EXPERIMENTAL INVESTIGATION OF HYDRAULIC RAM

Larry Scott Mueller
EXPERIMENTAL INVESTIGATION OF HYDRAULIC RAM

by

Larry Scott Mueller

Thesis Advisor: Allen E. Fuhs

March 1974

Approved for public release; distribution unlimited.
Experimental Investigation of Hydraulic Ram

by

Larry Scott Mueller
Captain, U.S. Marine Corps
B.S. AeE, University of Minnesota, 1967

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1974
ABSTRACT

Extensions of the investigations aimed at preventing aircraft destruction through the effects of hydraulic ram were conducted. By analyzing spark shadowgraphs the existence of a family of transient shock waves was confirmed. These shock waves were created by a surface anomaly in a projectile and are not unlike those found in fragmentary warheads. In an attempt to measure wall deflections subsequent to projectile impact, a system based on optical fiber proximity probes was investigated. Mathematical models based on grid distortions were used as a means of calculating shock wave pressures. The AFIT thesis correlating cavity size, energy and radius to underwater explosions was verified from an analysis of 16 mm films.
TABLE OF CONTENTS

I. INTRODUCTION --- 7

II. SHOCK PHASE EXPERIMENTS ---------------------------------- 8
 A. WAVE GENERATION IN SHOCK PHASE ------------------------ 8
 B. PRESSURE BY GRID DISTORTION --------------------------- 11
 C. WALL RESPONSE BY FIBER OPTICS PROXIMITY PROBE -------- 27

III. CORRELATION OF OSCILLATION PERIOD, CAVITY SIZE AND
 ENERGY DISSIPATION DURING CAVITY PHASE ----------------- 31
 A. TECHNICAL APPROACH TO CORRELATION ------------------- 31
 B. DATA OBTAINED FROM MOVIE FILM ------------------------ 32
 C. RESULTS --- 33

IV. CONCLUSIONS AND PROPOSED RESEARCH ----------------------- 35
 A. CONCLUSIONS --- 35
 B. PROPOSED RESEARCH ------------------------------------- 35

APPENDIX A -- 36

 COMPUTER PROGRAMS -- 41

 LIST OF REFERENCES -- 43

 INITIAL DISTRIBUTION LIST --------------------------------- 44

 FORM DD 1473 --- 46
LIST OF TABLES

1. Pressures and Indices of Refraction from Experimental Data ... 19

2. Cavity Period, Maximum Cavity Radius, Cavity Energy from Movie Film ... 34

3. Cavity Period, Maximum Cavity Radius, Cavity Energy from Cardea .. 34
LIST OF FIGURES

1. 0.22 Caliber Projectile in Free Flight ------------------ 9
2. Waves Generated from Projectile Impact ---------------- 10
3. Geometry of 0.22 Caliber Projectile ------------------- 12
4. Volume Penetration vs Time for Projectile ------------- 13
5. Fine Mesh Grid Showing Planar Regions --------------- 14
6. Shock Front Pressure Generated in Water by Projectile Impact --- 16
7. Light Rays in Homogeneous Regions Bounded by a Shock Wave -- 17
8. Illustrating Bouger's Formula nd = constant --------------- 18
9. Geometry of Light Ray ----------------------------------- 25
10. Calibration Curve for Optical Fiber Proximity Probe ---------- 30
ACKNOWLEDGEMENTS

The author would like to express his grateful appreciation for the leadership and technical guidance offered by his thesis advisor, Professor Allen E. Fuhs, and to the Aeronautics Department Technician Staff for their assistance in assembling the test apparatus.
I. INTRODUCTION

The term hydraulic ram has been historically associated with the various waves causing, usually, catastrophic failure of an aircraft fuel cell when penetrated by a projectile.

When a projectile or fragment with high velocity impacts the surface of a liquid medium, a disturbance is produced which spreads throughout the medium. The disturbance is characterized by a region of increased pressure and density together with a small forward motion of the fluid. When the energy of the disturbance is large, the disturbance travels as a surface of discontinuity and is called a shock wave. (Ref. 1). Typically the shock wave phenomenon has been identified as the first phase of hydraulic ram.

As projectile penetration continues, a pressure field is created that tends to displace the fluid from the projectile, transforming projectile energy to kinetic energy of the fuel. This is the beginning of the cavity phase.

The phenomenon associated with these two phases has been studied for as long as three wars i.e. 1947 through present. Recent investigations into fragment-induced shock waves and cavities have been initiated, the results of which are leading to a more clear understanding of hydraulic ram.
II. **SHOCK PHASE EXPERIMENTS**

A. **WAVE GENERATION IN SHOCK PHASE BY FRAGMENTARY PROJECTILES**

Previous experiments conducted at NPS involving the impacting of 0.22 caliber projectiles into a water-filled tank produced shadowgraphs such as those shown as Figures 1 and 2. Figure 1 is the projectile in free flight, whereas Figure 2 shows the family of waves created after impact. The flow features visible in Figure 2 are considered to be:

1. projectile wake,
2. reflected bandwave,
3. reflected bow wave,
4. incident wake recompression shock,
5. incident bandwave,
6. transient entry shock,
7. secondary transient shock wave (see discussion below).

In Figure 2, items 6 to 9 occur in the water internal to the tank and items 1 to 5 occur in the air external to the tank. The dense, thick region in each shadowgraph is the test tank wall. Region 8 is the projectile's cavity and item 9 is the grid distortion used to determine the medium's density. The spark shadowgraph method was used as it has the advantage of showing the projectile-induced waves at one observation. Of particular interest was the formation of the wave 7, in Figure 2, which was investigated as follows.
Fig. 1 0.22 Caliber Projectile in Free Flight

1. Bow Shock Wave
2. Band Shock Wave
3. Wake Recompression Shock
Fig. 2 Waves Generated From Projectile Impact
A randomly selected, factory loaded 0.22 cal projectile has the geometry shown in Figure 3. The volume of the projectile's nose was calculated using successive truncated cones while the portion aft of the shoulder was calculated assuming a solid cylinder. Assuming a constant velocity immediately after penetration into the tank, the rate of volume penetration was plotted against distance along the projectile's centerline, Figure 4. The discontinuity in Figure 4 appears at a longitudinal distance of 0.20 inches and corresponds to the distance where the projectile itself has a discontinuity, i.e., the shoulder. This shoulder is the origin of bandwave shown in Figure 1. This suggests that although the surface irregularity is small (0.020 inches), it is still capable of creating secondary transient shock waves. It is concluded that the wave 7 in question on Figure 2 is indeed a secondary transient entry shock. Reference 2 describes the deformation of several previous test rounds. Considering their fragmentary shape it could be expected that fuel cells punctured by fragmentation warheads would be subjected to a myriad of such secondary shocks.

