavers are furnished with castor saes: hence it will be convenient to consider them in the two sexes separately.

1. Of the Male Castor Sacs.—If the animal be placed on his back, we observe, near the tail, a hollow (called by some a cloaca) inclosed by a large wrinkled, somewhat hairy, cutaneous protuberance, which according to Perrault 2 is easily contracted and dilated, not only by a sphincter, but as the anus, but simply like a slit. In this hollow the anus, the prepuce, and the oil saes open. When the skin of the abdomen is removed, four eminences, covered by their appropriate muscles, are brought into view. They are placed between the pubic arch and the so-called cloaca. The two nearest the pubes are the castor saes, while those next the cloaca are the oil saes. Between the two castor saes, in the male, lies the penis with its bone (os penis); it is lodged in a long preputial canal, which terminates in the cloaca, and has some analogy to a vagina; so that there is some difficulty to determine, until the skin be removed, whether the individual be male or female.

The penis points towards the tail, not towards the navel, as in the dog. Its surface is covered with longitudinal wrinkles and pits: in each of the latter is found a dark-coloured warty-like body. The testicles, vasa deferentia, and vesiculae seminales, present nothing remarkable. There is no serotum. Like most other Rodentia, the beaver has vesiculae accessoriae, or blind ducts, which open into the urethra near its commencement. Just at that point where the urethra joins the penis are observed Cowper’s glands. The castor saes open by a common aperture into the preputial canal. This aperture is about one inch in width, and is placed opposite the extremity of the glans penis in the relaxed condition of the organ, and about one inch from the orifice of the prepuce. Between this common orifice of the castor saes and the glans penis is a semilunar fold. There is also a second, similar, but thicker, fold covering the rectum. The castor saes are pyriform and compressed. They communicate with each other at their cervical portion; but their fundi diverge outwards and towards the pubes. Each castor sac is composed of an external or cellular coat which incloses muscular fibres. The latter are a continuation of the panniculus carnosus: their function appears to be to compress the sac. Within these fibres lies a very vascular coat, which covers the scaly or glandular coat, and sends processes in between the convolutions of the latter. The scaly or glandular coat forms numerous folds or convolutions, which are largest and most numerous in the fundus of the sac. Externally, it is shining, silvery, and iridescent. Internally, it presents

1 See some remarks on the distinctions between the burrowing and building beavers, in Jameson's Journal, xxviii. 68.

2 Mem. for a Natural History of Animals, p. 85, Lond. 1701.
numerous, small, lanceolate, oblong or semilunar scales, which are mostly toothed at their margin, and envelope each a brown body, supposed to be a gland, and which is lodged in a small cavity. The inner surface of the castor sacs is lined with epithelium (a continuation of the epithelium of the prepuce), which invests the glands and scales of the scaly or glandular coat. In the cavity of the castor sac is found the castoreum, which, when recent, is thin, fluid, highly odorous, yellow or orange coloured, becoming deeper by exposure to the air. The quantity of this secretion is liable to great variation. The oil sacs are conglomerate glands, placed one on each side between the castor sac and anus: their ducts terminate in the cloaca. The secretion of these sacs is a fatty matter, having the consistence of syrup or honey, a peculiar odour, and a yellowish colour. It was formerly used in medicine under the name of pinguedo seu axungia castoris.

2. Of the Female Castor Sac—We are less perfectly acquainted with the anatomy of the female than of the male beaver. Indeed, I am acquainted with three dissections only of the former; viz. one by Gottwaldt, a second by Hegse, and a third by Mortimer. The subjoined description is from the memoir of the last-mentioned authority. He says the animal had two ovaries, and an uterus dividing into two horns (uterus bicornis) as in the bitch. The bladder lay exactly over the body of the uterus. The meatus urinaris ran upon the vagina above two inches in length. Just below the os pubis, on each side of the vagina, above the meatus urinaris (supposing the animal laid on her back), a pair of pyriform bags were found, about 1 ½ inches long, and 1 inch broad, diverging at their fundi or broad ends, but approximating most closely at their necks or narrow extremities, which were canals communicating with the adjoining glands. The membranes which formed these bags were tough, wrinkled, and furrowed, of a livid dirty colour. They were hollow, and capable of containing about an ounce of water. Upon opening them a small quantity of dark brown liquor, like tar, was found, having an odour like castoreum, and in addition a smell of ammonia. It is probable that the emptiness of the sacs, and the unusual quality of their contents, arose from the youth of the animal. About an inch lower, on each side of the vagina, were a pair of glands (oil sacs), each about ½ inches long, and ½ inch broad. Their form was oblong but irregular, and having several protuberances externally; their colour was pale flesh, like the pancreas. They seemed to communicate with the castor sacs, the sac and gland on each side opening externally by one common orifice, around which were long black hairs.

Hab.—North America, from 67° or 68° to about 33° north latitude; Europe, from 67° to 36° north latitude, but becoming very scarce. It appears to have been indigenous.

Capture of the Beaver.—The beavers are caught in various ways; sometimes in traps, sometimes in nets: but the usual method is to break up the beaver houses when the animals retreat to their bank holes, where they are easily taken.

Commerce.—Castoreum is imported from North America by the Hudson’s Bay Company. The greater part of that brought over is sold for exportation. In 1839, duty (6d. per lb.) was paid on 801 lbs.

Description.—Two kinds of castor (castoreum) have long been known, viz. Russian and American. The latter, however, is the only one now met with in English commerce.

1. American Castor (Castoreum Americanum)—It usually consists of two isolated sacs, frequently wrinkled, and which are connected so as to form two parts, like a purse, or like two testicles connected by the spermatic cords.

For further details respecting the structure of the castor sacs, consult Brandt and Ratzeburg, Met. Zool. 1.

2 Both referred to by Ratzeburg, op. supra cit.

3 Philosophical Transactions, xxxviii. 1735.
The size of the sacs is liable to considerable variation; they are elongated and pyriform. The penis or the oil sacs, or both, are sometimes attached to them. The colour and other external characters are variable. In December 1834, I examined between three and four thousand pounds of castoreum, which was offered for sale by the Hudson's Bay Company. A considerable quantity of it was covered externally with a bluish white mouldiness, while the remainder was of a brownish colour. The brown colour, however, varies considerably; sometimes being dark, in some cases yellowish, or even reddish. Some castor sacs are found nearly empty, and present, in their dried state, a very fibrous character; these are of inferior quality. Others are found gorged with unctuous matter, and, when quite dry, break with a resinous character, presenting no fibres until they have been macerated in spirit of wine. In many well-filled sacs the castoreum is quite soft.

In English commerce, two varieties of American castoreum are made: one called the Hudson's Bay, the other the Canadian. Both are imported by the Hudson's Bay Company. The Hudson's Bay castoreum is usually considered the finest variety. The specimens of it which I have examined at the house of the Company, in December 1834, came from Fort York and Moose River. The finest samples were superior to any of the Canadian kind, though the average quality was much the same.

2. Russian Castor (Castoreum rossicum)—This is exceedingly scarce. When met with it fetches a very high price. I have paid for a museum sample £2 per oz., while American castor fetched only twenty shillings per lb. There are at least three kinds of castor sold as Russian. Chalky Russian castor occurs in smaller and more rounded sacs than the American kind. The specimens of it which I have seen had neither penis nor oil sacs attached. The colour is ash-brown. Its odour is peculiar, empyreumatic, and readily distinguishable from that of the American kind. Under the teeth it breaks down like starch, has at first little taste, then becomes bitter and aromatic. It is readily distinguished from all other kinds by dropping it into diluted hydrochloric acid, when it effervesces like a lump of marble. I have seen another kind of castor from Russia, which may be termed Resinous Russian castor. The sacs were large, well filled with resin, did not effervesce with hydrochloric acid, and had an odour very similar to that of American castor. The Russian castor described by Guitourt appears to have been subjected to some preparation. [Among the frauds connected with the sale of castor, the author mentions that he examined a pair of "fictitious castor sacs," but found them to be real sacs emptied of their natural contents and stuffed with hay. The coats were thin and membranous.—Ed.]

Composition.—Castoreum has been subjected to chemical analysis by several chemists. Those whose results deserve especial reference are Bonn and Brandes.

1 See London Medical Gazette, xvii. 296, fig. 41.
3 See London Medical Gazette, xvii. 297, fig. 42.
4 Quoted by Gmelin, Handb. d. Chem. ii. 1449.
5 Ibid.
ANIMAL SUBSTANCES.

Brandes’ Analyses.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Volatile oil</th>
<th>Resin</th>
<th>Castorine</th>
<th>Cholesterol</th>
<th>Castorin</th>
<th>Albumen</th>
<th>Osmazome</th>
<th>Carbonate of lime</th>
<th>Other salts</th>
<th>Mucous</th>
<th>Animal matter like horn</th>
<th>Membrane</th>
<th>Moisture and loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Castor</td>
<td>1'00</td>
<td>13'85</td>
<td>0'33</td>
<td>0'05</td>
<td>0'20</td>
<td>33'62</td>
<td>2'82</td>
<td>2'30</td>
<td>20'00</td>
<td>2'30</td>
<td>2'0</td>
<td>22'83</td>
<td>99'30</td>
</tr>
<tr>
<td>Russian Castor</td>
<td></td>
<td>99'0</td>
</tr>
</tbody>
</table>

These analyses do not agree with my experiments and observations. The quantity of carbonate of lime assigned to Canadian castor is much too large. By incinerating 60 grains of American castor in a platinum crucible I found only 1'2 grs. of ashes, which if the whole were lime would be equal to little more than 3'57 per cent. of chalk.

1. **Volatile Oil of Castoreum.—** This is obtained by distilling the same water several times with fresh portions of castor. It is pale yellow, and has the odour of castor, with an acid bitter taste. Bonn says he obtained 34 per cent. of oil, but there must be some error in this statement.

2. **Castorine; Castoreum Camphor, Gmelin.**—A crystalline, fatty, non-saponifiable substance. It is fusible, and in the liquid state floats on water. When pure it is quite white. It is soluble in ether and boiling alcohol. By long ebullition with nitric acid, it is converted into a yellow crystallizable acid, called castoric acid. The super-castorate of ammonia is crystallizable, and forms white precipitates with the salts of silver, lead, and protoxide of iron, and a green precipitate with the salts of copper. Castorine is obtained by boiling castor in alcohol; the castorine is deposited when the liquor cools. Scarcely any can be got from American castor.

3. **Resin.**—This is dark brown, has an acid and bitter taste, and a slight odour of castor. It is insoluble in pure ether, but dissolves readily in alcohol. Water precipitates it from its alcoholic solution.

[In reference to the chemical constitution of Castor, Dr. Pereira made the singular discovery that the aqua castorci contained the hydruret of salicine. His paper on the subject was published in the Pharmaceutical Journal for November 1851. — Ed.]

In the year 1844, Wöhler remarked that carbolic acid strongly resembled in odour fresh castoreum, and suggested that the volatile oil of castoreum was probably nothing but carbolic acid; and added, that, like the latter substance, it became black by its reaction with chromic acid. Soon after this observation I endeavoured to verify it, by subjecting aqua castorei, freshly prepared from good American castoreum, and in which were floating globules of oleum castorei, to the action of a solution of chromic acid; but I failed to produce any blackening effect, even at a boiling temperature. It occurred to me, therefore, that probably carbolic acid was not an invariable constituent of castoreum.

In 1848, Wöhler announced the existence of both carbolic acid and salicine in Canadian castoreum. By subjecting this to distillation with water, he obtained a clear distillate in which small drops of oil were floating, and which possessed a strong odour of castoreum. With sesquichloride of iron, it gave distinctly, though feebly, the characteristic reaction of carbolic acid; it became violet, which colour again disappeared in a short time, with a whitish cloudiness precisely like carbolic acid. It was not coloured yellow by ammonia, as is the case with hydruret of salicylic acid (salicylic acid). In the liquid which was left in the retort, Wöhler detected, after filtration, a benzoate and salicine. On mixing it with muriatic acid, it became turbid, and, in the course of a day, deposited small crystals of benzoic acid. It was also observed that the mother-liquor

separated from these crystals contained hyduret of salicyle, for it gave with sesquichloride of iron, first a deep violet blue colour, and only afterwards the white cloudiness produced by benzoeic acid. In the muriatic solution, from which the benzoeic acid had separated, Wöhler detected salicene by the action of chromate of potash and sulphuric acid, which converted it into hyduret of salicyle.

I had occasion to examine the *aqua castorei*, prepared from American castoreum, and was surprised to find that it had acquired the very agreeable odour of the distilled water of the flowers of meadow-sweet (*spirea ulmaria*). It no longer contained any traces of volatile oil. On testing it with sesquichloride of iron it gave at first a violet colour, and afterwards a whitish cloud (benzoate of iron). With ammonia it became feebly yellow. It was obvious, therefore, that it contained hyduret of salicyle, which must either have been originally obtained by distillation from the castoreum, or have been produced in the *aqua castorei* by some other principle. That it was not originally obtained from the castoreum I have strong grounds for believing; because the *aqua castorei*, when first prepared, had not that agreeable odour which it now possesses, but had the usual castoreum smell, and contained abundance of globules of volatile oil of castoreum. For several years past, in my lectures, I have noticed and described it, and have remarked, that unlike another specimen of *aqua castorei*, which I prepared in 1833, it appeared to me to be losing its proper castoreum odour, and to be acquiring a more agreeable one. During the last twelve months, however, the change of odour has been more marked and rapid than it had been previously, the hyduret of salicyle having been gradually formed in the *aqua castorei*.

As the *aqua castorei*, in which it was formed, was obtained by distillation, it is obvious that the hyduret of salicyle must have been produced from some volatile substance. Now as the water originally contained globules of oleum castorei, which have gradually disappeared, and become replaced by the hyduret of salicyle, this oil would seem to be the real source of the last mentioned substance. However this may be, it can scarcely be doubted that both the hyduret of salicyle and carbolic acid (which Wöhler declares to be identical with oleum castorei) are derived from salicene (the presence of which in castoreum has been before stated.) As the beaver feeds on the bark of the willow and poplar, we have a ready explanation of the source of the salicene.

Salicene by oxidation readily yields hyduret of salicyle (as by the action on it of a mixture of chromate of potash and sulphuric acid). When it is swallowed it suffers oxidation, and is excreted in the form of hyduret of salicyle. Professor Liebig informed me that *Chrysonela Populi*, a coleopterous insect which feeds on the leaves of the willow and poplar, excretes hyduret of salicyle; and if allowed to crawl over paper moistened with a persalt of iron it produces a violet-coloured stain. In the human subject, also, salicene suffers a similar change, and is converted into hyduret of salicyle, which passes out of the system in the urine, in which fluid it may be detected by a persalt of iron, which strikes a violet colour with it. Laveran and Millon assert that salicene acid is also produced, but this is doubtful; for Wöhler and Frerichs found that hyduret of salicyle did not become changed into salicene acid in its passage through the system. Hitherto, I believe that carbolic acid has not been detected in the urine after the use of salicene; but its presence is by no means improbable, as it is one of the products of the decomposition of the alkaline salicylates.

But to return to the origin of the hyduret of salicyle in *aqua castorei*. It by no means follows that it should be derived from the carbolic acid, but more probably from some other volatile product of the oxidation of salicene. As carbolic acid is a constituent of castoreum, and as it is a powerful agent on the animal economy, it follows that it must be one of the active principles of castoreum. Wöhler and Frerichs found that rabbits, guinea-pigs, and dogs, to which a few drops of carbolic acid diluted with water were administered, constantly died in convulsions in the course of one quarter of an hour; but no important anatomical lesion was discovered in the bodies after death. As castoreum contains but very minute quantities of carbolic acid, it is obvious that should its medicinal activity be found to depend on the latter, a cheap and more effective substitute for castoreum would be found in carbolic acid obtained from coal tar. And

1 This specimen also contains minute traces of the hyduret of salicyle, as shown by the action of the sesquichloride of iron, as well as of ammonia.
ANIMAL SUBSTANCES.

here I may observe, that carbolic acid and creosote are closely related, if indeed they be not identical, as Laurent and some other chemists suspect.

As the odour of Hyraceum (see p. 2275) closely resembles that of castoreum, the presence of carbolic acid may be suspected, but no evidence of its presence can be gained by the action of the sesquichloride of iron on either a watery infusion of hyraceum, or on the distilled water of this substance.

Physiological Effects.—Castor is usually denominated a stimulant and antispasmodic. Since the time of Hippocrates it has been regarded as endowed with a specific influence over the uterus.

In 1768, Mr. Alexander¹ took it in various doses to the extent of two drachms; and the only effect he experienced from it was disagreeable eructations. In 1824, Jörg and his pupils, males and females,² submitted themselves to its influence; but the only effects were a slight uneasiness in the epigastric region, and disagreeable eructations having the odour of castor, and which were not allayed by breakfast or dinner, and only ceased at night when sleep came on.

These facts seem to show that castoreum possesses but little medicinal power: yet Dr. Cullen³ declares that on many occasions it is certainly a very powerful antispasmodic. Its odorous particles become absorbed, for they have been recognised in the urine by their smell.

Uses.—Castoreum was formerly in great repute in those affections of the nervous system denominated spasmodic, such as hysteria, epilepsy, and catalepsy, more especially when these diseases occurred in females, and were attended with uterine disorder. In those kinds of fever called nervous, this medicine has also been recommended. In the northern parts of Europe it is used for its supposed uterine influence, to promote the lochial discharge, and the expulsion of retained placæ. It is, however, little employed, partly, perhaps, in consequence of its disagreeable taste and smell, its variable quality, and its high price; but, for the most part, I believe, because practitioners consider it an almost inert remedy.

Administration.—It is best given in substance, either reduced to powder or in the form of pill. The dose should be at least 5iij.

1. Tinctura Castorei, L. E.; Tincture of Castor. (Castor, bruised, 3iiss.; Rectified Spirit, Oij. Macerate for seven days, then press and strain. "This tincture may be prepared either by digestion or percolation, like the tincture of Cassia,⁴ E.)—Rectified spirit, used by the London and Edinburgh Colleges, is a better solvent for castor than proof spirit. The quantity of castor used in the processes is much too small. A fluidounce of the Edinburgh tincture contains three-fourths of a drachm, while the London preparation contains only half a drachm; so that to give a medium dose of castor (3i.), it would be necessary to administer 5iij. of the tincture (rectified spirit) of the London Pharmacopoeia! Dr. Paris⁵ says the dose of this tincture is mxxx. to f5iij. The tincture of castor made with American castor has a very different odour, is of a much paler colour, and yields a much

¹ Experimental Essays, p. 83.
³ Mat. Med.
⁴ Pharmacologia.
smaller amount of precipitate on the addition of water, than the tincture of Russian castor.

2. TINCTURA CASTOREI AMMONIATA, E.; Ammoniated Tincture of Castor. (Castor, bruised, æiss.; Asaefitda, in small fragments, Æx.; Spirit of Ammonia, Oij. Digest for seven days in a well-closed vessel; strain and express strongly the residuum; and filter the liquor. This tincture cannot be so conveniently prepared by the method of percolation, E.)—Stimulant and antispasmodic. Spirit of Ammonia is a good solvent for both castor and asaefitda.—Dose f3ss. to f5ij.

363. Hyrax Capensis.—The Cape Badger.

(Hyracceum, a proposed substitute for Castoreum.1)

History.—I have received from my friends, Messrs. August Faber and Co., of London, a small sample of this substance, with a note, stating that Hyracceum was a new article, intended as a substitute for castoreum in medicine. They inform me that they believe all that has been imported into Europe as yet, is a dozen tins of about one pound and a half each, which were sent from the Cape of Good Hope (the place of production) to Hamburgh, and there sold at about eight shillings each. The tins were of a cylindrical shape, and the hyracceum contained in each was in one mass, adhering to the tin without any other protection. As this substance is a very remarkable one, and is scarcely known even by name in this country, I subjoin a short notice of it, and of the animal which yields it.

The name hyracceum was first applied to this substance by Dr. Edward Martiny,2 in 1847. It is derived from Hyrax3 (the generic name of the animal yielding this substance), and bears the same relation to the latter word that castoreum does to castor. By the Dutch colonists, this substance has been erroneously called Dussen-piss, under the mistaken notion that it was the urine of the Dasse (the name by which the animal is known at the Cape).

Zoology.—The animals referred by zoologists to the genus Hyrax, and called by French zoologists Damaus, possess remarkable interest to the naturalist, on account of the importance of anatomy to the accurate determination of their position in a natural classification. For a long period they were placed among the Rodentia, to which in size and general appearance they bear some resemblance. But Cuvier showed that by their organisation, they really belong to the Pachydermata, being, with the exception of the horn, little else than rhinoceroses in miniature; at least, they have quite similar molars, but the upper jaw has two stout incisors, curved downwards, and, during youth, two very small canines, the inferior four incisors, without any canines. The dental formula of the genus, therefore, is as follows:—incisors 2, canines 0, molars 3—3=34. The animals have four toes to each of their fore-feet, and three to the hind-feet, all, excepting the innermost posterior, which is armed with a crooked and oblique nail, terminated by a kind of very small, thin, and rounded hoof. The body is covered with thick hair, and beset here and there with erinaceous bristles. They have a simple tubercle in place of a tail, short muzzle and ears, and six teats, two pectoral and four ventral.

The Hyrax capensis, Cuvier, the Cavia capensis of Pallas, and some other writers, was considered by Cuvier to be identical with the Hyrax Syriacus—the Coney of Scripture.4 It is about the size of a large rabbit; with soft hairs, greyish or ashly-brown above and paler beneath. Along the back is a dark band or stripe, with a blackish-spot in the middle. The head is thicker, and the mandible or lower jaw higher than in other

From a paper by the author in the Pharmaceutical Journal, September 1850.

2 Naturgeschichte der für die Heilkunde wichtigen Thiere, p. 119.

3 The word "hyrax" is derived from ἅραξ, which Nieuender (Alexipharmaca, 37) uses to signify the shrew-mouse.

4 Leviticus, xi. 5; Psalms, ciii. 18.
species. Vertebrae from forty-eight to fifty. Ribs twenty-one to twenty-two. Space between the meisor and molar teeth small. Interparietal bone large and three-angled.

Thunberg\(^2\) alludes to the popular notion at the Cape that these animals menstruate. "In the crevices of the mountains, a great number of *dasses* (*Cavia capensis*) were found, which were generally supposed to have the menstrual flux." In another passage\(^3\) he says, he "was shown a kind of bitumen, which the country people supposed to be the inspissated urine of the great mountain rat (*Cavia capensis*) that is found there. I was informed," he adds, "that this bitumen was to be found in great abundance in the cracks and crevices of the mountain, especially at one large projecting *krants* or summit."