B. PRESSURE BY GRID DISTORTION

Figure 5 is a shadowgraph of a fine-mesh grid taken while the fluid was at rest. No grid distortions are apparent. The projectile's path is from the left to right through the center of the shadowgraph. After penetration the grid in this area is distorted. This region was used in the subsequent analysis.

As the projectile penetrates the water it displaces fluid by compressing it to very high pressures. This disturbance is the transient shock 6 in
Fig. 3 Geometry of 0.22 Caliber Projectile
Fig. 5 Fine Mesh Grid Showing Planar Regions
Figure 2. As penetration continues, the transient shock continues to receive energy until the projectile becomes fully wetted; this occurs at 23 microseconds in Figure 4. A rarefaction wave then forms that tends to dissipate the shock wave. (Ref. 3). The localized high shock pressures are known to be of short duration, usually tens of microseconds, and are completely dissipated by the time significant projectile penetration occurs.

The spark shadow-graph could be set off with any time delay up to approximately 30 microseconds. Each shock wave in the shadowgraph reveals a distinct presence-of-light band and an absence-of-light band. The concentration of light around the projectile's transient entry shock is best explained by considering the pressure and density increase due to the shock wave. Similar optical distortion at the nose of the fragment is due to high density at the nose. See Figure 2. The pressure is known to reach values in excess of 4000 kg/cm2 (56,890 psi), which is sufficient to produce a change in the medium's refractive index. The width of the dark band varies with the pressure in the wave. The fractional change in refractive index, ϵ, has been studied by Poindexter and Rosen and was determined to vary as $\epsilon = 1.06 \times 10^{-5}p$ where p is pressure in kg/cm2 (Ref. 1). This conforms to an isothermal change, whereas a change produced by the transient shock is more nearly adiabatic (Ref. 1). A value of $\epsilon = 10^{-5}p$ has been justified by McMillen and was used throughout this analysis (Ref. 1). It was also assumed that in a homogeneous medium such as water, light rays have the form of straight lines.
Fig. 6 Shock Front Pressure Generated in Water by Projectile Impact.
Seven shock pressures were extracted from Figure 6. When the projectile had penetrated three cm into the tank the pressure was noted as 2700 kg/cm². Define \(\theta_1 \) and \(\theta_2 \) as the angles which the incident ray and refracted ray make with a normal to the shock wave surface (Fig. 7).

![Fig. 7 Light rays in homogeneous regions bounded by a shock wave.](image_url)

By geometry \(\theta_1 \) is given by

\[
\sin \theta_1 = \frac{r}{R}
\]

\[
\theta_1 = \sin^{-1} \left(\frac{r}{R} \right)
\]

Using Snell's law the angle \(\theta_2 \) can be introduced

\[
n_2 \sin \theta_2 = n_1 \sin \theta_1
\]

\[
\sin \theta_2 = \left(\frac{n_1}{n_2} \right) \sin \theta_1
\]

From the previous paragraph the change in refractive index can be expressed as

\[
\varepsilon = \frac{\Delta n}{n} = \frac{n_2 - n_1}{n_1}
\]

\[
\therefore n_2 = n_1 (1 + \varepsilon)
\]

From equations (1) and (2)

\[
\sin \theta_2 = \left(\frac{1}{1 + \varepsilon} \right) \left(\frac{r}{R} \right)
\]

\[
\therefore \theta_2 = \sin^{-1} \left[\left(\frac{1}{1 + \varepsilon} \right) \left(\frac{r}{R} \right) \right]
\]

and

\[
2 \Delta \theta = (\theta_2 - \theta_1) + (\theta'_2 - \theta'_1) = 2(\theta'_2 - \theta_1)
\]
Note that the changes in angle entering and leaving the shock wave are additive. If the density is homogeneous within the region bounded by the shock wave, as is assumed here, then the high pressure region behaves as a spherical lens. For \(\frac{r}{R} = 0.90 \) from equation (1), \(\Theta_1 \) is found to be 5.740\(^\circ\). For a pressure of 2700 kg/cm\(^2\), \(\Theta_2 \) is calculated to be 5.588\(^\circ\) by equation (3); consequently \(2\Delta \Theta = 0.303\(^\circ\). Even for high pressures the angular deflections are small. Calculated values for the remaining six pressures are presented in Table 1. These tabulated results appear reasonable.

The grid distortion analysis assumes rays have spherical symmetry i.e. the refractive index depends only on the distance \(r \) from a fixed point 0; see Figure 8.