Sparrman\(^4\) notices the animals which the natives call *dasses* or *badgers*. "These creatures," he observes, "which have some affinity with the ordinary marmots, and are about the same size, are eaten by many people, who look on them as a delicacy. They are likewise easily made tame, and are found in many other places in the African mountains. The little *Dassen islands* on the western coast of Africa take their name from them. On these places in the mountains where these creatures dwell, there is found a substance, called here, *dassen-piss*. It resembles petroleum, or rock oil, and by many that have seen it is actually considered as such. It is likewise used by some people for medical purposes, and by them is supposed to have greater powers than is consistent with any degree of probability. Finding that this substance did not stand the same proofs as petroleum, and at the same time that it was found only in places frequented by the *dasses*, I had sufficient reason to conclude that it proceeded from this animal, and that it is most probably the menstrual excretion of this creature, as observations made on tame females of this species have given room for such a suspicion; and besides the *dass's* excrements are often found in this substance, and seldom anywhere else."

Professor Lichtenstein informed Schrader that "this substance is found in small separate pieces on rugged mountainous declivities, chiefly in those districts where the *Hyrax capensis* is most frequently found. The colonists collect these pieces, which, when fresh, are soft and somewhat glutinous, and press them together in large masses, in which state the volatile constituents are better preserved. They employ it medicinally, either in the form of powder, or infused in wine, in many diseases, especially in hysterical complaints, in which it frequently acts in a surprisingly beneficial manner."

"The Hottentots," says Buffon\(^5\) "highly prize a kind of medicine, which the Dutch call *badger's urine* (pissal de blaireau). It is a black dry substance, which has a very bad smell, and is found in the crevices of the rocks, and in caverns. They say it is derived from the urine of these animals, who always pass it in the same spot. The urine deposits this substance, which, becoming dry by time, acquires some consistence. This," adds Buffon, "is very probable; for the animal at Amsterdam almost always passed his water in the same corner of the cage in which he was confined."

In the published accounts of the dissections of this animal, no glandular structure, such as we must suppose would be required for the secretion of *hyraceum*, is mentioned. Mr. Quekett writes to me that having examined a portion of the specimen which I gave him, he believes it "to be composed entirely of excrement, and not, like castoreum and musk, the secretion of a gland; for I find," he adds, "that the *hyrax capensis* has no anal or other glands."

But it deserves to be especially noticed that dissections of male animals only have been published; while the remark of Sparrman would lead us to suspect that the secretion is peculiar to the female. Further observations respecting the anatomical structure of the animal are required before we can arrive at any satisfactory conclusion respecting the origin of *hyraceum*. My friend, Mr. Thomas Bell, Sec. R.S., who some years since had in his possession a living full-grown male animal (the one which was subsequently dissected by Professor Owen), tells me that his specimen had no peculiar smell, nor did he perceive any peculiar gland on examination after death.

Pallas\(^6\) notices as unusual and anomalous in the structure of the animal, the mode of insertion of the ureters into the fundus of the bladder. Professor Owen notices, and

\(^2\) *Travels in Europe, Asia, and Africa, between the years 1770 and 1779*, i. 165.

\(^3\) *Ibid.* i. 166.

\(^4\) *Voyage to the Cape of Good Hope*, i. 309, 1786.

\(^6\) *Spicilegia Zoologica*, t. i. fasc. II. p. 10, 1767.
somewhat corrects this description. For what purpose this structure is designed in the hyrax, or whether the urine undergoes any change in consequence of it, Mr. Owen could not conjecture, but he alluded to the alleged medicinal qualities of this secretion.

Sparrman's opinion receives no support from the physical and chemical examination of the specimen in my possession.

Dr. Krauss, of Stuttgart, who resided for a long time at the Cape, says, that most of the colonists regard it as a secretion which appears with the catamenia.

Dr. Edward Martini, who reports this, adds, "that its occurrence at the rutting season gives great weight to this opinion. I regard hyraceum," he continues, "as a secretion connected with the sexual functions, and produced by highly developed preputial and probably also vaginal glands, as in the beaver, but with this difference, that while in the beaver we know not whether this secretion is at times evacuated, in the hyrax it is very probably actually excreted. For we find it in considerable quantities in those places where the animals are met with; a fact explained by the circumstances that the animals at the Cape usually live in herds. Dr. Krauss writes to me, that it is especially found in the fissures of the variegated sandstone of many mountains in the colony, especially in Kokmauskloof and Franche Hoek, and may be collected there in extraordinary quantity. In proof of this, it may be mentioned, that some years ago, Professor Pöppig, of Leipzig, received from the Cape some bird-skins, stuffed with hyraceum to preserve them. So that it must be met with in considerable quantity, and at a low price, and might, therefore, be obtained as an excellent substitute for the more costly castoreum."

Properties.—Hyraceum, such as I have received it, is a tolerably hard solid substance, which breaks with considerable difficulty; and has a blackish brown colour, a glistening or resinous appearance in places, which have a somewhat glutinous feel. It has a moderately strong odour, which greatly resembles that of Canadian castoreum. In taste, also, it is like the latter substance. [Its specific gravity is from 1.429 to 1.5.] When heated in the flame of a candle, it evolves a castor-like odour, swells up, burns, and leaves behind a spongy coal, with a whitish ash on the apex. From the yellow colour which it communicates to the outer cone of the flame, it manifestly contains sodium or soda, and from the intense white light which the ash on the apex of the coal evolves, it obviously contains lime (?). Water dissolves a considerable portion of it. Boiled in alcohol, it communicates a feeble colour to this liquid. By boiling in water, it evolved a smell similar to that of castoreum, and yielded a decoction which was of a dark yellowish-brown colour, and very feebly restored the blue colour of reddened litmus paper. When submitted to dry distillation in a test tube, it evolved, first, an odour of castoreum, then a dense white empyreumatic smoke, which communicated a blue colour to reddened litmus paper, thereby indicating the presence of ammonia. Hyraceum has been submitted to a careful microscopic examination by myself as well as by my friends Dr. Sharpey and Mr. John Quekett. Vegetable tissues (epidermis, cellular tissue, woody fibre, ducts and spiral vessels), animal hairs, and siliceous sand, have been found it. Mr. John Quekett observes that "spirit and caustic potash appear to have little or no action on it; but they bring out a few epithelium scales, principally of the scaly variety." I could detect no blood discs. Dr. Sharpey also observes that he "saw nothing which could for a moment be taken for blood particles or the remnants of blood particles." He observed globular particles, perhaps, either resinous or oily; and at least two kinds of vegetable epidermis, one apparently from a gramineous plant. The animal hairs were short fragments, very fine, and by no means numerous.

As the hyraceum which I have received contains vegetable remains, and probably, therefore, is contaminated with the excrement of the animal, I was anxious to know what kind of faecal matter is discharged from the bowels. Pallas says that the "scyba in ultimo intestino crantis, moleculosa, fusco-lutea." Dr. Andrew Smith, author of the Illustrations of the Zoology of South Africa, tells me that the faeces are in little balls, something like rabbits' dung. He also informs me that in the places where the animals live at the Cape, the faeces occur in heaps, while the hyraceum is found in the crevices of

1 Proceedings of the Zoological Society, 1832.
2 Op. ante id.
the rock, as if it had run off in a liquid state, from which he inferred that it was a product of urine and excrement.

Composition.—Schrader\(^1\) submitted hyraceum to chemical examination, and found its constituents to be as follows:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearine (Talgsubstanz)</td>
<td>1</td>
</tr>
<tr>
<td>Green resin, soluble in absolute alcohol</td>
<td>2</td>
</tr>
<tr>
<td>Odorous yellow substance, soluble in ordinary alcohol and in water</td>
<td>38</td>
</tr>
<tr>
<td>Brown substance, soluble in water</td>
<td>25</td>
</tr>
<tr>
<td>Insoluble residue (vegetable fibre, quartz sand, &c.)</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

From his experiments, Schrader concluded that hyraceum was for the most part of an animal nature, very probably an excretion, and that its medicinal properties resided in its odorous yellow constituent, which dissolved both in spirit and in water. Its colour did not arise from the presence of blood, for he left a decoction of hyraceum exposed to the air for some weeks, without finding that it underwent putrefaction or any change of odour. It still retained the smell of Canadian castoreum, and had scarcely any effect on reddened litmus paper. By distillation with water, a distilled liquor was obtained, which had a feeble, faint, somewhat resinous odour, but no reaction on test paper. The minute quantity of urine, therefore, which it contained, must be regarded, like the sand and the vegetable substances, as an accidental impurity, although it is not impossible that these substances may be due to the admixture of animal excrement.

According to Paffe, it is produced by the uropoietical system. The hyrax drinks very seldom, if ever; and its urine, like that of the hare, is thick and glutinous. The animals secrete the urine at one spot, and by evaporation the tenacious extract sticks to the root. The fresh urine is reddish-coloured. Lehmann regards it as solid excrement. Reichel\(^2\) analysed hyraceum, and obtained twenty different substances, including castorin, uric acid, urea, as well as benzoic and hippuric acids: but Fikentscher says that he could not detect either of the last four substances; and he gives the following as the results of his analysis:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter soluble in ether</td>
<td>11:5</td>
</tr>
<tr>
<td>Matter soluble in spirit of wine</td>
<td>38:0</td>
</tr>
<tr>
<td>Matter insoluble in both</td>
<td>19:1</td>
</tr>
<tr>
<td>Inorganic salts</td>
<td>31:4</td>
</tr>
<tr>
<td>Hyraceum</td>
<td>100:0</td>
</tr>
</tbody>
</table>

Tinctura Hyracei (Martii).—R Hyraceum, powdered, 3ij.; Distilled Water, 3xvij. Digest at from 80° F. to 100° for eight days, frequently shaking. Filter, and to the solution add: Water, sufficient to make by weight, 3xxj.; Rectified Spirit, 3ij. Mix and filter. Dose 11[1/2] to 2[1/2].

With regard to the medicinal qualities of hyraceum I have very little to say. My sample is too small to enable me to make any experiments with it. I believe it to be inert and useless; but it has been supposed to resemble castor in its nature, odour, and medicinal qualities. “The action of hyraceum,” says Dr. Martiny, “is exactly the same as that of American castor, for which it may be substituted.” But to say that hyraceum is equal to castor in medicinal properties is, I believe, to say little in its favour; for, in my opinion, there is no valid evidence that castor possesses any medicinal power whatever. Considered in an anatomical and physiological point of view, both castor and hyraceum possess some interest, but as therapeutic agents they are worthless. The remedial use of sexual and anal secretions and of excrements (e. g. castor, musk, civet, ambergris, album graecum, and hyraceum) belongs to the superstitious and absurd practices of a former age, and the administration of such disgusting and useless substances should be banished from scientific medicine.

It has been used in the form of powder, or of tincture.

Tinctura Hyracei.

[We subjoin an extract from an inaugural dissertation at Erlangen on this substance, by Fikentscher, found among the author's papers.—Ed.]

"In 1848," he says, "a selected specimen of the hyraceum was sent from the Cape to Professor Martinus, who placed a part of it at the disposal of the Royal Hospital at Erlangen. Professor Canstatt, the distinguished theoretical and practical physician, submitted it to a careful trial, administering it to a great number of patients in the hospital, and obtained the best results. Professor J. Vogel reported that at the hospital of the University of Giessen, an application of this medicament had been made, at first, in small doses, without obtaining the results aimed at, but which failure was remedied by the administration of greater doses. As regards my own experience, I have already treated, in a space of two years, thirty-three persons [the history of these cases the author has annexed in an appendix], thirteen of whom were hysterical persons, thirteen were subject to gastralgia, and one was an inveterate hypochondriac. Seven of them were treated with the tinct. hyrace conjointly with other medicines; and twenty-six were treated with the tinct. hyrace. pure; all but eight of the latter were restored. The constricting pains in the region of the stomach which ordinarily followed every use of food or of liquid—the headache, loathing, and vomiting—were diminished, and the appetite was restored. Other hysterical symptoms, as spasms, the peculiar globus hystericus, the nervous headache, palpitation, trembling of the members, to which thirteen individuals were before more or less subject, disappeared after the use of the tinctura hyracei, except in three persons.

"To these, my own observations, I will add those of two of my friends:—"Dr. Wintrich, docent and assistant physician at the Poliklinik at Erlangen, has applied the tinctura hyracei (in doses of from one-half to one tea-spoon) in cases of spasm, palpitation, hysteria, gastralgia, as well as in nervous excitaments of irritable persons, altogether in thirty cases, and obtained good results. Dr. Meinel, at Roth, reported that he has made use of the tinct. hyrace in cases of hysteria and of chlorosis, where a peculiar irritability of the nerves existed, and obtained very favourable results.

"Finally, we conclude that the Tinctura Hyracei deserves to be recommended in most cases of irritability of the nervous system, in hysterical affections, and in gastralgia, in doses of from one-half to one tea-spoonful. Every medical man knows well the difficulties which are presented in the treatment of hysterical persons: sometimes one is compelled to make use of the whole series of the so-called anti-spasmodica, nervina, and anti-hysterica, in order to calm the patient; consequently, it must be satisfactory to be able to make use of a medicine which has been found to be efficacious in most, if not in all, cases of this description."

[Since this was written, experience has not confirmed the very favourable description of the new drug here given. We are inclined to put the same value on it as that assigned by the author to album græcum, and other excrementitious articles. They are the relics of the superstitious practices of a bygone age.—Ed.]
APPENDIX.

THE METALLIC CYANIDES.

364. AURI TERCYANIDUM.—TERCYANIDE OF GOLD.

Formula $\text{Au}C\text{y}_3$. Equivalent Weight 277.

The directions for preparing this salt, in the French Codex, are somewhat diffuse. The process consists essentially in very carefully adding a solution of pure cyanide of potassium to a solution of chloride of gold, until a precipitate (cyanide of gold) ceases to be formed. The chloride of gold, prior to solution, should be deprived of all excess of acid by heating it in a salt-water bath.

Cyanide of gold is a yellow powder, which is insoluble in water. It has been used in venereal and scrofulous affections, both externally and internally. The dose is from one-fifteenth to one-tenth of a grain, made into a pill with some inert powder.

365. HYDRARGYRI PERCYANIDUM.—PERCYANIDE OF MERCURY.

Formula $\text{Hg}C\text{y}$. Equivalent Weight 126.

History.—This salt was discovered by Scheele. Its real nature was first pointed out by Gay-Lussac in 1815. It has been known by various appellations, as Prussian Mercury (Hydrargyrum Borussicum), Prussiate, Hydrocyanate, Cyanuret, Cyanide or Bicyanide of Mercury (Hydrargyri Prussias, Hydrocyanas, Cyanuretum, Cyanidum seu Cyanodidum.)

Preparation.—There are two methods of preparing this salt: one recommended by Proust, the other by Winckler. Proust's process was formerly adopted in two of the British Pharmacopoeias.

1 [It was announced by the author, in the preface to Vol. I. of this edition, published in 1849, that the description of the various metallic cyanides should follow that of hydrocyanic acid. Since the announcement was made, the cyanides have been struck out of the London and Dublin Pharmacopoeias. Nevertheless, we have thought it advisable to retain the author's account of these preparations, and we have therefore placed them in the Appendix.—Ed.]
The London College formerly ordered, of Percyanie and of Iron [Prussian Blue], 3vij.; Binoxide of Mercury, 3x.; Distilled Water, Oiv. Boil them together for half an hour, and strain. Evaporate the liquor that crystals may be formed. Wash what remains frequently with boiling distilled Water, and again evaporate the mixed liquor that crystals may be formed. The Dublin College employed of Prussian Blue, six parts; Nitric Oxide of Mercury, five parts; Distilled Water, forty parts.

In this process the cyanogen of the Prussian blue combines with the mercury of the nitric oxide, while the iron unites with the oxygen of the oxide. Pure perycyanide of mercury may be more economically prepared by Winckler's process. This consists in saturating hydrocyanic acid with red oxide of mercury. The solution is to be filtered and allowed to crystallize. In this process double decomposition takes place, the resulting products being water and perycyanide of mercury.

Properties.—The crystals of this salt are square prisms. They are heavy, white, colourless, transparent or opaque, inodorous, and have a strong metallic taste. They are soluble in water, both hot and cold, and very little, if at all so, in alcohol.

![General Form of Crystals of Bicyanide of Mercury.](image)

![Crystals with Modified Planes.](image)

Characteristics.—Perfectly dry perycyanide of mercury when heated yields metallic mercury and cyanogen gas. The latter is known by the violet or bluish red colour of its flame. Heated with hydrochloric acid it evolves hydrocyanic acid. It is not decomposed by nitric acid or the alkalis. Its solution throws down a black precipitate with hydro sulphuric acid, and white pearly crystalline plates (hydrargyro-iodo-cyanide of potassium) with a concentrated solution of iodide of potassium.

[Composition.—Its composition is variously stated, according to the number assumed for the equivalent of mercury. The greater number of British chemists now consider it to be constituted of a single equivalent of each element, and therefore represented by the formula HgCy. The term Percyanie is given to it, in order to keep the nomenclature in conformity with that adopted by the author in the mercurial preparations of the first volume. There is no other cyanide of mercury known.—Ed.]

Purity.—When prepared from ferrosesquicyanide of iron (Prussian blue), the crystals are usually yellowish, from the presence of some oxide of iron. The following tests of its purity were published in the previous edition of the London Pharmacopoeia:—
Transparent and totally soluble in water. The solution, when hydrochloric acid is added, emits hydrocyanic acid, which is known by its peculiar smell; and a glass moistened with a solution of nitrate of silver and placed over it, gives a deposit, which is dissolved by boiling nitric acid. By heat it emits cyanogen, and runs into globules of mercury.

Physiological Effects. a. On Vegetables.—It acts on plants like perchloride of mercury.1

b. On Animals.—Coulon2 found that it acted on dogs, cats, sparrows, frogs, snails, &c. like hydrocyanic acid. After death, inflammation of the stomach was observed. Ollivier d'Angers3 tried its effects on dogs. Seven grains, dissolved in water, killed a small dog in ten minutes, under attempts to vomit, general convulsions, and exhaustion, manifested alternately; respiration and circulation were at first accelerated, and afterwards diminished. Similar effects were produced by applying the salt to the cellular tissue, or injecting it into the veins. Tiedemann and Gmelin4 detected mercury in the blood of the splenic vein of a horse to which the percyanide had been administered.

c. On Man.—Taken in small doses, it very readily excites nausea and vomiting. Parent5 says it does not produce the epigastric pain which the perchloride of mercury readily occasions. Continued use causes salivation. In one case one-eighth of a grain twice a day caused ptalism in three days.6 Mendaga7 says it acts directly on the skin and bones, and hence it sometimes very speedily allays the pain of and disperses nodes.

In large doses, especially in very susceptible persons, it affects the nervous system, and causes fainting, anxiety, and cramps. Twenty-three and a half grains in one instance8 caused death in nine days. The most remarkable symptoms were, obstinate vomiting; mercurial ulceration of the mouth and abundant ptalism; contractions of the heart, which at first were very strong, but became successively slower and more feeble; the abdomen was yielding, and not tender, notwithstanding the constant tenesmus; suppression of urine; semi-ejection of the penis, and ecchymosis of this organ, as well as of the scrotum; and, ultimately, convulsive movements.

Uses.—It has been employed as an antivenereal medicine, and was first used as such by Biera.9 Parent10 administered it as a substitute for the perchloride of mercury, over which it has several advantages. Thus, being more soluble, it ought to be more readily absorbed; it does not give rise to epigastric pain; and, lastly, it is not so readily decomposed; for alkalies, several salts, and many solutions of organic matters, which decompose corrosive sublimate, have no effect on it. It may be applied in the form of aqueous solution or ointment to venereal sores.

1 Goeppert, in De Candolle, Phys. Vég. 1834.
3 Journ. de Chim. Méd. i. 269.
6 Neumann, in Dierbach’s Neuesten Entd. in d. Mat. Med. ii. 483, 1828.
9 Richter, op. cit.
It has been employed in induration of the liver, in some chronic skin diseases, in obstinate headache, and in other maladies, as an antiphlogistic.

Its principal use in this country is as a source of hydrocyanic acid and of cyanogen gas.

ADMINISTRATION.—Internally it may be employed in doses of one-sixteenth of a grain gradually increased to one-half of a grain. It may be administered in the form of pills (made with crumb of bread) or in alcoholic solution. It will be frequently advisable to conjoin opium, to prevent nausea or vomiting. When used as a gargle or wash, we may employ ten grains to a pint of water. An ointment may be prepared of ten or twelve grains to an ounce of lard.

Antidote.—I am unacquainted with any antidote for it. Albumen does not decompose it. Perhaps ammonia might be found serviceable, to diminish the effect on the nervous system. Opium relieves the vomiting. Our principal object must be to remove the poison from the stomach, which is to be effected by the stomach-pump, emetics, tickling the throat, &c.

366. Argenti Cyanidum.—Cyanide of Silver.

Formula AgCy. Equivalent Weight 134.

History.—This compound, sometimes called Hydrocyanate, Cyanuret, or Cyanodide of Silver, or Argentum zootinicum, has been studied by Scheele, Ittner, and Gay-Lussac.

Preparation.—In the London Pharmacopoeia it was formerly directed to be prepared as follows:—

Take of Nitrate of Silver, $\frac{3}{ij}$ and $\frac{3}{ij}$; Diluted Hydrocyanic Acid, Distilled Water, each Oj. Dissolve the Nitrate of Silver in the Water, and add to them the diluted Hydrocyanic Acid, and mix. Wash what is precipitated with distilled water, and dry it.

In this process one equivalent or 27 parts of hydrocyanic acid react on one equivalent or 170 parts of nitrate of silver; thereby generating one equivalent or 134 parts of cyanide of silver, and one equivalent or 9 parts of water, and setting free one equivalent or 54 parts of nitric acid.

Properties.—When first thrown down it is a curdy precipitate, which by drying becomes pulverulent. It is insipid, insoluble in water, but dissolves in caustic ammonia. It is decomposed by hydrochloric and hydrosulphuric acids, both of which develope with it hydrocyanic acid. It combines with other metallic cyanides to form the argento-cyanides. By exposure to the atmosphere and solar rays it slowly assumes a violet tint. It is slowly decomposed by mixture with neutral vegetable substances.¹

Characteristics.—It is insoluble in cold nitric acid, but soluble in the boiling acid. When carefully dried and then heated in a glass tube it yields cyanogen gas (which is readily known by its combustibility and the bluish-red colour of its flame) and a residuum of metallic silver. The latter is recognised by the before-mentioned tests for this metal.

Cyanide of Zinc.

Composition.—The following is the composition of this substance:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<td>Cyanogen</td>
<td>1</td>
<td>26</td>
</tr>
</tbody>
</table>

Cyanide of Silver ... 1 ... 134 ... 100·00

Physiological Effects and Uses.—I am unacquainted with any experiments made to determine its effects on man and animals. Serre, of Montpellier,¹ gave it in syphilitic maladies, in doses of one-tenth and even one-eighth of a grain, without the least inconvenience. It was introduced into the London Pharmacopoeia, at the suggestion of Mr. Everitt, as a source of hydrocyanic acid, but it has been excluded from the last edition.

367. ZINCI CYANIDUM.—HYDROCYANATE, CYANIDE, OR CYANURET OF ZINC.

Formula ZuCy. Equivalent Weight 58·5.

This salt was introduced, by the German physicians, as a substitute for hydrocyanic acid. It is prepared by adding recently-made oxide of zinc to hydrocyanic acid; or by adding a solution of sulphate of zinc to a solution of cyanide of potassium. It is a white powder, insoluble in water or alcohol. If a strong mineral acid be added to it, hydrocyanic acid is developed, and a soluble salt of zinc obtained. The latter is recognised by the tests before mentioned for a solution of zinc. It consists of one equivalent or 32 parts of Zinc, and one equivalent or 26 parts of Cyanogen.

Its effects have not been carefully ascertained, but they are supposed to be similar to those of hydrocyanic acid. It has been used principally in affections of the nervous system, as epilepsy, hysteria, and chorea. It has also been employed in cardialgia and cramps of the stomach, and as an anthelmintic in children. The dose is a quarter of a grain to a grain and a half three times a day. It may be taken in the form of powder mixed with calcined magnesia.

¹ Medico-Chirurgical Review, July 1840.
368. RADIX SUMBUL.—SUMBUL ROOT.

SUMBUL,¹ SUMBUL, MUSK-ROOT.

(Racine de Sambola ou Sambula, Guibourt,²—Moschus-wurzel of the Germans.)

This drug was introduced into Germany from Russia about the year 1840; more recently it has been brought under the notice of the medical profession in England.³

The botanical origin of Sumbul root is involved in obscurity: from a resemblance which it bears to Angelica, there is reason to think it is afforded by some nearly allied umbelliferous plant. It has been supposed a native of Persia; but we think there is greater reason to conclude that it is produced in some of the more remote regions of Central Asia. Dr. Granville states that it is brought into the Moscow drug market by way of Kiahta.

Two varieties of Sumbul have appeared in English commerce, viz. —

1. **Russian Sumbul Root** (*Radix Sumbul Muscovitici.*) — The Sumbul imported from Russia occurs in nearly circular pieces, formed by the transverse section of a large root: these pieces, which have a dirty, somewhat worn appearance, are from about 2½ to 5 inches in diameter, and from ⅛ of an inch to ⅛ inches in thickness at the edge, which, owing to unequal contraction in drying, is thicker than the central portion. On the outer edge they are covered with a dusky, brown, rough bark, frequently beset with short bristly fibres; the interior consists of a spongy, coarsely fibrous, dry, yellowish-white mass, of a somewhat farinaceous appearance. Some pieces, constituting the crown portion of the root, are covered with a papery bark. The root has a pure musky odour. Its taste is rather bitter, and very slightly acrid.

2. **Indian Sumbul Root** (*Chinese Sumbul Root?*); *Radix Sumbul Indici.* — A second variety of Sumbul root has been imported into England from Bombay. It is stated to be of closer texture, firmer, denser, and of a more reddish tint than the Russian sort. Some of the pieces are said to bear a slight resemblance to inferior rhubarb. In odour it is perhaps less powerful than the Russian.⁴

Sumbul root has also been brought to England *vid China.* A sample in our possession, said to have been thus obtained, is in smoothly cut slices, having the cut surface of a dusky yellow or reddish-brown, surrounded with a paler zone. The external thin bark has been mostly peeled off, leaving visible a pale yellow inner bark. The pieces, which, from their regular edges, appear to have been cut from a dried root, are smaller than those of the Russian sumbul, denser, and sometimes of an almost unctuous aspect. The odour resembles that of the Russian sumbul, though rather weaker;

¹ The Arabic word, *Sumbul,* signifying *an ear or spike,* has been applied to several odoriferous drugs, as, e. g. to the true spikemarad, *Nardostachys Jatamansi,* De Cand., the *Sumbul Hiawee* or *Indian Sumbul* of the East; see Sir William Jones *On the Spikemarad of the Antients,* in the *Asiatic Researches,* ii. 405, iv. 111, Lond. 1799; also Richardson’s *Persian, Arabic, and English Dictionary,* word *Sumbul,* i. 543, Lond. 1800.

² *Hist. des Drogues,* 3ème édit. iii. 195.

³ See *The Sumbul,* a *New Asiatic Remedy,* by A. B. Granville, M.D. Lond. 1850.

the taste is bitter, and slightly suggestive of ammoniacum. Judging from
the description of Indian sumbul root given in the Pharmaceutical
Journal,¹ this variety is identical with it.

Sumbul root has been analysed by several German chemists,² the results
of whose investigations show it to contain a volatile oil; two balsamic resins,
one soluble in ether, the other in alcohol; wax, starch, &c. In addition to
these a crystallizable acid has been obtained in minute quantity by Dr.
Reinsch, and named by him Sumbulic acid.

Sumbul root may be administered in substance in doses of from grs. iij.
to grs. viij.; in tincture, made by digesting for seven days 3ij. of the root in
5xvj. of proof spirit.³ An ethereal tincture is likewise employed, as may be
also, according to Dr. Granville, an aqueous infusion, decoction, or extract.
The alcoholic tincture may be given in doses of from mxx. to mlx.

[Note.—We subjoin a list of some papers published by the author in the
Pharmaceutical Journal since the previous edition of his work. They will
be found to contain many subjects of interest in addition to those noticed in
these volumes.]

1. On the Colouring Matter of Dutch or Cake Litmus. Vol. IX. No. 1;
 also Vol. X. No. 9.
8. On the Myrospermum of Sonsonate. Vol. X. No. 8. [Dr. Royle
 has proposed to call this after the author, Myrospermum Pereiræ.]
10. On the Plants from which Senna Leaves are obtained. Vol. IX. No. 1.
14. Notice of some Vegetable and Animal Substances Natural Products of

¹ Vol. xi. p. 358.
² Quoted in Journ. de Pharm. xix. 278, 1851.
³ Pharmaceutical Journal and Transactions, xi. 144.
INDEX.

Abies .. 1182
balsamea ... 1182
canadensis .. 1182
communis ... 1182
excelsa ... 1182
nigra .. 1183
pectinata ... 1183
picea .. 1183
Abietee .. 1181
Abietic acid .. 1188
Abietin ... 1188
Abietis cerevisia 1183
essentia ... 1183
resina .. 1182
Abortifacient ergotisia 944
Abortiva .. 264
Absinthic acid 1560
Absinthin .. 1560
Absorhentia ... 176
Absorption of medicines 100
Abuta root .. 2137
Acacia .. 1843
arabica ... 1844
catechu ... 1851
Egyptian .. 1843
Ehrenbergii ... 1845
gum ... 1844
gunfemera ... 1844
karoo .. 1844
nilotica ... 1844
Senegal ... 1845
Seyal .. 1845
tortillis .. 1845
vera ... 1844
verek .. 1843
white .. 1843
Acarus scabiei 343
Acetaria .. 221
Acetate of alumina 629
ammonia .. 456
copper .. 806
iron ... 788
iron, tincture of 789
tincture of, with alcohol 789
lead .. 746
and opium pills 750
mercury ... 877
morphia ... 2141, 2143
potash ... 514
soda ... 510
zinc .. 720
Acetone ... 1992
Acetosa, rumex 1362
Acetosella, oxalis 1223
Acetous fermentation 1983
Acetum ... 1984
acromatic .. 1998
britannicum ... 1984
cantharidis .. 2211
c (cormo) colchici, 1596 1331
destillatum ... 1997
gallicum ... 1985, 1997
gallinum ... 2138
quatuor furum 1997
Acid absinthic 1188
absinthic .. 1560
acetic ... 1983
acetic .. 2168
serial .. 317
Aloeetic ... 1082
alpha-orallic 1299
amygdallic .. 1770
anhydrous or dry nitric 408
sulphuric ... 360
aromatic sulphuric 360
arsenious .. 536
aspartic ... 2947
atrophic .. 1404
auric .. 893
benzoic ... 1325
beta-orallic .. 928
bibiric .. 1330
boracic .. 324
butyric .. 2362
caffeic .. 1604
camphoric ... 1613
capric .. 2262
caproic .. 2362
carbonic .. 317
castorlic .. 2270
carathmic ... 1758
caryophyllic .. 1758
catechic .. 1685
cereal .. 2221
cerotic .. 2221
cetraric ... 921
ceric ... 1256
cheladric .. 1666
cicmonic or cinnaamyl 375
chinamic .. 1827
chimnic ... 1827
dulceful maric 1926
dulceful ... 1926
deioadic ... 1289
eellagic ... 1228
eumulic .. 1770
English sulphuric 353
erthyric ... 999
esculic .. 1169
tethero-sulphuric of Liebig 1981
eugenic ... 1738
frozen sulphuric 353
fuming nitric 411
gallic .. 352
sulphuric ... 352
gambogic or gambodic 2036
gaseous hydrochloric 374
genetic ... 1469
glacial acetic 1990
phosphoric ... 335
guaiac ... 1920
hemidesmic ... 1501
hydrobromic 399
hydrochloric 374
hydrocyanic .. 1785
diluted .. 1784
hydro-oxic .. 734
hydrox prussic 1784
hydrox sulphuric 363
hynopitrolemonic 2101
hypocriptoxic 2154
igarusic ... 1483
iodic .. 398
ipecaucanna .. 1505
jalapic .. 1463
japenic .. 1685
jatroptic .. 1273
kinic or quinic 1651
kinove .. 1651
komenic ... 2104
krameric .. 2037
lactic ... 2263
lichenic ... 921
lichesteric .. 921
liquid acetic 1900
hydrochloric 375
oxymuriatic .. 372
lizaric .. 1589
lobelle? ... 1548
madder and rubric 1589
margaric .. 565
margaritica ... 1290
marine .. 374
maschelic ... 1889
mechelic .. 2101
meconic ... 2262
medical hydrocyanic 1788
mellitie ... 1998
<table>
<thead>
<tr>
<th>Acid, menispermic</th>
<th>Page</th>
<th>Acidum aromaticum</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid, menispermic</td>
<td>2153</td>
<td>Acidum aromaticum</td>
<td>1377</td>
</tr>
<tr>
<td>metagallic</td>
<td>1252</td>
<td>camphoratum,</td>
<td>1998</td>
</tr>
<tr>
<td>metaphosphoric</td>
<td>454</td>
<td>arsenosum</td>
<td>639</td>
</tr>
<tr>
<td>muriatic</td>
<td>374</td>
<td>benzoicum</td>
<td>1235</td>
</tr>
<tr>
<td>myronic</td>
<td>1896</td>
<td>boracatum</td>
<td>1783</td>
</tr>
<tr>
<td>nitric acid</td>
<td>1896</td>
<td>carbonicum</td>
<td>317</td>
</tr>
<tr>
<td>native boracic</td>
<td>323</td>
<td>chloro-hydriurgicum</td>
<td>857</td>
</tr>
<tr>
<td>nicotian</td>
<td>1426</td>
<td>citricum</td>
<td>1999</td>
</tr>
<tr>
<td>nitric acid</td>
<td>498</td>
<td>ficulicum</td>
<td>880</td>
</tr>
<tr>
<td>nitric acid</td>
<td>411</td>
<td>gallicum</td>
<td>1232, 1534</td>
</tr>
<tr>
<td>Nordhausen or fuming</td>
<td>352</td>
<td>hydriodicum</td>
<td>399</td>
</tr>
<tr>
<td>sulphuric</td>
<td>352</td>
<td>hydrochloricum</td>
<td>374</td>
</tr>
<tr>
<td>omanthly</td>
<td>1200</td>
<td>nitric acid</td>
<td>417</td>
</tr>
<tr>
<td>of lemons, concrete</td>
<td>1999</td>
<td>myricum</td>
<td>377</td>
</tr>
<tr>
<td>oleic</td>
<td>565</td>
<td>nitric acid</td>
<td>383</td>
</tr>
<tr>
<td>opionic</td>
<td>2100</td>
<td>purum</td>
<td>360</td>
</tr>
<tr>
<td>oxalhydric</td>
<td>735</td>
<td>vanale</td>
<td>354</td>
</tr>
<tr>
<td>oxalic</td>
<td>2007</td>
<td>sulphuricum</td>
<td>360</td>
</tr>
<tr>
<td>oxygenated muriatic</td>
<td>367</td>
<td>sulphurum</td>
<td>361</td>
</tr>
<tr>
<td>palmitic</td>
<td>565</td>
<td>tannicum</td>
<td>1230</td>
</tr>
<tr>
<td>paralnic</td>
<td>1168</td>
<td>tartaricum</td>
<td>1533</td>
</tr>
<tr>
<td>peptic</td>
<td>565</td>
<td>zootum</td>
<td>1755</td>
</tr>
<tr>
<td>phoenic</td>
<td>334</td>
<td>Acrigen</td>
<td>2225</td>
</tr>
<tr>
<td>picrotox</td>
<td>2134</td>
<td>huso</td>
<td>2225</td>
</tr>
<tr>
<td>pimentic</td>
<td>2161</td>
<td>ruthenus</td>
<td>2225</td>
</tr>
<tr>
<td>pine</td>
<td>1200</td>
<td>stellatus</td>
<td>2225</td>
</tr>
<tr>
<td>polygallic</td>
<td>2056</td>
<td>stidion</td>
<td>2225</td>
</tr>
<tr>
<td>prussic</td>
<td>1748</td>
<td>Acinos</td>
<td>2071</td>
</tr>
<tr>
<td>pyro-gallic</td>
<td>1253</td>
<td>acid</td>
<td>2071</td>
</tr>
<tr>
<td>pyro-glaucic</td>
<td>1246</td>
<td>alcohlicum</td>
<td>2174</td>
</tr>
<tr>
<td>pyro-ligneous</td>
<td>1203, 1897</td>
<td>tinctura</td>
<td>2173</td>
</tr>
<tr>
<td>pyro-mconic</td>
<td>2104</td>
<td>Acous</td>
<td>1203</td>
</tr>
<tr>
<td>pyro-phosphoric</td>
<td>343</td>
<td>Aconite</td>
<td>2171</td>
</tr>
<tr>
<td>pyric</td>
<td>2005</td>
<td>Aconitum</td>
<td>2175</td>
</tr>
<tr>
<td>pyric</td>
<td>2005</td>
<td>Aconitine, soluto</td>
<td>2177</td>
</tr>
<tr>
<td>rhabarberic</td>
<td>1357</td>
<td>unguentum</td>
<td>2176</td>
</tr>
<tr>
<td>rheic</td>
<td>1357</td>
<td>Aconitum ferox</td>
<td>2177</td>
</tr>
<tr>
<td>ricinice</td>
<td>1289</td>
<td>hydromyrtium</td>
<td>2180</td>
</tr>
<tr>
<td>richolenie</td>
<td>1289</td>
<td>medium Schrader</td>
<td>2168</td>
</tr>
<tr>
<td>rubinic</td>
<td>1683</td>
<td>napellus</td>
<td>2167</td>
</tr>
<tr>
<td>subadlic</td>
<td>1066</td>
<td>paniculatum, var.</td>
<td>2167</td>
</tr>
<tr>
<td>saccharic</td>
<td>755</td>
<td>Storkiannum</td>
<td>2167</td>
</tr>
<tr>
<td>salicylic</td>
<td>347</td>
<td>Acorus calamus</td>
<td>1099</td>
</tr>
<tr>
<td>smilacic</td>
<td>1303</td>
<td>Acoryle</td>
<td>1099</td>
</tr>
<tr>
<td>solid arsenous</td>
<td>642</td>
<td>Acer</td>
<td>1643</td>
</tr>
<tr>
<td>stearic</td>
<td>305</td>
<td>Acrata</td>
<td>2178</td>
</tr>
<tr>
<td>strychonic or igauric</td>
<td>2021</td>
<td>Aceros</td>
<td>956</td>
</tr>
<tr>
<td>success</td>
<td>2021</td>
<td>Adapa prapatrum</td>
<td>2264</td>
</tr>
<tr>
<td>sulpharsenious</td>
<td>646</td>
<td>Adapa prapatrum</td>
<td>2264</td>
</tr>
<tr>
<td>sulphinaic</td>
<td>2970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulphinic</td>
<td>1961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulphuric</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulphurous</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sylvic</td>
<td>1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tanacetic</td>
<td>1563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tannic</td>
<td>1685, 1218, 1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tartaric</td>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tartric</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tartrelic</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tartrate</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulmic</td>
<td>1946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>valeriana</td>
<td>1381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vapour</td>
<td>317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>veratic</td>
<td>1066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>virgineae</td>
<td>2056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitriolated tartar</td>
<td>1487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitriolic</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vulpinic</td>
<td>923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zoetic</td>
<td>1785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acidulo-alkaline waters | 299 |

Acidulous or carbonated waters... | 299 |

tartar of potash... | 299 |

Acidum aceticum | 1883 |

dilutum | 1889 |

Acidum aceticum | 1883 |

dilutum | 1889 |

Acidum aceticum | 1883 |

dilutum | 1889 |

Acidum aceticum | 1883 |

dilutum | 1889 |

Acidum aceticum | 1883 |

dilutum | 1889 |

Acidum aceticum | 1883 |

dilutum | 1889 |
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Aqua infusionis .. 1035
kali .. 477
lauro-cerati .. 1784
lavandula ... 1369
lucie .. 154
magnesia bicarbonatis 614
marina ... 292
menthe piperit .. 1378
pulveri .. 1372
salis .. 1273
mercurialis nigra 838
metallum .. 810
napha .. 2040
nigrum .. 407
nivalis ... 298
oxygeni .. 271
oxyymuriatica 373
phagedenica .. 835
mitis .. 838
picis liquide ... 1204
pimente ... 1761
plavia .. 389
pluvialis .. 2827
potassae .. 468
pulveri .. 1375
regia .. 1375
regiae hungarica 1380
rose ... 1811
rosmarina .. 1380
safranum ... 806
saphirina .. 806
Aquae acidae ... 299
communes ... 293
destillate ... 389
ferruinose .. 808
medicinae .. 281
minerale ... 294
saline ... 301
sulphur ... 71
vitriolica ... 297
Aquæ alba .. 847
Araceæ ... 1029
Aracaceæ ... 1687
 Arbor alab ... 1732
Arbutus uva-ursi 1542
Arcanum duplicatum 487
tartari .. 314
Archelegia officinalis
Arctostaphylos uva-ursi
Ardent spirit .. 1939
production of .. 1939
Areea cataeh ... 1093
nut .. 1045
Arena calida .. 16
Arenation ... 16
Argel .. 1324
Argentum ... 879
Argenti chloridum 881
cinundum ... 2389
nitratus ... 883
Argentum ... 879
nitratum ... 882
oxydatum fusum 880
vivum ... 881
zooticmicum ... 2282
Argol, or crude tartar 518
Arica .. 1651
Arisema atrobruns 1672
Aristolochiaceae
Aristolochia longa
rotunda ... 1302
serpentina .. 1299
Arnorarica cochlearia
Arnica montana 1563
Arnica .. 1564
Arnici .. 1564
Ar noside ... 411
Aromatic ... 231
Aromatic confection 1369
powder ... 1369
vinegar .. 1997