![Figure 8 Illustrating Bouguer's formula \(nd = \text{constant} \)](image)

For rays situated in a plane through the origin, \(nr \sin \phi = c \), where \(c \) is a constant. With \(d = rsin\phi \), \(nd = c \)

This is known as the formula of Bouguer. From geometry, if \((r, \Theta) \) are the polar coordinates of a plane curve, the angle \(\phi \) between the radius vector to a point P on the same curve and a tangent at P is given by

\[
\sin \phi = \frac{r(\Theta)}{\sqrt{r^2(\Theta) + \left(\frac{dr}{d\Theta} \right)^2}}
\]
<table>
<thead>
<tr>
<th>Pressure (kg/cm(^2))</th>
<th>Index of Refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700.00</td>
<td>1.3659</td>
</tr>
<tr>
<td>RR</td>
<td>THETA1</td>
</tr>
<tr>
<td>C.100</td>
<td>0.100</td>
</tr>
<tr>
<td>0.200</td>
<td>0.201</td>
</tr>
<tr>
<td>0.300</td>
<td>0.302</td>
</tr>
<tr>
<td>0.400</td>
<td>0.412</td>
</tr>
<tr>
<td>0.500</td>
<td>0.524</td>
</tr>
<tr>
<td>0.600</td>
<td>0.644</td>
</tr>
<tr>
<td>0.700</td>
<td>0.775</td>
</tr>
<tr>
<td>0.800</td>
<td>0.927</td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
</tr>
</tbody>
</table>

750.00	1.3448				
RR	THETA1	THETA2	ANS1	ANS2	RES
0.100	0.100	0.095	5.740	5.676	0.127
0.200	0.201	0.190	11.538	11.406	0.257
0.300	0.305	0.301	17.459	17.261	0.396
0.400	0.412	0.407	23.580	23.305	0.550
0.500	0.524	0.517	30.002	29.639	0.727
0.600	0.644	0.625	36.873	36.401	0.943
0.700	0.775	0.765	44.430	43.316	1.228
0.800	0.927	0.893	53.154	52.301	1.665
0.900	1.120	1.068	64.163	62.890	2.545

Table 1 Angular deflection of light ray by a spherical shock wave for various shock wave pressures

<table>
<thead>
<tr>
<th>RR</th>
<th>Nondimensional radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thetal</td>
<td>Entry angle, radians</td>
</tr>
<tr>
<td>Theta2</td>
<td>Exit angle, radians</td>
</tr>
<tr>
<td>Ans1</td>
<td>Entry angle, degrees</td>
</tr>
<tr>
<td>Ans2</td>
<td>Exit angle, degrees</td>
</tr>
<tr>
<td>Res</td>
<td>2(ANS1-ANS2)</td>
</tr>
<tr>
<td>Pressure (kg/cm²)</td>
<td>Index of Refraction</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>500.00</td>
<td>1.3366</td>
</tr>
<tr>
<td>0.200</td>
<td>0.201</td>
</tr>
<tr>
<td>0.300</td>
<td>0.305</td>
</tr>
<tr>
<td>0.400</td>
<td>0.412</td>
</tr>
<tr>
<td>0.500</td>
<td>0.524</td>
</tr>
<tr>
<td>0.600</td>
<td>0.644</td>
</tr>
<tr>
<td>0.700</td>
<td>0.775</td>
</tr>
<tr>
<td>0.800</td>
<td>0.927</td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure (kg/cm²)</th>
<th>Index of Refraction</th>
<th>RR</th>
<th>Theta1 (°)</th>
<th>Theta2 (°)</th>
<th>ANS1</th>
<th>ANS2</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>325.00</td>
<td>1.3333</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>5.740</td>
<td>5.721</td>
<td>0.017</td>
</tr>
<tr>
<td>0.200</td>
<td>0.201</td>
<td>0.201</td>
<td>11.538</td>
<td>11.500</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>0.305</td>
<td>0.304</td>
<td>17.459</td>
<td>17.401</td>
<td>0.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.412</td>
<td>0.410</td>
<td>23.940</td>
<td>22.499</td>
<td>0.162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>0.524</td>
<td>0.522</td>
<td>30.002</td>
<td>29.895</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.644</td>
<td>0.641</td>
<td>36.873</td>
<td>36.734</td>
<td>0.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.775</td>
<td>0.772</td>
<td>44.430</td>
<td>44.249</td>
<td>0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.927</td>
<td>0.923</td>
<td>53.134</td>
<td>52.887</td>
<td>0.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
<td>1.113</td>
<td>64.163</td>
<td>63.782</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure (kg/cm²)</th>
<th>Index of Refraction</th>
<th>RR</th>
<th>Theta1 (°)</th>
<th>Theta2 (°)</th>
<th>ANS1</th>
<th>ANS2</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>212.50</td>
<td>1.3328</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
<td>5.740</td>
<td>5.727</td>
<td>0.024</td>
</tr>
<tr>
<td>0.200</td>
<td>0.201</td>
<td>0.201</td>
<td>11.538</td>
<td>11.503</td>
<td>0.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.300</td>
<td>0.305</td>
<td>0.304</td>
<td>17.459</td>
<td>17.421</td>
<td>0.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.400</td>
<td>0.412</td>
<td>0.411</td>
<td>23.940</td>
<td>23.527</td>
<td>0.409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>0.524</td>
<td>0.522</td>
<td>30.002</td>
<td>29.932</td>
<td>0.140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.644</td>
<td>0.642</td>
<td>36.873</td>
<td>36.782</td>
<td>0.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.700</td>
<td>0.775</td>
<td>0.773</td>
<td>44.430</td>
<td>44.311</td>
<td>0.298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.927</td>
<td>0.924</td>
<td>53.134</td>
<td>52.672</td>
<td>0.323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
<td>1.115</td>
<td>64.163</td>
<td>63.013</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
Angular deflection of light ray by a spherical shock wave for various shock wave pressures

<table>
<thead>
<tr>
<th>RR</th>
<th>Theta1</th>
<th>Theta2</th>
<th>ANS1</th>
<th>ANS2</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondimensional radius</td>
<td>Entry angle, radians</td>
<td>Exit angle, radians</td>
<td>Entry angle, degrees</td>
<td>Exit angle, degrees</td>
<td>2(ANS1-ANS2)</td>
</tr>
</tbody>
</table>
Table 1
Angular deflection of light ray by a spherical shock wave for various shock wave pressures