Arrack ... 1593
Arrow-root, East Indian 1111
 English ... 1441
Brazilian .. 1297
Porphyria ... 1129
West Indian .. 1109
Arseniate of iron 788
Arsenic and its compounds 638
antidotes for .. 667
butter of .. 640
doctor of ... 640
iodide of .. 672
oxides of ... 673
red ... 672
white .. 639
yellow .. 672
Arsenical ointments 671
paste .. 871
solution ... 671
Arsenic bisulphuretum 672
ceratum .. 671
fodiudum ... 672
sulphureta .. 671
superiodidum .. 673
teriodidium .. 672
unguements .. 671
Arsenicum .. 638
lodatum .. 672
Arsenious acid 640
Arsenic of potash, solution of 1295
Arctanthe elongata 1295
Artemisia absinthium 1559
Chinenesis .. 1559
Indian ... 1561
moxa .. 1561
vulgaris ... 1561
Artesian well ... 1651
Arthritogum magnam 32
Articulada ... 2184
Artocarpaceae .. 1253
Artocarpus incisa 1233
Arum maculatum 1029
Asa dulcis .. 1521
Asafoetida ferula 1706
Asagrea officinalis 1300
Asahidacris ... 1300
Asari .. 1301
Asarum camphor 1301
Europeum ... 1400
Ascaris lumbricoides 1434
vermicularis .. 230
Asclepiadaceae 1500
Asclepias gigantea 1502
psuedocapsaicin 81
Aches, hot ... 16
Ash, manna .. 1509
Asiatic pills .. 671
Asparagus ... 2047
Asparagus officinallis 1097
Asparagum .. 2047
Asparatic acid .. 2047
Aspidium filix mas 957
Asaphelidae .. 1994
Astragalus .. 1534
Asulmi ... 1835
Asulmii ... 1835
Asulmii cetrus .. 1836
gumifer .. 1836
strobiliferus .. 1836
verus .. 1836
Astringent ... 158
vegetabilia pura 209
Astringents .. 138
Atmospheric air 459
humidity ... 69
moisture ... 69
pressure ... 70
purity .. 69
<table>
<thead>
<tr>
<th>PAGE</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1384</td>
<td>Bistort, great</td>
</tr>
<tr>
<td>1653</td>
<td>Bistula of (\text{cinchona})</td>
</tr>
<tr>
<td>1828</td>
<td>potash</td>
</tr>
<tr>
<td>1828</td>
<td>Quinine</td>
</tr>
<tr>
<td>1887</td>
<td>506</td>
</tr>
<tr>
<td>352</td>
<td>Bisulphate of arsenic</td>
</tr>
<tr>
<td>2278</td>
<td>arsenic</td>
</tr>
<tr>
<td>305</td>
<td>carbon</td>
</tr>
<tr>
<td>825</td>
<td>chloride</td>
</tr>
<tr>
<td>825</td>
<td>mercury</td>
</tr>
<tr>
<td>2227</td>
<td>243</td>
</tr>
<tr>
<td>918</td>
<td>Bitrate of potash</td>
</tr>
<tr>
<td>615</td>
<td>Bitter almonds</td>
</tr>
<tr>
<td>1771</td>
<td>cucumber</td>
</tr>
<tr>
<td>1735</td>
<td>earth</td>
</tr>
<tr>
<td>604</td>
<td>purgative</td>
</tr>
<tr>
<td>615</td>
<td>sarsaparilla</td>
</tr>
<tr>
<td>615</td>
<td>sinaruba</td>
</tr>
<tr>
<td>614</td>
<td>Bitters</td>
</tr>
<tr>
<td>1700</td>
<td>Bitter-salt</td>
</tr>
<tr>
<td>1949</td>
<td>Bittersweet</td>
</tr>
<tr>
<td>1443</td>
<td>Bitterwood, lofty</td>
</tr>
<tr>
<td>1904</td>
<td>Bitum.
phen liquidum</td>
</tr>
<tr>
<td>2017</td>
<td>petroleum</td>
</tr>
<tr>
<td>2017</td>
<td>Black, animal</td>
</tr>
<tr>
<td>1376</td>
<td>Bone</td>
</tr>
<tr>
<td>312</td>
<td>-gybum</td>
</tr>
<tr>
<td>1100</td>
<td>drop</td>
</tr>
<tr>
<td>2139</td>
<td>fluid</td>
</tr>
<tr>
<td>84</td>
<td>ivory</td>
</tr>
<tr>
<td>312</td>
<td>jack</td>
</tr>
<tr>
<td>700</td>
<td>lead</td>
</tr>
<tr>
<td>308</td>
<td>naphtha</td>
</tr>
<tr>
<td>2017</td>
<td>salts</td>
</tr>
<tr>
<td>1535</td>
<td>sticking-plaster</td>
</tr>
<tr>
<td>903</td>
<td>tang</td>
</tr>
<tr>
<td>836</td>
<td>wash</td>
</tr>
<tr>
<td>1366</td>
<td>Bladder-podded labelia</td>
</tr>
<tr>
<td>905</td>
<td>fucus</td>
</tr>
<tr>
<td>594</td>
<td>Bleaching powder</td>
</tr>
<tr>
<td>709</td>
<td>Blende, or black jack</td>
</tr>
<tr>
<td>2300</td>
<td>Blister, perpetual</td>
</tr>
<tr>
<td>2300</td>
<td>beetles</td>
</tr>
<tr>
<td>2312</td>
<td>Blistering-plaster</td>
</tr>
<tr>
<td>2400</td>
<td>Blue copperas</td>
</tr>
<tr>
<td>800</td>
<td>calcis</td>
</tr>
<tr>
<td>536</td>
<td>litmus paper</td>
</tr>
<tr>
<td>333</td>
<td>or Neapolitan ointment</td>
</tr>
<tr>
<td>836</td>
<td>pills</td>
</tr>
<tr>
<td>831</td>
<td>Prussian</td>
</tr>
<tr>
<td>1784</td>
<td>stone</td>
</tr>
<tr>
<td>800</td>
<td>Tripod</td>
</tr>
<tr>
<td>713</td>
<td>Bologna (\text{arma rubra})</td>
</tr>
<tr>
<td>621</td>
<td>Bone ash</td>
</tr>
<tr>
<td>312</td>
<td>black</td>
</tr>
<tr>
<td>312</td>
<td>earth of</td>
</tr>
<tr>
<td>589</td>
<td>spirit</td>
</tr>
<tr>
<td>530</td>
<td>Boracic acid</td>
</tr>
<tr>
<td>530</td>
<td>Gorgonaceae</td>
</tr>
<tr>
<td>1449</td>
<td>Borate of potash</td>
</tr>
<tr>
<td>539</td>
<td>Borax</td>
</tr>
<tr>
<td>536</td>
<td>crude or native</td>
</tr>
<tr>
<td>536</td>
<td>glass of</td>
</tr>
<tr>
<td>536</td>
<td>honey of</td>
</tr>
<tr>
<td>540</td>
<td>mellite of</td>
</tr>
<tr>
<td>539</td>
<td>octohedral</td>
</tr>
<tr>
<td>537</td>
<td>prismatic</td>
</tr>
<tr>
<td>1181</td>
<td>Bordeaux turpentine</td>
</tr>
<tr>
<td>1181</td>
<td>Canella</td>
</tr>
<tr>
<td>530</td>
<td>Bos taurus</td>
</tr>
<tr>
<td>2260</td>
<td>Boswellia serrata</td>
</tr>
<tr>
<td>1891</td>
<td>Bursa</td>
</tr>
</tbody>
</table>
INDEX.

Decoctum sarsaparilla, 1174, 1353 1319
compositum 1353

Drools, acidulated 1157
Jeninit 1215
nitre 1971
Dryadale 1802
Dryopherin 1113
Dryobalanops aromatica 2043
camphora 2043

Ducita 31

Duke of Portland's powder 1392

Dulcamara 1443
Dulcamarin 1444

Dung, hot, for baths 21
Dutch liquid 1977

Dwale, common 1402

Dyer's alkanet 1449
Dyer's madder 1588
Dyer's oak 1233
Dyer's orchel leaf 326

E.

Earth of bones 589
Earth, fuller's 621
Earth of Lennix 922
Eau de Cologne 2041

Eau de Javelle 356
lucie 2021, 431

Eau de vie 1940
medicinale 1953

Eleanor 1589

Ecballium agreste 1742

Ecboopia 1742

Eccoptopic 241

Eccriticus 233

Effects of the active principle of cinchona banks 1664
Effervescent draughts 322
citrus 2005
tartaricus 2006
solution of potash 480

Egg flipp 1954
shell 2245

Eglantine 1805

Eisöl 353

Elacine 1041

elaeus 1077

Elinie ou elicane 1508

Elaphnypece granulatia 945

Elaterina 1746

Elaterium monomorcia 1746

Elder berries 1686

flower water 1687

ointment 1867

rob 1866

Elecampane 1654

camphor 1354

Elecampin 1354

Elecampe 1354

Eletaria 233

Eleutheria 52

Embryonatae 1235

Embrocatio 241

Emblyonatae 1235

Embrue 996
Emetic, tartar 690

Emetics (emetic) 237

Emetina or emetin 1594

Emetine indicina 2060

Emmenagoga 263

Emollients 166

Emplastrum amnii 1387

adhesives 754

Anglicanum 1325

ammoniaci 1716

aranya 836

cum hydrargyro 1716, 836

ammonic hydrochloratis 150

aromaticun 1310

assafodide 1711

belladonnae 1412
calcificiens 2213
cantaridis 2212

compositum 2213
cumin 1698

epispasticum 2211

ferri 764

galbani 1710

gummosum 1719

hydrazrygi 835

iodini 398

lithargyry cum resina 754, 1201

opii 2134

petrae 7202

burgundicae 1202

plumbi 753

resine 754, 1201

resinum 754, 1201

roburus 764

saponis 570

compositum vel adhaerens 370

simplicis 2229

suboxydum 836

thuris 764

Empyreumatica 224

Emulsa 1101

of black mustard 2067

Emulso amygdala c, amygdalina 1292, 1772

Endemic method 967

Endozone 967

Endosmone 91

Enema assafodidatia 1711

calcae chloritariae 665

cattarticae 752

colycolithidium 1742

commune 554

fertidum 1711

opii 1517

vel anodynum 2137

tabaci 1204

terebinthina 1199, 1555

Enterica 1198

Enterodyonia 1790
<table>
<thead>
<tr>
<th>INDEX.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowerless plants</td>
<td>899</td>
</tr>
<tr>
<td>Flowers of antimony</td>
<td>673</td>
</tr>
<tr>
<td>Asclepias</td>
<td>540</td>
</tr>
</tbody>
</table>
| Guled

| PAGE |
Garden carrot	1701
dill, common	1655
lettuce	1640
with	1662
taxina	1907
Gargarismas soda chlorate	558
calcis	546
beralia	558
Gallicic	546
Gas	317
laughing	465
nitrous	408
Gastrocyctes	1798
Gastrodynia	1879
Gaultheria procumbens	1545
Gelatine	1837
Gellatin	1117
Gelatine	2229
Gelline	2224
capsules of copaia	1846
Genetica	262
Gentian, common or yellow	1457
Gentiana corynata	1472
lutea	1467
Gentianaceae	1473
Gentile	1117
Gensin	1487
Geoffroya inermis	1857
surinamensis	1347
Geoffroya Jamiacaensis	1857
German	1117
Ginger	955
Ginger, Barbados,	1117
beer	1211
black	1117
bleached	1487
green	1117
Jamaica	1117
lues	1116
narrow-leaved	1116
plaster	1120
powdered	1119
preserved	1117
tea	1121
washed	1118
white	1118
Gingembre	1847
Ginseng	1687
Glare	2215
Glarine	992
Glaser's sals volchrest	487
Glauber's salt	1146
spirit of nitre	409
secret sal ammoniac	435
spirit of salt	377
Globular martiales et boules de Nancy	797
Glimacæ	966
Glycine	1837
Glycinum, or liquorice sugar	1834
Glycyrrhiza echinata	1833
glabra	1833
gladiolus	1833
Glycyrrhiza	1834
Gold, ammoniuret of toxe-	894
and its compounds	892
fulminating	894
peroxide of	893
powder of	893
terchloride of	894
tercyanide of	225
teroxide of	893
Golden mar carcote	709
sulphurer of antimony	688
Gondret's analytical clive-	430
ment	2181
Gossypium herbaceum	2047
Goulard's extract	751
rue	792
Grains of wheat	82, 966
Gramineæ	1272
Grana dilla, or grana tilla	1272
Gaspard	2316
Gaspardini	1815
paradise	1129
safragi	1037
sylvestrio	2316
tiglio	1373
Granadini	1766
Granat	1764
Granatum pulica	2316
Granatula	945
Grape, husk of, for baths	21
Grape sugar	1298
Grape, or black lead	308
Grass-oil of Namur	1846
Gratoli officialis	1384
Gravel-root	2150
Gray chinc hona	1632
Gray	1884
Great Mullein	1382
Green skole	904
Green tea	2042
Grentin	773
Griffith's mixture	789
Groot, or embden	973
Grooto del cane	69
Grond liver, honey	917
Grual, water	975
Guacain	1920
Guacacum	1918
back	1818
officinale	1918
resin	1919
sanctuar	1920
wood	1918
Guevo upan	69
Guinea grains	1120
pepper	1446
Gum acacia	1847
Arabie	1846
Barbary or Morocco	1846
bosaora	1848
black boy	1100
bursa	1845
cape	1847
cherry tree	1826
dragon	1867
East Indian	1847
Gedda	1846
lozenge	1851
resins	223
Senegal	1846
Turkey	1846
Turkey	1846
yellow	1100
Gummi gambiens	1652
juniperi	1807
kino	1841
myrrha	1841
rubrum astrings	1841
nostras	1823
tragacantha	1846
Guunah	1259
Gutta percha tree	1528
Guttiere	2023
Gymnastica	66
Gymnossymetes	935
Gymносperma	1179
Gyrophora	918, 1834

II.

<p>| PAGE |
| Humantium toxicarius | 1107 |
| Humatin, or humatoxylum | 1859 |
| Humatica | 168 |
| Humatinaica | 188 |</p>
<table>
<thead>
<tr>
<th>Page</th>
<th>INDEX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1558</td>
<td>Hematoxylin. capemallibrium</td>
</tr>
<tr>
<td>365</td>
<td>Hahmemann's test liquor</td>
</tr>
<tr>
<td>135</td>
<td>Hair dyes</td>
</tr>
<tr>
<td>290</td>
<td>Hair and hard wax.</td>
</tr>
<tr>
<td>898</td>
<td>Hartshorn.</td>
</tr>
<tr>
<td>589</td>
<td>burnt</td>
</tr>
<tr>
<td>413</td>
<td>Hartshorn, volatile salt of</td>
</tr>
<tr>
<td>228</td>
<td>Heat</td>
</tr>
<tr>
<td>10</td>
<td>Head matter</td>
</tr>
<tr>
<td>3</td>
<td>Hearing</td>
</tr>
<tr>
<td>11</td>
<td>Heat animal</td>
</tr>
<tr>
<td>15</td>
<td>heat conducted</td>
</tr>
<tr>
<td>15</td>
<td>dry maintained</td>
</tr>
<tr>
<td>17</td>
<td>moist radiant</td>
</tr>
<tr>
<td>15</td>
<td>solar.</td>
</tr>
<tr>
<td>1541</td>
<td>Heathworths</td>
</tr>
<tr>
<td>2029</td>
<td>Hebradendron cambogioideus</td>
</tr>
<tr>
<td>1384</td>
<td>Hedge hyssop.</td>
</tr>
<tr>
<td>1354</td>
<td>Helenin.</td>
</tr>
<tr>
<td>1354</td>
<td>Helenium inula</td>
</tr>
<tr>
<td>2162</td>
<td>Hellobre black.</td>
</tr>
<tr>
<td>1509</td>
<td>Hellobarin.</td>
</tr>
<tr>
<td>2163</td>
<td>Helloborus fernandis.</td>
</tr>
<tr>
<td>2163</td>
<td>hemihalilis.</td>
</tr>
<tr>
<td>2162</td>
<td>niger.</td>
</tr>
<tr>
<td>2162</td>
<td>officinalis.</td>
</tr>
<tr>
<td>2177</td>
<td>viridis.</td>
</tr>
<tr>
<td>1792</td>
<td>Heliot's test.</td>
</tr>
<tr>
<td>228</td>
<td>Helminthagoga.</td>
</tr>
<tr>
<td>1064</td>
<td>Helonias officinalis</td>
</tr>
<tr>
<td>1301</td>
<td>Hemidesmic acid.</td>
</tr>
<tr>
<td>1301</td>
<td>Hemidesmus indicum</td>
</tr>
<tr>
<td>2214</td>
<td>Hemiptera.</td>
</tr>
<tr>
<td>1721</td>
<td>Hemlock.</td>
</tr>
<tr>
<td>1733</td>
<td>poultice.</td>
</tr>
<tr>
<td>1183</td>
<td>spruce fir.</td>
</tr>
<tr>
<td>1285</td>
<td>water.</td>
</tr>
<tr>
<td>1753</td>
<td>Hemp, Indian extract of.</td>
</tr>
<tr>
<td>1243</td>
<td>common.</td>
</tr>
<tr>
<td>1337</td>
<td>Henbane, common.</td>
</tr>
<tr>
<td>1298</td>
<td>Henry's aromatic vinegar.</td>
</tr>
<tr>
<td>480</td>
<td>Hepar sulphuris.</td>
</tr>
<tr>
<td>1075</td>
<td>Hepatic air.</td>
</tr>
<tr>
<td>363</td>
<td>aloes.</td>
</tr>
<tr>
<td>1075</td>
<td>Hepatica.</td>
</tr>
<tr>
<td>232</td>
<td>Hepaticalis ammonia.</td>
</tr>
<tr>
<td>451</td>
<td>Herb bennet.</td>
</tr>
<tr>
<td>1602</td>
<td>Hermodactylus.</td>
</tr>
<tr>
<td>1007</td>
<td>Hesperidin.</td>
</tr>
<tr>
<td>2034</td>
<td>Hesudolata Africana.</td>
</tr>
<tr>
<td>1088</td>
<td>Hiera picra.</td>
</tr>
<tr>
<td>245</td>
<td>Hidrotica.</td>
</tr>
<tr>
<td>1382</td>
<td>High taker.</td>
</tr>
<tr>
<td>1606</td>
<td>Hip or hop.</td>
</tr>
<tr>
<td>2186</td>
<td>Hirudo.</td>
</tr>
<tr>
<td>1820</td>
<td>Hoffman's mineral anodyne liquor.</td>
</tr>
<tr>
<td>1957</td>
<td>Hog.</td>
</tr>
<tr>
<td>2264</td>
<td>Hog's lard.</td>
</tr>
<tr>
<td>2303</td>
<td>Homberg's pyrophorus.</td>
</tr>
<tr>
<td>632</td>
<td>Homoeopathia.</td>
</tr>
<tr>
<td>121</td>
<td>Honey.</td>
</tr>
<tr>
<td>289</td>
<td>clarified.</td>
</tr>
<tr>
<td>2220</td>
<td>dew.</td>
</tr>
<tr>
<td>2290</td>
<td>of borax.</td>
</tr>
<tr>
<td>2290</td>
<td>of roast.</td>
</tr>
<tr>
<td>1509</td>
<td>oil.</td>
</tr>
<tr>
<td>1245</td>
<td>Hop, common.</td>
</tr>
<tr>
<td>5</td>
<td>Hope.</td>
</tr>
<tr>
<td>5</td>
<td>Hordeaceae.</td>
</tr>
<tr>
<td>976</td>
<td>Hordeum vulgare.</td>
</tr>
<tr>
<td>977</td>
<td>hexastichon.</td>
</tr>
<tr>
<td>978</td>
<td>mundatum.</td>
</tr>
<tr>
<td>979</td>
<td>perlatum.</td>
</tr>
<tr>
<td>979</td>
<td>vulgare.</td>
</tr>
<tr>
<td>978</td>
<td>zeotrich.</td>
</tr>
<tr>
<td>1381</td>
<td>Horeshound, candied.</td>
</tr>
<tr>
<td>1381</td>
<td>syrup of.</td>
</tr>
<tr>
<td>1381</td>
<td>tea.</td>
</tr>
<tr>
<td>1380</td>
<td>white.</td>
</tr>
<tr>
<td>1397</td>
<td>Hydrochlorate.</td>
</tr>
<tr>
<td>1057</td>
<td>Hydrocyanate.</td>
</tr>
<tr>
<td>363</td>
<td>of pothash.</td>
</tr>
<tr>
<td>1509</td>
<td>Hydrocyanate.</td>
</tr>
<tr>
<td>1243</td>
<td>silver.</td>
</tr>
<tr>
<td>2823</td>
<td>silver.</td>
</tr>
<tr>
<td>2823</td>
<td>zinc.</td>
</tr>
<tr>
<td>718</td>
<td>Hydrocyanic acid.</td>
</tr>
<tr>
<td>1784</td>
<td>Hydrodismes.</td>
</tr>
<tr>
<td>609</td>
<td>Hydrogen.</td>
</tr>
<tr>
<td>271</td>
<td>consumed as food.</td>
</tr>
<tr>
<td>266</td>
<td>chloro-amide of.</td>
</tr>
<tr>
<td>274</td>
<td>protioxide of.</td>
</tr>
<tr>
<td>363</td>
<td>sulphurated.</td>
</tr>
<tr>
<td>274</td>
<td>water.</td>
</tr>
<tr>
<td>271</td>
<td>Hydrogenum.</td>
</tr>
<tr>
<td>307</td>
<td>Hydrogeni binoxydum.</td>
</tr>
<tr>
<td>281</td>
<td>Hydrolate.</td>
</tr>
<tr>
<td>1393</td>
<td>Hydromel.</td>
</tr>
<tr>
<td>1944</td>
<td>Hydropathy.</td>
</tr>
<tr>
<td>33</td>
<td>of.</td>
</tr>
<tr>
<td>450</td>
<td>Hydro sulphates of ammonia.</td>
</tr>
<tr>
<td>451</td>
<td>Hydro sulphuretum of ammonia.</td>
</tr>
<tr>
<td>395</td>
<td>Hydro sulphuretum ammonium.</td>
</tr>
<tr>
<td>1784</td>
<td>Hydrosmus acidi.</td>
</tr>
<tr>
<td>1397</td>
<td>Hymenoptera.</td>
</tr>
<tr>
<td>2218</td>
<td>Hypara.</td>
</tr>
<tr>
<td>1398</td>
<td>Hypocamph.</td>
</tr>
<tr>
<td>1398</td>
<td>Hypo.</td>
</tr>
<tr>
<td>1398</td>
<td>Hypo.</td>
</tr>
<tr>
<td>214</td>
<td>Hypo.</td>
</tr>
<tr>
<td>214</td>
<td>Hypo.</td>
</tr>
<tr>
<td>214</td>
<td>Hypo.</td>
</tr>
<tr>
<td>594</td>
<td>Hypochlorite of lime.</td>
</tr>
<tr>
<td>534</td>
<td>Hypotassium.</td>
</tr>
<tr>
<td>97</td>
<td>Hypothecin.</td>
</tr>
<tr>
<td>543</td>
<td>Hyposulphate of soda.</td>
</tr>
<tr>
<td>543</td>
<td>Hyposulphuric acid.</td>
</tr>
<tr>
<td>543</td>
<td>Hypsia.</td>
</tr>
<tr>
<td>2273</td>
<td>Hyrra.</td>
</tr>
<tr>
<td>2273</td>
<td>Hyrra capensis.</td>
</tr>
<tr>
<td>223</td>
<td>I.</td>
</tr>
<tr>
<td>1</td>
<td>Imatologia.</td>
</tr>
<tr>
<td>1</td>
<td>Intreureolgia.</td>
</tr>
<tr>
<td>34</td>
<td>Ice cap.</td>
</tr>
<tr>
<td>34</td>
<td>poultice.</td>
</tr>
<tr>
<td>91</td>
<td>Iceland moss.</td>
</tr>
<tr>
<td>2294</td>
<td>Ichthyocolla.</td>
</tr>
<tr>
<td>1898</td>
<td>Icici icicariba.</td>
</tr>
<tr>
<td>1500</td>
<td>Ignatia amara.</td>
</tr>
<tr>
<td>1500</td>
<td>Ign. a.</td>
</tr>
<tr>
<td>1621</td>
<td>Ilium amnium.</td>
</tr>
<tr>
<td>211</td>
<td>Illutation.</td>
</tr>
<tr>
<td>6</td>
<td>Imagin.</td>
</tr>
<tr>
<td>520</td>
<td>Imperial.</td>
</tr>
<tr>
<td>30</td>
<td>Implantum.</td>
</tr>
<tr>
<td>2273</td>
<td>Incantatio.</td>
</tr>
<tr>
<td>1111</td>
<td>Indian Arrow-root, East.</td>
</tr>
<tr>
<td>1111</td>
<td>East.</td>
</tr>
<tr>
<td>1109</td>
<td>West.</td>
</tr>
<tr>
<td>971</td>
<td>corn.</td>
</tr>
<tr>
<td>971</td>
<td>cor.</td>
</tr>
<tr>
<td>2093</td>
<td>opium.</td>
</tr>
<tr>
<td>709</td>
<td>tin.</td>
</tr>
<tr>
<td>1346</td>
<td>tobacco.</td>
</tr>
<tr>
<td>1886</td>
<td>Indigo.</td>
</tr>
<tr>
<td>1886</td>
<td>sulphate of.</td>
</tr>
<tr>
<td>INDEX</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Liverwort, ground</td>
<td>917</td>
</tr>
<tr>
<td>Lividium saponarium</td>
<td>468</td>
</tr>
<tr>
<td>Littare</td>
<td>477</td>
</tr>
<tr>
<td>Lixivius chrysanthemum</td>
<td>472</td>
</tr>
<tr>
<td>Lobelia inflata</td>
<td>1546</td>
</tr>
<tr>
<td>lypotricha</td>
<td>1551</td>
</tr>
<tr>
<td>Lobeliae</td>
<td>84, 1345</td>
</tr>
<tr>
<td>Lobelinae</td>
<td>1547</td>
</tr>
<tr>
<td>Lobelie</td>
<td>1548</td>
</tr>
<tr>
<td>Lobelina</td>
<td>1548</td>
</tr>
<tr>
<td>Lobiferous - tree</td>
<td>1904</td>
</tr>
<tr>
<td>Loganiorrhiza</td>
<td>1836</td>
</tr>
<tr>
<td>Lollit, common</td>
<td>1806</td>
</tr>
<tr>
<td>Lollium, temulentum</td>
<td>92, 976</td>
</tr>
<tr>
<td>Long-eared barley</td>
<td>977</td>
</tr>
<tr>
<td>Long pepper</td>
<td>1929</td>
</tr>
<tr>
<td>Loosertle, spiked purple</td>
<td>1763</td>
</tr>
<tr>
<td>tribe</td>
<td>1762</td>
</tr>
<tr>
<td>Lota molva</td>
<td>2234</td>
</tr>
<tr>
<td>Loto</td>
<td>2234</td>
</tr>
<tr>
<td>Lotonio ammonio hydrochlorat</td>
<td>450</td>
</tr>
<tr>
<td>calcium chlorate</td>
<td>603</td>
</tr>
<tr>
<td>flava</td>
<td>839</td>
</tr>
<tr>
<td>nigra</td>
<td>838</td>
</tr>
<tr>
<td>phageat</td>
<td>847</td>
</tr>
<tr>
<td>soda chlorate</td>
<td>558</td>
</tr>
<tr>
<td>Lovage</td>
<td>1735</td>
</tr>
<tr>
<td>Loxa bark</td>
<td>1609</td>
</tr>
<tr>
<td>Lozenges, acidulated lemon</td>
<td>1292</td>
</tr>
<tr>
<td>cayenne</td>
<td>1445</td>
</tr>
<tr>
<td>gum</td>
<td>1853</td>
</tr>
<tr>
<td>liquorice</td>
<td>1833</td>
</tr>
<tr>
<td>magnesium</td>
<td>564</td>
</tr>
<tr>
<td>morpha</td>
<td>2145</td>
</tr>
<tr>
<td>and ippecacuanha</td>
<td>2117</td>
</tr>
<tr>
<td>of luteceum</td>
<td>1571</td>
</tr>
<tr>
<td>opium</td>
<td>2353</td>
</tr>
<tr>
<td>peppermint</td>
<td>1834</td>
</tr>
<tr>
<td>Ponteffract</td>
<td>1835</td>
</tr>
<tr>
<td>soda</td>
<td>536</td>
</tr>
<tr>
<td>Tolu</td>
<td>1850</td>
</tr>
<tr>
<td>Lugol's caustic</td>
<td>562</td>
</tr>
<tr>
<td>and stimulating solutions</td>
<td>502</td>
</tr>
<tr>
<td>concentrated solution of sodium in iodide of potassium</td>
<td>502</td>
</tr>
<tr>
<td>iodised baths</td>
<td>503</td>
</tr>
<tr>
<td>mineral water</td>
<td>502</td>
</tr>
<tr>
<td>Luna cornue</td>
<td>881</td>
</tr>
<tr>
<td>Lunar caustic, rubefacient</td>
<td>882</td>
</tr>
<tr>
<td>Lungwort tree</td>
<td>917</td>
</tr>
<tr>
<td>Lupulin, or lupulite</td>
<td>1246</td>
</tr>
<tr>
<td>Lupulina</td>
<td>1248</td>
</tr>
<tr>
<td>Lupulin or lupuline</td>
<td>1248</td>
</tr>
<tr>
<td>Lyceum Europaeum</td>
<td>1900</td>
</tr>
<tr>
<td>Lycoperon giganteum</td>
<td>946</td>
</tr>
<tr>
<td>Lycepodiaeae</td>
<td>962</td>
</tr>
<tr>
<td>Lycepodium</td>
<td>963</td>
</tr>
<tr>
<td>clavatum</td>
<td>952</td>
</tr>
<tr>
<td>Lyrathraceae</td>
<td>1702</td>
</tr>
<tr>
<td>Lyruthrum salicaria</td>
<td>1763</td>
</tr>
<tr>
<td>Lytra cereale</td>
<td>2214</td>
</tr>
<tr>
<td>gigas mara</td>
<td>2214</td>
</tr>
<tr>
<td>segatum</td>
<td>2214</td>
</tr>
<tr>
<td>vesicatoria</td>
<td>2200</td>
</tr>
<tr>
<td>M.</td>
<td></td>
</tr>
<tr>
<td>Maccaroni</td>
<td>990</td>
</tr>
<tr>
<td>Mace (macie)</td>
<td>1532</td>
</tr>
<tr>
<td>Machines, cotton</td>
<td>1546</td>
</tr>
<tr>
<td>electric</td>
<td>49</td>
</tr>
<tr>
<td>electrodynamic</td>
<td>55</td>
</tr>
<tr>
<td>induction</td>
<td>55</td>
</tr>
<tr>
<td>magnetoelectric</td>
<td>55</td>
</tr>
<tr>
<td>volta-electric</td>
<td>55</td>
</tr>
<tr>
<td>Nail apples</td>
<td>1225</td>
</tr>
<tr>
<td>Madarin</td>
<td>1502</td>
</tr>
<tr>
<td>Madder, Dyers</td>
<td>1547</td>
</tr>
<tr>
<td>Dutch or Zealand</td>
<td>1588</td>
</tr>
<tr>
<td>East India</td>
<td>1588</td>
</tr>
<tr>
<td>Madder, Levant</td>
<td>1588</td>
</tr>
<tr>
<td>Turkey or Smyrna</td>
<td>1588</td>
</tr>
<tr>
<td>Madeira wine</td>
<td>1535</td>
</tr>
<tr>
<td>Magnesia bicarbonas</td>
<td>614</td>
</tr>
<tr>
<td>Magnesium carboxylic</td>
<td>608</td>
</tr>
<tr>
<td>Hennys calcined</td>
<td>605</td>
</tr>
<tr>
<td>Indian calcined</td>
<td>609</td>
</tr>
<tr>
<td>light carbon of</td>
<td>610</td>
</tr>
<tr>
<td>lozenge</td>
<td>614</td>
</tr>
<tr>
<td>subcarbonate of</td>
<td>608</td>
</tr>
<tr>
<td>sulphate of</td>
<td>615</td>
</tr>
<tr>
<td>tartaric</td>
<td>619</td>
</tr>
<tr>
<td>vitriolated</td>
<td>619</td>
</tr>
<tr>
<td>water, aerated</td>
<td>614</td>
</tr>
<tr>
<td>carbonated</td>
<td>614</td>
</tr>
<tr>
<td>Magnesia bicarbonas</td>
<td>614</td>
</tr>
<tr>
<td>carbonas</td>
<td>608</td>
</tr>
<tr>
<td>citrass</td>
<td>619</td>
</tr>
<tr>
<td>sulphas</td>
<td>619</td>
</tr>
<tr>
<td>tartaras</td>
<td>619</td>
</tr>
<tr>
<td>Magnesium carbonate</td>
<td>605</td>
</tr>
<tr>
<td>Magnetic electricity</td>
<td>54</td>
</tr>
<tr>
<td>iron</td>
<td>722</td>
</tr>
<tr>
<td>oxide of iron</td>
<td>760</td>
</tr>
<tr>
<td>Magnetism</td>
<td>57</td>
</tr>
<tr>
<td>Magneto-electric machines</td>
<td>56</td>
</tr>
<tr>
<td>Magnets</td>
<td>59</td>
</tr>
<tr>
<td>electro</td>
<td>55</td>
</tr>
<tr>
<td>temporary</td>
<td>55</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>2159</td>
</tr>
<tr>
<td>Maidenhair</td>
<td>957, 961</td>
</tr>
<tr>
<td>Maiorana</td>
<td>1375</td>
</tr>
<tr>
<td>Malin insana</td>
<td>1225</td>
</tr>
<tr>
<td>Malaguetta pepper</td>
<td>1129</td>
</tr>
<tr>
<td>Male shield fern</td>
<td>1204</td>
</tr>
<tr>
<td>Mallow tree</td>
<td>2045</td>
</tr>
<tr>
<td>marsh</td>
<td>2045</td>
</tr>
<tr>
<td>Malt</td>
<td>980</td>
</tr>
<tr>
<td>liquor</td>
<td>981</td>
</tr>
<tr>
<td>poultice</td>
<td>944</td>
</tr>
<tr>
<td>vinegar</td>
<td>1184</td>
</tr>
<tr>
<td>Maltum</td>
<td>980</td>
</tr>
<tr>
<td>Malva rotundifolia</td>
<td>2045</td>
</tr>
<tr>
<td>sylvestris</td>
<td>2045</td>
</tr>
<tr>
<td>Malvaeeae</td>
<td>2045</td>
</tr>
<tr>
<td>Malva opium</td>
<td>2045</td>
</tr>
<tr>
<td>Mannata</td>
<td>2346</td>
</tr>
<tr>
<td>Mandrica or cassava</td>
<td>1297</td>
</tr>
<tr>
<td>Mandragora officinalis</td>
<td>1448</td>
</tr>
<tr>
<td>Mandrake</td>
<td>1448</td>
</tr>
<tr>
<td>root</td>
<td>1731</td>
</tr>
<tr>
<td>Manganese</td>
<td>35</td>
</tr>
<tr>
<td>acetate of</td>
<td>637</td>
</tr>
<tr>
<td>binoxide of</td>
<td>632</td>
</tr>
<tr>
<td>carbonate of</td>
<td>632</td>
</tr>
<tr>
<td>chloride of</td>
<td>631</td>
</tr>
<tr>
<td>native black, or</td>
<td>632</td>
</tr>
<tr>
<td>peroxide of</td>
<td>632</td>
</tr>
<tr>
<td>sulphate of</td>
<td>635</td>
</tr>
<tr>
<td>Manganese acetas</td>
<td>62</td>
</tr>
<tr>
<td>binoxide of</td>
<td>62</td>
</tr>
<tr>
<td>carbonas</td>
<td>635</td>
</tr>
</tbody>
</table>
INDEX

<table>
<thead>
<tr>
<th>Muriate of line</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mercury</td>
<td>391</td>
</tr>
<tr>
<td>morphia</td>
<td>2144</td>
</tr>
<tr>
<td>soda</td>
<td>546</td>
</tr>
<tr>
<td>zinc</td>
<td>718</td>
</tr>
<tr>
<td>Muriatic acid</td>
<td>373</td>
</tr>
<tr>
<td>gas</td>
<td>375</td>
</tr>
<tr>
<td>Muriatis ferri liquor</td>
<td>779</td>
</tr>
<tr>
<td>Murde</td>
<td>401</td>
</tr>
<tr>
<td>Musc</td>
<td>1107</td>
</tr>
<tr>
<td>Musa parumisaca</td>
<td>1107</td>
</tr>
<tr>
<td>sapientum</td>
<td>1016</td>
</tr>
<tr>
<td>Muscovado sugar</td>
<td>952</td>
</tr>
<tr>
<td>Mush</td>
<td>952</td>
</tr>
<tr>
<td>Music</td>
<td>4</td>
</tr>
<tr>
<td>Musk</td>
<td>2230</td>
</tr>
<tr>
<td>Must (sanguis artificilis)</td>
<td>202</td>
</tr>
<tr>
<td>Mustard</td>
<td>2065</td>
</tr>
<tr>
<td>black</td>
<td>2065</td>
</tr>
<tr>
<td>ponticte</td>
<td>2068</td>
</tr>
<tr>
<td>white</td>
<td>1689</td>
</tr>
<tr>
<td>Myforch's essence of</td>
<td>1016</td>
</tr>
<tr>
<td>Muttisaceae</td>
<td>1573</td>
</tr>
<tr>
<td>Mycoderma cerevisie</td>
<td>930</td>
</tr>
<tr>
<td>Mylabilus</td>
<td>2201</td>
</tr>
<tr>
<td>Fisselinii</td>
<td>2211</td>
</tr>
<tr>
<td>Myrica cerifera</td>
<td>2220</td>
</tr>
<tr>
<td>Myricina</td>
<td>2221</td>
</tr>
<tr>
<td>Myristica cerifera</td>
<td>2232</td>
</tr>
<tr>
<td>fragrass</td>
<td>1332</td>
</tr>
<tr>
<td>moschata</td>
<td>1332</td>
</tr>
<tr>
<td>officinallis</td>
<td>1332</td>
</tr>
<tr>
<td>Myristis</td>
<td>1332</td>
</tr>
<tr>
<td>Myristica celtica</td>
<td>1337</td>
</tr>
<tr>
<td>Myristine</td>
<td>1338</td>
</tr>
<tr>
<td>Myrocn</td>
<td>2066</td>
</tr>
<tr>
<td>Myrocnlic</td>
<td>2066</td>
</tr>
<tr>
<td>Myrosporine</td>
<td>1827</td>
</tr>
<tr>
<td>Myroxline</td>
<td>1827</td>
</tr>
<tr>
<td>Mysorpernum periferum</td>
<td>1828</td>
</tr>
<tr>
<td>Mysorpernum toluferum</td>
<td>1828</td>
</tr>
<tr>
<td>Myxroxylen</td>
<td>1828</td>
</tr>
<tr>
<td>Myrrh</td>
<td>1893</td>
</tr>
<tr>
<td>Myrrha turcica</td>
<td>1893</td>
</tr>
<tr>
<td>Myrtaeae</td>
<td>1731</td>
</tr>
<tr>
<td>Myrtex</td>
<td>1107</td>
</tr>
<tr>
<td>Myrtus pimenta</td>
<td>1750</td>
</tr>
</tbody>
</table>

Oil, castor
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1287</td>
</tr>
</tbody>
</table>

Chicory
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1256</td>
</tr>
</tbody>
</table>

cod
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2334</td>
</tr>
</tbody>
</table>

corn spirit
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
</tr>
</tbody>
</table>

croton
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1277</td>
</tr>
</tbody>
</table>

Dippels
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2911</td>
</tr>
</tbody>
</table>

etherial
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
</tr>
</tbody>
</table>

Florence
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1507</td>
</tr>
</tbody>
</table>

Galipolli
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1507</td>
</tr>
</tbody>
</table>

Genus
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>549</td>
</tr>
</tbody>
</table>

linseed
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2053</td>
</tr>
</tbody>
</table>

cold drawn
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2052</td>
</tr>
</tbody>
</table>

Lucca
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1587</td>
</tr>
</tbody>
</table>

aloes
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1690</td>
</tr>
</tbody>
</table>

amber
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1689</td>
</tr>
</tbody>
</table>

anise
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1692</td>
</tr>
</tbody>
</table>

of antimony
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>689</td>
</tr>
</tbody>
</table>

assafoetida
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1279</td>
</tr>
</tbody>
</table>

balm
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1282</td>
</tr>
</tbody>
</table>

balsam of Peru
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827</td>
</tr>
</tbody>
</table>

bays
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1324</td>
</tr>
</tbody>
</table>

bergamot
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2033</td>
</tr>
</tbody>
</table>

bitter almonds
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1774</td>
</tr>
</tbody>
</table>

orange
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2040</td>
</tr>
</tbody>
</table>

camomile
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1558</td>
</tr>
</tbody>
</table>

caraway
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1690</td>
</tr>
</tbody>
</table>

cardamom, finger, or
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1144</td>
</tr>
</tbody>
</table>

volatile or essential
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1144</td>
</tr>
</tbody>
</table>

cassia
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1312</td>
</tr>
</tbody>
</table>

cedretilla
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1866</td>
</tr>
</tbody>
</table>

cedre
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
</tr>
</tbody>
</table>

cherry-laurel, volatile
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1782</td>
</tr>
</tbody>
</table>

cinchona bark
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1511</td>
</tr>
</tbody>
</table>

cinnamon
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1545</td>
</tr>
</tbody>
</table>

Ceylon
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2032</td>
</tr>
</tbody>
</table>

citron
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1757</td>
</tr>
</tbody>
</table>

cloves
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1844</td>
</tr>
</tbody>
</table>

coapertra
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1342</td>
</tr>
</tbody>
</table>

eau de cedre
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1697</td>
</tr>
</tbody>
</table>

allspice
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1696</td>
</tr>
</tbody>
</table>

angelica
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1695</td>
</tr>
</tbody>
</table>

garlic
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1073</td>
</tr>
</tbody>
</table>

gentian
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1469</td>
</tr>
</tbody>
</table>

geranium
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1028</td>
</tr>
</tbody>
</table>

grain
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840</td>
</tr>
</tbody>
</table>

hemlock
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1724</td>
</tr>
</tbody>
</table>

iron
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>779</td>
</tr>
</tbody>
</table>

jupiter
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1299</td>
</tr>
</tbody>
</table>

lavender
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
</tr>
</tbody>
</table>

laurel berries
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
</tr>
</tbody>
</table>

lemon
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2913</td>
</tr>
</tbody>
</table>

lemon grass
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928</td>
</tr>
</tbody>
</table>

lettuce
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1570</td>
</tr>
</tbody>
</table>

lime
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
</tr>
</tbody>
</table>

linseed
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2052</td>
</tr>
</tbody>
</table>

mace
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1337</td>
</tr>
</tbody>
</table>

male fern
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>961</td>
</tr>
</tbody>
</table>

marjoram
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1376</td>
</tr>
</tbody>
</table>

meadow, sweet
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1219</td>
</tr>
</tbody>
</table>

mustard
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1207</td>
</tr>
</tbody>
</table>

myrrh, volatile
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1535</td>
</tr>
</tbody>
</table>

Naphthol
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1839</td>
</tr>
</tbody>
</table>

neroli
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1463</td>
</tr>
</tbody>
</table>

neroil
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2940</td>
</tr>
</tbody>
</table>

nutmeg
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1337</td>
</tr>
</tbody>
</table>

nutmegs, expressed
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1337</td>
</tr>
</tbody>
</table>

onions
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1079</td>
</tr>
</tbody>
</table>

orange flower
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2058</td>
</tr>
</tbody>
</table>

leaf
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2058</td>
</tr>
</tbody>
</table>

pennroyal
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1374</td>
</tr>
</tbody>
</table>

peppermint
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1373</td>
</tr>
</tbody>
</table>

pimento
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>778</td>
</tr>
</tbody>
</table>

poppy
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2074</td>
</tr>
</tbody>
</table>

potatoe-spirit
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
</tr>
</tbody>
</table>

roses
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1512</td>
</tr>
</tbody>
</table>

rosemary
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1825</td>
</tr>
</tbody>
</table>

rue
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
</tr>
</tbody>
</table>

sarsaparilla
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1198</td>
</tr>
</tbody>
</table>

sassafras
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1328</td>
</tr>
</tbody>
</table>