<table>
<thead>
<tr>
<th>Pressure (kg/cm²)</th>
<th>Index of Refraction</th>
<th>1.3300</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>THE1A</td>
<td>THE1A2</td>
</tr>
<tr>
<td>0.00</td>
<td>1.3300</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>C.200</td>
<td>0.201</td>
<td>0.201</td>
</tr>
<tr>
<td>C.300</td>
<td>0.305</td>
<td>0.305</td>
</tr>
<tr>
<td>C.400</td>
<td>0.412</td>
<td>0.412</td>
</tr>
<tr>
<td>C.500</td>
<td>0.524</td>
<td>0.524</td>
</tr>
<tr>
<td>C.600</td>
<td>0.644</td>
<td>0.644</td>
</tr>
<tr>
<td>C.700</td>
<td>0.775</td>
<td>0.775</td>
</tr>
<tr>
<td>C.800</td>
<td>0.927</td>
<td>0.927</td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
<td>1.120</td>
</tr>
<tr>
<td>0.00</td>
<td>1.3300</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>THE1A</td>
<td>THE1A2</td>
</tr>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>C.200</td>
<td>0.201</td>
<td>0.201</td>
</tr>
<tr>
<td>C.300</td>
<td>0.305</td>
<td>0.305</td>
</tr>
<tr>
<td>C.400</td>
<td>0.412</td>
<td>0.412</td>
</tr>
<tr>
<td>C.500</td>
<td>0.524</td>
<td>0.524</td>
</tr>
<tr>
<td>C.600</td>
<td>0.644</td>
<td>0.644</td>
</tr>
<tr>
<td>C.700</td>
<td>0.775</td>
<td>0.775</td>
</tr>
<tr>
<td>C.800</td>
<td>0.927</td>
<td>0.927</td>
</tr>
<tr>
<td>0.900</td>
<td>1.120</td>
<td>1.120</td>
</tr>
</tbody>
</table>

- **RR**: Nondimensional radius
- **THET1A**: Entry angle, radians
- **THET1A2**: Exit angle, radians
- **ANSl**: Entry angle, degrees
- **ANS2**: Exit angle, degrees
- **RES**: \(2(\text{ANS1} - \text{ANS2})\)
It is possible to eliminate ϕ by introducing the constant c, as can be seen by the following manipulations:

\[
\frac{c}{n^\gamma} = \frac{r}{\left[\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\right]^\frac{1}{2}}
\]

\[
\therefore c = \frac{n r^2}{\left[\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\right]^\frac{1}{2}}
\]

\[
c^2 = \frac{\hbar^2 r^4}{r^2 + \left(\frac{dr}{d\theta}\right)^2}
\]

\[
\therefore \frac{r^2 + \left(\frac{dr}{d\theta}\right)^2}{h^2 c^2} = \frac{r^2}{c^2} \left[h^2 r^2 - c^2 \right]
\]

\[
\therefore \frac{dr}{d\theta} = \frac{r}{c} \left[h^2 r^2 - c^2 \right]^\frac{1}{2}
\]

\[
d\theta = \frac{dr}{\frac{r}{c} \left[h^2 r^2 - c^2 \right]^\frac{1}{2}}
\]

\[
\theta = c \left[\frac{dr}{r \left[h^2 r^2 - c^2 \right]^\frac{1}{2}} \right]
\]

\[
\therefore \theta(r) = \theta' + \frac{c}{\sqrt{a^2 - c^2}} \ln \frac{r'}{r}
\]
The assumption of constant pressure behind the shock wave is not realistic. At this point, the assumption of uniform conditions behind the shock wave can be abandoned by introduction of equation (5). In equation (5), c is determined by the point where the ray intersects the shock wave. The index of refraction, n, which is related to pressure by $\xi = 10^{-5}p$, can be made a function of the radius.

To adapt equation (5) to the specific case of the hydraulic ram shock phase it is necessary to carefully define the various geometric parameters involved. Figure 9 illustrates the angles and radii necessary to apply equation (5). Note that the diagram is symmetric about r^* at angle ξ.

A functional form for $n(r)$ can be assumed. For example, a parabolic relation would be

$$n(r) = ar^2 + br + c$$

In order to evaluate the constants a, b, and c, the integral of equation (5) must be evaluated and iterated with geometric relations. This is quite complicated. In lieu of a parabolic relation a linear formula is used. This has the merit of a straightforward solution. One of the two parameters, i.e. A, can be determined leaving B to be found as the following manipulations show.

Assume (Fig. 9)

$$n = A + B \frac{r}{r'}$$

$r = r'$, $n = n_\nu$

$$n_\nu = A + B$$
\[\therefore \kappa = n_2 + B \left(\frac{r}{R} - 1 \right) \] (6)

From the law of Bouguer

\[n n \sin \phi = \text{constant} \]

\[n_2 \sin \phi' = n^* \sin \phi = n^* \]

\[n_2 \sin \phi' = \left[n_2 + B \left(\frac{r^*}{R} - 1 \right) \right] \] (7)

From analytic geometry and Snell's law

\[\frac{\sin \beta_1}{\sin \beta_2} = \frac{n_2}{n_1} \] (8)

\[\Delta \beta = \beta_1 - \beta_2 \] (9)

\[\beta_1 = \frac{\pi}{2} - \Theta' + \xi + \Delta \beta \] (10)

\[\beta_1 = \phi_2' + \Delta \beta = \frac{\pi}{2} - \Theta'' - \xi - \Delta \beta + \alpha \] (11)

\[\alpha = 2 \xi + 2 \Delta \beta \] (12)

\[\beta_1 = \frac{\pi}{2} - \Theta'' - \xi - \Delta \beta + 2 \xi + 2 \Delta \beta \]

\[\therefore \beta_1 = \frac{\pi}{2} - \Theta'' + \xi + \Delta \beta \] (13)