savine
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1213</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Oil of senna</td>
</tr>
<tr>
<td>spearmint</td>
</tr>
<tr>
<td>spice</td>
</tr>
<tr>
<td>spikenard</td>
</tr>
<tr>
<td>star-anise</td>
</tr>
<tr>
<td>sweet marjoram</td>
</tr>
<tr>
<td>sweet orange</td>
</tr>
<tr>
<td>tea</td>
</tr>
<tr>
<td>tobacco</td>
</tr>
<tr>
<td>orange</td>
</tr>
<tr>
<td>thyme</td>
</tr>
<tr>
<td>tumeric</td>
</tr>
<tr>
<td>vitriol</td>
</tr>
<tr>
<td>sweet</td>
</tr>
<tr>
<td>honey</td>
</tr>
<tr>
<td>light</td>
</tr>
<tr>
<td>olive</td>
</tr>
<tr>
<td>or better of antimony</td>
</tr>
<tr>
<td>palms</td>
</tr>
<tr>
<td>paper</td>
</tr>
<tr>
<td>potato spirit</td>
</tr>
<tr>
<td>rag</td>
</tr>
<tr>
<td>rock</td>
</tr>
<tr>
<td>Sicily</td>
</tr>
<tr>
<td>sweet, droppings of</td>
</tr>
<tr>
<td>Oils</td>
</tr>
<tr>
<td>non-sulphated</td>
</tr>
<tr>
<td>non-sulphurated</td>
</tr>
<tr>
<td>oxygenated essential</td>
</tr>
<tr>
<td>sulphurated volatile</td>
</tr>
<tr>
<td>volatile</td>
</tr>
<tr>
<td>Oinion, the</td>
</tr>
<tr>
<td>Ointment, arsenical</td>
</tr>
<tr>
<td>blue or Neapolitan</td>
</tr>
<tr>
<td>citrine</td>
</tr>
<tr>
<td>mercurial</td>
</tr>
<tr>
<td>of ammonia</td>
</tr>
<tr>
<td>Olea europea</td>
</tr>
<tr>
<td>Oleaceae</td>
</tr>
<tr>
<td>Oleaif gas, dihydrate of</td>
</tr>
<tr>
<td>Oleine</td>
</tr>
<tr>
<td>Oleo-nargorate of lime</td>
</tr>
<tr>
<td>resin</td>
</tr>
<tr>
<td>Olera</td>
</tr>
<tr>
<td>Olemum absinthii</td>
</tr>
<tr>
<td>aethereum</td>
</tr>
<tr>
<td>amygdales</td>
</tr>
<tr>
<td>amare</td>
</tr>
<tr>
<td>anethi</td>
</tr>
<tr>
<td>animal</td>
</tr>
<tr>
<td>anis</td>
</tr>
<tr>
<td>antimias</td>
</tr>
<tr>
<td>anthos</td>
</tr>
<tr>
<td>armoricace</td>
</tr>
<tr>
<td>asari</td>
</tr>
<tr>
<td>auranti</td>
</tr>
<tr>
<td>badiana</td>
</tr>
<tr>
<td>bergamia, or oleum bergamotae</td>
</tr>
<tr>
<td>baroseme seu dosma</td>
</tr>
<tr>
<td>cadmium</td>
</tr>
<tr>
<td>cajuputi</td>
</tr>
<tr>
<td>calamin aromatica</td>
</tr>
<tr>
<td>camphora</td>
</tr>
<tr>
<td>cantharides</td>
</tr>
<tr>
<td>carui</td>
</tr>
<tr>
<td>caryophyllic</td>
</tr>
<tr>
<td>cascarilla</td>
</tr>
<tr>
<td>castor</td>
</tr>
<tr>
<td>chamomel Romani</td>
</tr>
<tr>
<td>chenopodi</td>
</tr>
<tr>
<td>cinamomoni</td>
</tr>
<tr>
<td>cinchonae, flos</td>
</tr>
<tr>
<td>copaiba</td>
</tr>
<tr>
<td>coriandr</td>
</tr>
<tr>
<td>cornu cervi</td>
</tr>
<tr>
<td>coriaceae</td>
</tr>
<tr>
<td>croci</td>
</tr>
<tr>
<td>cumini</td>
</tr>
<tr>
<td>Oleum cumbene</td>
</tr>
<tr>
<td>empyreumaticum</td>
</tr>
<tr>
<td>empyreumaticum jujiperi</td>
</tr>
<tr>
<td>ergot</td>
</tr>
<tr>
<td>fumiculi</td>
</tr>
<tr>
<td>garran</td>
</tr>
<tr>
<td>galega</td>
</tr>
<tr>
<td>filicis maris</td>
</tr>
<tr>
<td>gabianum</td>
</tr>
<tr>
<td>jatrophae cuneatae</td>
</tr>
<tr>
<td>jecoris asali</td>
</tr>
<tr>
<td>murrhina</td>
</tr>
<tr>
<td>juniperi</td>
</tr>
<tr>
<td>laurie reticulata</td>
</tr>
<tr>
<td>limonum</td>
</tr>
<tr>
<td>linum</td>
</tr>
<tr>
<td>lauris</td>
</tr>
<tr>
<td>labrot-crassae</td>
</tr>
<tr>
<td>lavandulae</td>
</tr>
<tr>
<td>macidare</td>
</tr>
<tr>
<td>majoranae</td>
</tr>
<tr>
<td>mantleae piperitae</td>
</tr>
<tr>
<td>pulegii</td>
</tr>
<tr>
<td>viridis</td>
</tr>
<tr>
<td>murrha</td>
</tr>
<tr>
<td>neriol</td>
</tr>
<tr>
<td>nucis moschatæ</td>
</tr>
<tr>
<td>origanum</td>
</tr>
<tr>
<td>olaves</td>
</tr>
<tr>
<td>piperoides</td>
</tr>
<tr>
<td>picis liquide</td>
</tr>
<tr>
<td>pimienta</td>
</tr>
<tr>
<td>pini rubrum</td>
</tr>
<tr>
<td>piperis</td>
</tr>
<tr>
<td>provinciales</td>
</tr>
<tr>
<td>pulegii</td>
</tr>
<tr>
<td>ricini</td>
</tr>
<tr>
<td>rose</td>
</tr>
<tr>
<td>rosmarini</td>
</tr>
<tr>
<td>ruta</td>
</tr>
<tr>
<td>salinier</td>
</tr>
<tr>
<td>sassenfras</td>
</tr>
<tr>
<td>sejunctum</td>
</tr>
<tr>
<td>siccitum</td>
</tr>
<tr>
<td>space</td>
</tr>
<tr>
<td>succineae</td>
</tr>
<tr>
<td>sulphurata</td>
</tr>
<tr>
<td>tanacet</td>
</tr>
<tr>
<td>terebinthina</td>
</tr>
<tr>
<td>terebinthinae, pununc</td>
</tr>
<tr>
<td>tinctum</td>
</tr>
<tr>
<td>thymi</td>
</tr>
<tr>
<td>tigli</td>
</tr>
<tr>
<td>vitriol dulce</td>
</tr>
<tr>
<td>volatile</td>
</tr>
<tr>
<td>Olibanum</td>
</tr>
<tr>
<td>Arabian</td>
</tr>
<tr>
<td>Olive, oleum</td>
</tr>
<tr>
<td>Olive, refuse of, for baths</td>
</tr>
<tr>
<td>Olives</td>
</tr>
<tr>
<td>Olivenum</td>
</tr>
<tr>
<td>spurge</td>
</tr>
<tr>
<td>Olivae</td>
</tr>
<tr>
<td>Onion</td>
</tr>
<tr>
<td>Opheal chirata</td>
</tr>
<tr>
<td>Opionic acid</td>
</tr>
<tr>
<td>Opium</td>
</tr>
<tr>
<td>clyster</td>
</tr>
<tr>
<td>Constantionope</td>
</tr>
<tr>
<td>Cutch</td>
</tr>
<tr>
<td>Dr. Porter’s solution of, in citric acid</td>
</tr>
<tr>
<td>eating</td>
</tr>
</tbody>
</table>

INDEX.

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opium, Egyptian</td>
<td>2092</td>
</tr>
<tr>
<td>English</td>
<td>2095</td>
</tr>
<tr>
<td>French</td>
<td>2095</td>
</tr>
<tr>
<td>German</td>
<td>2095</td>
</tr>
<tr>
<td>Indian</td>
<td>2093</td>
</tr>
<tr>
<td>lettuce</td>
<td>1566</td>
</tr>
<tr>
<td>lozenge</td>
<td>2133</td>
</tr>
<tr>
<td>Maltese</td>
<td>2094</td>
</tr>
<tr>
<td>Persian</td>
<td>2092</td>
</tr>
<tr>
<td>pills</td>
<td>2133</td>
</tr>
<tr>
<td>plaster</td>
<td>2134</td>
</tr>
<tr>
<td>preparations of</td>
<td>2106</td>
</tr>
<tr>
<td>purity and strength of</td>
<td>2106</td>
</tr>
<tr>
<td>smoking</td>
<td>2112</td>
</tr>
<tr>
<td>Smyrna</td>
<td>2031</td>
</tr>
<tr>
<td>tincture of</td>
<td>2133</td>
</tr>
<tr>
<td>Turkey</td>
<td>2091</td>
</tr>
<tr>
<td>Trebizond</td>
<td>2062</td>
</tr>
<tr>
<td>vinegar of</td>
<td>2138</td>
</tr>
<tr>
<td>wine of</td>
<td>2137</td>
</tr>
</tbody>
</table>

Opobalsaminum | 924 |
<p>| Opodeldoc | 569 |
| Opodia galbanifera | 1717 |
| Oppononum chroemium | 1719 |
| Opuntia cochinillifera | 2913 |
| Orange berries | 2038 |
| Orange, bigarade or bitter | 2039 |
| common or sweet | 2037 |
| Rose | 2038 |
| juice | 2038 |
| peel | 2038 |
| Seville | 2039 |
| tribe | 2039 |
| Orcein | 924 |
| Orchella, Dyer’s | 296 |
| Orchide | 1147 |
| Orchil liquor | 994 |
| Orchis | 1147 |
| mascula | 1147 |
| Orenburgi gum | 1183 |
| Origana marjorana | 1376 |
| Vatia | 1913 |
| Ornas Europa | 1510 |
| rotundifolia | 1510 |
| Orpine | 639 |
| Orris, Florescente | 1105 |
| root | 1105 |
| Orzya sativa | 998 |
| Oscillaria labyrinthisfomis | 992 |
| Ossa decusta alba | 398 |
| Osiris | 1374 |
| Ostrea edulis | 386, 2182 |
| Otto of roses | 1812 |
| Ursini poison | 1500 |
| Ovis amnii | 2229 |
| aries | 2229 |
| nusimmon | 2239 |
| Ovum | 2244 |
| Ox | 2240 |
| blei | 2294 |
| Oxalate of ammonia | 458 |
| Oxalic acid | 2007 |
| Oxalidaceae | 1934 |
| Oxis related | 2293 |
| Oxeoles | 1938 |
| Oxide, nitric | 498 |
| nitrus | 405 |
| of arsenious | 569 |
| calcium | 589 |
| ethyle | 1964 |
| lead | 753 |
| manganese | 634 |
| merycur | 815 |
| silver | 880 |
| Zinc | 711 |
| Oxidine | 398 |
| Oxy di | 2294 |
| Oxydi ferrae squamae | 761 |
| Oxymum antimoni nitro- | 674 |
| nitratum | 770 |
| ferrum ferrum | 770 |
| ferrum nigrum | 750 |
| rubrum | 752 |
| hydrogryt phlorid | 836 |</p>
<table>
<thead>
<tr>
<th>INDEX.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxymod hydraly rubrum</td>
<td>538</td>
</tr>
<tr>
<td>plumbrum semiv tricum</td>
<td>733</td>
</tr>
<tr>
<td>zinco</td>
<td>711</td>
</tr>
<tr>
<td>Oxygen</td>
<td>266</td>
</tr>
<tr>
<td>water</td>
<td>271</td>
</tr>
<tr>
<td>Oxygenated natria matic acid</td>
<td>307</td>
</tr>
<tr>
<td>Oxygenised</td>
<td>418</td>
</tr>
<tr>
<td>water</td>
<td>271</td>
</tr>
<tr>
<td>Oxygenium</td>
<td>266</td>
</tr>
<tr>
<td>Oxygenyl</td>
<td>996</td>
</tr>
<tr>
<td>Oysters</td>
<td>2182</td>
</tr>
<tr>
<td>green</td>
<td>904</td>
</tr>
<tr>
<td>shell</td>
<td>2183</td>
</tr>
<tr>
<td>prepared</td>
<td>586, 2183</td>
</tr>
<tr>
<td>P.</td>
<td></td>
</tr>
<tr>
<td>Pachydermat</td>
<td>2264</td>
</tr>
<tr>
<td>Palm bark</td>
<td>1621</td>
</tr>
<tr>
<td>Palm oil</td>
<td>1621</td>
</tr>
<tr>
<td>the</td>
<td>1621</td>
</tr>
<tr>
<td>wine</td>
<td>1328</td>
</tr>
<tr>
<td>Palma Christi</td>
<td>1284</td>
</tr>
<tr>
<td>Palmae</td>
<td>1032</td>
</tr>
<tr>
<td>farinifer</td>
<td>1033</td>
</tr>
<tr>
<td>oleifera</td>
<td>1033</td>
</tr>
<tr>
<td>refinier</td>
<td>1043</td>
</tr>
<tr>
<td>szen</td>
<td>1044</td>
</tr>
<tr>
<td>Palme</td>
<td>1260</td>
</tr>
<tr>
<td>Palmitine</td>
<td>1041</td>
</tr>
<tr>
<td>Panax quinquenolium</td>
<td>1687</td>
</tr>
<tr>
<td>rhin-seng</td>
<td>1687</td>
</tr>
<tr>
<td>Panchymagoominae</td>
<td>547</td>
</tr>
<tr>
<td>Pancreatia</td>
<td>233</td>
</tr>
<tr>
<td>Pines sacchariti pugenticu</td>
<td>1465</td>
</tr>
<tr>
<td>Pains fermentatus</td>
<td>991</td>
</tr>
<tr>
<td>sine fermento</td>
<td>991</td>
</tr>
<tr>
<td>Pranum vesicatarius</td>
<td>2213</td>
</tr>
<tr>
<td>Papaver officinal</td>
<td>2213</td>
</tr>
<tr>
<td>rhoe</td>
<td>2213</td>
</tr>
<tr>
<td>somnifer</td>
<td>2073</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>2214</td>
</tr>
<tr>
<td>Papier épissastique</td>
<td>1824</td>
</tr>
<tr>
<td>Papilionaceae</td>
<td>1610</td>
</tr>
<tr>
<td>Paradise</td>
<td>1168</td>
</tr>
<tr>
<td>Parallic acid</td>
<td>1658</td>
</tr>
<tr>
<td>Paralytica</td>
<td>212</td>
</tr>
<tr>
<td>Paraenisperma</td>
<td>2154</td>
</tr>
<tr>
<td>Paramor, hin</td>
<td>992</td>
</tr>
<tr>
<td>Parhoreodrein</td>
<td>1463</td>
</tr>
<tr>
<td>Parogric elixir</td>
<td>1324</td>
</tr>
<tr>
<td>Parira brava</td>
<td>2156</td>
</tr>
<tr>
<td>Paritaria officinalis</td>
<td>1257</td>
</tr>
<tr>
<td>Pariglin</td>
<td>1168</td>
</tr>
<tr>
<td>Parmita piri</td>
<td>922</td>
</tr>
<tr>
<td>Parsley</td>
<td>1735</td>
</tr>
<tr>
<td>fool's</td>
<td>1735</td>
</tr>
<tr>
<td>pier</td>
<td>1522</td>
</tr>
<tr>
<td>Pasta arsenicalis</td>
<td>671</td>
</tr>
<tr>
<td>caco cum chondro</td>
<td>911</td>
</tr>
<tr>
<td>Pasta ercharoctica Loudmessi</td>
<td>471</td>
</tr>
<tr>
<td>Paste, Ward's</td>
<td>1259</td>
</tr>
<tr>
<td>Pastitlum furnates</td>
<td>1525</td>
</tr>
<tr>
<td>Pastinaca oppoups</td>
<td>1719</td>
</tr>
<tr>
<td>sativa</td>
<td>1735</td>
</tr>
<tr>
<td>Patent unmented bread</td>
<td>9588</td>
</tr>
<tr>
<td>Patés de friture</td>
<td>12</td>
</tr>
<tr>
<td>Peach</td>
<td>1778</td>
</tr>
<tr>
<td>leaves</td>
<td>1779</td>
</tr>
<tr>
<td>Pearl ash</td>
<td>472</td>
</tr>
<tr>
<td>bar</td>
<td>706</td>
</tr>
<tr>
<td>white</td>
<td>706</td>
</tr>
<tr>
<td>Peas, issue</td>
<td>2035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectic acid</td>
</tr>
<tr>
<td>Pectin</td>
</tr>
<tr>
<td>Pectoral decoction</td>
</tr>
<tr>
<td>Pellicula ovi</td>
</tr>
<tr>
<td>Pellogium, common wall</td>
</tr>
<tr>
<td>of Spain</td>
</tr>
<tr>
<td>Pelidae canina</td>
</tr>
<tr>
<td>Pennyroyal</td>
</tr>
<tr>
<td>Pepper, bell</td>
</tr>
<tr>
<td>bird</td>
</tr>
<tr>
<td>black</td>
</tr>
<tr>
<td>Pepermint</td>
</tr>
<tr>
<td>oil</td>
</tr>
<tr>
<td>Percolation</td>
</tr>
<tr>
<td>Peripa bark</td>
</tr>
<tr>
<td>Peru medic</td>
</tr>
<tr>
<td>Perennial worm grass</td>
</tr>
<tr>
<td>Periopaca indica</td>
</tr>
<tr>
<td>Pernicate of iron</td>
</tr>
<tr>
<td>Peroxide of gold</td>
</tr>
<tr>
<td>magnesium</td>
</tr>
<tr>
<td>Persan opium</td>
</tr>
<tr>
<td>Persica valgaris</td>
</tr>
<tr>
<td>Perso (cudbec)</td>
</tr>
<tr>
<td>Perso sulphate of iron</td>
</tr>
<tr>
<td>Per, liquid balsam of</td>
</tr>
<tr>
<td>Peruvian bark, Galaya</td>
</tr>
<tr>
<td>Ipecacuanha</td>
</tr>
<tr>
<td>Petroleum</td>
</tr>
<tr>
<td>Barbadense</td>
</tr>
<tr>
<td>Petrosselium sativum</td>
</tr>
<tr>
<td>Phaenoretine</td>
</tr>
<tr>
<td>Panheroginum</td>
</tr>
<tr>
<td>Pharnaco-gosy</td>
</tr>
<tr>
<td>Pharnaco-dynamis</td>
</tr>
<tr>
<td>Pharmacology</td>
</tr>
<tr>
<td>Pharmacology, general</td>
</tr>
<tr>
<td>Pharmacology, special</td>
</tr>
<tr>
<td>Phelimion Loudmessi</td>
</tr>
<tr>
<td>Philosophor's wool</td>
</tr>
<tr>
<td>Phlogisticated air</td>
</tr>
<tr>
<td>Phlycten, ipecacuanha</td>
</tr>
<tr>
<td>Phosphates, sodae</td>
</tr>
<tr>
<td>Phosphates of lime, precipitated</td>
</tr>
<tr>
<td>soda</td>
</tr>
<tr>
<td>Phosphorated oil</td>
</tr>
<tr>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>Phosphoryzed oil</td>
</tr>
<tr>
<td>Phosphorus</td>
</tr>
<tr>
<td>Physiogynia</td>
</tr>
<tr>
<td>Physyc</td>
</tr>
<tr>
<td>Physogyna</td>
</tr>
<tr>
<td>Physeter macrocephalus</td>
</tr>
<tr>
<td>Physic nuts</td>
</tr>
<tr>
<td>Physica</td>
</tr>
<tr>
<td>Picrotoxin</td>
</tr>
<tr>
<td>Picrogynia</td>
</tr>
<tr>
<td>Picrotoxic acid</td>
</tr>
<tr>
<td>Pimentum indicum</td>
</tr>
<tr>
<td>Pilina, impermeable sponge</td>
</tr>
<tr>
<td>Pils, atotic</td>
</tr>
<tr>
<td>blue</td>
</tr>
<tr>
<td>Plummer's</td>
</tr>
<tr>
<td>Phlalodotox</td>
</tr>
<tr>
<td>coccie</td>
</tr>
<tr>
<td>colchidiosidos composit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filula colchydios compo-</td>
</tr>
<tr>
<td>site</td>
</tr>
<tr>
<td>et asaetalladios</td>
</tr>
<tr>
<td>et ferri</td>
</tr>
<tr>
<td>ammoniat cupri</td>
</tr>
<tr>
<td>asatica</td>
</tr>
<tr>
<td>asatica</td>
</tr>
<tr>
<td>cervaee</td>
</tr>
<tr>
<td>calomelanos compo-</td>
</tr>
<tr>
<td>sitae</td>
</tr>
<tr>
<td>colubrus</td>
</tr>
<tr>
<td>camboque compositae</td>
</tr>
<tr>
<td>cathartica compositae</td>
</tr>
<tr>
<td>colchidiosidos</td>
</tr>
<tr>
<td>et hyoscymai</td>
</tr>
<tr>
<td>conii composite</td>
</tr>
<tr>
<td>copaebae</td>
</tr>
<tr>
<td>cupri ammoniat</td>
</tr>
<tr>
<td>delphiniae</td>
</tr>
<tr>
<td>digitals et scilla</td>
</tr>
<tr>
<td>ferrin carbonatis</td>
</tr>
<tr>
<td>composite</td>
</tr>
<tr>
<td>cum myrrh</td>
</tr>
<tr>
<td>lodig</td>
</tr>
<tr>
<td>sulphus</td>
</tr>
<tr>
<td>gaibani composite</td>
</tr>
<tr>
<td>hydrargyri</td>
</tr>
<tr>
<td>chloridio compo-</td>
</tr>
<tr>
<td>sibolydii</td>
</tr>
<tr>
<td>ipecacuanhae cum scili-</td>
</tr>
<tr>
<td>ipecacuanha</td>
</tr>
<tr>
<td>ovi sive thebaci</td>
</tr>
<tr>
<td>plumbo oplate</td>
</tr>
<tr>
<td>rhei</td>
</tr>
<tr>
<td>et ferrin</td>
</tr>
<tr>
<td>composite</td>
</tr>
<tr>
<td>rub</td>
</tr>
<tr>
<td>saponis composite</td>
</tr>
<tr>
<td>scilla composite</td>
</tr>
<tr>
<td>styracis</td>
</tr>
<tr>
<td>composite</td>
</tr>
<tr>
<td>veratricia</td>
</tr>
<tr>
<td>Pimentic acid</td>
</tr>
<tr>
<td>Pimeto</td>
</tr>
<tr>
<td>hydro-carbon</td>
</tr>
<tr>
<td>ovate</td>
</tr>
<tr>
<td>pepper</td>
</tr>
<tr>
<td>Pimpinella anthosum</td>
</tr>
<tr>
<td>Pinaceae</td>
</tr>
<tr>
<td>Pinaster or cluster pine</td>
</tr>
<tr>
<td>Punic acid</td>
</tr>
<tr>
<td>Pink Carolina</td>
</tr>
<tr>
<td>cherv</td>
</tr>
<tr>
<td>root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus</td>
</tr>
<tr>
<td>abies</td>
</tr>
<tr>
<td>balsamena</td>
</tr>
<tr>
<td>canadensis</td>
</tr>
<tr>
<td>cembra</td>
</tr>
<tr>
<td>maritima</td>
</tr>
<tr>
<td>nigra</td>
</tr>
<tr>
<td>palustris</td>
</tr>
<tr>
<td>Picea</td>
</tr>
<tr>
<td>Pinaster</td>
</tr>
<tr>
<td>pinea</td>
</tr>
<tr>
<td>pumila</td>
</tr>
<tr>
<td>sylvestris</td>
</tr>
<tr>
<td>texa</td>
</tr>
<tr>
<td>Piperaceae</td>
</tr>
<tr>
<td>Piper album</td>
</tr>
<tr>
<td>betel</td>
</tr>
<tr>
<td>cubeba</td>
</tr>
<tr>
<td>longum</td>
</tr>
<tr>
<td>nigra</td>
</tr>
<tr>
<td>trium</td>
</tr>
<tr>
<td>Piperin</td>
</tr>
<tr>
<td>Pippisoevena</td>
</tr>
<tr>
<td>Pisces</td>
</tr>
<tr>
<td>Pisselatam</td>
</tr>
<tr>
<td>Pistacia lentiscus</td>
</tr>
<tr>
<td>trebericibus</td>
</tr>
</tbody>
</table>
INDEX.

Potassium sulphas. 483
Potassium bichromate. 485
Potassium permanganate. 487
Potassium nitrate. 489
Potassium carbonate. 490
Potassium bicarbonate. 491
Potassium hydroxide. 492
Potassium acetate. 493
Potassium bitartrate. 494
Potassium chloride. 495
Potassium bromide. 496
Potassium iodide. 497
Potassium iodate. 498
Potassium carbonate. 499
Potassium nitrate. 500
Potassium chloride. 501
Potassium bromide. 502
Potassium iodide. 503
Potassium cyanide. 504
Potassium carbonate. 505
Potassium nitrate. 506
Potassium chloride. 507
Potassium bromide. 508
Potassium iodide. 509
Potassium acetate. 510
Potassium bitartrate. 511
Potassium chloride. 512
Potassium bromide. 513
Potassium iodide. 514
Potassium carbonate. 515
Potassium nitrate. 516
Potassium chloride. 517
Potassium bromide. 518
Potassium iodide. 519
Potassium acetate. 520
Potassium bitartrate. 521
Potassium chloride. 522
Potassium bromide. 523
Potassium iodide. 524
Potassium carbonate. 525
Potassium nitrate. 526
Potassium chloride. 527
Potassium bromide. 528
Potassium iodide. 529
Potassium acetate. 530
Potassium bitartrate. 531
Potassium chloride. 532
Potassium bromide. 533
Potassium iodide. 534
Potassium carbonate. 535
Potassium nitrate. 536
Potassium chloride. 537
Potassium bromide. 538
Potassium iodide. 539
Potassium acetate. 540
Potassium bitartrate. 541
Potassium chloride. 542
Potassium bromide. 543
Potassium iodide. 544

VOL. II.
INDEX.