From Figure 9 with \(\alpha, \eta_0, \eta', n_1, n_2 \) known

\[y_0 + y_1 + y_2 = \eta' \sin \beta_1 \]

\[y_0 + y_1 = \eta'' \sin (\beta_1 - \alpha) = \eta' \sin (\beta_1 - \alpha) \] (14)

\[y_2 = \eta' \sin \beta - \eta' \sin (\beta - \alpha) = \eta' \left[\sin \beta' - \sin (\beta' - \alpha) \right] \] (15)

\[\phi_2' + \beta_1 = \pi + \Delta \beta \]

\[\therefore \phi_2' = \pi + \Delta \beta - \beta_1 \] (16)

\[\tan \alpha = \frac{y_1}{L - L_1} ; \quad y_1 = \tan \alpha [L - L_1] \]
\[y_1 = \left[L_1 - r' \cos (\beta_1 - \alpha) \right] \tan \alpha \]

\[\therefore y_1 = \left[L_1 - r' \cos (\beta_1 - \alpha) \right] \tan \alpha \]

and

\[y_0 = r' \sin (\beta_1 - \alpha) - \left[L_1 - r' \cos (\beta_1 - \alpha) \right] \tan \alpha \quad (17) \]

With the following substitutions, the solution for \(\Theta \) is

\[\Theta = c \int_{\rho}^{r} \frac{dr}{\left[(A^2 + 2ABr + B^2r^2) r^2 - c^2 \right]^{\frac{1}{2}}} \]

\[c = n_2 r' \sin \phi_2' \]

\[B' = \frac{B}{r'} \]

\[\Theta = c \int_{r = n}^{r = r'} \frac{dr}{r \left[B^4 r^4 + 2ABr^3 + A^2 r^2 - c^2 \right]^{\frac{1}{2}}} \]

\[n_2 r' \sin \phi_2' = \left[n_2 + B \left(\frac{r^*}{n_2} - 1 \right) \right] r^* \quad (18) \]

\[\Theta' = c \int_{r = n_2}^{r = r^*} \frac{dr}{r \left[B^4 r^4 + 2ABr^3 + A^2 r^2 - c^2 \right]^{\frac{1}{2}}} \quad (19) \]
Using a pressure behind the shock wave of 400 kg/cm², \(n_2 \) was found to be 1.335. See Figure 6 for data used in these calculations: \(r' \) is 7.62 cm. As shown in the Appendix the value for \(B \) is -0.04947. Using the equation for the linear pressure distribution it is calculated that \(p \) is 3646 kg/cm² at \(\frac{r}{r'} = 0.1267 \). The pressure increases toward the projectile nose. This result is consistent with Figure 29 of Holm's thesis (Ref. 2).

Results from fluid mechanics indicate that linear relations for \(p(r) \) and \(n(r) \) are not appropriate. Consequently the calculated pressure at \(\frac{r}{r'} = 0.1267 \) is probably not correct. This analysis gives the correct trends. The difference between experimental and calculated values is considered to result from the assumed distribution for \(n \).

C. WALL RESPONSE BY FIBER OPTICS PROXIMITY PROBES

The structural response of the entrance wall during the shock phase has been investigated and is presented in Refs. 4, 5, and 6. Since the shock wave is a pressure disturbance propagating through the fluid medium, it is also by definition a stress wave. Types of stress waves include compression, tension and shear waves. The compression and tension waves involve positive and negative pressures, respectively, where the media particle motion is in the direction of wave propagation. The shear wave involves particle motion that is normal to the wave direction. Compression and tension waves are also known as dilatation waves while shear waves are sometimes called distortion waves. Tension waves that reduce compressed areas are also known as rarefaction waves (Ref. 3). Loads transmitted through the tank's
structural members are initially transmitted as stress waves of both dilatation and shear form. The outward motion of the entrance wall somewhat relieves the pressure disturbances (stress waves) acting on the wall. To measure the outward displacement of the wall a system based on optical glass fiber bundles was constructed. The optic fiber bundles were arranged coaxially with the transmitting bundle on the inside. This light was then directed onto the aluminum entrance wall. The reflected light was collected and transmitted by the output fiber bundle to an RCA 931A photomultiplier tube and a Pacific Photometric Model II laboratory photometer. The fiber bundles were three feet in length and were comprised of three-mil flint glass fibers with an index of refraction of 1.62 and a cladding glass of index 1.52. The corresponding numerical aperture was 0.56 with an acceptance cone half angle of approximately 34 degrees. The glass bundles were secured in a mounting bracket and placed over the entrance wall on a radial line emanating from the projectile impact point. The mounting bracket allowed for positioning the bundles up to a maximum of nine inches from the impact point. To increase the intensity of reflected light the entrance wall was hand polished with #500 Wetordry Tri-M-ite paper, then with Crystalbay Crocus cloth. The signal output of the photomultiplier was transmitted to a dual beam oscilloscope fitted with a Polaroid camera.

Initial calibration of the system was accomplished by mounting the fiber bundles in a platform micrometer. The light was reflected from a circular aluminum disk of the type used for the entrance wall. This disk was similarly polished. A calibration curve of volts versus the distance separating the disk and glass bundles was obtained, Figure 10.
Subsequent investigation of this system, modified to include a "chopper wheel", revealed an unacceptably low rise time for the photomultiplier tube. A Pacific Photometric Model 62 multiplier tube (RCA model 6199) was substituted; a Spectrum Physics model 132 HeNe laser replaced the light bulb. The inherent noise in the latter system obliterated the oscilloscope trace, rendering this optical fiber concept useless without further development to improve signal-to-noise ratio.
Fig. 10 Calibration Curve for Optical Fiber Proximity Probe
III. **CORRELATION OF OSCILLATION PERIOD, CAVITY SIZE, AND ENERGY DISSIPATION DURING CAVITY PHASE**