Pyro-acetic spirit 1992
Pyro-conia 1726
Pyroglutal 1618
Pyrodigitaline 1387
Pyro gallic acid 1233
Pyro-hydrocyania 1399
Pyrolaetes 1339
Pyro umbellata 1263
Pyrogynitic acid 1203
ether 1988
Pyrophyosphate of soda 541
Pyrothionide 2014
Pyroxic spirit 1998
Pyrus cypria 1814
Pyroxantine 1398
Pyrylene 1898
Pyrrhin 461

Q.
Quassia amara 1907
excelsa 1904
flexuosa 1309
Quassin 1994
Quassie 1904
Queen of Hungary's wax 1380
Quercus seqlops 1224
infectoria 1221
mammifera 1291
marina 905
pedunculata 1231
rubra 1234
suber 1233
tinctoria 1220
Quinelline 869
Quicklime 823
Quina 1563
amorphous 1563
disulphate of 1678
do Campo 1499
native Knute of 1652
monosulphate of 1564
neutral sulphate of 1654
Quine disulphates 1634
muria 1682
valerianas 1386
Quince, common 1814
nucleag 1814
seed 1899
Quinidina 1655
Quinidine 1655
Quinine, sulphate of 1657
Quinina 1908
Quinquin 1824

R.
Rack or arrack 1935
Radiol 2182
Radix Sambal 2009
Raisins 1928
Ranunculaceae 2161
Ranunculus acris 2161
Ranunculus radula 2163
Realgar 269, 372
Reasoning 69
Rectified spirit 1940
Red antimony 683
Red arsenic 672
Rahn 231
Pyrethrum 1538
Pyretin 2014
Pyretine, crystallized 2019
Pyrites, coxcomb 772

Red poppy 2072
precipitate 840
Roses 1807
sandal or sander's wood 1840
Zinc 769
Refrigantia 1317
Rein 1877
Relaxantia depirimentia 211
Remedies, hygienic 60
mechanical and surgical 79
pharmacological 79
physical but imponderable 7
psychical 2
somatic or corporal 2

Removal from home 6
Repellents 139
Repercussives 139
Reprimentia 234
Pesina 2, 1199
flava 1199
Kino 1849
Simarubas 1307
Resina nigra 1200
terebinthere 1199
Resingomone 1066
Resinas 1292
Resolutentia 175
Restraint 6
Reusite 613
Reversion and derivation 134
Rex metalorum 892
Rhabarbaric acid 1337
Rhabarbarin 1337
Rhamnéece 1899
Rhapontic acid 1358
Rhatany 2057
Rheic acid 2157
Rhein 1357
Rheum 1343
australe 1347
bardanillifolium 1345
bullatum 1345
caspicum 1340
compactum 1336
confusus 1343
crassimurum 1347
Euptodi 1347
hyridum 1347
leucorrhizon 1347
Moorcroftianum 1347
palmatum 1345
Rhabarbarum 1344
Rhaponticum 1340
spiciforme 1347
undulatum 1346
Webbiana 1347
Rheum 1337
Rhoeas petala 1463
Rhodeeoretin 1463
Rhombic phosphate of soda 540
Rhubarb, Batavian, or Dutch trimmed 1332
China, or E Indian 1351
common stick, English 1355
European 1334
French 1335
Himalayan 1845, 1353
Hapontic 1847
Russian or Bucharian 1348
Turkey 1345

Rhus radicans 1891
toxicodendron 1890
Rice 768
Richardsonia brasiliensis 1352
Scabra 1602
INDEX.

Salt or brine waters ... 302
Rochelle ... 332
sedative ... 332
Seignette's ... 502
tasteless purging ... 540
vegetable ... 516
Saltpetre ... 506
Chili ... 559
Safran ... 1633
smelling ... 436
Saltworts ... 1364
Sambucus nigra ... 1666
Safran ... 1375
Sapodilla red, ... 1289
Samburg red ... 1297
Sawdust or red arsenic ... 672
or juniper resin ... 1207
Sand-bathing ... 16
Sand, hot ... 16
Sanguinaria canadensis ... 2071
Sangunaria ... 2071
Sanguis draconis ... 1041
Sanguisgua ... 2183
Rochelle ... 2183
officialis ... 2186
Saltan ... 1540
Santone ... 1501
Sap green, or vert ... 1501
Sago ... 563
amygdalinus ... 567
Castellions ... 566
croton ... 1280
duras ... 566
ex oleo et potass ... 567
oleo et sodecon ... 567
fucet ... 566
mollis ... 566
potassius ... 567
sodaceus ... 566
vulgarius ... 567
Sapones sodoaci et potassici ... 563
Saponis guaiacim ... 1920
Sapatcaes ... 1392
Sarsaparilla ... 1133
Brazilian, Lisbon, ... 1133
Portugal, or Rio ... 1133
Negro ... 1161
Charcas, ... 1390
country ... 1501
Honduras ... 1161
Indian or scented ... 1501
Jamaica ... 1161
Luna ... 1165
New Zealand ... 1153
Vera Cruz ... 1166
Sarcocptes hominis ... 343
Sassafras nuts ... 1326
or officinalis ... 1326
oil of ... 1326
tea ... 1326
Sassoline ... 323
Satureze ... 1369
Saturn, extract of ... 731
Saturnina ... 115
Saunders's wood, red ... 1830
Savius, common ... 1024
Saxifraga ... 256
Scammonium gallicum ... 1435
Scammony ... 1450
Scaphium ... 1450
factitious ... 1455
Indian ... 1455
Montpellier ... 1455
red ... 1455
Snyatra ... 1453
virgin, or lachryma ... 1452
Scapin ... 1367
Scents ... 3
Scilla maritima ... 1089

Ricini oleum. ... 1287
Ricinie, and elaidic acids ... 1289
Ricinus africanus ... 1285
common's ... 1284
leucocarpus ... 1286
lividus ... 1286
macropliyllus ... 1286
viridis ... 1286
Rock oil ... 2017
Rocella tinctoria ... 926
Rome likeness ... 1285
Rochelle salt ... 562
Rodentia ... 2266
Roman alum ... 623
vitriol ... 800
Rosa canina ... 1865
centifolia ... 1810
gallic ... 1807
rugbiniosa ... 1767
Rosaee ... 1865
Rose, dog, common ... 1865
four-leafed, or cab-
bar ... 1810
red, or French ... 1807
water ... 1811
Rosaee, common ... 1379
oil of ... 1380
Roses, atta ... 1382
Rosin, brown ... 1399
Flockton's patent ... 1295
transparent ... 1295
Rouge ... 763, 2217
Rubefacient ... 1393
Rubia mutans ... 1556
Rubinum ... 1586
Rumex acetos ... 1302
hydrophaphum ... 1353
Ruminantia ... 2230
Ruscin ... 1633
Rust of copper ... 706
Ruta graveleus ... 1997
Rutaceae ... 1997
Rye, common ... 993
ergot of ... 997
spurred ... 997
S.
Sabaddilla ... 1065
Sabaddilic acid ... 1066
Sabaddillim ... 1068
Sabaddilina ... 1269
Sabinia ... 1269
Saburration ... 16
Saccomate of lead ... 735
Saccharum ... 763
aluminum ... 628
candum ... 1018
officialum ... 1013
saturni ... 746
Saccelastic ... 2962
Saltwort ... 1572
Saffron, bastard ... 1102, 1572
cake ... 1102, 1572
canis ... 1102
Crocus ... 1100
hay ... 1011
Segapenum ... 1712
preparratum ... 1712
Sago ... 1033
bread ... 1036
Sago flour ... 1035
Japan ... 1180
macerated ... 1034
palm, the unarmed ... 1033
Portland ... 1029
Saguerus Rumphi ... 1034
Sagus ... 1033
Saguina ... 1034
levia ... 1033
Rumphius ... 1034
Glauber's ... 445
plaster ... 445
ammoniacus ... 444
acetoolea ... 447
glauber ... 454
dubos ... 454
Seignette ... 572
eximum ... 457
fosses, from the commune ... 547
maris ... 774
mirabile Glauber ... 545
de perlatum ... 540
polychrest ... 592
polychrestus Glauber ... 592
Seignetti ... 561
Rupellensis ... 561
sedativum ... 524
Seidltizens ... 615
Succini ... 2021
tartari ... 472
vitriol ... 716
volatile ... 498
corni cervi ... 442
Sals ... 222
Salep ... 1147
Otallette ... 1106
Sales veratrie ... 1072
Salina neutra et media ... 175
Salsacea ... 1216
Salsice ... 1216
Salsicum ... 1219
Salsicornia ... 1355
Saline waters ... 1031
Salix ... 310, 15
alba ... 217
caprea ... 1217
fragilis ... 1218
penandra ... 1218
purpurea ... 1218
Russelliana ... 310, 1217
Selope ... 1325
Salpearin ... 1168
Salsola ... 1365
Salsolacee ... 1364
Salt alkali ... 324
atkin ... 324
baker's ... 458
bitter purging ... 615
black ... 472
common ... 546
culinary ... 546
diuretic ... 1034
Epsom ... 615
fossil ... 547
Glauber's ... 545
hair ... 544
of lemons ... 523
Mars ... 774
tartar ... 472, 474
Seignette ... 472
wood serrel ... 522
wormwood ... 472
<table>
<thead>
<tr>
<th>INDEX.</th>
<th>2311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiritus colchici ammonius</td>
<td>1053</td>
</tr>
<tr>
<td>fortior.</td>
<td>1912</td>
</tr>
<tr>
<td>frument.</td>
<td>1939</td>
</tr>
<tr>
<td>composit s.</td>
<td>1953</td>
</tr>
<tr>
<td>juniperi officinos.</td>
<td>1288</td>
</tr>
<tr>
<td>lavandulue</td>
<td>1368</td>
</tr>
<tr>
<td>compositus</td>
<td>1369</td>
</tr>
<tr>
<td>menthe</td>
<td>1373</td>
</tr>
<tr>
<td>piper</td>
<td>1373</td>
</tr>
<tr>
<td>pulegi</td>
<td>1375</td>
</tr>
<tr>
<td>viridis</td>
<td>1371</td>
</tr>
<tr>
<td>Mindereri</td>
<td>436</td>
</tr>
<tr>
<td>myristice</td>
<td>1338</td>
</tr>
<tr>
<td>nitri dulcis</td>
<td>1971</td>
</tr>
<tr>
<td>oxyzac</td>
<td>1939, 1956</td>
</tr>
<tr>
<td>pimenta</td>
<td>1761</td>
</tr>
<tr>
<td>pulegi</td>
<td>1375</td>
</tr>
<tr>
<td>rectificatus</td>
<td>1940</td>
</tr>
<tr>
<td>rosmanini</td>
<td>1380</td>
</tr>
<tr>
<td>sacchari</td>
<td>1954</td>
</tr>
<tr>
<td>salis ammoniaci cautis-</td>
<td>422</td>
</tr>
<tr>
<td>ticus cum calce vivae</td>
<td>422</td>
</tr>
<tr>
<td>paratus</td>
<td>422</td>
</tr>
<tr>
<td>salis dulcis</td>
<td>1975</td>
</tr>
<tr>
<td>sdn liquor Mindereri</td>
<td>436</td>
</tr>
<tr>
<td>tenuior</td>
<td>1943</td>
</tr>
<tr>
<td>vidai galiras</td>
<td>1943</td>
</tr>
<tr>
<td>volatilis fœtidus</td>
<td>435</td>
</tr>
<tr>
<td>Spiriting cucumber</td>
<td>1713</td>
</tr>
<tr>
<td>Sphenica</td>
<td>232</td>
</tr>
<tr>
<td>officinalis</td>
<td>2178</td>
</tr>
<tr>
<td>usta</td>
<td>2179</td>
</tr>
<tr>
<td>Spruce beer</td>
<td>1183</td>
</tr>
<tr>
<td>essence of</td>
<td>1183</td>
</tr>
<tr>
<td>Spunk</td>
<td>931</td>
</tr>
<tr>
<td>Spurger,</td>
<td>1956</td>
</tr>
<tr>
<td>piceanana</td>
<td>1271</td>
</tr>
<tr>
<td>olive</td>
<td>1339</td>
</tr>
<tr>
<td>Spurgeworts</td>
<td>1297</td>
</tr>
<tr>
<td>Spurred rye</td>
<td>906</td>
</tr>
<tr>
<td>Squilla maritima</td>
<td>1089</td>
</tr>
<tr>
<td>pancration</td>
<td>1090</td>
</tr>
<tr>
<td>Stag's horn</td>
<td>2238</td>
</tr>
<tr>
<td>Stalagmites cambogioides</td>
<td>2929</td>
</tr>
<tr>
<td>Stamm bisphuretus</td>
<td>725</td>
</tr>
<tr>
<td>chloridum</td>
<td>725</td>
</tr>
<tr>
<td>limaturia</td>
<td>725</td>
</tr>
<tr>
<td>pulvis</td>
<td>724</td>
</tr>
<tr>
<td>Stannum</td>
<td>725</td>
</tr>
<tr>
<td>Indicum</td>
<td>709</td>
</tr>
<tr>
<td>muriaticum oxydulatum</td>
<td>725</td>
</tr>
<tr>
<td>Star anise</td>
<td>906</td>
</tr>
<tr>
<td>Starch</td>
<td>995</td>
</tr>
<tr>
<td>iodide of</td>
<td>398</td>
</tr>
<tr>
<td>rice</td>
<td>969</td>
</tr>
<tr>
<td>Stavesacre</td>
<td>2163</td>
</tr>
<tr>
<td>Steam</td>
<td>995</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>565</td>
</tr>
<tr>
<td>Stearine</td>
<td>1508</td>
</tr>
<tr>
<td>Steel mixture</td>
<td>768</td>
</tr>
<tr>
<td>Stephens's cascoilet for the stem</td>
<td>2169</td>
</tr>
<tr>
<td>and gravel</td>
<td>582</td>
</tr>
<tr>
<td>pepper medicine</td>
<td>1448</td>
</tr>
<tr>
<td>Sterculintha</td>
<td>228</td>
</tr>
<tr>
<td>Sterculiaria</td>
<td>234</td>
</tr>
<tr>
<td>Sthenica</td>
<td>217</td>
</tr>
<tr>
<td>Stibiated tartar</td>
<td>690</td>
</tr>
<tr>
<td>Sibium</td>
<td>673</td>
</tr>
<tr>
<td>sulphasurum aurantiac</td>
<td>688</td>
</tr>
<tr>
<td>Sticta pulmonaria</td>
<td>917</td>
</tr>
<tr>
<td>St. Ignatius's bean</td>
<td>1500</td>
</tr>
<tr>
<td>St. John's Liniment</td>
<td>1198</td>
</tr>
<tr>
<td>Stimmula</td>
<td>916, 217</td>
</tr>
<tr>
<td>Stimuli, alterative or medi-</td>
<td>8</td>
</tr>
<tr>
<td>Stimpuli, diffusible</td>
<td>217</td>
</tr>
<tr>
<td>Strobilus</td>
<td>916</td>
</tr>
<tr>
<td>Strengthening plaster</td>
<td>764</td>
</tr>
<tr>
<td>Striccium</td>
<td>1494</td>
</tr>
<tr>
<td>Strychnine muriatus</td>
<td>1496</td>
</tr>
<tr>
<td>Strychnina</td>
<td>1483</td>
</tr>
<tr>
<td>Strychnos colombiana</td>
<td>1498</td>
</tr>
<tr>
<td>Ignatia</td>
<td>1500</td>
</tr>
<tr>
<td>ligustria</td>
<td>1499</td>
</tr>
<tr>
<td>nux vomica</td>
<td>729</td>
</tr>
<tr>
<td>potatorum</td>
<td>1499</td>
</tr>
<tr>
<td>pseudo-quina</td>
<td>1499</td>
</tr>
<tr>
<td>tincte</td>
<td>1498</td>
</tr>
<tr>
<td>toxifera</td>
<td>1499</td>
</tr>
<tr>
<td>Stupefacientia</td>
<td>290</td>
</tr>
<tr>
<td>Sturgeon</td>
<td>2292</td>
</tr>
<tr>
<td>Styptic</td>
<td>158</td>
</tr>
<tr>
<td>Stryraceae</td>
<td>1314</td>
</tr>
<tr>
<td>Strychnini</td>
<td>1429</td>
</tr>
<tr>
<td>Strychnina, scias</td>
<td>1527</td>
</tr>
<tr>
<td>Styrax albus</td>
<td>1517</td>
</tr>
<tr>
<td>Styrax officinalis</td>
<td>2178</td>
</tr>
<tr>
<td>ust</td>
<td>2179</td>
</tr>
<tr>
<td>Styrax officinalis</td>
<td>2178</td>
</tr>
<tr>
<td>usata</td>
<td>2179</td>
</tr>
<tr>
<td>Styrax</td>
<td>1183</td>
</tr>
<tr>
<td>essence of</td>
<td>1183</td>
</tr>
<tr>
<td>Spunk</td>
<td>931</td>
</tr>
<tr>
<td>Spurger,</td>
<td>1956</td>
</tr>
<tr>
<td>piceanana</td>
<td>1271</td>
</tr>
<tr>
<td>olive</td>
<td>1339</td>
</tr>
<tr>
<td>Spurgeworts</td>
<td>1297</td>
</tr>
<tr>
<td>Spurred rye</td>
<td>906</td>
</tr>
<tr>
<td>Squilla maritima</td>
<td>1089</td>
</tr>
<tr>
<td>pancration</td>
<td>1090</td>
</tr>
<tr>
<td>Stag's horn</td>
<td>2238</td>
</tr>
<tr>
<td>Stalagmites cambogioides</td>
<td>2929</td>
</tr>
<tr>
<td>Stannum bisphuretus</td>
<td>725</td>
</tr>
<tr>
<td>chloridum</td>
<td>725</td>
</tr>
<tr>
<td>limaturia</td>
<td>725</td>
</tr>
<tr>
<td>pulvis</td>
<td>724</td>
</tr>
<tr>
<td>Stannum</td>
<td>725</td>
</tr>
<tr>
<td>Indicum</td>
<td>709</td>
</tr>
<tr>
<td>muriaticum oxydulatum</td>
<td>725</td>
</tr>
<tr>
<td>Star anise</td>
<td>906</td>
</tr>
<tr>
<td>Starch</td>
<td>995</td>
</tr>
<tr>
<td>iodide of</td>
<td>398</td>
</tr>
<tr>
<td>rice</td>
<td>969</td>
</tr>
<tr>
<td>Stavesacre</td>
<td>2163</td>
</tr>
<tr>
<td>Steam</td>
<td>995</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>565</td>
</tr>
<tr>
<td>Stearine</td>
<td>1508</td>
</tr>
<tr>
<td>Steel mixture</td>
<td>768</td>
</tr>
<tr>
<td>Stephens's cascoilet for the stem</td>
<td>2169</td>
</tr>
<tr>
<td>and gravel</td>
<td>582</td>
</tr>
<tr>
<td>pepper medicine</td>
<td>1448</td>
</tr>
<tr>
<td>Sterculintha</td>
<td>228</td>
</tr>
<tr>
<td>Sterculiaria</td>
<td>234</td>
</tr>
<tr>
<td>Sthenica</td>
<td>217</td>
</tr>
<tr>
<td>Stibiated tartar</td>
<td>690</td>
</tr>
<tr>
<td>Sibium</td>
<td>673</td>
</tr>
<tr>
<td>sulphasurum aurantiac</td>
<td>688</td>
</tr>
<tr>
<td>Sticta pulmonaria</td>
<td>917</td>
</tr>
<tr>
<td>St. Ignatius's bean</td>
<td>1500</td>
</tr>
<tr>
<td>St. John's Liniment</td>
<td>1198</td>
</tr>
<tr>
<td>Stimmula</td>
<td>916, 217</td>
</tr>
<tr>
<td>Stimuli, alterative or medi-</td>
<td>8</td>
</tr>
<tr>
<td>Stimuli, diffusible</td>
<td>217</td>
</tr>
<tr>
<td>heterogeneous</td>
<td>95</td>
</tr>
<tr>
<td>homogeneus</td>
<td>95</td>
</tr>
<tr>
<td>vital</td>
<td>8, 95</td>
</tr>
<tr>
<td>in the tear</td>
<td>1516</td>
</tr>
<tr>
<td>liquid</td>
<td>1516</td>
</tr>
<tr>
<td>oil</td>
<td>1519</td>
</tr>
<tr>
<td>reddish brown</td>
<td>1518</td>
</tr>
<tr>
<td>the official</td>
<td>1514</td>
</tr>
<tr>
<td>volatile oil of</td>
<td>1510</td>
</tr>
<tr>
<td>white</td>
<td>1517</td>
</tr>
<tr>
<td>Stramonium, datura</td>
<td>1415</td>
</tr>
<tr>
<td>Strengthening plaster</td>
<td>764</td>
</tr>
<tr>
<td>Styrax</td>
<td>1494</td>
</tr>
<tr>
<td>Strychnine muriatus</td>
<td>1496</td>
</tr>
<tr>
<td>Strychnina</td>
<td>1483</td>
</tr>
<tr>
<td>Strychnos colombiana</td>
<td>1498</td>
</tr>
<tr>
<td>Ignatia</td>
<td>1500</td>
</tr>
<tr>
<td>ligustria</td>
<td>1499</td>
</tr>
<tr>
<td>nux vomica</td>
<td>729</td>
</tr>
<tr>
<td>potatorum</td>
<td>1499</td>
</tr>
<tr>
<td>pseudo-quina</td>
<td>1499</td>
</tr>
<tr>
<td>tincte</td>
<td>1498</td>
</tr>
<tr>
<td>toxifera</td>
<td>1499</td>
</tr>
<tr>
<td>Stupefacientia</td>
<td>290</td>
</tr>
<tr>
<td>Sturgeon</td>
<td>2292</td>
</tr>
<tr>
<td>Styptic</td>
<td>158</td>
</tr>
<tr>
<td>Stryraceae</td>
<td>1314</td>
</tr>
<tr>
<td>Strychnini</td>
<td>1429</td>
</tr>
<tr>
<td>Strychnina, scias</td>
<td>1527</td>
</tr>
<tr>
<td>Styrax albus</td>
<td>1517</td>
</tr>
<tr>
<td>amygdaloid</td>
<td>1518</td>
</tr>
<tr>
<td>benzo</td>
<td>1521</td>
</tr>
<tr>
<td>calamita</td>
<td>1517</td>
</tr>
<tr>
<td>colatus</td>
<td>1520</td>
</tr>
<tr>
<td>liquida</td>
<td>1515</td>
</tr>
<tr>
<td>officinale</td>
<td>1514</td>
</tr>
<tr>
<td>Styrole</td>
<td>1910</td>
</tr>
<tr>
<td>Subacetate of copper</td>
<td>806</td>
</tr>
<tr>
<td>Subcarbonate of ammonia</td>
<td>436</td>
</tr>
<tr>
<td>Subchloride of manganese</td>
<td>1233</td>
</tr>
<tr>
<td>Suberic acid</td>
<td>1223</td>
</tr>
<tr>
<td>Suberin</td>
<td>1233</td>
</tr>
<tr>
<td>Suboxide of mercury</td>
<td>836</td>
</tr>
<tr>
<td>Sublimatus corrosivos</td>
<td>837</td>
</tr>
<tr>
<td>Submunitate of mercury</td>
<td>847</td>
</tr>
<tr>
<td>Subphosphate of lime</td>
<td>589</td>
</tr>
<tr>
<td>Subsalphides hydrargyri flavus</td>
<td>845</td>
</tr>
<tr>
<td>Succini, colophonium</td>
<td>2019</td>
</tr>
<tr>
<td>oleum</td>
<td>2019</td>
</tr>
<tr>
<td>Sucinicum</td>
<td>2021</td>
</tr>
<tr>
<td>Succinum</td>
<td>2018</td>
</tr>
<tr>
<td>Succour, wyj</td>
<td>1037</td>
</tr>
<tr>
<td>Succinas belladonnae</td>
<td>1411</td>
</tr>
<tr>
<td>colchici</td>
<td>1057</td>
</tr>
<tr>
<td>cymenacis</td>
<td>1708</td>
</tr>
<tr>
<td>digitals</td>
<td>1586</td>
</tr>
<tr>
<td>binoxum</td>
<td>2019</td>
</tr>
<tr>
<td>coni</td>
<td>1733</td>
</tr>
<tr>
<td>hyoscyami</td>
<td>1401</td>
</tr>
<tr>
<td>Sudatorium</td>
<td>16</td>
</tr>
<tr>
<td>Sudis</td>
<td>2209</td>
</tr>
<tr>
<td>Sudorifica</td>
<td>245</td>
</tr>
<tr>
<td>Sudorifics or diaphoretics</td>
<td>319</td>
</tr>
<tr>
<td>Sugar</td>
<td>1019</td>
</tr>
<tr>
<td>beef</td>
<td>1018</td>
</tr>
<tr>
<td>candy, white</td>
<td>1018</td>
</tr>
<tr>
<td>cane</td>
<td>1018</td>
</tr>
</tbody>
</table>
INDEX.