A. **TECHNICAL APPROACH TO CORRELATION**

In displacing water from its path, the projectile imparts a radial velocity to the water. The momentum associated with this velocity field is sufficiently high to cause the flow to separate from the projectile and to continue to expand causing a cavity. Fluid pressures caused by the tank boundaries eventually halt the cavity's expansion. At this point most of the kinetic energy initially associated with the velocity field has been converted to stored energy, gravitational potential energy and deformation of the tank's wall. These forces cause the cavity to start to collapse radially and, as the cavity shrinks, the fluid velocity increases resulting in the conversion of stored energy into kinetic energy and work in compressing gas trapped in the cavity. Since projectile impact was near the center of the tank the cavity would first neck down until a nearly spherical shape resulted. The sphere would then tend to collapse to a point until the pressures in the cavity halted this inward motion. Air which entered the cavity through the entrance wall hole is trapped and compressed to a high pressure at the instant of minimum cavity volume. A high pressure shock wave then propagates radially outward from the collapse point. After the pressure wave generated by the collapse subsides, the compressed air causes the cavity to re-expand. This cycle repeats several times until all the stored energy is dissipated (Refs. 6 and 7). Various authors, Lundstrom,
Stepka and Cardea, et al., have likened the cavity phase to underwater explosions. Using the method presented by Cardea and Cole, an analysis was made of a high speed film showing 0.30 cal and 14.5 mm rounds impacting a 6061T6 aluminum entrance wall. The film was obtained from Naval Weapons Center. These values were then compared with the analytical solutions obtained by Holm's research at NPS. Two significant variations were noted. Reference 7, equation (7), presents the maximum cavity radius as

\[a_m = 0.59 T \left(\frac{p_0}{p_f} \right)^{1/2} \]

A constant of 0.544 is considered to be more accurate. This difference accounts for an 8% variation in tabulated results shown as Table 2. Secondly, this paper considers the effects of projectile impact through a pre-punched aluminum entrance wall whereas the 0.30 cal and 14.5 mm rounds impacted a solid tank wall. For the latter the shock wave is generated by the impact of the projectile on the wall vice the fluid medium. The generation and propagation will be identical except for wall density and sonic velocity effects. This problem is addressed in Reference 3. The analysis of the 14.5 mm round must be considered as approximate as the maximum cavity radius to be measured extended beyond the frame size of 16 mm film.

B. DATA OBTAINED FROM MOVIE FILM

For each sequence of the 16 mm film obtained from the Naval Weapons Center, China Lake, the maximum cavity radius and time for one complete oscillation were measured. Using underwater explosion theory (Ref. 8) the energy required to expand the cavity was obtained first as a function
of cavity radius and second as a function of the cavity period. A theoretical value for the cavity radius was also calculated. These results were then compared with those obtained by Cardea (Ref. 7).

C. RESULTS

Table 2 lists the results obtained from the above measurements. The conclusion equating the cavity phase of hydraulicram to underwater explosions appears valid.

For a comparison of the time required for one complete cavity oscillation, Reference 2 presents

\[t = \frac{2.62 \lambda_m}{\left[\frac{2}{3} \frac{P_{\infty}}{\rho}\right]^{\frac{1}{2}}} \]

where \(\lambda_m \) is the measured cavity radius. From Reference 8 this time is given as

\[t = \frac{1.14 P_0^{\frac{1}{2}} \left(\frac{4}{3} \pi\right)^{\frac{1}{3}} \lambda_m}{P_0^{\frac{5}{6}}} \]

where

\[P_0 = 2210 \text{ psf} \]
\[\rho_0 = 1.04 \text{ slugs} \]

Evaluating the constants yields

\[t = 3.2 \lambda_m \left(\frac{\rho}{P_{\infty}}\right)^{\frac{1}{2}} \]
\[t = 1.84 \lambda_m \left(\frac{P_{\infty}}{P_0}\right)^{\frac{1}{2}} \]

respectively. It can be seen that the only difference in characteristic times is in the constants. Based on results of analysis of the film, equation is considered more correct.
Table 2 Cavity Period, Maximum Cavity Radius, Cavity Energy from Movie Film

<table>
<thead>
<tr>
<th>Shot number</th>
<th>millisec's</th>
<th>(a_m) measured</th>
<th>(a_m) calc</th>
<th>Ec=f((a_m))</th>
<th>Ec=f(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.8</td>
<td>.485</td>
<td>.455</td>
<td>874.78</td>
<td>874.81</td>
</tr>
<tr>
<td>2</td>
<td>22.0</td>
<td>.555</td>
<td>.404</td>
<td>610.68</td>
<td>610.70</td>
</tr>
<tr>
<td>3</td>
<td>28.1</td>
<td>.632</td>
<td>.516</td>
<td>1272.5</td>
<td>1272.6</td>
</tr>
<tr>
<td>4</td>
<td>28.8</td>
<td>.656</td>
<td>.529</td>
<td>1370.0</td>
<td>1370.1</td>
</tr>
<tr>
<td>5</td>
<td>29.1</td>
<td>.632</td>
<td>.534</td>
<td>1413.3</td>
<td>1413.3</td>
</tr>
</tbody>
</table>

14.5 mm

<table>
<thead>
<tr>
<th>Shot number</th>
<th>millisec's</th>
<th>(a_m) observed</th>
<th>(a_m) calc</th>
<th>Ec=f((a_m))</th>
<th>Ec=f(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.9</td>
<td>1.125</td>
<td>.861</td>
<td>5916.5</td>
<td>5916.7</td>
</tr>
<tr>
<td>2</td>
<td>48.3</td>
<td>1.094</td>
<td>.887</td>
<td>6462.3</td>
<td>6462.5</td>
</tr>
<tr>
<td>3</td>
<td>47.4</td>
<td>1.007</td>
<td>.870</td>
<td>6107.7</td>
<td>6107.7</td>
</tr>
<tr>
<td>4</td>
<td>44.4</td>
<td>1.234</td>
<td>.815</td>
<td>5019.9</td>
<td>5020.1</td>
</tr>
<tr>
<td>5</td>
<td>45.5</td>
<td>1.266</td>
<td>.836</td>
<td>5402.3</td>
<td>5402.5</td>
</tr>
<tr>
<td>6</td>
<td>43.9</td>
<td>1.234</td>
<td>.806</td>
<td>4852.2</td>
<td>4852.4</td>
</tr>
</tbody>
</table>

Table 3 Cavity Period, Maximum Cavity Radius, Cavity Energy from Cardea (Ref. 7)

<table>
<thead>
<tr>
<th>Shot Number</th>
<th>millisec's</th>
<th>(a_m) observed</th>
<th>(a_m) calc</th>
<th>Ec=f((a_m))</th>
<th>Ec=f(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24.8</td>
<td>.5</td>
<td>.494</td>
<td>876.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.2</td>
<td>.5</td>
<td>.522</td>
<td>1032.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.9</td>
<td>.5</td>
<td>.536</td>
<td>1117.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.9</td>
<td>.5</td>
<td>.536</td>
<td>1117.0</td>
<td></td>
</tr>
</tbody>
</table>
VI. CONCLUSIONS AND PROPOSED RESEARCH

A. CONCLUSIONS

Secondary shocks will occur in fuel cells penetrated by fragmentation warheads.