Sulphur, date .. 1059
Demerara crystal 1019
fusus .. 937
liquorice .. 1854
manufacture of 1019
muscovado or raw 1019
of grapes .. 1928
lead .. 744
milk ... 2506
palm ... 1032
purified ... 1018
white .. 1919
Sulphate of ammonia 639
ammonia .. 453
ferri .. 733
exsiccatum ... 777
magnesia .. 615
potasse .. 483
soda .. 545
zinci .. 716
Sulphate of ammonia 453
baryta .. 574
charrityne .. 1473
cinchonina .. 1655
copper ... 800
hydracarbon 1568
hydric ... 1586
iron .. 773
magnesia .. 615
potasse .. 483
morphia ... 2147
oxide .. 1473
nium ... 455
ebule and ethereole 1958
potash .. 1480
quina .. 1544
quinidine .. 1656
soda .. 545
zinc .. 716
Sulphated chalybeates 297
tumans .. 483
Sulphates of potash 483
Sulphatic ether ..
Sulphide of carbon 363
Surplusic sodara 543
Sulpho-sipasins 2070
vinic acid of Hennell
Sulphur ... 338
alcohol ... 365
of antimonium fuscum 680
antimonii auratum 688
balsam of .. 316
Boyle's fuming liquor 453
carbamin .. 347
carburet of .. 365
common native 388
crudo .. 320
flowers of ... 344
grisium ... 347
hydrate of ... 345
tide of ... 399
liver of .. 380
lotum .. 341
milk of ... 363
native or virgin 338
nigrum ... 347
oil of .. 433
ointment ... 438
compound .. 346
of the iodide of 400
precipitatum .. 345
precipitated ... 345
refined ... 341
roll, stick, or cane 341
sublimatum ... 344
sublimed ... 344
vegetable .. 963
vivum .. 347
volatile ... 1405
volcanic ... 338
washed .. 344
Sulphated oil .. 340

SUlphurATum baleneum 453
oleum ... 346
Sulphurous or hepatic waters 298
Sulphuret of antimony, golden 688
iron ... 1019
potash .. 480
potassium .. 480
Sulphurets of arsenic 671
Sulphured hydrogel 363
in water .. 69
water ... 304
of sulphurous bath 482
Sulphuretum antimonii 361
preparatum .. 1899
hydrgyri nigrum 844
rubrum .. 842
Sulphuric acid ..
Sulphuris dichloridum 383
hepar .. 480
iodidum ... 399
Sulphuros ... 361
Sulphurous acid 361
Sumach ... 1890
Sumbul root ... 2284
Sulphuric acid 347
Sulphate ... 361
Sulphuric acid 347
Sulphate ... 361

T.

Tabacum nictitans 1419
Taccac starch or Talitii arrow- root 1106
pinatatida .. 1106

Taccace 1106
Tenria solium 233
Tuffetas viscicant 2123
Talitii arrow-root 1106
Talbott's powder 1019
Talc earth (Talkerde) 604
Tamarind-tree, common 1801
whey .. 1863
Tamarindus indica 1582
prapatras .. 1862
Tamus communis 1153
Tanacetum acrid 1563
Tanacetum vulgare 1563
Tannic acid ... 1218
Tannin ... 1683
Tannins .. 1883
Tansey ... 1253
Tapioca plant 1291
Tar .. 1202
Barbateos .. 2017
coal .. 1292
oil of ... 1203
ointment .. 1203
vegetable .. 1262
water .. 1293
wood ... 2902
Taraxacum .. 1575
Taraxacum dens-leonis
Taraxacum officinale
Taratar .. 1578

Taratar 1578
chalybeated .. 794
cream of .. 518
crude ... 518
emetic ... 690
ointment ... 705
red ... 518
salt of ... 474
solute ... 518
sulphated .. 526
whey, cream .. 520
white .. 518
Tararti terra foliata 314
Tarartic acid .. 2053
Tarartized antimony 690
iron .. 794
kahl .. 516
soda ... 562
tartar ... 516
Taraturs albus vel ruber 518
boraxatus .. 339
chalybeated .. 794
ferratum ... 605
crudas ... 518
emeticus .. 690
sibillatus .. 690
Tartras potasse 516
et ferri .. 794
Tartrate of iron and ammon- nium 794
magnesia ... 619
potash ... 516
soda and iron 562
iron .. 794
Tartrates, effervesceing 2006
Taste .. 64
Tasteless ague drops 663
purging salts .. 540
Taxaceae .. 1213
Taxus baccata 1214
Tea ... 2042
balm ... 1379
black .. 2042
oil .. 2043
green ... 2042
tribe .. 2042
Tectum argenti 705
Temperants or refrigerants 197
Tempeis bleaching powder 197
Terebinthaceae 84, 1887
Terebinthina .. 1183
candensis .. 1187
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, lake</td>
<td>292</td>
</tr>
<tr>
<td>laurel</td>
<td>1784</td>
</tr>
<tr>
<td>lime</td>
<td>583</td>
</tr>
<tr>
<td>moss</td>
<td>292</td>
</tr>
<tr>
<td>of ammonia</td>
<td>422</td>
</tr>
<tr>
<td>Ascot Heath</td>
<td>276</td>
</tr>
<tr>
<td>mustard, distilled</td>
<td>2607</td>
</tr>
<tr>
<td>The Dead Sea</td>
<td>1931</td>
</tr>
<tr>
<td>orange flower</td>
<td>2041</td>
</tr>
<tr>
<td>oxygen</td>
<td>71</td>
</tr>
<tr>
<td>rain</td>
<td>989</td>
</tr>
<tr>
<td>river</td>
<td>296</td>
</tr>
<tr>
<td>sea</td>
<td>202</td>
</tr>
<tr>
<td>seltzer</td>
<td>322</td>
</tr>
<tr>
<td>snow</td>
<td>2-9</td>
</tr>
<tr>
<td>soda</td>
<td>769</td>
</tr>
<tr>
<td>solutive</td>
<td>4087</td>
</tr>
<tr>
<td>spring</td>
<td>290</td>
</tr>
<tr>
<td>tar</td>
<td>1354</td>
</tr>
<tr>
<td>Webb's soda</td>
<td>355</td>
</tr>
<tr>
<td>well</td>
<td>290</td>
</tr>
<tr>
<td>Waters</td>
<td>288</td>
</tr>
<tr>
<td>acridulous or carbonated</td>
<td>299</td>
</tr>
<tr>
<td>acridulo-alkaline</td>
<td>299</td>
</tr>
<tr>
<td>alkaline</td>
<td>300</td>
</tr>
<tr>
<td>aluminous chalybeate</td>
<td>297</td>
</tr>
<tr>
<td>artificial metal</td>
<td>306</td>
</tr>
<tr>
<td>carbonated chalybeates</td>
<td>297</td>
</tr>
<tr>
<td>calcareous</td>
<td>303</td>
</tr>
<tr>
<td>chalybeate, or ferruginous</td>
<td>296</td>
</tr>
<tr>
<td>common</td>
<td>297</td>
</tr>
<tr>
<td>distilled</td>
<td>281</td>
</tr>
<tr>
<td>medicated</td>
<td>281</td>
</tr>
<tr>
<td>mineral</td>
<td>294</td>
</tr>
<tr>
<td>nitrite</td>
<td>307</td>
</tr>
<tr>
<td>purging saline</td>
<td>301</td>
</tr>
<tr>
<td>saline</td>
<td>301</td>
</tr>
<tr>
<td>salt or brine</td>
<td>302</td>
</tr>
<tr>
<td>silicious</td>
<td>303</td>
</tr>
<tr>
<td>sulphated chalybeate</td>
<td>297</td>
</tr>
<tr>
<td>sulphureous, or hepatic</td>
<td>298</td>
</tr>
<tr>
<td>Wax</td>
<td>2220</td>
</tr>
<tr>
<td>bearing Palms</td>
<td>1042</td>
</tr>
<tr>
<td>myrrh</td>
<td>2220</td>
</tr>
<tr>
<td>plastic</td>
<td>222</td>
</tr>
<tr>
<td>vegetable</td>
<td>2220</td>
</tr>
<tr>
<td>white</td>
<td>2221</td>
</tr>
<tr>
<td>yellow</td>
<td>2241</td>
</tr>
<tr>
<td>Wells, Arabian</td>
<td>291</td>
</tr>
<tr>
<td>London</td>
<td>290</td>
</tr>
<tr>
<td>Wheat-fLOUR</td>
<td>984</td>
</tr>
<tr>
<td>starch</td>
<td>988</td>
</tr>
<tr>
<td>Whey, cream of Yorkshire</td>
<td>2295</td>
</tr>
<tr>
<td>Whiskey</td>
<td>1935</td>
</tr>
<tr>
<td>White arsenic</td>
<td>639</td>
</tr>
<tr>
<td>byronic root</td>
<td>1751</td>
</tr>
<tr>
<td>chocolate</td>
<td>911</td>
</tr>
<tr>
<td>coppeums</td>
<td>716</td>
</tr>
<tr>
<td>flake</td>
<td>735</td>
</tr>
<tr>
<td>flux</td>
<td>474</td>
</tr>
<tr>
<td>ginger</td>
<td>1117</td>
</tr>
<tr>
<td>hellbender</td>
<td>1205</td>
</tr>
<tr>
<td>horehound</td>
<td>1380</td>
</tr>
<tr>
<td>iron pyrites</td>
<td>772</td>
</tr>
<tr>
<td>lead</td>
<td>736</td>
</tr>
<tr>
<td>mustard</td>
<td>2909</td>
</tr>
<tr>
<td>of eggs</td>
<td>2245</td>
</tr>
<tr>
<td>oxide of mercury</td>
<td>664</td>
</tr>
<tr>
<td>pearl</td>
<td>706</td>
</tr>
<tr>
<td>pepper</td>
<td>1237</td>
</tr>
<tr>
<td>poppy</td>
<td>2073</td>
</tr>
<tr>
<td>precipitate</td>
<td>654</td>
</tr>
<tr>
<td>precipitated mercury</td>
<td>684</td>
</tr>
<tr>
<td>Spanish</td>
<td>706</td>
</tr>
<tr>
<td>sugar</td>
<td>1010</td>
</tr>
<tr>
<td>vinegar</td>
<td>1985</td>
</tr>
<tr>
<td>vitriol</td>
<td>716</td>
</tr>
<tr>
<td>Whitlaw's ethereal tincture</td>
<td>1551</td>
</tr>
<tr>
<td>Widman's crystalline mixture</td>
<td>2039</td>
</tr>
<tr>
<td>Wild carrot</td>
<td>1701</td>
</tr>
<tr>
<td>cinnamon</td>
<td>2029</td>
</tr>
<tr>
<td>cucumber</td>
<td>1742</td>
</tr>
<tr>
<td>enule or aracury</td>
<td>1577</td>
</tr>
<tr>
<td>vine</td>
<td>2156</td>
</tr>
<tr>
<td>Willow</td>
<td>310, 1217</td>
</tr>
<tr>
<td>Wine</td>
<td>1929</td>
</tr>
<tr>
<td>anti-diel</td>
<td>34</td>
</tr>
<tr>
<td>astrangent</td>
<td>1935</td>
</tr>
<tr>
<td>bouquet</td>
<td>1931</td>
</tr>
<tr>
<td>Burgundy</td>
<td>1985</td>
</tr>
<tr>
<td>Clairce</td>
<td>1935</td>
</tr>
<tr>
<td>Madeira</td>
<td>1935</td>
</tr>
<tr>
<td>of aloes</td>
<td>1089</td>
</tr>
<tr>
<td>gentian</td>
<td>2030</td>
</tr>
<tr>
<td>oil</td>
<td>1668</td>
</tr>
<tr>
<td>palm</td>
<td>1032, 1956</td>
</tr>
<tr>
<td>port</td>
<td>1935</td>
</tr>
<tr>
<td>sherry</td>
<td>1939, 1935</td>
</tr>
<tr>
<td>sparkling</td>
<td>1930</td>
</tr>
<tr>
<td>spirit of</td>
<td>1941</td>
</tr>
<tr>
<td>steel</td>
<td>797</td>
</tr>
<tr>
<td>sweet</td>
<td>1932</td>
</tr>
<tr>
<td>wine</td>
<td>2033</td>
</tr>
<tr>
<td>white</td>
<td>1935</td>
</tr>
<tr>
<td>Wines, English</td>
<td>1930</td>
</tr>
<tr>
<td>French</td>
<td>1930</td>
</tr>
<tr>
<td>German</td>
<td>1930</td>
</tr>
<tr>
<td>Grecian and Ionian</td>
<td>1930</td>
</tr>
<tr>
<td>Hungarian</td>
<td>1930</td>
</tr>
<tr>
<td>Italian and Sicilian</td>
<td>1930</td>
</tr>
<tr>
<td>medicated</td>
<td>1936</td>
</tr>
<tr>
<td>of the Cape of Good</td>
<td>1930</td>
</tr>
<tr>
<td>Hope</td>
<td>1930</td>
</tr>
<tr>
<td>Madeira and the</td>
<td>1930</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>1930</td>
</tr>
<tr>
<td>Persian</td>
<td>1920</td>
</tr>
<tr>
<td>Portuguese</td>
<td>1930</td>
</tr>
<tr>
<td>Rhine</td>
<td>1935</td>
</tr>
<tr>
<td>Spanish</td>
<td>1930</td>
</tr>
<tr>
<td>Winter's aromatic</td>
<td>2135</td>
</tr>
<tr>
<td>Winteraceae</td>
<td>2159</td>
</tr>
<tr>
<td>Winter-green, umbellated</td>
<td>1539</td>
</tr>
<tr>
<td>Winter's bark</td>
<td>2159</td>
</tr>
<tr>
<td>spurious</td>
<td>2099</td>
</tr>
<tr>
<td>Witchmeal</td>
<td>963</td>
</tr>
<tr>
<td>Witherite</td>
<td>572</td>
</tr>
<tr>
<td>Wolf-sbane</td>
<td>2167</td>
</tr>
<tr>
<td>Wood ashes</td>
<td>311</td>
</tr>
<tr>
<td>charcoal</td>
<td>330</td>
</tr>
<tr>
<td>snake</td>
<td>1299</td>
</tr>
<tr>
<td>soot</td>
<td>2014</td>
</tr>
<tr>
<td>sorrel, salt of</td>
<td>1925</td>
</tr>
<tr>
<td>cream</td>
<td></td>
</tr>
<tr>
<td>Woody nightshade</td>
<td>1443</td>
</tr>
<tr>
<td>Woorall poison</td>
<td>1500</td>
</tr>
<tr>
<td>Worm bark</td>
<td>1857</td>
</tr>
<tr>
<td>grass</td>
<td>1476</td>
</tr>
<tr>
<td>seed</td>
<td>1592</td>
</tr>
<tr>
<td>goosefoot</td>
<td>1365</td>
</tr>
<tr>
<td>tea</td>
<td>1478</td>
</tr>
<tr>
<td>Wormwood, common</td>
<td>1558</td>
</tr>
<tr>
<td>Wort</td>
<td>2195</td>
</tr>
<tr>
<td>Wound balsam</td>
<td>1225</td>
</tr>
<tr>
<td>X.</td>
<td></td>
</tr>
<tr>
<td>Xanthochymus ovalifolius</td>
<td>2023</td>
</tr>
<tr>
<td>Xanthorrhiza</td>
<td>1069</td>
</tr>
<tr>
<td>arborea</td>
<td>1069</td>
</tr>
<tr>
<td>hastile</td>
<td>1069</td>
</tr>
<tr>
<td>red resin</td>
<td>1100</td>
</tr>
<tr>
<td>Y.</td>
<td></td>
</tr>
<tr>
<td>Yams</td>
<td>1029, 1151</td>
</tr>
<tr>
<td>Yeast</td>
<td>985</td>
</tr>
<tr>
<td>dried</td>
<td>941</td>
</tr>
<tr>
<td>PAGE</td>
<td>INDEX</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Yeast, patent</td>
<td>941</td>
</tr>
<tr>
<td>poultice</td>
<td>943</td>
</tr>
<tr>
<td>Yellow arsenic</td>
<td>672</td>
</tr>
<tr>
<td>bark</td>
<td>1607</td>
</tr>
<tr>
<td>basilicon ointment</td>
<td>1201</td>
</tr>
<tr>
<td>gentian</td>
<td>1457</td>
</tr>
<tr>
<td>gum</td>
<td>1099</td>
</tr>
<tr>
<td>ointment</td>
<td>875</td>
</tr>
<tr>
<td>powder</td>
<td>1248</td>
</tr>
<tr>
<td>rosin</td>
<td>1199</td>
</tr>
<tr>
<td>salt</td>
<td>1787</td>
</tr>
<tr>
<td>sulphate of mercury</td>
<td>843</td>
</tr>
<tr>
<td>wash</td>
<td>839</td>
</tr>
<tr>
<td>wax</td>
<td>2221</td>
</tr>
<tr>
<td>Yew, common</td>
<td>1214</td>
</tr>
<tr>
<td>Z.</td>
<td>1180</td>
</tr>
<tr>
<td>Zamia</td>
<td>1180</td>
</tr>
<tr>
<td>Zea mays</td>
<td>971</td>
</tr>
<tr>
<td>Zedoary radice lutea</td>
<td>1121</td>
</tr>
<tr>
<td>turmeric coloured</td>
<td>1121</td>
</tr>
<tr>
<td>Zerumber root</td>
<td>1121</td>
</tr>
<tr>
<td>Zinc and its compounds</td>
<td>709</td>
</tr>
<tr>
<td>Zerumber root</td>
<td>1201</td>
</tr>
<tr>
<td>acetate of</td>
<td>729</td>
</tr>
<tr>
<td>butter of</td>
<td>718</td>
</tr>
<tr>
<td>carbonate of</td>
<td>714</td>
</tr>
<tr>
<td>chloride of</td>
<td>718</td>
</tr>
<tr>
<td>cyanide of</td>
<td>2283</td>
</tr>
<tr>
<td>cyanuret or hydrocya- nate of</td>
<td>2283</td>
</tr>
<tr>
<td>flowers or calx of</td>
<td>711</td>
</tr>
<tr>
<td>hydrochlorate of</td>
<td>718</td>
</tr>
<tr>
<td>impure oxide of</td>
<td>713</td>
</tr>
<tr>
<td>muriate of</td>
<td>718</td>
</tr>
<tr>
<td>ointment</td>
<td>713</td>
</tr>
<tr>
<td>oxide of</td>
<td>711</td>
</tr>
<tr>
<td>red</td>
<td>709</td>
</tr>
<tr>
<td>silicate of</td>
<td>713</td>
</tr>
<tr>
<td>Zinc, sulphate of</td>
<td>716</td>
</tr>
<tr>
<td>Zinc acetate</td>
<td>720</td>
</tr>
<tr>
<td>acetatis tinctura</td>
<td>721</td>
</tr>
<tr>
<td>carbonas</td>
<td>714</td>
</tr>
<tr>
<td>impura</td>
<td>714</td>
</tr>
<tr>
<td>impurum paratum</td>
<td>715</td>
</tr>
<tr>
<td>chloridum</td>
<td>718</td>
</tr>
<tr>
<td>cyanidum</td>
<td>2283</td>
</tr>
<tr>
<td>oxydum</td>
<td>711</td>
</tr>
<tr>
<td>impurum</td>
<td>713</td>
</tr>
<tr>
<td>sulphas</td>
<td>716</td>
</tr>
<tr>
<td>valerianas</td>
<td>1484</td>
</tr>
<tr>
<td>Zincum</td>
<td>709</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>1115</td>
</tr>
<tr>
<td>Zingiber cassumunara</td>
<td>1121</td>
</tr>
<tr>
<td>Zingiber cassumunara</td>
<td>1121</td>
</tr>
<tr>
<td>Zootic acid</td>
<td>902</td>
</tr>
<tr>
<td>Zygophyllaceae</td>
<td>1917</td>
</tr>
</tbody>
</table>

THE END.

London:
Wilson and Ogilvy,
Skinner Street.