The mathematical model proposed for analyzing the optical grid distortion yields correct trends. Further development of an assumed distribution for the index of refraction is warranted.

Comparison of the cavity phase of hydraulic ram to underwater explosions provides valid relationships between cavity radius, energy and period of oscillation.

B. PROPOSED RESEARCH

HIGH SPEED FRAMING CAMERA

A high speed framing camera capable of 200,000 frames per second has been obtained. When incorporated into the existing test set-up, a complete time history of the shock front and projectile penetration will be available.

STRAIN GAGES

The existing entrance wall has been redesigned and fitted with several strain gages. Proposed research with this entrance wall should yield information on wall deflections and wall bending moments caused by projectile penetration.
APPENDIX A

SAMPLE CALCULATIONS FOR THE GRID DISTORTION ANALYSIS

Fig. 12 Enlarged Grid Distortion

Steps for obtaining a solution:

1. evaluate equation (17) to find θ_1
2. evaluate equations (8) and (9) to find δ_2 and $\delta \beta$
3. evaluate equation (12) to get ε_1
4. evaluate equations (10) and (13) for Θ' and Θ''
5. evaluate equation (14) to get η_1
6. evaluate equation (15) to get η_2
7. evaluate equation (16) for ϕ'_2
8. evaluate equation (11) for ϕ''_2
9. draw a curve of B vs r^* using equation (18)
10. using number pairs (B, r^*) from step 9, evaluate equation (19) for the right hand side. Iterate until correct (B, r^*) are found.
From Figs. 11 and 12

\(d = 0.1 \text{ inch} \)
\(L_2 = 19.8 \text{ inches} \)
\(L_1 = 9 \text{ inches} \)
\(\gamma_0 = .35 \text{ inches} \)
\(\kappa' = 3'' \)
\(p = 400 \text{ kg/cm}^2 \)
\[\alpha = \frac{(0.1)(180)}{(19.8)} = 0.29^\circ = 0.005 \text{ radians} \]

From equation (17)

\[0.35 = 3 \sin (\beta_1 - \alpha) - [9 - 3 \cos (\beta_1 - \alpha)] \tan \alpha \]

Assume \((\beta_1 - \alpha)\) is small

\[\therefore \ 0.35 \approx 3(\beta_1 - \alpha) - (9 - 3) \alpha \]

\[3 \beta_1 = 0.35 + 9 \alpha \]

or \(\beta_1 = \frac{0.35}{3} + 3 \alpha = 0.1318 \text{ radians} \)

try \(\beta_1 = 7.55^\circ \)

\(\beta_1 - \alpha = 7.55^\circ - 0.29 = 7.26^\circ \)

then

\[0.35 \approx 3 \sin 7.26^\circ - [9 - 3 \cos 7.26^\circ] (\tan 0.29) = 0.3486 \]

from iteration

\(\beta_1 = 7.57^\circ \)

\[\therefore \ \sin \beta_2 = \sin \beta_1 \left(\frac{n_2}{n_1} \right)^{-1} = \sin \beta_1 \left(\frac{n_1}{n_2} \right) \]
Using \(p = 400 \text{ kg/cm}^2 \) at \(r' = 3 \text{ inches} \)

\[
\varepsilon = 10^{-5} \quad \rho = 0.004
\]

\[
\eta_1 = \eta_1 (1 + 0.004) = 1.33 (1.004)
\]

\[
\eta_2 = 1.3353
\]

\[
\therefore \frac{\eta_1}{\eta_2} = \frac{1.33}{1.3353} = 0.9960
\]

then

\[
\sin \beta_2 = [\sin (7.51^\circ)] (0.9960)
\]

\[
\sin \beta_2 = 0.13121
\]

\[
\therefore \beta_2 = 7.5183^\circ
\]

\[
\Delta \beta = \beta_2 - \beta_1 = 7.57^\circ - 7.5183^\circ
\]

\[
\Delta \beta = 0.0517^\circ
\]

from equation (12)

\[
\xi_1 = \frac{\alpha - \Delta \beta}{2}
\]

\[
\xi_1 = \frac{29 - 0.0517}{2} = 0.0933^\circ
\]

from equation (10)

\[
\Theta' = 90 + \xi_1 + \Delta \beta - \beta_1 = 90 + 0.0933 + 0.0517 - 7.57
\]

\[
\Theta' = 82.575^\circ
\]

from equation (13)

\[
\Theta'' = 90 + \xi_1 + \Delta \beta - \beta_1 = 82.575^\circ
\]

from equation (14)

\[
y_1 = r'\sin (\beta_1 - \alpha) - y_0 = 3\sin (7.57 - 29) - 0.035
\]

\[
y_1 = 0.03''
\]
from equation (15)

\[y_2 = 3 \left[\sin 7.57 - \sin (7.57 - 0.29) \right] \]

\[y_2 = 0.015'' \]

from equation (16)

\[\phi_2' = 180 + 0.05 - 7.57 \]

\[\phi_2' = 172.481^\circ \]

from equation (11)

\[\phi_2'' = \phi_1 - 0.05 = 7.57 - 0.0517 \]

\[\phi_2'' = 7.5183^\circ \]

An approximation for B is

\[r^* = y_0 + y_1 \]

\[\therefore \frac{r^*}{r'} = \frac{y_0 + y_1}{r'} = \frac{0.35 + 0.03}{3} = 0.1267 \]

from step (9)

\[B = -n_2 \left[\sin \phi_2' - \frac{r^*}{r'} \right] \left[\frac{r^*}{r'} \right] \left(\frac{r^*}{r'} - 1 \right) \]

\[B = \frac{(-1.3353)(0.1308 - 0.1267)}{(0.1267)(1 - 0.1267)} \]

\[B = -0.04947^\circ \]

from the assumed distribution for n

\[n = n_2 + B \left(1 - \frac{r}{r'} \right) \]

\[n = 1.3353 + 0.04947 \left(1 - 0.1267 \right) \text{ when } r = r^* \]

\[\therefore n = 1.3785 \]

39
then

\[\delta = \frac{\Delta N}{N} = \frac{N_1 - N_1}{N_1} \]

\[\delta = \frac{1.3185 - 1.33}{1.33} \]

\[\delta = 0.034 \]

but

\[\delta = 10^{-5} \Delta P \]

\[\therefore P = 10^5 (0.034) \]

\[P = 3646.78 \text{ kg/cm}^2 \] (calculated for a radius ratio of \(\frac{r}{r_1} = 0.1267 \))
!PR - NONDIMENSIONAL_RADIUS

XN1 - REFRACTION_INDEX_OF_WATER, CONSTANT=1.33

XN2 - REFRACTIVE_INDEX_BASED_ON_SNELL'S_LAW

PRE - PRESSURES_EXTRACTED_FROM_PREVIOUS_THESIS

THETA1 - ENTRY_ANGLE, RADIANS

THETA2 - EXIT_ANGLE, RADIANS

ANS1 - ENTRY_ANGLE, DEGREES

ANS2 - EXIT_ANGLE, DEGREES

RES - THETA1-THETA2 TIMES 2

DIMENSION PR(9), RR(9), THETA1(9), THETA2(9), B(5), E(9), XN2(9)

DIMENSION XX(9), ANS1(9), ANS2(9), RES(9)

XN1=1.33

CC 10 J=1,9

READ (5,502) PRE(J)

WRITE (6,502) PRE(J)

WRITE (6,501)

SLM=0.0

E(J)=1.0*CE-5*PRE(J)

XN2(J)=XN1*(1.0+E(J))

B(J)=1.0/(1.0+E(J))

CC 20 I=1,9

SLM=SLM+.1

PRE(I)=SUM

THETA1(I)=ABS SIN(PRE(I))

ANS1(I)=THETA1(I)*57.3

XX(I)=B(I)*XX(I)

THETA2(I)=ABS SIN(XX(I))

ANS2(I)=THETA2(I)*57.3

RES(I)=(ANS1(I)-ANS2(I))*2.

WRITE (6,503) PR(I), THETA1(I), THETA2(I), ANS1(I), ANS2(I), RES(I)

20 CONTINUE

10 CONTINUE

WRITE (6,504) XN2

FORMAT(15,4X,'PR',8X,'THETA1',4X,'THETA2',4X,'ANS1',5X,'ANS2',7X

1,'RES')

502 FORMAT(F6.2)

503 FORMAT(6F10.3)

504 FORMAT(4X,4X,XN2=1,F7.4)

STOP

END

<table>
<thead>
<tr>
<th>No.</th>
<th>Name and Address</th>
</tr>
</thead>
</table>
| 1. | Defense Documentation Center
 Cameron Station
 Alexandria, Virginia 22314 |
| 2. | Library (Code 0212)
 Naval Postgraduate School
 Monterey, California 93940 |
| 3. | Chairman, Department of Aeronautics (Code 57)
 Naval Postgraduate School
 Monterey, California 93940 |
| 4. | Professor A. E. Fuhs, Code 57Fu
 Department of Aeronautics
 Naval Postgraduate School
 Monterey, California 93940 |
| 5. | Captain Larry S. Mueller
 5N206 Ridgewood
 Bensenville, Illinois 60106 |
| 6. | Dr. Eric Lundstrom
 Code 3104
 Naval Weapons Center
 China Lake, California 93555 |
| 7. | Professor H. Power, Code 57Ph
 Department of Aeronautics
 Naval Postgraduate School
 Monterey, California 93940 |
| 8. | Professor R. Ball, Code 57Bp
 Department of Aeronautics
 Naval Postgraduate School
 Monterey, California 93940 |
| 9. | Captain James McNerney
 DDR & E
 Pentagon
 Department of Defense
 Washington, D. C. 20301 |
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>City, State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Colonel James Thompson USAF</td>
<td>WSEG/IDA</td>
<td>400 Army Navy Drive</td>
<td>Arlington, VA</td>
<td>22202</td>
</tr>
<tr>
<td>11</td>
<td>CDR Merlin L. Johnson</td>
<td>Naval Air Systems Command</td>
<td>Washington, D.C. 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CDR D. Hicks</td>
<td>Naval Air Systems Command</td>
<td>Washington, D. C. 20360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Robert G. Clodfelter</td>
<td>AFAPL</td>
<td>Wright-Patterson AFB, Ohio</td>
<td>45433</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Robert G. Blaisdell</td>
<td>Structures R&D Program Manager</td>
<td>Boeing Aerospace Group</td>
<td>Seattle, WA</td>
<td>98124</td>
</tr>
</tbody>
</table>
Experimental Investigation of Hydraulic Ram

Larry Scott Mueller

Naval Postgraduate School
Monterey, California 93940

March 1974

Naval Postgraduate School
Monterey, California 93940

Approved for public release; distribution unlimited.

Hydraulic ram, aircraft survivability, shock waves, projectile damage

Extensions of the investigations aimed at preventing aircraft destruction through the effects of hydraulic ram were conducted. By analyzing spark shadowgraphs the existence of a family of transient shock waves was confirmed. These shock waves were created by a surface anomaly in a projectile and are not unlike those found in fragmentary warheads. In an attempt to measure wall deflections subsequent to projectile impact,
a system based on optical fiber proximity probes was investigated. Mathematical models based on grid distortions were used as a means of calculating shock wave pressures. The AFIT thesis correlating cavity size, energy and radius to underwater explosions was verified from an analysis of 16 mm films.
Experimental investigation of hydraulic ram.